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ABSTRACT

The plasma heating associated with an avalanche involving three twisted magnetic threads within a coronal loop is investigated using
three-dimensional magnetohydrodynamic simulations. The avalanche is triggered by the kink instability of one thread, with the others
being engulfed as a consequence. The heating as a function of both time and location along the strands is evaluated. It is shown to be
bursty at all times but to have no preferred spatial location. While there appears to be a level of “background” heating, this is shown to
be comprised of individual, small heating events. A comparison between viscous and resistive (Ohmic) heating demonstrates that the
strongest heating events are largely associated with the Ohmic heating that arises when the current exceeds a critical value. Viscous
heating is largely (but not entirely) associated with smaller events. Ohmic heating dominates viscous heating only at the time of the
initial kink instability. It is also demonstrated that a variety of viscous models lead to similar heating rates, suggesting that the system
adjusts to dissipate the same amount of energy.
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1. Introduction

Attempts to explain the release of large amounts of energy
in the magnetically confined solar atmosphere have frequently
attributed it to magnetic reconnection in many newly form-
ing current sheets (reviewed, for example, by Klimchuk 2006;
Parnell & De Moortel 2012). Over the years, a number of pro-
cesses have received considerable attention, and this paper
focuses on two of these. The kink-mode instability is initiated
by footpoint motions that twist a coronal flux tube to a degree
such that the condition for marginal stability is exceeded. Exten-
sive studies of the conditions for the onset of instability have
been carried out (e.g. Hood & Priest 1979; Velli et al. 1990;
Browning & Van der Linden 2003) within the framework of lin-
earized magnetohydrodynamics (MHD). The twist of the flux
tube has been defined to be Φ = (2L/a) Bφ/Bz, where Bφ is
the azimuthal field, a is the flux tube radius, and the z axis
connects the two parallel photospheric planes, where the foot-
points of the flux tube are anchored and which are separated
by a distance of 2L; typical critical twists are of the order of
3π–6π, depending on the equilibrium used. Simulations of the
non-linear phase of the instability show that fast reconnection
arises (e.g. Browning & Van der Linden 2003; Hood et al. 2009,
2016), yielding a very fragmented current structure.

Other work has addressed coronal energy release through
the concept of an MHD “avalanche”. Originating with the work
of Lu & Hamilton (1991), a stressed coronal magnetic field
reaches a state where a local instability, or lack of equilibrium,
leads to the spreading of energy release over a large volume
(defined as an “event”). The generality of the idea is discussed by
Vlahos & Isliker (2016). However, such avalanche models rely,
in general, on a set of “rules” that determine when energy release
can arise, and so determine the spatial extent of the process (tem-
porally, the entire event occurs in one time step). We are not

aware of any demonstrations of correspondence of these rules
to the MHD equations. In particular, the processes invoked in
these models have not, to date, been demonstrated fully from the
MHD equations, although computational limitations can be held
largely responsible.

In a series of recent papers, we have begun to combine
these two approaches by considering “avalanches” in three-
dimensional MHD simulations, and, in particular, the role of
the kink instability in triggering an MHD avalanche. We have
demonstrated that a single kink-unstable constituent thread
within a coronal loop can destabilize a neighbouring, stable one
(Tam et al. 2015), and that a single unstable thread in an array
of twenty-three can lead to the destabilization of many of the
others (Hood et al. 2016). In this earlier work, the loops were
not driven by photospheric motions beyond instability. More
recently, Reid et al. (2018, hereafter, Paper I) look at a driven
system of three neighbouring strands, which are continually
driven at the photosphere. One becomes unstable, engulfing the
other two, and the continual driving leads to a braided system
that undergoes continual dissipation.

In many multi-dimensional MHD models, such as the one
described in Paper I (and references therein), the coronal energy
release is intermittent, occurring in discrete bursts when summed
over the simulated volume. However, how and where such
“burstiness” heats the plasma has not been investigated in depth.
For example, we inquire about the spatial and temporal heating
along a field line (or flux element). Such information is essen-
tial for determining the subsequent field-aligned evolution of the
heated plasma. This paper has two main objectives. One is to
present such heating functions in the context of the three-thread
avalanche model introduced in Paper I. The second is to discuss
the relative roles of viscous and Ohmic heating in this model,
and, in particular, where and when they contribute to the total
heating.
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Table 1. Typical and normalizing values.

Quantity Symbol Normalizing value Typical in active region Typical in quiet sun

Magnetic field strength B0 2 × 10−3 T 1 × 10−2 T 1 × 10−3 T
Electron number density ne 1 × 1015 m−3 5 × 1015 m−3 1 × 1015 m−3

Length scale L0 1 × 106 m 3 × 106 m 1 × 106 m
Alfvén speed vA 1.38 × 106 m s−1 3.09 × 106 m s−1 6.90 × 105 m s−1

Alfvén travel time tA 0.724 s 0.972 s 1.45 s
Magnetic energy density W0 3.18 J m−3 79.6 J m−3 0.796 J m−3

Current density j0 1.59 × 10−3 A 2.65 × 10−3 A 7.96 × 10−4 A

Notes. For each physical quantity listed in the first column, denoted by the symbols shown in the second, the chosen normalizing value here is
shown in the third column, alongside typical values to be seen in active regions (fourth column) and in the quiet Sun (fifth column) (as in, for
example, Priest 2014).

Section 2 presents the equations solved and details of the
model. Section 3 recapitulates briefly the outcome of Paper I
and examines how the global (i.e. spatially integrated) heating
and its Ohmic and viscous components depend on the numeri-
cal resolution of the simulation. Section 4 demonstrates the tem-
poral and spatial dependence of the heating along a selection
of field lines in different parts of the computational domain, as
well as the relative importance of the two dissipative processes.
Finally, in a series of Appendices, we provide extensive informa-
tion about the viscous and resistive models used in the Lare3d
code.

2. Basic model

The avalanche model has been summarized in the Introduction
and is described fully in Paper I; a brief summary suffices here.
As represented in Fig. 1, the model comprises three twisted mag-
netic threads (also known as strands) with footpoints fixed to
the photosphere, undergoing twisting from continual rotational
motions being applied there. These threads are considered to be
a substructure within a larger coronal loop, modelled as the rest
of the domain outside the driven threads.

In their dimensionless form, the MHD equations are solved
with the Lare3d code of Arber et al. (2001), neglecting thermal
conduction, optically thin radiation, and gravity:

Dρ
Dt

= −ρ (∇ · u) , (1)

ρ
Du
Dt

= (∇ × B) × B − ∇P + Fshock + Fvisc., (2)

DB
Dt

= (B · ∇) u − B (∇ · u) − ∇ × (η∇ × B) , (3)

ρ
Dε
Dt

= −P (∇ · u) + η j2 + Qshock + Qvisc., (4)

where D
Dt = ∂

∂t + (u · ∇), ρ is the mass density, u the plasma veloc-
ity, B the magnetic field, P the gas pressure, η the resistivity,
ε = P/ρ (γ − 1) the specific internal energy (where γ = 5/3 is
the ratio of specific heats), and j = ∇ × B the current density.
Typical values for length, mass density, and magnetic field, L0 =
1×106 m, ρ0 = 1.67×10−12 kg m−3, and B0 = 2×10−3T = 20 G,
respectively, have been used in these normalized forms. These
provide a reference Alfvén speed vA =

B0√
µ0ρ0

= 1.38 × 106 m s−1

(µ0 = 4π × 10−7 H m−1 is the familiar permeability of a vac-
uum, removed from the equations by the normalization), Alfvén
travel time across L0 tA =

L0
vA

= 0.724 s, magnetic energy den-
sity W0 = 3.18 J m−3, and current density j0 = 1.59 × 10−3 A.

In Table 1, these we compare with values typical of the strong
fields in active regions and of weak fields in the quiet Sun.

There are two viscosities imposed in Lare3d: in Eq. (2), there
is a force per unit volume from the shock viscosity, Fshock, and
one from a “background”, uniform viscosity, Fvisc.. Associated
with these are heating terms in the energy equation, respec-
tively Qshock and Qvisc.. The first of these is designed to treat
shocks such that the Rankine-Hugoniot relations are satisfied,
while the second is useful for damping disturbances that prop-
agate in the domain in response to the initial evolution. Both
are fully discussed in the Appendices. Appendix A.1 presents a
simple outline of the shock viscosity model used, Appendix A.2
outlines the forms of Fvisc. and Qvisc., and Appendix B demon-
strates that the total viscous heating to be approximately inde-
pendent of the details of the viscosity models and the level of
the background viscosity. The kinematic viscosities are normal-
ized with respect to vAL0 and the default dimensionless coeffi-
cient in the background viscosity, used except where otherwise
stated, is µ = ρν = 10−3; sensitivity to this choice is discussed in
Appendix A.2.

In Eqs. (3) and (4), the resistivity has the form:

η = ηb +

{
η0 j > jcrit.,
0 j ≤ jcrit.,

(5)

where ηb is a background level of resistivity, here set to zero,
and η0 an anomalous resistivity, included where the magnitude
of current density exceeds a critical value, jcrit.. Apart from some
parameter studies in Appendix C, our base case has a dimension-
less anomalous resistivity of η0 = 0.001, imposed only where
current exceeds jcrit. = 5.0. This critical level of current, similar
to previous work (Tam et al. 2015; Hood et al. 2016), allows the
undamped growth of the current prior to instability, and is trig-
gered by the formation of a current sheet during the initial insta-
bility. The resistive coefficient η is normalized with respect to
µ0vAL0 (= 1.73×106 Ω m). Further remarks on the plasma resis-
tivity model can be found in Appendix C. It should also be noted
that viscous and resistive models differ among three-dimensional
MHD codes; this is addressed further in the discussion.

The computational domain has dimensionless lengths −3 ≤
x, y ≤ 3,−10 ≤ z ≤ 10, with the z-coordinate being along the
axis of the untwisted central loop and each twisted thread having
a radius of L0 (see Fig. 1). This was modelled using three sepa-
rate grids of 1282×512, 2562×1024, and 5122×2048 cells in the
x, y, and z directions. Variation of the resolution is considered in
some of the simulations described below; but, unless otherwise
stated, the results use the highest resolution. The boundary con-
ditions impose periodicity in x and y; in z, they hold zero normal
derivative on all variables other than the velocity.
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Fig. 1. From Paper I, the geometry of the three-thread model and asso-
ciated driving motions on the boundary, indicated by the direction of the
arrows at z = ±10. Each thread has a dimensionless diameter 2a, where
a = 1.0.

The initial conditions comprise a uniform plasma with a
magnetic field in the z-direction, along the threads. At both foot-
points of the threads, rotational motions in the x, y-plane were
centred at (x, y) = (0, 0) for the first thread, (2, 0) for the second,
and (−2, 0) for the third, such that the three threads touch each
other along y = 0. Defining a local radial coordinate r for each
thread, the rotational velocity is:

vφ = v0

 r
a

(
1 − r2

a2

)3
r < a,

0 r ≥ a,
(6)

and is imposed throughout the simulation. The maximum speeds
are chosen to be 0.05, 0.02, and 0.02, respectively (achieved
with v0 = 0.21, 0.084, 0.084) and the dimensional radii take on
the value a = 1.0. These values ensure that the driving is both
significantly sub-Alfvénic and faster than any resistive footpoint
slippage of the field lines (e.g. Bowness et al. 2013).

3. Global energetics

3.1. Overall behaviour

The overall behaviour of the three-strand avalanche was
described fully in Paper I; the results can be summarized by a
plot of the instantaneous heating as a function of time, shown by
the blue curve in Fig. 2. The initial photospheric motions take
the strands through a sequence of equilibria, with the magnetic
energy growing quadratically in time. Alfvén waves generated
at the start of the driving are damped by the background vis-
cosity (see Figs. 3 and 4 of Paper I). Marginal stability of the
central thread is passed at t ≈ 100, leading to the onset of the
kink instability. This is identified by an exponential growth in
the kinetic energy (Fig. 11 of Paper I), by the formation of a
strong, crescent-shaped current sheet in the mid-plane (Fig. 5
therein), and by a gradual rise in the heating (Fig. 2). Fast recon-
nection facilitated by the anomalous resistivity leads to the ini-
tial release of magnetic energy; the first large spike in the total
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Fig. 2. Instantaneous total heating as a function of time, from the photo-
spheric velocities given by Eq. (6) (blue). The red dotted vertical lines
mark large heating events, as identified in Figs. 9–11 of Paper I. The
green curve indicates the total heating in a similar simulation, with the
rotational velocity of each thread halved.

heating occurs at t = 200, indicated by the first vertical dashed
line. The unstable, rapidly evolving central thread engulfs the
outer two in turn, as a mini-avalanche, accompanied by major
energy releases at t = 250 and t = 350. Thereafter, the continu-
ally driven system continues to produce releases of small bursts
of energy, again indicated by the dashed vertical lines in Fig. 2.
These bursts are superposed on a fairly steady level of total heat-
ing, suggestive of a “background” heating prevailing in the vol-
ume as a whole. We return to the nature of this background in
Sect. 4.1.

In order to understand the effect of resolution on the results,
the same numerical experiment was performed using the three
grids mentioned in Sect. 2, with the same values for the diffusion
coefficients in all cases. In Fig. 3a, the evolution over time of the
volume-integrated magnetic energy is shown in the upper pan-
els. (The dimensionless magnetic energy at t = 0 is 360 W0L3

0,
almost all of which is associated with the regions outside the
threads, and so, for clarity, the difference from this is shown in
the upper left panel.) It is clear, firstly, that the initial instability
and subsequent engulfing of the two outer threads before t = 400
are largely independent of the chosen grid, and, secondly, that
while the details after this time differ from case to case, roughly
the same level of dissipation arises. We remark that a steady state
is not reached after t = 1000 (see Paper I) and that this holds for
all resolutions. (Further integration is restricted by the available
computational resources.) Figures 3b,c, and d show the kinetic
energy, instantaneous heating, and viscous heating, respectively,
as functions of time. The kinetic energy is small in all cases, but,
unlike the change in magnetic energy, shows temporal structur-
ing that differs between the various grids, even as soon as the
onset of the initial kink mode. This behaviour is also seen in the
total and viscous heating rates, although, for these, the agree-
ment is better in the initial kinking. This indicates that, despite
the overall rate of dissipation in the system being similar for all
models, the details of how this happens, in other words the prop-
erties of the localized regions of viscous and Ohmic heating, do
depend on the resolution.

Considering these results physically is dependent upon
the prescribed normalizing scales. The dimensionless figures
presented can be read with any normalizing values, but, for
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Fig. 3. Evolution of magnetic energy (panel a), kinetic energy (panel b), instantaneous total heating (panel c), and total viscous heating (panel d)
in the domain. Results are shown for resolutions 1282 × 512 (blue), 2562 × 512 (red), and 5122 × 2048 (green). Magnetic energy is shown as a
change from its initial, potential level. We remark that total and viscous heating are on different vertical scales.

example, with those in Table 1 for an active region, the change
in magnetic energy peaks at 1.7 × 1022 J, the kinetic energy at
8.6 × 1020 J, and the heating at 4.4 × 1020 J s−1.

3.2. Relative importance of shock, viscous, and Ohmic
heating

In real plasmas, viscous and Ohmic dissipation can lead to heat-
ing of ions and electrons, respectively. Further, the field-aligned
electric field associated with resistivity can lead to acceleration
of particles. While, for high densities and low temperatures,
equilibration between the species can occur rapidly, this may
not be the case in certain coronal parameter regimes (Braginskii
1965; Bradshaw & Cargill 2013; Barnes et al. 2016a,b), so it is
of interest to investigate the relative roles of the two dissipative
processes.

The left panel of Fig. 4a shows separate viscous and Ohmic
heating rates and the right panel the ratio of viscous to Ohmic
heating for three different resolutions as a function of time, with
the same dimensionless coefficients of diffusion in each. The
components of the heating rise and fall approximately (although
not exactly) in phase. One might expect a small lag of viscous

heating with respect to Ohmic owing to the need for reconnec-
tion to occur before shocks can form (for example, the formation
of the first helical current sheet must precede the formation of
slow shocks, as discussed in Bareford & Hood 2015), and this is
evident at t = 200. However, at later times, such information is
likely to be lost in the integration of heating rates over the entire
simulation volume.

The right panel indicates that, at the time of the first instabil-
ity, Ohmic heating is more important, but, thereafter, we find a
predominance of viscous heating, in common with some MHD
simulations (e.g. Bareford & Hood 2015), but not others (e.g.
Rappazzo et al. 2008). However, in Fig. 4b, the ratio of vis-
cous to Ohmic heating is shown as a function of resolution, with
less well resolved simulations having a predominance of viscous
heating. With increasing resolution, shock heating decreases and
converges to its appropriate, physically motivated level.

3.3. Mass motions associated with the avalanche

Another important diagnostic of the energy release is the associ-
ated mass motions. While the kinetic energy is relatively small
(see Sect. 3.1), it is of interest to see how the flows break down
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Fig. 4. Panel a: instantaneous total heating (blue), divided into that from Ohmic dissipation (green) and viscosity (red; the sum of shock and
background viscosities). Panel b: ratio of total viscous to Ohmic heating, for simulations with resolutions 1282 × 512 (blue), 2562 × 512 (red), and
5122 × 2048 (green).
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Fig. 5. Evolution over time of total (blue), parallel (red), and perpendic-
ular (green) volume-integrated kinetic energy.

into components parallel and perpendicular to the magnetic
field. The total kinetic energy and its components are shown in
Fig. 5 for the highest resolution simulation. The dominant kinetic
energy lies in the perpendicular component, although after the
initial instability there is a significant field-aligned component,
indicative of there being strong localized pressure enhancements
associated with the reconnection; the consequence of these field-
aligned flows is discussed later. The major flows are associated
with the initial kinking and engulfment of the outermost of the
three strands.

3.4. Reduced photospheric velocities

Models of the corona often require footpoint velocities larger
than their true values, typically 1 km s−1, owing to the large coro-
nal Alfvén speed (and consequently small time step), and to the
need to avoid resistive slippage (e.g. Bowness et al. 2013). To
examine the role of such velocities, we have simulated an exam-
ple with all driving speeds reduced by a factor of two, and the

resultant heating is shown by the green line in Fig. 2. Marginal
instability is now attained at t = 200 (compared with t = 100
formerly), and the subsequent energy release peaks at t = 325,
compared with t = 185, while the second peak arises at t = 505,
compared with t = 335. Thus, while the overall disruption of
the threads is delayed by the slower driving, the delay is not
a precise factor of two following marginal instability. In fact,
the delays between the first and second maxima are 180 and
150 Alfvén times. This implies that the evolution following the
first instability is, at least partially, dependent not only on the
boundary motions themselves, but on internal dynamics within
the threads. In particular, there is now a decoupling between the
slower onset of the kink instability in the outer threads and their
being engulfed by the central one. After the second peak, we
again find a bursty energy release following from each, although
the slower driving speed gives a superficially smoother heating,
as seen in these integrated quantities.

4. Local behaviour

In order fully to evaluate the coronal response to the heating, it
is necessary to examine how heating is distributed along individ-
ual field lines. This is because the response to coronal heating is
largely through the field-aligned hydrodynamic response, which
has been the subject of numerous studies using one-dimensional
hydrodynamics with arbitrary heating functions. Obtaining the
correct response to heating is more difficult in three-dimensional
models on account of the need for a very fine grid in the steep
transition region and consequently for a small time step. Indeed,
Bradshaw & Cargill (2013) demonstrated that lack of sufficient
resolution in the transition region leads to incorrect coronal den-
sities. The heating functions obtained here could be used as real-
istic (less arbitrary) input in such hydrodynamic models and this
will be addressed in future work.

4.1. Heating on individual field lines

We select six field lines as being representative of different parts
of the computational domain. All are tracked from a point on the
bottom photospheric plane (z = −10), their position there being
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Fig. 6. Distribution, at t = 0 and on z = −10, of the six field lines that are
tracked from the lower boundary, along which the heating is calculated
in subsequent figures. The dotted circles represent the initial location of
the three threads, and the domain in which they are driven.

determined by advection with the form given by Eq. (6), such
that these field lines are, theoretically, the same ones through-
out the duration of the simulation. Three field lines begin in the
central thread, one on the axis (i.e. with twist but no driving),
one near the radius of maximum driving, and the third beyond
that radius. The other three begin in each of the other two driven
threads, and in the region that is not being driven. These starting
points are shown in Fig. 6, and the field lines are subsequently
referred to as (a)–(f). Trajectories of field lines are integrated
using a fourth/fifth-order Runge-Kutta-Fehlberg scheme. Local
plasma properties define heating in each of the cells across the
three-dimensional grid. From these, local viscous and Ohmic
heating contributions are inferred at each of the discrete, finite
segments tracing the field line path. The results are shown in
Figs. 7–11.

Figure 7 shows the heating along these field lines, plotted
as contours in space (horizontal axis) and time (vertical axis).
The intensity of the heating is indicated in the colour bar. In this
figure, distances along each field line are normalized by the total
length of each field line, since the length can change in time
as the footpoints are rotated and reconnection occurs. We have
confirmed that this is a relatively small change; the maximum
extension over the dimensionless length of 20 is a few percent
at the time of marginal stability of the initial kink mode. The
full spatial distribution of the heating experienced by a sample
of field lines at a single instant in time is more readily illustrated
in Fig. 8. Here, a number of field lines are traced, at t = 200, t =
400, and t = 700, and shaded by their total heating. At each of
these times, we trace the same field lines, based on their motion
on the lower boundary plane. In addition to field lines (a)–(e)
discussed above, additional ones are selected, in order to provide
a broader coverage of the simulated volume.

While field lines (a)–(e) show weak initial heating owing
to the viscous damping of Alfvén waves generated by the pho-
tospheric motions, the commencement of significant heating is

clear in each panel from the location of abrupt change in colour
and arises at t = 150 for field line (a), at t = 180 for (b), at
t = 190 for (c), at t = 220 for field line (d), and at t = 310 for
field line (e). We discuss field line (f) shortly. In general, after
the initial instability, the magnitude of the heating events along
of all of the field lines varies quite significantly, but there is no
obvious preferred spatial location for heating, other than in the
central 90% of the loop, although the absence of plasma strat-
ification may play a role in this. There are, on the other hand,
significant differences between the six field lines. At the time of
the peak instability, the heating is strong along almost the entire
length of field line (a), largely from Ohmic heating. After this,
there are some strong, localized heating peaks on this field line,
triggered by smaller reconnection events far away from the foot-
points. At a slightly later time, field lines (b) and (c) undergo
marginally weaker heating, followed by smaller bursts.

Figure 7d and e demonstrate that, once they are disrupted, the
heating in the other driven threads behaves in a similar manner,
namely an extended initial burst and then localized small bursts.
The major early events are consequent to each thread merging
with the central one; thereafter, the reconnection is largely indis-
criminate and evenly distributed across the growing region of
non-potential field. However, the level of heating is weaker along
these field lines compared with those within the central thread, as
may be expected given their slower driving. At later times, after
t = 600, stronger heating commences once these two threads are
engulfed in the avalanche, this being earlier in the second thread
than in the third. Thereafter, the heating profile is similar, but
generally of lesser intensity.

The heating of field line (f), which starts within the outer
potential region, is of considerable interest. Despite undergoing
no driving, Fig. 7f demonstrates how a field line traced from the
initially potential field, can be heated once it has reconnected
with field lines of the driven threads. Because this field line is in
the potential region just outside the central thread, it is rapidly
engulfed as that thread becomes unstable. However, the sub-
sequent spatial and temporal distribution of heating looks very
similar to Fig. 7d and e.

Figure 9 shows the contours of viscous (a) and Ohmic (b),
using the same colour scale, for field line (b). The Ohmic heat-
ing is very localized, as it occurs only in regions where the
critical current is exceeded. The viscous heating has regions of
strong heating that are closely correlated with the strong Ohmic
heating.

The six panels of Fig. 10 show the time-averaged heating
as a function of distance along the field lines (i.e. by averag-
ing vertically in Fig. 7). As mentioned earlier, there is no evi-
dence that heating is concentrated in one specific location along
the axis of the central thread, rather there are heating bursts
localized over small spatial intervals. However, the other threads
do show localized spikes and these can largely be attributed to
single events. For example, for field line (b), the peak in the mid-
dle is because of disruption of the second thread by the kink-
unstable central thread and a subsequent strong heating event at
t = 700. Field line (e), from the third thread, has two smaller,
broader peaks around s = 0.3 and s = 0.8 that are both caused
by heating associated with the disruption of this thread during
the avalanche. Field line (f), initially in the potential region, has
a more rounded heating profile, with little heating at the foot-
points and, except one spike at s = 0.3, the maximum heating
near the middle of the field line. However, it should be noted
that the limited time for which the simulations were performed
emphasizes these spikes over a broad level of dissipation in the
resultant turbulent medium. A feature of all these plots is that
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1.00×10−6 3.42×10−5 1.17×10−3 4.00×10−2

Heating (W0t−1A )

Fig. 7. Contours of heating as a function of time along the six field lines shown in Fig. 6. Field lines (a)–(c) are in the upper row, and (d)–(f) in the
lower. The horizontal axis shows distance along the field line, normalized to the interval [0.0, 1.0], the vertical axis shows time, and the contours
are scaled logarithmically across four orders of magnitude. The location on the boundary from which each field line is traced is advected in time
by the driving velocity, such that the same field line is theoretically tracked over time.

there appears to be a fairly steady level of heating exceeding
0.6 × 10−3 W0t−1

A in 10a, falling to 0.1 × 10−3 W0t−1
A in 10f, but,

in fact, this is a consequence of the temporal average in Fig. 10.
Figure 11 shows the spatially averaged heating along the six

field lines as a function of time, demonstrating a number of char-
acteristic features. There are strong bursts of heating initially in
all cases, as the instabilities and initial avalanche stages proceed.
However, in the three lower panels, these are more evident when
compared with the background level. This suggests the fact that,
in the strongly driven region, there is a state after t ≈ 300 in
which little build-up of magnetic energy is permitted and the
heating rate varies by a factor somewhat larger than 10. In the
outer regions, the strong bursts are more discrete, suggesting
energy build-up is feasible. The magnitude of the events now
varies by a factor of 100.

The second interesting feature of these results concerns what
we have previously referred to as the background. In all panels
of Fig. 11, while there is a clear minimum in the heating rate,
that minimum is only attained at a few times. Instead, there is a
range of heating rates. This suggests that any low-level “numer-
ical” heating is almost always superseded by some ubiquitous

“physical” heating, understood to mean that the imposed viscous
and resistive diffusion are operative. Further, the background that
we noted in Fig. 2 is, in fact, a superposition of an evenly dis-
persed viscous action and several small, discrete, and far more
impulsive events.

4.2. Spatial location of heating and distribution

The distribution of the instantaneous total, viscous, and Ohmic
heating in the mid-plane, z = 0, is illustrated in Fig. 12 at
t = 200, t = 400, and t = 700. An intense current is among the
characteristic hallmarks of a kink instability. Figure 13 shows
the current in the mid-plane at t = 200, t = 400, and t = 700,
respectively. Fragmentation and proliferation in the current lay-
ers develops over time, with the solid, pronounced current as the
instability emerges being replaced with a network of small, com-
plex structures enabling dissipation, magnetic reconnection, and
small heating events.

We note that the strongest heating is four orders of magni-
tude larger than the weakest. We have used a minimum heating
threshold of 10−6 and neglected any cells with a lower value.

A158, page 7 of 16

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201937051&pdf_id=7


A&A 633, A158 (2020)

1.00×10−6 3.42×10−5 1.17×10−3 4.00×10−2

Heating (W0t−1A )

Fig. 8. Field lines traced and plotted in three dimensions, with shading according to the total heating experienced along them, at (a) t = 200,
(b) t = 400, and (c) t = 700. The colouring is logarithmically scaled with the heating.

1.00×10−6 3.42×10−5 1.17×10−3 4.00×10−2

Heating (W0t−1A )

Fig. 9. For field line (b) (shown in Fig. 7b), the viscous (panel a) and Ohmic (panel b) constituents of heating, plotted in contours generated in like
manner. Again, the colour scale is logarithmic.

At t = 200, the strongest heating locations (orange and
red regions) are coincident with the regions of Ohmic heat-
ing. This is not surprising, since the Ohmic heating, on account
of its anomalous nature, is far more localized, but, where it
does occur, its magnitudes are greater and have a minimum

value (0.025 W0t−1
A ), corresponding to the jcrit. for the onset of

resistivity. In addition, the kink instability, which initiates the
avalanche process, forms a strong helical current sheet, form-
ing the crescent of Ohmic heating seen strongly in Fig. 12c. The
strongest viscous heating sites are closely associated with the
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Fig. 10. Total heating along the field lines in Fig. 7, averaged in time. The results here are shown on a linear scale.
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Fig. 11. Total heating on the field lines in Fig. 7, integrated along the field lines and then averaged over their lengths. The results here are shown
on a logarithmic scale.

Ohmic heating sites and there is evidence of heating in the slow-
mode shocks in the reconnection outflow regions (discussed by
Bareford & Hood 2015). The weaker heating is more distributed
throughout the unstable magnetic thread and is wholly from the
viscous contribution. This heating is almost certainly dependent
upon the form of the viscosity used and upon the size of the
coefficients in the shock viscosity.

At t = 400, the Ohmic heating occurs in a large number
of small regions of strong current, and the strongest regions of
viscous heating coincide with the strongest Ohmic heating sites.

However, there are many fine, wisp-like structures in the inter-
mediate values of viscous heating (≈10−3). The weakest viscous
heating (<10−5) now covers the majority of the remainder of
the computational domain. Thus, there is always some weak,
entirely viscous, heating. When integrated over the plasma vol-
ume, this corresponds to the weak background heating seen in
Fig. 3c.

In order to determine whether the more numerous, weak fea-
tures in the heating contribute more to the total than the less com-
mon but larger, we calculate heating frequency histograms. In

A158, page 9 of 16

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201937051&pdf_id=10
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201937051&pdf_id=11


A&A 633, A158 (2020)

1.00×10 −6

1.00×10 −5

1.00×10 −4

1.00×10 −3

1.00×10 −2

Heating (W0t−1A )

Fig. 12. Contours in the mid-plane of total heating (left column), viscous heating (middle column), and Ohmic heating (right column), at t = 200
(top row), t = 400 (middle row), and t = 700 (bottom row). The total heating in the plane in each plot (in dimensions W0L2

0) is (a) 8.81 × 10−3, (b)
4.30× 10−3, (c) 4.52× 10−3, (d) 1.50× 10−3, (e) 1.10× 10−3, (f) 4.05× 10−4, (g) 2.99× 10−3, (h) 2.24× 10−3, and (i) 7.51× 10−4. Colours are found
with the same logarithmic scale as was used in Fig. 7. Although, numerically, heating is recorded outside the shaded regions below the minimum
of 10−6 on the colour bar, it is here set in white.
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0.00 2.00 4.00 5.00 7.00 9.00 11.00 13.00 15.00
|j| (j0)

Fig. 13. Contours of the magnitude of total current (| j|) in the mid-plane (z = 0) at t = 200 (panel a), t = 400 (panel b), and t = 700 (panel c). The
colour bar changes around the critical threshold for anomalous resistivity, jcrit. = 5.0, and shows current slightly below this threshold in green.
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Fig. 14. Histograms of the constituents of total heating, viscous (red) and Ohmic (green), in each cell in the domain, at times t = 200 (panel a),
following the instability of the central thread, t = 400 (panel b), following the subsequent evolution of the instability across the domain, and
t = 700 (panel c), much later. The histograms are produced logarithmically from the values of heating found at each cell within the computational
domain.

Fig. 14, the histograms show the distributions of the viscous and
Ohmic constituents of the total heating, as functions of heating
density. We remark that these histograms count only the spe-
cific, local heating felt at each computational cell, which may
not necessarily correspond to an “event”, as these may be spread
across several adjacent cells and many time steps; to isolate such
events discretely involves an analysis well beyond the scope of
the present paper (but see, for example, Guerreiro et al. 2015;
Kanella & Gudiksen 2017). There is a fairly clear distinction
between Ohmic and viscous heating, the former dominating at
high energies and cutting off abruptly at 0.025 W0t−1

A . In part, this
is a consequence of the use of a critical current to turn on resistiv-
ity; but it should also be noted that there are comparatively few
viscous events at such energies, with the viscous heating pre-
dominating at lower energy. In Fig. 14a, there is some evidence
of a three-part power law at t = 200, as indicated by the dashed
line segments. However, there is no evidence of a power law at
the later times shown.

5. Conclusions and discussion

In this paper, we have developed the avalanche model of three
threads first discussed by Paper I, in order to study the plasma

heating arising from the energy dissipation. Globally, heating
is shown first to arise as large bursts associated with an initial
kink instability in one thread, but thereafter to evolve to a series
of smaller heating events. These macroscopic results seem to
be largely robust to a range of chosen viscosity and resistivity
models, and to varying numerical resolution. For our chosen vis-
cous and resistive models, resistive heating is the more important
at the time of initial kink instability, but viscous heating sub-
sequently becomes the more important. Resistive heating also
occurs as a relatively small number of large “events”, whereas
viscous is generally associated with smaller events.

We have also determined the specific time-dependent heating
functions along a number of field lines. These show no obvi-
ous spatial preference, bursts of energy being released along
approximately 90% of field lines, although after the initial kink-
ing, these are localized. Temporally, local heating remains highly
intermittent and impulsive, indeed arguably more so than in the
volume-integrated results. This field-aligned heating can be con-
sidered as input for one-dimensional models of loop plasma evo-
lution, and this will be returned to in a future paper.

In Paper I and here, we have used viscous and resistive coef-
ficients that are intended to describe, in particular, the physics of
shocks and the onset of magnetic reconnection in regions with
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strong currents. These transport coefficients are, of course, large
in comparison with those produced by the parameter values from
classical theory (e.g. Braginskii 1965), but this artificial scaling
is essential, given the inability of current MHD codes to simu-
late such plasma transport in a realistic way. We showed that our
coefficients operate in such a way as ensures that the build-up of
energy and subsequent dissipation occur.

However, our prescription is not unique, and other workers
have adopted alternative approaches. The simplest approach is
used, for example, in reduced MHD and involves an assumption
of incompressibility, so eliminating the presence of shocks and
field-aligned flows. Instead, simple viscous and resistive coef-
ficients are used, the two usually set equal, and expressible as
a hyper-diffusion, partly in an attempt to localize diffusion at
regions of intense current and/or vorticity, and partly to enable
the implementation of an efficient spectral method. (A similarly
simple, abrupt, piecewise form, as used here and frequently also
by others, is not readily amenable to such a spectral approach.) In
view of the importance of slow-mode shocks, found by ourselves
(on which we have for want of space been unable to expand here)
and by others, RMHD risks missing important aspects of coronal
energy dissipation.

Our chosen switch for the initiation of resistivity is, admit-
tedly, arbitrary and other models may lead to different results.
Such models are based on the notion that an anomalously high
resistivity can be triggered when the electron drift associated
with the current exceeds some critical value, often a given frac-
tion of the ion thermal speed. For example, Bareford & Hood
(2015) use a critical current dependent on plasma parame-
ters, especially including a linear proportionality to tempera-
ture through thermal velocity and Larmor radius. Consequently,
as soon as any heating arises, the critical current increases
rapidly and so precludes further Ohmic heating, although there
are cases where the temperature increase makes a further
micro-instability more likely (e.g. the supernova shock model
of Cargill & Papadopoulos 1988). In contrast to our work,
Bareford & Hood (2015) found very large ratios of viscous to
Ohmic heating, as did a similar model of Gordovskyy et al.
(2014). These models are based on the notion that an anoma-
lously high resistivity be triggered when the electron drift asso-
ciated with the current exceed a critical value, often some frac-
tion of the ion thermal speed (so introducing the temperature
dependence), and rely on simple considerations with quite a
large threshold for instability. On the other hand, there are insta-
bilities with less severe onset conditions, especially associated
with lower hybrid waves. Also, resistive models can be com-
bined, such as using a global resistive model in conjunction with
a hyper-diffusion of the form often seen in RMHD, in order
to dissipate in particular small currents (e.g. Gudiksen et al.
2011). Alternatively, many use codes allowing for a resistivity
that scales in some way with current above a critical threshold
(e.g. Pagano & De Moortel 2019; Porth et al. 2014). The topic
remains to be explored in its totality, for which reason it is diffi-
cult at this stage to select any one model before all others.

While viscosity was found to be important at most times
away from shocks and fine current layers, we find that our vis-
cous model was the dominant dissipative mechanism. In reality,
the fate of small-scale currents and vortices is uncertain. One
possible path admits a rapid cascade to small scales at which
“real” (that is, physical, without numeric or artificially high) vis-
cosity and resistivity take over. Following Braginskii (1965), we
find kinematic perpendicular viscosity ν = 9 × 10−19n/

√
T B2,

and resistivity η = 109/T
3
2 , in MKS units. Their ratio defines the

magnetic Prandtl number Pm = ν/η = 9 × 10−28nT/B2 = 13β
(cf. Cargill et al. 2016), which reflects their relative balance, and
which can, with coronal parameters, be less than unity, imply-
ing resistive diffusion more significant at such scales. Natu-
rally, then, it is a subject of concern that our model finds vis-
cous dominance and that viscous coefficients are often assumed
higher (as found, for example, by Hendrix & Van Hoven 1996;
Bingert & Peter 2011). Two caveats, however, apply to this.
Firstly, the field-aligned viscosity, more than 108 times more
effective than the transverse and with an equivalently higher
magnetic Prandtl number, dissipates very efficiently the paral-
lel flows shown in Fig. 5. Secondly, in a tangled field of the kind
found after the original kink instability, it is plausible that vis-
cous heating is enhanced by small-scale process, such as a local-
ized Kelvin-Helmholtz instability (discussed, for example, by
Browning & Priest 1984, in the context of wave heating). Nev-
ertheless, the scaling of Ohmic heating with magnetic Reynolds
number has been explored, and Ohmic heating may alone suffice
for heating (Hendrix et al. 1996).

Finally, it is of interest to comment upon the link between
such MHD models as presented here and such avalanche mod-
els as developed by Lu et al. (1993). The difficult in comparing
the two can be seen in Fig. 14, in which we plot a distribution
of “events”. These are snapshots at a given time, and are not
the same as “events” in avalanche models, where the system can
evolve over multiple scales until a stable state is reached. Trying
to track such features in MHD models is a very difficult task
(well attempted by Guerreiro et al. 2015; Kanella & Gudiksen
2017), involving a large amount of post-processing; it is unclear
whether this can ultimately be achieved. In turn, this casts some
shadow over some of the fundamental concepts of avalanche
models, in whether the rules on which they rely are verifiable
from first principles. On the other hand, it is equally true that
any rules emerging from three-dimensional MHD models may
be regarded with suspicion, owing to the artificial dissipative
coefficients employed.
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Appendix A: Numeric issues in Lare simulations

A.1. Shock viscosity

The Lare code implements a shock viscosity with the aim of
satisfying the Rankine-Hugoniot equations at shocks1. This is
required because the ideal MHD equations admit singular solu-
tions within a finite time, which are not physically real. Small but
finite viscosity would result in a continuous solution that varies
rapidly over a short distance. The shock viscosities are intended
to broaden regions of rapid change by providing small local dis-
sipation, allowing the Rankine-Hugoniot relations to be satisfied.
However, these shock viscosities can have other consequences,
as we discuss below.

Shock viscosities use a “fictitious” pressure, here defined
as p?. The form proposed by Kuropatenko (1967) and Wilkins
(1980) for one-dimensional solutions is:

p? = ρ

ν2
γ + 1

4
|∆u| +

√
ν2

2

(
γ + 1

4

)2

(∆u)2 + ν2
1c2

s

 |∆u| , (A.1)

where ∆u is the difference in the velocity field across a cell, ν1, ν2
are dimensionless coefficients controlling the shock viscosity,
and cs is the sound speed. When ν1 = ν2 = 1.0, p? is identical to
the pressure difference found in the Rankine-Hugoniot relations.
Considering respectively the limits cs � |∆u| and cs � |∆u|,
ν1 and ν2 govern the linear and quadratic dependence of p?
on |∆u|. For specifically MHD problems, the sound speed cs is

replaced with the magnetoacoustic fast-mode speed,
√

c2
s + v2

A.
In the shock tests undertaken by Arber et al. (2001), this resulted
in satisfactory performance, for example in the canonical prob-
lem of Brio & Wu (1988).

The precise multi-dimensional implementation follows the
approach of Caramana et al. (1998). On each edge of each cell,
a force is calculated:

F? = ρ

ν2
γ + 1

4
|∆u| +

√
ν2

2

(
γ + 1

4

)2

(∆u)2 + ν2
1c2

s

 ∆u · S
|∆u|

∆u,

(A.2)

where ρ is evaluated on the edge, ∆u the difference in velocity
along the edge, and S is an area defined in the median mesh
proposed by Caramana et al. (1998). This force is applied to the
vertex pointed to by S, and an equal, opposing force to the other
vertex on the edge. It is equivalent to the force produced by such
a pressure as in Eq. (A.1) along the edge of the computational
cell. Within the predictor-corrector scheme, these forces are then
used in the calculation of the updated velocity, its value at each
vertex being influenced by its adjacent edges. The action of these
forces produces a shock heating that is applied to the internal
energy. This is calculated as F? · u, in the usual way.

By default, the code follows common practice in MHD in
that it applies the shock viscosities everywhere, both in the pres-
ence and absence of compressions. There exists an option, fur-
ther discussed here, to restrict this behaviour by using the shock
viscosities only in the presence of compressions, as is more com-
mon practice in fluid dynamics and has been prescribed by liter-
ature on the subject (for example, by Wilkins 1980).

The form of pressure prescribed by Eq. (A.1) is not entirely
arbitrary or unconnected with the physical equations. As noted

1 This is discussed by Arber, T. 2018. “LareXd User Guide”, Uni-
versity of Warwick, available at https://warwick.ac.uk/fac/sci/
physics/research/cfsa/people/tda/larexd/.

by Margolin (2019), this forms agrees with the truncation term
produced in deriving the form of the Navier-Stokes equations
appropriate for a finite-volume method.

A.2. Background viscosity

A background viscosity is also applied of the form:

Fvisc. = ρν∇2u = ρν
∂

∂x j

(
∂vi

∂x j

)
ei, (A.3)

Qvisc. = ρν∇u : ∇uT = ρν
∂vi

∂x j

∂vi

∂x j
, (A.4)

where µ = ρν is the dynamic viscosity, ν kinematic viscosity,
∇u is the gradient of the velocity vector, and we assume sum-
mation over repeated indices. Formally, this is only valid for an
isothermal, unmagnetized, and incompressible plasma. In addi-
tion, the viscous coefficient µ is chosen on numerical grounds
and assumed constant over the computational domain. The role
of imposing this simplified, uniform viscosity is to damp MHD
waves, in particular those originating prior to the instability. The
effect of this viscosity and of its interaction with the shock vis-
cosity is discussed below.

A.3. Lagrangian code: energy conservation

Lare is a Lagrangian remap code, which, at each time step,
solves its governing equations on a staggered, Lagrangian grid,
before remapping the results back onto the originally prescribed
Eulerian mesh. The remap conserves mass and momentum, but
not kinetic energy. Kinetic energy may be lost, and this effect
can be particularly acute near shocks.

The code has a facility, not here used, to account for kinetic
energy lost in its remapping stage. In order to remove this spe-
cific source of error in conservation of total energy, the loss may
be calculated and incorporated as heating. However, any loss of
magnetic energy remains a source of numerical error in the code
(Arber et al. 2001).

Appendix B: Viscosity models: influence on
heating

As indicated in Sect. 2, attention must be paid to how the results
may be changed as the models for the viscosities are altered.
Figure B.1 shows the combined and individual contributions to
total heating of the shock and background viscosities, as the
background (dynamic) viscosity takes on the dimensionless val-
ues 10−3, 10−4, 0.0. Figure B.2 compares, for higher resolution,
the total and shock viscous heating for the previous main case
(µ = 10−3), the case without background viscosity (i.e. µ = 0.0),
and the case without background viscosity and limiting the role
of shock viscosities to compressions.

What is clear from these comparisons is a degree of interplay
between the viscosities in the code. The reduction of heating by
background viscosity is not matched by a straightforward and
equivalent reduction in the level of total viscous heating. Instead,
the shock heating increases, this part of the formulation of vis-
cosity not confined solely to true shocks.

To address this last point, we have restricted the application
of shock viscosity to compressions (i.e. ∇ · u < 0) only, as shown
in Fig. B.2, where there is clearly a lower level of shock (and
therefore also total viscous) heating. However, the majority of
shock heating does indeed appear to arise from compressions,
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Fig. B.1. Contributions to instantaneous total heating, from total viscous heating (a), shock heating (b), and background viscous heating (c),
comparing coefficients for background viscosity µ = ρν = 10−3 (blue), µ = ρν = 10−4 (red), and µ = ρν = 0.0 (green).
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Fig. B.2. Contributions to instantaneous total heating from total viscous heating (a) and shock heating (b), and magnetic energy (c), for the previous
µ = ρν = 10−3 level of background viscosity, as in the base case (blue); µ = ρν = 0.0 for no background viscosity (red); the same while confining
the shock viscosities to act strictly at compressions only (green); and no background viscosity while applying the gradient limiters in the shock
viscosity (magenta).

suggesting that the code’s handling of shocks, although arguably
too widely applied, is most active on flows that are “shocks” in
the conventional, strictly compressive sense.

Moreover, it is clear from the magnetic energy in Fig. B.2c
that, after the original process of instability, a similar overall
magnetic state is reached with each parameter set at t = 400. We
remark that any apparent enhancement of total shock heating in
the case where shock viscosities are confined to compressions is
likely explained by a different preceding evolution. In such case,
the heating is generally earlier, as less dissipation allows shocks
to form earlier.

Expanding upon the comparison of the code’s representation
of viscosity with its physical effects, it is well known (Braginskii
1965; Spitzer 1962) that the physical viscosity is dominated by
the contribution from parallel velocity. Figure 5 shows that, over
the course of the simulation, there is a marked shift from the
entirely perpendicular velocity which is imposed at the bound-
aries according to the form of the driving and spreads throughout
the domain, to a growing parallel velocity, which may contribute
to significant (and real) viscous heating (cf. discussion).

Appendix C: Comments on resistivity models:
influence on heating

In studying the kink instability, it is required that the magnetic
field build up energy prior to the onset of instability. A constant
“background” resistivity may lead to a slower build-up of mag-
netic energy. Thus, the “anomalous” resistivity should not turn
on until the currents exceed the level present when the mag-
netic threads reach theoretical marginal instability to the ideal
MHD mode; this motivated our choice of jcrit. in Sect. 2. We
observe that an alternative “resistivity” model is simply to rely

on numerical diffusion owing to truncation errors. While this has
the merit of being important only when currents are strong, there
is some evidence of a “chequerboard” instability in several of the
variables (Hirsch 2013).

In realistic physical systems, classical (Spitzer 1962) resis-
tivity is unimportant, as can be seen by frequently quoted
magnetic Reynolds numbers of the order of 1012. Instead, an
anomalous resistivity is likely to arise abruptly around a certain
switch-on level of current: it becomes significant where a current
layer forms, and length scales collapse. Whether the resistivity
is owing to turbulent electric fields arising from a plasma insta-
bility or from partial electron demagnetization is unclear at this
time. It should also be noted that the conditions for such physi-
cal processes to arise cannot be met in present day MHD simu-
lations. Accordingly, we follow a common procedure and use an
anomalous resistivity, with a selected threshold level well below
that indicated by plasma studies.

In Sect. 3, we compare the results for different resolutions
with the same value of jcrit.. Figure C.1 demonstrates the out-
come of relaxing this assumption. We show three simulations,
two with 5122 × 2048 points, but with jcrit. = 5.0 and jcrit. =
10.0 (blue and red curves respectively), as well as a case with
2562 × 1024 points and jcrit. = 5.0 (green curves). The for-
mer is comparable to the studies of (e.g. Gordovskyy et al. 2014;
Bareford & Hood 2015), although the parametric dependence of
their critical current on plasma parameters such as density and
temperature is ignored. Two of these cases were run in Sect. 3,
but lack of space did not permit the showing of the Ohmic heat-
ing. The three panels of Fig. C.1 show the magnetic energy,
kinetic energy, and Ohmic heating. The magnetic energy shows
little difference between the two higher resolution simulations,
except that the reduced dissipation associated with the higher
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Fig. C.1. Comparing resistivity models, and their impact upon magnetic energy (a), kinetic energy (b), and Ohmic heating (c) across simulations
with 5122 × 2048 cells and jcrit. = 5.0 (blue), 5122 × 2048 cells and jcrit. = 10.0 (red), and 2562 × 1024 cells and jcrit. = 5.0 (green).

critical current enables the retention of greater magnetic energy
at the onset of the instability. The higher current threshold also
has smaller Ohmic heating, with the peaks lower by around a
factor of two and greater kinetic energy, though the latter differ-
ence is small. Thus, despite the larger currents attainable in the
high resolution model, the smaller volume associated with the
finer grid leads to less heating. Comparing the two cases with
jcrit. = 5.0, the principal difference is greater kinetic energy.

Finally, we investigated a smooth form of η, modelled as an
hyperbolic tangent:

η =
η0

2

(
1 + tanh

| j| − jcrit.

δ

)
, (C.1)

which smoothly and differentiably introduced resistivity about
the same threshold level, over a typical width in current density-
space of δ = 0.5. This yielded qualitatively similar behaviour in
overall evolution and comparable global results; the differences
with the abrupt switch-on were less than induced by other fac-
tors, such as resolution.
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