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Coronal energy release by MHD avalanches: continuous driving
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ABSTRACT

Previous work has confirmed the concept of a magnetohydrodynamic (MHD) avalanche in pre-stressed threads within a coronal loop.
We undertook a series of full, three-dimensional MHD simulations in order to create three threads by twisting the magnetic field
through boundary motions until an instability ensues. We find that, following the original instability, one unstable thread can disrupt its
neighbours with continued driving. A “bursty” heating profile results, with a series of ongoing energy releases, but no evident steady
state. For the first time using full MHD, we show that avalanches are a viable mechanism for the storing and release of magnetic energy

in the solar corona, as a result of photospheric motions.
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1. Introduction

The release of magnetic energy in the solar corona arises
over a wide range of scales, ranging from large flares (102 J)
to microflares (10?2 J), and to the small events (10'7-10'® J)
that may heat the quiet Sun and non-flaring coronal active
regions. Although dissipation of magnetohydrodynamic (MHD)
waves remains a popular mechanism for coronal heating (e.g.
van Ballegooijen et al. 2011), the process, in particular, of mag-
netic reconnection is widely regarded as key to dissipation of
magnetic energy. From the viewpoint of coronal heating, there
is considerable interest in small, impulsive releases of magnetic
energy, generally referred to as “nanoflares” (Parker 1988). In
this scenario, the non-flaring corona is heated by a large number
of small events although whether the physics of nanoflares is
the same as flares is unclear. The size of a nanoflare is too small
to be observed directly. By their nature, they must overlap and,
hence, are difficult directly to detect individually. Evidence
from EUV and X-ray observations suggests that they may exist
(Reale 2014; Cargill et al. 2015). However, in the hard X-ray
observations of RHESSI (Ramaty High Energy Solar Spec-
troscopic Imager, Lin et al. 2002), Christe et al. (2008) and
Hannah et al. (2008) observed many thousands of microflares,
and subsequent instruments with higher sensitivity have pro-
vided further information of their properties (Krucker et al.
2014; Glesener et al. 2017).

It is widely believed that non-potential coronal magnetic
energy is built up either through direct injection of non-potential
field through flux emergence, or through slow, horizontal
photospheric motions. At some point, this energy can be
accessed, either through the field entering a state of magnetic
non-equilibrium, or through an instability. Since the coronal
plasma is a nearly perfect conductor, magnetic reconnection
can only occur in the presence of current sheets that enable
changes in the topology of the magnetic field and the subsequent
release of magnetic energy. Current sheet formation can arise
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as the magnetic field becomes increasingly complicated by
the action of photospheric motions, and spontaneous magnetic
reconnection results in the breaking and reformation of field
lines in a more stable, lower-energy configuration. Examples
of such studies can be found in Galsgaard & Nordlund (1996),
De Moortel & Galsgaard (2006), O’Hara & De Moortel (2016),
and Knizhnik et al. (2017). Ritchie et al. (2016) demonstrate
the significance of the nature of the driving motions, with the
associated helicity and topological entropy, for the scale and
frequency of heating events. Rappazzo et al. (2008), followed by
Rappazzo et al. (2010, 2013), use reduced MHD (RMHD) to
consider the rate of heating for various shearing and rotational
driving motions.

Much of the work on the non-linear kink instability in an
individual twisted loop, and indeed in subsequent papers on
avalanches, has considered an initial state composed of one loop
initially in equilibrium, linearly unstable to the ideal kink mode,
with a non-zero growth rate. In this line of work, Browning &
Van der Linden (2003) argue that ideal MHD instabilities in
an ordered magnetic field are likely to instigate reconnection,
through their fast growth times and subsequent formation of
strong currents. Using numerical simulations, Browning et al.
(2008) and Hood et al. (2009) demonstrate that a kink insta-
bility led to very fine-scale currents and rapid dissipation of
stored magnetic energy. The coronal magnetic field conserved
helicity while relaxing to the constant-« field, as predicted in
Taylor (1974).

Subsequent studies developed the model first by analysing
the evolution of the kink instability with multiple twisted loops.
Tam et al. (2015) consider a case of two neighbouring loops,
where one was kink unstable and the other stable. They demon-
strate that the instability in one loop led to energy release in the
other one, as the unstable loop engulfed the stable one. Hood
et al. (2016) consider twenty-three loops, one being unstable.
An avalanche occurred, with most of the stable loops being
engulfed, associated with a series of “bursty” energy releases.
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In all these simulations, there was no photospheric driving, the
initial magnetic field being an unstable equilibrium.

Strictly, however, such an initial state, of a loop in equilib-
rium but unstable to a kink mode, cannot exist, since a field
must evolve through driving across the stability boundary, and
hence the instability would start to grow, albeit very slowly at
first, as soon as the instability threshold is reached. It is much
more realistic to consider a field driven by slow (sub-Alfvénic)
motions of the photospheric footpoints. For such a system, the
linear growth rate increases as the field evolves beyond marginal
stability. Modelling this evolution is a complex, non-linear prob-
lem. However, one intuitively expects two types of evolution:
firstly, with the instability growing more slowly than the field
evolves through photospheric driving, the system continues to
pass through a series of equilibria; secondly, once the instability
grows faster than this, it will dominate the subsequent dynam-
ics. In the case of Rayleigh-Taylor-like instabilities, it has been
shown that driving across the stability boundary can lead to
the explosive growth of the instabilities (Hurricane et al. 1997,
Cowley et al. 2003), but the position for current-driven instabili-
ties, such as the ideal kink instability, is unclear. Therefore, it is
difficult to identify exactly when the instability is triggered and
its growth rate in evolving magnetic fields.

Gordovskyy et al. (2013) and Bareford et al. (2016) inves-
tigate continuous driving by rotating footpoint motions of a
single loop, including also the effects of both the expansion
and curvature of the loop. They demonstrate that the results are
qualitatively similar to those predicted for models with initially
unstable fields. In particular, there is a clear onset of dynamic
behaviour, with subsequent energy release through reconnection,
which appears to correspond to the kink instability.

The presence of such an avalanche as envisaged by Hood
et al. (2016) has potentially widespread implications, although
a number of questions remain unanswered. Among these is
whether repeated episodes of instability and energy release can
occur, as the field is continually twisted. Rappazzo et al. (2013)
suggest that this is not possible, and that the disordering of
the field prevents the onset of the kink instability; however, it
is not clear whether their reduced MHD simulations can fully
address the situation when footpoints undergo relatively large
displacements, as must be the case for the field being continually
twisted. For this reason, it is important to address the matter
using full three-dimensional MHD simulations, as we do here.
Another important question, addressed here, is the behaviour
when different parts of the field experience twisting at different
rates, producing several threads with unequal twists. A class of
conceptual (i.e. non-MHD) coronal energy release models have
been developed, where a driven system undergoes avalanches,
prescribed by simple rules governing the implied currents
(e.g. Lu & Hamilton 1991; Isliker et al. 2000; Vlahos et al. 2009).
Good agreement with some observables, such as distribution of
energies, is obtained. However, whether such behaviour repre-
sents the correct behaviour, as predicted by MHD, is unclear.

In this paper, we take a step towards addressing this ques-
tion by developing the work of Tam et al. (2015) and Hood et al.
(2016) to study a possible MHD avalanche in a driven system. A
coronal loop model of three twisted threads is considered, with
one thread being driven unstable while the others remain stable.
In contrast to our earlier work, we continue to drive the system
after the first instability. Section 2 introduces the basic model
and the imposed boundary conditions. The evolution up to the
kink instability is described in Sect. 3 and the main results pre-
sented in Sect. 5. The final section discusses the results and the
conclusions.
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2. Basic model

We modelled a straightened, line-tied coronal loop, with its
footpoints anchored in the dense photosphere. The initial state
comprises a uniform magnetic field along the loop axis (defined
as the z direction) connecting the two photospheric boundaries.
We imposed a rotational motion at the footpoints of three dis-
tinct cylindrical threads within the overall loop. In response to
the motion, the magnetic field in the three threads becomes
twisted. The remaining parts of the photosphere were assumed
to be at rest throughout the simulation. The time-dependent evo-
lution was followed by a three-dimensional MHD code described
below. While the coronal parts of the twisted threads do not
retain their simple initial topology, the photospheric motions
were only applied to the initial footpoints. A schematic of the
overall geometry is shown in Fig. 1.

2.1. Numerical method

The non-ideal MHD equations were solved numerically using
the Lagrangian Remap code, Lare3d, of Arber et al. (2001). The
equations are made dimensionless by choosing a typical length,
magnetic field strength, and number density. For the simulations
discussed below, we took these as Lo = 1 Mm, By, = 0.002T
(20G), and ny = 10" m™3, respectively. The initial plasma beta
is % Hence, the reference speed is the Alfvén speed, vy =
1381 kms~!, and the Alfvén timeis t4 = Ly/vs = 0.72 s. We note
that the initial fast mode speed is 1455km s~ and the typical
energy density Wy = 3.18 Jm~3.
Thus, we solved the dimensionless equations:

Dp

- —p(V-0), 1
Dr p(V-v) (H
Do 1 1 1

2l L (VXB)XB—-VP+-V-1+Fye, )
Dr p P P

DB

o = (B-V)o-B(V-0)-Vx (¥ xB), 3)
De P 1

Z=t W+ P et gy )
Dt P PP

where p is the mass density, v the plasma velocity, B the mag-
netic field, P the gas pressure, n the dimensionless magnetic
diffusivity, € = P/p (y — 1) the specific internal energy (where
v = 5/3 is the ratio of specific heats), and j the current density.
In addition, e denotes the viscous strain rate tensor and 7 the
viscous stress tensor incorporating the artificial viscosity used
in order to resolve shocks (cf. Arber et al. 2007). Further, Fj.
is the uniform viscosity, discussed below, and gy;s.. the associ-
ated heating. For simplicity and in order to reduce computational
overheads, thermal conduction and optically thin radiation were
both neglected. The boundary conditions were chosen to be peri-
odic in x and y; in z, a prescribed velocity driver was imposed as
discussed in detail below and, for all other quantities, the normal
derivative was set to zero. In the initial state, the plasma is sta-
tionary, with uniform density and specific internal energy, and
the magnetic field uniform in the z direction.

Combining the above equations gives the total energy equa-
tion:
oF

1 vPv
— 4V zprv+ EXB+-“"— +Fy|=0, 5
at (zp’“’ 1T ) )
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where the total energy density is

E=1 2+B2+ P
= — QU -_ .
A R

(6)

Of all the terms in the energy flux, only the Poynting flux, E X B,
and the significantly smaller viscous flux, F yis.., are non-zero for
the boundary conditions used.

The computational domain had boundaries sited at x =
+w,y = +w,z = =L. Here, w = 3 and L = 10. Thus, for a thread
of unit radius, the length-to-width aspect ratio is ten, as has been
used in previous models (Browning & Van der Linden 2003;
Browning et al. 2008; Hood et al. 2009). We used a computa-
tional grid of 512% x 2048 points. This ensures that there are
at least 160 grid points across the diameter of each thread. As
noted below, we also performed simulations in coarser grids
of 2562 x 1024 and 1282 x 512, but there were no qualitative
differences in the results.

2.2. Viscosity and resistivity

In addition to the standard shock viscosities used in Lare3d,
the code incorporates a uniform viscosity, in order to damp the
Alfvén waves generated by the imposed footpoint motions. The
heating associated with both viscosities and the Ohmic heating
are added to the equation for internal energy. No other form of
“background” coronal heating was imposed.

As used in previous work on the avalanche model (Tam et al.
2015), the non-uniform resistivity is defined as

_ Mo J > Jerito

77—77b+{ 0 J< Jerits ™

where 7, is a uniform background resistivity and jj. is a
threshold current, above which an anomalous resistivity, 7, is
added.

While we used ideal background conditions, 7, = 0.0, an
anomalous resistivity 7o = 0.001 was used when current sheets
were created. This ensures that resistivity, as opposed to a numer-
ical diffusion, is responsible for any magnetic reconnection. The
threshold current was taken as ji;. = 5.0, set by reference to the
peak current shortly before the kink instability and consistent
with preceding papers (Hood et al. 2009; Tam et al. 2015).

2.3. Driving velocity

The centres of the three cylindrical threads that undergo twist-
ing are defined as (x,y) = (x;,y;), with the radius defined for
generality as a, but set to unity in this paper. The configuration
of the three threads is shown in Fig. 1 and they were centred
on (0,0), (=2,0), and (2,0). Defining a local radial coordinate

r= \/(x - x,-)2 +(y - y,«)2, for r < a, we imposed a localized,

cylindrically symmetric azimuthal velocity on the photospheric
boundaries. The photospheric velocity is assumed to vanish at
the axis and edge of each thread, and, for sufficiently small r, the
behaviour is approximately linear,

vy =vof (1D (@), (8)

where v is a parameter governing the speed of the driving, and

2\3
f(r):{ r(l—;—z) r<a, 9)

0 r>a.

3 3

(a) Arrangement of threads. (b) Direction of driving.

Fig. 1. Location of threads and direction of driving applied. Opposing
rotational motions are applied on the top and bottom boundaries at three
locations in order to create three independent threads.

A rotation in opposite directions was imposed on the top and
bottom boundaries to ensure twisting of the magnetic field lines
along each thread. Three independent, cylindrical threads are
created, but these are not part of any large-scale braided struc-
ture. Here, we refer to a “braided” structure as one where the
magnetic field loses invariance in sequential cuts in the x,y-
plane. However, one could consider this, and all other braided
fields, using the definition and techniques of Yeates & Hornig
(2013) and Wilmot-Smith (2015).

The function D (¢) = [1 — cos (nt/T)] /2, for t < T, imposes
a time-dependence on the driver, which allows it to be phased
in very smoothly, over a rise-time T, after which D (r) = 1.
Throughout, we assume T = 2. Nevertheless, the starting of the
footpoint motion results in the generation of Alfvén waves. These
are being damped out by viscosity such that the subsequent evo-
lution is tending towards a steady nature until the central thread
is destabilized by the ideal kink instability.

The magnitude of the driving speed was chosen in order that
all footpoint motions should be sub-Alfvénic, yet sufficiently fast
to overcome any slipping of the magnetic field at the boundaries
of the domain associated with either numerical or physical dif-
fusion (see Bowness et al. 2013, for discussion). Here, vy was
chosen such that the maximum magnitudes of the driving speeds
(atr =a/ \/7) are 0.05 for the central thread (vg = 0.21) and 0.02
for the other two (vyp = 0.084). The initial evolution of the mag-
netic field is through a sequence of equilibria. Since the central
thread is twisted at a faster rate, it will become unstable to a
kink instability before the other two and will correspond to the
situation considered in Hood et al. (2016).

3. Basic theory
3.1. Initial predicted evolution

The initial evolution can be determined by linearizing the MHD
equations about the uniform initial state. The imposed driver
gives rise to a steady azimuthal velocity in the thread, of the
form (cf. Goldstraw et al. 2018)

3
Vo2 r2
vy =——r|l-—] .

L e (10

Integrating over the volume of a thread, one obtains an estimate
for the steady-state kinetic energy in each thread:

1 mooLv2a®
f —pvé dV = Po—o.
1%

2 168 (h
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Through the induction equation, neglecting resistivity, this
velocity produces an azimuthal component to the magnetic field:

3
U()B() r2 T
Bom=7p ’(1‘;2) (-3)

for ¢ > T. The azimuthal field is analogous to that studied in the
previous papers (Tam et al. 2015; Hood et al. 2016), allowing this
choice of radial dependence to emulate the field used in those
papers. When the footpoint displacements become large (vyt/L ~
1), the agreement between the field in this paper and the previous
work is weaker.

The magnetic energy associated with the azimuthal field of
each thread is

(12)

B (,25 m)% Bga4 2

0 gy o 0200 T 13
v 2o 56p0L (1)

for T <t < %, until non-linear effects become important.

The total magnetic energy will include that in the background,
potential field.

For such By, the angle through which the field is twisted is
taken as

2LB,
D= ,
rB,

(14)

(e.g. Hood & Priest 1979). For the present form of By, in
Eq. (12), the mean twist is defined as

[[ @) rdrdg ot

(= na? 27

(15)
The linear behaviour of the axial current within each thread
is

200 Byt 22 2
o 220200 T (o4,
oL a? a?
for > T. The integral across the radius of the thread vanishes,
demonstrating that there is no net axial current here, as in the
models previously studied (Hood et al. 2009, 2016; Tam et al.

2015), since the currents are generated by localized and finite
footpoint motions (Tam et al. 2015).

(16)

3.2. Threshold for instability

For an azimuthal magnetic field

r 2\

By = ABor|1 - =] , 17

P or ( a2) a7
Hood et al. (2016) quote a threshold for the onset of a kink insta-
bility as 4 > A, = 1.586. Comparing with Eq. (12), we identify
A = vot/L for t > T. Hence, in principle, it is straightforward
to estimate the time at which the kink instability is expected to
start.

However, any comparison between the theoretically pre-
dicted instability threshold and those seen in the simulation is
rendered difficult for a number of reasons, and these are of
importance in understanding the results. Firstly, the marginal
stability value is based on straight, cylindrically symmetric mag-
netic fields, with a specific radial profile. While the magnetic
field generated by footpoint motions agrees with the analytical
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profile for short times, it may be significantly different for longer
times as a result of rapid expansion or contraction near the pho-
tospheric boundaries, as discussed by Browning & Hood (1989).
Secondly, the growth rate of the instability just beyond marginal
stability is small and we know from Hood et al. (2016) that the
kink instability can take around 50 reference Alfvén times to
grow detectably out of a random disturbance. During this time,
our field is still being driven and so the value of A, correspond-
ing to the time that the instability is identified, will be larger
than the actual critical value, A Thirdly, the linear stability
results are based on a force-free field with a uniform density.
Fourthly, as a consequence of numerical dissipation, the actual
twist present in the magnetic field is less than that theoretically
anticipated. In the driven case, the density and pressure change in
response to the driving motions. While the plasma beta remains
low, it is likely that these changes will not affect the stability
properties much, but it does add to the difficulty of comparing
results.

We estimate the time at which the central thread crosses the
theoretical marginal stability threshold for the kink instability at
t ~ 76.5 and that for the two other threads at r ~ 189.7. However,
as we shall see in the next section, the instability in the numerical
simulation occurs later owing to the slow, non-linear develop-
ment of the instability, as discussed above. A more appropriate
estimate, accounting also for the change in the vertical magnetic
field and non-zero plasma beta, is inferred from the numerical
solution.

4. Continued driving: evolution of magnetic and
kinetic energies up to instability

Throughout the numerical experiment, the total energy is con-
served with an error better than 0.5%. This is illustrated in
Fig. 2, where the rate of change of the volume-integrated total
energy and the total energy flux through the boundaries, E X B +
F visce. (the Poynting flux plus a small viscous energy flux), are
plotted as functions of time. Whenever narrow current sheets
form and fast reconnection occurs, there is a small loss of
energy. However, as shown, this energy loss remains small and
insignificant.

The numerical evolution of the magnetic and kinetic ener-
gies up to the onset of the kink instability can be compared with
the estimates of the previous section. Fig. 3 shows the volume-
integrated magnetic energy as a function of time as a solid black
curve. The simple estimate in Eq. (13), based on linear MHD,
is shown as the red dashed curve. The initial increase is cor-
rectly predicted by the quadratic expression for short times, with
a slight departure occurring once the non-linear terms become
important. The increase in magnetic energy continues until the
kink instability occurs.

The volume-integrated kinetic energy is shown in Fig. 4 as a
function of time and demonstrates the presence of Alfvén waves
travelling across the length of the domain from the start-up of
the photospheric driving. The amplitude of the Alfvén waves
is damped by the diffusive effects and the kinetic energy tends
towards the steady state predicted by Eq. (11) (shown as the hor-
izontal dashed line). From Fig. 4, the period of the Alfvén waves
is approximately 20, namely the propagation time for an Alfvén
wave with a unit dimensionless Alfvén speed over a distance
2L = 20. The first indication of the presence of the kink insta-
bility is seen in the exponential growth in kinetic energy around
t = 160. The nature of the instability is confirmed by plotting the
logarithm of the kinetic energy as a function of time.
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Fig. 2. Rates of change of the total energy (the sum of internal, kinetic,
and magnetic) in the system, plotted as functions of #, along with inward
flux (red). Their closeness demonstrates approximate conservation in
the domain. The dominant flux is the Poynting flux that adds to magnetic
energy.
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Fig. 3. Volume-integrated magnetic energy shown as a function of ¢
(blue curve) prior to the first instability, along with the simple predicted
value of Eq. (13) (red dashed curve).

5. Results
5.1. Axial current

The development of current sheets is one key ingredient of
the kink instability and is essential for the development of an
MHD avalanche, as shown in Hood et al. (2016). Current sheet
formation is clearly seen for the continually driven case too.

As expected from Eq. (16), the dominant component of the
current is the vertical component, j,, which grows as a conse-
quence of the rotational shearing of the magnetic field resulting
from the photospheric driving motions. Initially, this is the gen-
eration of a distributed current. We note that, near the axis of
each thread, the axial current is negative, but, surrounding this,
there is a neutralizing positive current. As indicated above, the
net axial current in each thread is zero. The distributed current
remains up to ¢ = 180. After this time, the kink instability cre-
ates a strong helical current sheet. Reconnection occurs and, in

—— Actual

0.0254 - — Theoretical Limit
3 0.0201
S
=
5 0.0154
c
]
Q Ry S R A [ X Sy S W VAR NRAN
@ 0.010
c
E

0.005

0.000 T T T " " T

0 25 50 75 100 125 150

t (ta)

Fig. 4. Total kinetic energy plotted against time, until the onset of dis-
ruption in the first thread. The horizontal red dashed line is the estimated
steady state.

the non-linear development of the instability, the current sheet
fragments.

In Fig. 5a, one can see the formation of thin, axial cur-
rent structures from the current sheet fragmentation. In Fig. 5b,
the unstable central thread starts to interact with the right-hand
thread, creating a thin current sheet at the boundary between
the two threads. Again reconnection occurs and the right-hand
thread is disrupted and its magnetic energy released. At ¢ = 310,
Fig. 5c shows the formation of a current sheet in the left-hand
thread, as this thread starts to disrupt. We note the presence of
a large number of thin current structures in the remains of the
other two threads. By ¢ = 450, the continued driving generates a
large number of strong current regions where reconnection and
heating can occur.

5.2. Onset of instability

The first evidence of disruption of the central thread from the
kink instability is readily identified through the temporal evolu-
tion of the kinetic energy. Once the kink instability in the central
thread is triggered, the kinetic energy grows exponentially in
time, at twice the linear MHD growth rate. This is clearly seen
around # = 160 in Fig. 4. The identification of subsequent disrup-
tion times is more difficult. However, we can use the formation
and growth of crescent-like structures in the axial current of a
thread as an indicator of the approximate disruption time and,
hence, determine the associated twist and value of A. These times
are shown in Table 1.

An alternative estimate of the first disruption time is obtained
from the kinetic energy (see Fig. 4). However, this is a more
difficult way in which to estimate the subsequent disruption
times; the formation of a current crescent is more readily
identified.

From the fact that the second and third threads are dis-
rupted long before attaining that twist present in the first thread
at the time of its disruption, it is clear that the very pres-
ence of the initial instability brings about the disruption of its
neighbours.

In marked contrast to the time at which the kinetic energy
and axial current identify the instability, the critical value of A is
exceeded around t = 95. When the rotational boundary driving
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Fig. 5. Contours of dimensionless axial current, j,, in the mid-plane at z = 0. The kink instability is characterized by the formation of a crescent of
strong current, as is apparent in panel a. The times shown are the time at which the initial kink instability is seen (panel a), the time of disruption
of the right-hand thread (panel b), the time of disruption of the left-hand thread (panel c¢), and a general time showing the large number of strong
current layers (panel d). Where the magnitude of current exceeds j.;. = 5.0, resistivity is triggered.

Table 1. Onset times for disruption of each thread.

Thread Driving: maxv, Tp A Twist (D)
1 0.05 180 3.78 18.91
2 0.02 230 1.93 9.66
3 0.02 310 2.60 13.02

Notes. For each thread, the maximum value of the azimuthal driving
velocity and the time at which disruption is evident in the numerical
results (Tp) are shown, alongside the corresponding value of coefficient
A and the twist present in the thread (as per Eq. (15), the mean over the
area), at the time shown.

is halted before ¢ = 95, it subsequently remained stable. When
the driving is halted slightly beyond ¢ = 95, the instability even-
tually developed, although it was only identifiable after a further
100 Alfvén times. Finally, stopping the driving later than this,
the instability developed in a similar manner to the continually
driven case in this paper.

5.3. Field line evolution and connectivity

To understand how the connectivity of the field evolves in time,
field lines are traced from a given initial point on the pho-
tospheric boundary (z = =L) until they either reach the other
photospheric end, where their locations are recorded, or cross the
side boundaries. Tracking field lines using the highest-resolution
grid is computationally too intensive and so the results presented
are for a grid with 256 x 1024 points. There is no significant
qualitative difference, but we can track the connectivity of many
more field lines.

The starting points are distributed on the bottom and top
boundaries and move with the imposed driving velocity. This
allows us to track the same field lines and follow their evolution.
The results are depicted in Fig. 6. In Fig. 6a, the twisted nature
of the three threads is clearly seen. The central thread is more
highly twisted and is beyond the point of marginal stability for
the onset of the kink instability. Figure 6b shows the non-linear
evolution of the kink instability in the central thread, where
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its field lines have started to untwist. There is some evidence
that this thread is starting to interact with the right-hand thread:
dark purple field lines can be seen crossing the bottom bound-
ary within the central thread. Figure 6¢c shows that the right
thread has disrupted because of the interaction with the central
thread, while the left thread is still relatively isolated. However,
by ¢ = 450, Fig. 6d shows that all three threads are individually
less twisted, but now completely intertwined with each other.
This intertwined state will now continue and the imposed regular
twisting of the footpoints will now create a much more complex
magnetic structure.

To emphasize how complex the magnetic field becomes, we
track the same field lines from their advected footpoints on the
bottom boundary, and record the location where they cross the
top boundary. The results are shown in Fig. 7. At r = 180, the
left and right threads both have the same regular pattern, indi-
cating that the field lines have not changed their connectivity.
However, there is some evidence of a restructuring of the field
in the central thread in that the pattern is not as regular as the
other two threads. This is to be expected since this thread is
already beyond the threshold for the kink instability. At ¢ = 230,
the mixture of colours in Fig. 7b clearly shows that the central
and right threads have many reconnected field lines. Figure 7c
shows that the field lines from the central and right threads have
spread a significant distance into the surrounding potential field,
outside the twisting region. Finally, Fig. 7d demonstrates how
far the reconnected field lines have departed from their origi-
nal threads after all the threads have been disrupted. Thus, the
energy released as these field lines reconnect will spread into a
significant volume surrounding the original threads.

Figures 6 and 7 demonstrate that the field lines remain within
their original threads until the occurrence of the initial kink
instability. Field lines within the unstable thread begin to connect
with the field outside this thread. The general expansion of the
unstable central thread, as it releases its stored magnetic energy,
causes an initial interaction with the right thread and triggers
reconnection, resulting in one thread’s magnetic field becoming
connected with another. Indeed, by the end of the simulation,
field lines connect across the entire width of the domain and,
like the contours of axial current in Fig. 5, no longer exhibit any
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(a) t=180.0

(b) t =230.0

(c) t=310.0

(d) t =450.0

Fig. 6. Field lines traced from each driven boundary, z = +L. Here, the field lines drawn at r = 180 (panel a), t = 230 (panel b), t = 310 (panel c),
and t = 450 (panel d), corresponding with the times in Fig. 5, are visible. The darker field lines are traced from the bottom boundary, and the
lighter from the top. These are produced from a lower resolution, 2562 x 1024, because of limits on computational resources.

discernible shape of the three individual threads. It is particularly
interesting to note that the highly complex pattern of the foot-
point locations, and hence the complex topology of the magnetic
field, has arisen from three well-ordered, coherent motions.

An alternative representation of the same effect is witnessed
in Fig. 8, where the direction of the magnetic field in the plane
normal to the axis of the threads is shown. The initial, ordered
structure of the field, induced by the smooth driving motions,
gives way, with the onset of the initial kink instability and sub-
sequent disruptions, to a field without the previous clear pattern
of the original threads.

5.4. Volume-integrated heating

As can be seen in Fig. 9, in response to the photospheric driving
motions and the generated Poynting flux, the magnetic energy

increases until the first instability. Then, as the central thread and
the right thread are disrupted, the magnetic energy drops rapidly
between ¢ = 180 and ¢ = 220. It is slightly increased by the
continued input of energy by the Poynting vector until ¢ = 300,
when the left thread is disrupted and the magnetic energy again
drops. These major releases of magnetic energy correspond to
the largest heating events shown in Fig. 10. The dashed vertical
lines in each plot show the times at which strong peaks appear in
the total heating, largely agreeing with falls in magnetic energy
and growth in kinetic energy. After ¢+ = 400, all three original
threads are disrupted and the field line connectivity is complex.
There are many small-scale current sheets that are potential sites
for reconnection and energy release. While there is now a gen-
eral increase in the magnetic energy, we can observe a series of
distinct releases of energy, marked by a slight decline in mag-
netic energy. There is no indication yet of the magnetic energy
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Fig. 7. Locations on z = L to which field lines traced from z = —L connect. These are shown for ¢ = 180 (panel a), t = 230 (panel b), t = 310
(panel c), and t = 450 (panel d), corresponding with the times in Fig. 5. Field lines in blue begin in the central thread, those in orange in the left,
and those in purple in the right. These are produced from a lower resolution, 2562 x 1024, as for Fig. 6.

(a) t=180.0 (b) t =230.0

(c) t=310.0 (d) t =450.0

Fig. 8. Arrows indicating the strength and direction of the magnetic field in the mid-plane in z. The times shown are for t = 180 (panel a), t = 230
(panel b), t = 310 (panel c), and t = 450 (panel d), corresponding with the times in Fig. 5. The longest arrows correspond to a field strength in the
x, y-plane of 0.787 (panel a), 0.486 (panel b), 0.655 (panel c), and 0.369 (panel d).

reaching an approximate steady state. It may be the case that
imposed driving speeds increase the magnetic energy faster than
reconnection can dissipate it. Much longer (and computationally
more expensive) experiments are required. We have continued
a lower-resolution simulation (1282 x 512) up to 10000 Alfvén
times, and no evidence of saturation of stored energy is seen.
The release of this magnetic energy results in a small increase in
kinetic energy, seen in Fig. 11, but the majority of the released
energy goes into heat.

The total heating is the combined effect of viscous and
Ohmic heating and we now investigate the temporal evolution
of the volume-integrated heating, as shown in Fig. 10. Two clear
features are visible after r = 400. Firstly, there are many heating
events with a wide range of magnitudes and durations. Apart
from the initiating kink instability and the initial thread dis-
ruptions, there are no very large releases of energy up to 1000
Alfvén times. There are only a large number of smaller events.
These smaller heating events may be related to the hypothe-
sized nanoflares. Secondly, there is a clear background heating
after the initial instability. The heating never drops to zero after
t = 100. Initial studies suggest that this background heating is
not dependent on the grid resolution, although the exact timing
of the individual small heating events is. A simple Fourier anal-
ysis of the total heating function does not pick out a preferred
period for the “nanoflares” and, thus, suggests that the events are
random.
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Fig. 9. Magnetic energy over time. Decreases in magnetic energy cor-
respond to individual heating events. The red dashed lines match the
times of large heating events identified in Fig. 10.

Until the end of the simulation, with driving being con-
tinually applied, there is a consistent presence of such heating
events recurring. The persistence of a background level of heat-
ing, seen in Fig. 10, above which there are sporadic “bursts” of
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Fig. 10. Instantaneous total heating over time. This is the sum of Ohmic
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heating events.

100 4

10—1 4

10—2 4

Kinetic Energy (WolL3)

10—3 4

107

400 600 800 1000

t(ta)

0 200

Fig. 11. Volume-integrated kinetic energy over time. The red dashed
lines match the times of large heating events identified in Fig. 10.

heating, attests to the possibility of a consistent source of heat-
ing, long after the threads have become unstable and ceased to
hold any of their recognizable cylindrical form. Although one
finds, apparently, evidence of consistent heating of indefinite
duration, the individual events which constitute this effect pro-
vide little evidence of strong, discernible periodicity, with no
intervals appearing in a power spectrum.

6. Discussion and conclusions

This paper has addressed coronal energy release by considering
the driven evolution of three neighbouring threads within a large-
scale loop structure. Instability of one of the threads leads to
the release of magnetic energy in all three, with bursty energy
release continuing throughout the simulation.

An important outcome of this work is that, while the rela-
tively simple driving of three vortex motions at the photospheric
boundaries initially produces three coherent and distinct flux
tubes, after the instability and subsequent disruptions, the mag-
netic field lines are connected to different vortices and the
continued photospheric motions begin to braid the magnetic

field in a much more complex manner. Indeed, there is little
cylindrical symmetry left in the final field, and the complex
three-dimensional magnetic field lines readily form numerous
small current sheets and possible heating sites. This scenario dif-
fers from that proposed by others who argue that current sheets
will always form in sufficiently tangled magnetic fields gener-
ated by complex motions (e.g. Hendrix & Van Hoven 1996; Ng
et al. 2012). Here, the current sheets form spontaneously from a
highly ordered initial state, with the photospheric motions bring-
ing about braiding of the magnetic field, as has often been seen
in such driven simulations (Wilmot-Smith 2015), and hence the
possibility of the topological dissipation discussed by Parker
(1972).

The field then attempts to relax to a lower-energy configu-
ration, but nevertheless the constant imposition of the driving
velocity necessitates a departure from the classical theory of
Taylor (1974). The perpetual influx of energy by photospheric
driving precludes the system attaining a minimal energy state.
In addition, the work by Yeates et al. (2010) suggests that the
constant-« state will not be reached, but instead a higher-energy
state conserving topological degree. Nonetheless, the magnetic
field is still non-potential and contains available energy. That
external driving causes departures from a pure Taylor state has
been widely discussed in the case of laboratory plasmas (see
Kitson & Browning 1990; Tang & Boozer 2005).

The temporal evolution of the total heating shows that, after
the first few large releases of energy, there is a continued back-
ground level of heating and a large number of small heating
events. There is no obvious periodicity or size for these events.
The question of the origin of the background heating (in terms
of viscosity models), and whether it is really steady or a series
of very small events, will be presented in a subsequent paper.
Future work will also address the spatial dependence of the heat-
ing, in order to ascertain whether the heating is likely to be
localized (e.g. footpoint heating) or spread throughout the corona
(quasi-uniform heating, see Klimchuk 2015).

The application of avalanches to coronal energy dissipation,
posited by Lu & Hamilton (1991) and since then considered
by several authors (Aschwanden et al. 2016), was noted ear-
lier. In this and earlier work, we have demonstrated using full
three-dimensional MHD simulations that the destabilization of
large-scale magnetic fields by a single unstable “node” is indeed
feasible. This is conceptually similar to the ideas arising in the
concept of “self-organized criticality” (SOC), whereby an insta-
bility occurs following the breach by a certain parameter of some
critical condition, and leads to a reconfiguration which affects
neighbouring regions. As the disruption spreads, with neigh-
bours successively impacting upon each other, an “avalanche”
results (Bak et al. 1987; Bak 1997).

However, there are important differences between our results
and those arising from SOC. In particular, these models iter-
ate through external driving and dissipation in accordance with
basic rules, with a marginally stable state being attained. We do
not find evidence for this here. The reason is likely to be that, at
this time, MHD simulations cannot be run for nearly long enough
to attain the SOC marginal state. Thus, the major outstanding
issue in applying SOC and cellular automata (CA) to the coro-
nal energy release problem, namely the construction of rigorous
rules governing the instability and subsequent redistribution of
the field and, hence, heating of the plasma, remains untested.
However, this and earlier work (Hood et al. 2016) do suggest
merit in the idea of coronal avalanches, and more computational
power will eventually bridge this gap.
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