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Abstract To become and remain functional, individual neuron types must select during

development and maintain throughout life their distinct terminal identity features, such as

expression of specific neurotransmitter receptors, ion channels and neuropeptides. Here, we report

a molecular mechanism that enables cholinergic motor neurons (MNs) in the C. elegans ventral

nerve cord to select and maintain their unique terminal identity. This mechanism relies on the dual

function of the conserved terminal selector UNC-3 (Collier/Ebf). UNC-3 synergizes with LIN-39 (Scr/

Dfd/Hox4-5) to directly co-activate multiple terminal identity traits specific to cholinergic MNs, but

also antagonizes LIN-39’s ability to activate terminal features of alternative neuronal identities. Loss

of unc-3 causes a switch in the transcriptional targets of LIN-39, thereby alternative, not cholinergic

MN-specific, terminal features become activated and locomotion defects occur. The strategy of a

terminal selector preventing a transcriptional switch may constitute a general principle for

safeguarding neuronal identity throughout life.

Introduction
Every nervous system is equipped with distinct neuron types essential for different behaviors. Funda-

mental to nervous system function is the precise establishment and maintenance of neuron type-spe-

cific gene expression programs. Integral components of such programs are effector genes that

encode proteins critical for neuronal function (e.g., neurotransmitter [NT] biosynthesis components,

ion channels, NT receptors, neuropeptides) (Deneris and Hobert, 2014; Hobert, 2008;

Hobert, 2011; Hobert, 2016). These effector genes, referred to as terminal identity genes herein,

are expressed continuously, from development throughout life, in post-mitotic neurons in a combi-

natorial fashion (Hobert, 2008). Hence, it is the unique overlap of many effector gene products in a

specific neuron type that determines its distinct terminal identity, and thereby function. However,

the molecular mechanisms that select, in individual neuron types, which terminal identity genes

should be expressed and which ones should be repressed are poorly defined. Understanding how

neuron type-specific batteries of terminal identity genes are established during development and,

perhaps most importantly, maintained throughout life represents one key step towards
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understanding how individual neuron types become and remain functional. Providing molecular

insights into this fundamental problem may also have important biomedical implications, as defects

in terminal identity gene expression are associated with a variety of neurodevelopmental and neuro-

degenerative disorders (Deneris and Hobert, 2014; Shibuya et al., 2011; Imbrici et al., 2013;

Sgadò et al., 2011).

Seminal genetic studies in multiple model systems revealed a widely employed molecular princi-

ple: neuron type-specific transcription factors (TFs) often coordinate the expression of ‘desired’ ter-

minal identity genes with the exclusion of ‘unwanted’ terminal identity genes (Morey et al., 2008;

Sagasti et al., 1999; Britanova et al., 2008; Cheng et al., 2004; Kala et al., 2009; Lopes et al.,

2012; Mears et al., 2001; Nakatani et al., 2007). These TFs exert a dual role: they are not only

required to induce a specific set of terminal identity features critical for the function of a given neu-

ron type, but also to simultaneously prevent expression of molecular features normally reserved for

other neuron types. Consequently, neurons lacking these TFs fail to acquire their unique terminal

identity, and concomitantly gain features indicative of alternative identities. For example, mouse

striatal cholinergic interneurons lacking Lhx7 lose their terminal identity and acquire molecular fea-

tures indicative of GABAergic interneuron identity (Lopes et al., 2012). In midbrain neurons,

removal of Gata2 results in loss of GABAergic identity and simultaneous gain of terminal identity fea-

tures specific to glutamatergic neurons (Kala et al., 2009). However, the molecular mechanisms

underlying the dual function of most neuron type-specific TFs remain poorly defined. How can the

same TF, within the same cell, promote a specific identity and simultaneously prevent molecular fea-

tures of alternative neuronal identities? In principle, the same TF can simultaneously operate as

direct activator of neuron type-specific terminal identity genes and direct repressor of alternative

identity genes (Lodato et al., 2014; Wyler et al., 2016). Another possibility is indirect regulation.

For example, a neuron type-specific TF can prevent adoption of alternative identity features by

repressing expression of an intermediary TF that normally promotes such features (Cheng et al.,

2004). Other mechanisms involving TF competition for cell type-specific enhancers or cell type-spe-

cific TF-TF interactions have also been described (see Discussion) (Andzelm et al., 2015;

Gordon and Hobert, 2015; Rhee et al., 2016; Thaler et al., 2002). It remains unclear, however,

whether these mechanisms of action of neuron type-specific TFs are broadly applicable in the ner-

vous system.

Although the aforementioned studies begin to explain how neurons select their terminal identity

features during development (Morey et al., 2008; Sagasti et al., 1999; Britanova et al., 2008;

Cheng et al., 2004; Kala et al., 2009; Lopes et al., 2012; Mears et al., 2001; Nakatani et al.,

2007), the function of neuron type-specific TFs is rarely assessed during post-embryonic stages.

Hence, the molecular mechanisms that maintain neuronal terminal identity features, and thereby

neuronal function, are largely unknown. Is the same neuron type-specific TF continuously required,

from development through adulthood, to induce a specific set of terminal identity genes and simul-

taneously prevent ‘unwanted’ features? Alternatively, a given neuron type could employ different

mechanisms for selection (during development) and maintenance (through adulthood) of its func-

tion-defining terminal features. Addressing this fundamental problem has been challenging in the

vertebrate nervous system, in part due to its inherent complexity and difficulty to track individual

neuron types with single-cell resolution from embryo to adult.

To study how neurons select and maintain their terminal identity features, we use as a model the

well-defined motor neuron (MN) subtypes of the Caenorhabditis elegans ventral nerve cord (equiva-

lent to vertebrate spinal cord). Five cholinergic (DA, DB, VA, VB, AS) and two GABAergic (DD, VD)

MN subtypes are located along the nerve cord and control locomotion (Figure 1A) (Von Stetina

et al., 2006; White et al., 1986). Because they are present in both C. elegans sexes (males and her-

maphrodites), we will refer to them as ‘sex-shared’ MNs. In addition, there are two subtypes of ‘sex-

specific’ cholinergic MNs: the hermaphrodite-specific VC neurons control egg laying (Port-

man, 2017; Schafer, 2005), and the male-specific CA neurons are required for mating

(Schindelman et al., 2006) (Figure 1A). In addition to distinct morphology and connectivity, each

subtype can be molecularly defined by the combinatorial expression of known terminal identity

genes, such as ion channels, NT receptors, and neuropeptides (Figure 1B). An extensive collection

of transgenic reporter C. elegans animals for MN subtype-specific terminal identity genes is avail-

able, thereby providing a unique opportunity to investigate, at single-cell resolution, the effects of

TF gene removal on developing and adult MNs.
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Figure 1. An extensive collection of terminal identity markers for distinct motor neuron subtypes of the C. elegans

ventral nerve cord. (A) Schematic showing distinct morphology for each motor neuron subtype in the C. elegans

hermaphrodite. Below, colored dots represent the invariant cell body position of all MNs of the ventral nerve cord

(VNC). Red: 39 sex-shared cholinergic MNs (DA2�7 = 6 neurons, DB3�7 = 5, VA2�11 = 10, VB3�11 = 9,

Figure 1 continued on next page
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UNC-3, the sole C. elegans ortholog of the Collier/Olf/Ebf (COE) family of TFs, is selectively

expressed in all sex-shared cholinergic MNs of the nerve cord (Figure 1B) (Kratsios et al., 2017;

Kratsios et al., 2012; Pereira et al., 2015; Prasad et al., 2008; Prasad et al., 1998). Animals lack-

ing unc-3 display striking locomotion defects (Brenner, 1974). UNC-3 is known to directly activate a

large battery of terminal identity genes expressed either in all sex-shared cholinergic MNs (e.g., the

NT identity genes unc-17/ VAChT and cha-1/ ChAT), or in certain subtypes (e.g., ion channels, NT

receptors, signaling molecules) (Kratsios et al., 2012) (Figure 1B–C). Based on its ability to broadly

co-regulate many distinct terminal identity features, unc-3 has been classified as a terminal selector

gene (Hobert, 2008). Besides its well-established function as activator of terminal identity genes in

cholinergic MNs, whether and how UNC-3 can prevent expression of terminal features of alternative

neuronal identities remains unclear.

Here, we describe a dual role for UNC-3 that enables sex-shared cholinergic MNs to select during

development and maintain throughout life their terminal identity features. We find that UNC-3 is

continuously required - from development through adulthood - not only to activate cholinergic MN

identity genes, but also to prevent expression of terminal features normally reserved for other MN

subtypes of the nerve cord, namely the sex-shared GABAergic VD neurons and sex-specific choliner-

gic MNs (CA, VC). These findings lend support to the notion that neuron type-specific TFs can pro-

mote a specific identity and simultaneously suppress features reserved for alternative, but

functionally related, neuronal identities.

To uncover the molecular mechanism underlying the dual role of UNC-3, we conducted an unbi-

ased genetic screen, which led to the identification of the Hox protein LIN-39 (Scr/Dfd/Hox4-5) as

the intermediary factor necessary for expression of alternative neuronal identity features (e.g., VD,

VC) in unc-3-depleted MNs. Unlike previously described cases of TFs that act indirectly to prevent

alternative neuronal identities by repressing intermediary factors (discussed earlier), UNC-3 does not

repress lin-39 and both factors are co-expressed in cholinergic MNs. However, UNC-3 antagonizes

the ability of LIN-39 to induce terminal features of alternative identities. Intriguingly, UNC-3 also syn-

ergizes with LIN-39 to co-activate multiple terminal identity features specific to cholinergic MNs.

Consequently, loss of unc-3 causes a switch in the transcriptional targets of LIN-39, thereby alterna-

tive, not cholinergic MN-specific, terminal identity features become activated and locomotion

defects occur. Given that terminal selectors and Hox proteins are expressed in a multitude of neuron

types across species (Deneris and Hobert, 2014; Hobert and Kratsios, 2019; Philippidou and

Dasen, 2013; Estacio-Gómez and Dı́az-Benjumea, 2014), the strategy of a terminal selector pre-

venting a Hox transcriptional switch may constitute a general principle for safeguarding neuronal

identity throughout life.

Figure 1 continued

AS2�10 = 9); Green: six hermaphrodite-specific VC MNs; Yellow: four sex-shared GABAergic DD neurons

(DD2�5 = 4); Blue: nine sex-shared GABAergic VD neurons (VD3�11 = 9). With the exception of VC, all other

subtypes have 1–3 extra neurons located at the flanking ganglia (retrovesicular and pre-anal) of the VNC (not

shown). Individual neurons of each subtype intermingle along the VNC. (B) Table summarizing expression of

terminal identity markers for VNC MNs. The sex-shared GABAergic MNs (DD, VD) and the sex-specific MNs (VC,

CA) do not express UNC-3. Conversely, the sex-shared cholinergic MNs (DA, DB, VA, VB, AS) and the sex-specific

MNs (VC, CA) do not express UNC-30/Pitx. For the genes indicated with an asterisk (*), a detailed expression

pattern is provided in Figure 1—figure supplement 1. Of note, the male-specific MNs of the CP subtype are also

not shown. (C) Schematic that summarizes the known function of UNC-3 (activator of cholinergic MN identity

genes) and the question under investigation: does UNC-3 prevent expression of terminal identity features reserved

for other MN subtypes?.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Detailed characterization of the expression pattern of VC and VD terminal identity markers.
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Results

UNC-3 has a dual role in distinct populations of ventral nerve cord
(VNC) motor neurons
Neuron type-specific TFs often promote a specific identity and simultaneously suppress features

reserved for other, functionally related neuronal types (Arlotta and Hobert, 2015). To test this

notion for UNC-3, it was essential to identify a set of terminal identity markers for all unc-3-negative

MN subtypes of the VNC, namely the GABAergic (VD, DD) and sex-specific (VC, CA) MNs

(Figure 1B). We undertook a candidate gene approach and examined the precise expression pattern

of terminal identity genes (e.g., NT receptors, signaling proteins, ion channels, neuropeptides)

reported to be expressed in unc-3-negative MNs (www.wormbase.org). In total, we carefully charac-

terized at single-cell resolution the expression of 15 genes in wild-type animals of both C. elegans

sexes at the fourth larval stage (L4) (see Materials and methods and Figure 1—figure supplement

1). This analysis provided nine terminal identity markers highly specific to unc-3-negative MNs that

fall into four categories (Figure 1B): (a) two VD-specific markers (ser-2/serotonin receptor [ortholog

of HTR1D]; oig-1/ one Ig domain protein), (b) one DD-specific marker (flp-13/ FMRF like neuropep-

tide), (c) three markers for sex-specific (VC in hermaphrodites, CA in males) MNs (glr-5/glutamate

receptor [ortholog of GRID/GRIK]; srb-16/serpentine GPCR receptor; ida-1/ortholog of protein tyro-

sine phosphatase PTPRN), and (d) three markers expressed in both GABAergic subtypes (DD, VD)

and sex-specific MNs (flp-11/FRMR like neuropeptide, twk-46/potassium channel [ortholog of

KCNK1], ilys-4/ invertebrate type lysozyme).

These nine markers enabled us to test whether unc-3-depleted MNs gain expression of terminal

features normally reserved for other MN subtypes. By using animals carrying a strong loss-of-func-

tion (null) allele for unc-3 (n3435) (Prasad et al., 2008), we first assessed any putative effects on ter-

minal markers for the sex-shared GABAergic MNs (DD, VD). Although the DD-specific marker flp-13

is unaffected (Figure 2—figure supplement 1, panel A), ectopic expression of the VD-specific

markers (ser-2, oig-1) was observed in unc-3-depleted MNs (Figure 2A–B). Interestingly, this ectopic

expression was region-specific, observed in cholinergic MNs of the mid-body region of the VNC

with 100% penetrance (Figure 2A–B). Importantly, 12.1 ± 2.6 (mean ± STDV) out of the 39 unc-3-

depleted MNs in the VNC were ectopically expressing these VD markers, suggesting that not all

unc-3-depleted MNs acquire VD terminal identity features. Given that GABAergic and cholinergic

MNs are generated in normal numbers in unc-3 animals (Kratsios et al., 2012), the increase in the

number of neurons expressing the VD markers cannot be attributed to early developmental defects

affecting MN numbers. We next asked whether these ~12 MNs adopt additional VD terminal identity

features, such as expression of genes involved in GABA biosynthesis (unc-25/GAD and unc-47/

VGAT), or selectively expressed in GABAergic MNs (ttr-39, klp-4). However, this does not appear to

be the case, arguing against a complete cell fate switch (Figure 2—figure supplement 1, panel A).

We conclude that, in the absence of unc-3, cholinergic MNs not only lose their original terminal iden-

tity, but a third of them (~12 out of 39) in the mid-body VNC region also gain some terminal identity

features normally reserved for the sex-shared VD neurons (Figure 1). We will refer to these unc-3-

depleted MNs as ‘VD-like’ (Figure 2G). We also uncovered the identity of these cells across multiple

unc-3 mutant animals and conclude that it is the same 12 neurons that become VD-like across ani-

mals (Figure 2—figure supplement 1, panel B).

To test whether UNC-3 also prevents expression of terminal identity features of sex-specific cho-

linergic MNs, we examined three VC-specific terminal markers (glr-5, srb-16, ida-1 in Figure 1B) in

hermaphrodite nematodes lacking unc-3. Again, we observed region-specific effects with 100% pen-

etrance in the same cells across multiple animals (Figure 2C–D, Figure 2—figure supplement 1,

panel B). All three markers were ectopically expressed in 10.5 ± 3.7 (mean ± STDV) of the 39 unc-3-

depleted MNs located in the mid-body region of the VNC (Figure 2C–D). These results are in agree-

ment with a previous study reporting ectopic ida-1 expression in unc-3-depleted MNs (Prasad et al.,

2008). If these ~11 MNs fully adopt the VC terminal identity, then they should also express genes

necessary for acetylcholine biosynthesis since VC neurons are cholinergic. However, this is not the

case as expression of unc-17/VAChT and cho-1/ChT is dramatically affected in unc-3-depleted MNs

(Kratsios et al., 2012). These data suggest that ~11 of the 39 unc-3-depleted MNs in the mid-body

VNC region adopt some, but not all, VC terminal identity features. We will therefore refer to these

unc-3-depleted MNs as ‘VC-like’ (Figure 2G).
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Figure 2. UNC-3 has a dual role in cholinergic ventral cord motor neurons. (A) Terminal identity markers of VD neurons (ser-2, oig-1) are ectopically

expressed in unc-3-depleted MNs. Representative images of larval stage 4 (L4) hermaphrodites are shown. Similar results were obtained in adult

animals. Arrowheads point to MN cell bodies with gfp marker expression. Green fluorescence signal is shown in white for better contrast. Dotted black

box indicates imaged area. (B) Quantification of VD markers (ser-2, oig-1) in WT and unc-3 (n3435) at L4. N > 15. ***p<0.001. For details on box plots,

Figure 2 continued on next page
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Are the VD-like and VC-like neurons in unc-3 hermaphrodites distinct populations? To test this,

we generated unc-3 hermaphrodites that carry a green fluorescent reporter for VC terminal identity

(ida-1::gfp) and a red reporter for VD identity (ser-2::rfp). We found no overlap of the two reporters,

indicating that the VD-like and VC-like neurons represent two distinct populations (Figure 2E–F).

We further corroborated this result by taking advantage of the invariant lineage and cell body posi-

tion of all MNs along the C. elegans nerve cord (Figure 2—figure supplement 1, panel B). Of note,

the VC-like population appears to be lineally related to VC neurons, whereas the VD-like population

is not lineally related to VD neurons (Figure 2—figure supplement 1, panels B-C). Lastly, terminal

identity markers normally expressed in both VD and VC neurons (flp-11, ilys-4, twk-46) display an

additive effect in unc-3 mutants, as they are ectopically expressed in both VD-like and VC-like popu-

lations, further suggesting the presence of distinct unc-3 MN populations (Figure 2—figure supple-

ment 1, panels D-E).

To summarize, there are 39 unc-3-expressing MNs along the wild-type nerve cord in hermaphro-

dites. While loss of unc-3 uniformly leads to loss of cholinergic identity in all these MNs

(Kratsios et al., 2012), one population (~12 MNs) acquires VD-like molecular features, while a sec-

ond population (~11 MNs) acquires VC-like molecular features, uncovering a dual role of UNC-3 in

these populations (Figure 2G). Of note, the remaining MNs (~16) in the VNC of unc-3 mutants [39 -

(12 VD-like + 11 VC-like)=16] do not gain either VD or VC terminal identity features.

The dual role of UNC-3 in cholinergic MNs extends to both C. elegans
sexes
To test whether the dual function of UNC-3 applies to both sexes, we extended our analysis to C.

elegans males. First, we showed that loss of unc-3 in males resulted in loss of several cholinergic MN

terminal identity features (Figure 2—figure supplement 2). Second, we observed ectopic expres-

sion of VD-specific terminal identity markers (oig-1, ser-2) in 11.9 ± 3.9 (mean ± STDV) out of the 39

unc-3-depleted MNs, indicating the presence of ‘VD-like’ neurons in the male nerve cord (Figure 2—

figure supplement 2). Lastly, we asked whether unc-3 loss leads to ectopic expression of terminal

identity markers (ida-1, srb-16, glr-5) for male-specific CA neurons. Indeed, we found this to be the

case (Figure 2—figure supplement 2), suggesting the adoption of ‘CA-like’ features by a popula-

tion of unc-3-depleted MNs. Similar to hermaphrodites, these VD-like and CA-like cells were

observed in the mid-body region of the male nerve cord with 100% penetrance (Figure 2—figure

supplement 2).

Taken together, our findings uncover a dual role for UNC-3 in sex-shared cholinergic MNs.

UNC-3 is not only required to activate cholinergic MN identity genes (Kratsios et al., 2012), but

also to prevent expression of molecular features normally reserved for three other, functionally

related neuronal subtypes of the nerve cord (VD, VC, CA). In both sexes, UNC-3 prevents expression

of select terminal features of VD neurons in a specific population of cholinergic MNs. In a second

population, UNC-3 prevents expression of terminal features normally reserved for sex-specific MNs,

that is VC features in hermaphrodites and CA features in males. In the ensuing sections, we focus

our analysis on C. elegans hermaphrodites to dissect the molecular mechanism underlying the dual

role of UNC-3.

Figure 2 continued

see Materials and methods. (C) Terminal identity markers of VC neurons (ida-1, srb-16, glr-5) are ectopically expressed in unc-3-depleted MNs.

Representative images of larval stage 4 (L4) hermaphrodites are shown. Similar results were obtained in adult animals. Arrowheads point to MN cell

bodies with gfp marker expression. Green fluorescence signal is shown in white for better contrast. Dotted black box indicates imaged area. (D):

Quantification of VC markers (ida-1, srb-16, glr-5) in WT and unc-3 (n3435) at L4. Individual data points are dot-plotted. N > 15. ***p<0.001. (E) Distinct

MNs acquire VC-like or VD-like terminal identity features in unc-3 (n3435) mutants. The VC marker in green (ida-1::gfp) and the VD marker in red (ser-2::

rfp) do not co-localize in WT or unc-3 (n3435) mutants. Representative images are shown. Individual VC/VC-like and VD/VD-like neurons are pointed

and circled, respectively,(VD: dotted circles; VC: arrowheads) to highlight that an individual MN never expresses both markers. (F) Quantification of data

shown in E. N > 16. (G) Schematic that summarizes the dual role of unc-3. Apart from activating cholinergic MN terminal identity genes, UNC-3

prevents expression of VD and VC terminal features in distinct cells (‘VD-like’ versus ‘VC-like’).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. UNC-3 selectively prevents expression of VD and VC terminal identity features in distinct cholinergic MNs.

Figure supplement 2. The dual role of UNC-3 in cholinergic MNs extends to both C. elegans sexes.
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UNC-3 is continuously required to prevent expression of VD and VC
terminal identity features
Neuron type-specific TFs that promote a specific identity and simultaneously prevent alternative fea-

tures have been previously described (see Introduction). However, whether this dual role is required

transiently (during development), or continuously (throughout life) remains unclear. The UNC-3 case

provides an opportunity to distinguish between these two possibilities because ectopic expression

of VC and VD features is observed at both larval and adult stages in unc-3 null animals (Figure 2,

Figure 2—figure supplement 1). To this end, we employed the auxin-inducible degron (AID) system

that enables depletion of UNC-3 in a temporally controlled manner (Zhang et al., 2015). This system

requires tagging the UNC-3 protein with the AID degron fused to a fluorescent reporter gene

(mNeonGreen, mNG). When UNC-3::mNG::AID and the plant-specific F-box protein TIR1 are co-

expressed in MNs (by crossing animals carrying the unc-3::mNG::AID allele with eft-3::TIR1 trans-

genic animals), application of the plant hormone auxin on these double transgenic animals induces

degradation of UNC-3::mNG::AID (Figure 3A–C). Auxin administration at the L4 stage (last larval

stage before adulthood) on unc-3::mNG::AID; eft-3::TIR1 animals resulted in a dramatic depletion of

UNC-3 at day one adult animals (24 hr after auxin). UNC-3 depletion was accompanied by ectopic

expression of VD and VC terminal identity features in nerve cord MNs, demonstrating a post-embry-

onic requirement for UNC-3 (Figure 3D–E). Similar results were obtained when auxin was applied at

different time points (Figure 3D, legend). These findings suggest that UNC-3 is continuously

required to prevent expression of VD and VC terminal identity features.

UNC-3 acts indirectly to prevent expression of VD and VC terminal
identity genes
How does UNC-3 activate cholinergic MN identity genes and simultaneously prevent terminal fea-

tures of alternative MN identities (e.g., VD, VC) (Figure 2G)? Based on previous reports, the same

TF, within the same neuron, can act as a direct activator for a set of genes and a direct repressor for

another set of genes (Lodato et al., 2014; Wyler et al., 2016; Borromeo et al., 2014). While it is

known that UNC-3 acts directly – through its cognate binding site (COE motif) – to activate expres-

sion of a large battery of cholinergic MN identity genes, we did not find any COE motifs in the cis-

regulatory region of VD or VC terminal identity genes (Supplementary file 1). This contrasts the pre-

viously described function of UNC-3 as direct repressor (through the COE motif) of terminal identity

genes in the chemosensory ASI neurons of C. elegans (Kim et al., 2005).

To test the possibility of indirect repression via an intermediary factor, we focused on VD neurons

because, unlike VC neurons, a known activator of VD terminal features has been reported

(Cinar et al., 2005; Eastman et al., 1999; Jin et al., 1994). In wild-type animals, the TF UNC-30,

ortholog of human PITX1-3, is required to induce VD terminal identity genes. Since UNC-30 is not

expressed in cholinergic MNs (Jin et al., 1994), we hypothesized that UNC-3 prevents expression of

UNC-30/PITX, leading to inactivation of VD terminal identity genes. However, this is not the case

because: (1) ectopic unc-30 expression is not observed in unc-3-depleted MNs, and (2) the ectopic

expression of the VD marker (ser-2) in unc-3 mutants was not abolished in unc-3; unc-30 double

mutants (Figure 4—figure supplement 1). These observations suggest that UNC-3 may act indi-

rectly to prevent expression of VD and VC terminal identity genes through as yet unknown interme-

diary factors.

The mid-body Hox protein LIN-39 (Scr/Dfd/Hox4-5) is the intermediary
factor necessary for ectopic expression of VD and VC features in unc-3
mutants
If the hypothesis of indirect repression is correct, mutation of the intermediary factor(s) in the unc-3

mutant background would selectively eliminate ectopic expression of VD and/or VC terminal identity

genes in unc-3-depleted MNs. To identify such factor(s), we embarked on an unbiased genetic

screen. For the screen, we chose a transgenic gfp reporter strain for flp-11, an FMRF-like neuropep-

tide-encoding gene expressed in both VD and VC neurons (Figure 1B, Figure 1—figure supple-

ment 1), which is markedly affected by UNC-3 (Figure 4A–B, Figure 2—figure supplement 1,

panels D-E). We mutagenized unc-3 (n3435); flp-11::gfp animals with ethyl methanesulfonate (EMS)

and visually screened ~4200 haploid genomes for mutants in which ectopic flp-11::gfp expression in
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Figure 3. UNC-3 is continuously required to prevent expression of VD and VC terminal identity features. (A)

Schematic showing time window of auxin administration. (B) Animals of the unc-3::mNG::AID; eft-3::TIR1 genotype

were either administered ethanol (EtOH) or auxin at the L4 stage. Twenty four hours later, expression of

endogenous unc-3 reporter (unc-3::mNG::AID) is severely reduced in the nuclei of VNC MNs (arrowheads) at the

young adult stage (day 1). The same exact region was imaged in EtOH- and auxin-treated worms. mNG green

fluorescent signal is shown in white for better contrast. White dotted line indicates the boundary of intestinal

tissue (gut), which tends to be autofluorescent in the green channel. (C) Quantification of number of MNs

expressing the unc-3::mNG::AID reporter after EtOH (control) and auxin treatment. N > 12. ***p<0.001. (D) Auxin

or ethanol (control) were administered at larval stage 3 (L3) on unc-3::mNG::AID; eft-3::TIR1 animals carrying the

VD marker ser-2::gfp. Images were taken at the young adult stage (day 1.5). A significant increase in the number of

MNs expressing the VD marker was evident in the auxin-treated animals compared to EtOH-treated controls. For

comparison, quantification is provided for ser-2::gfp expressing MNs of wild-type animals and unc-3(n3435)

mutants. Similar results were obtained when auxin was applied at L4 or day 1 adult animals. N > 20. ***p<0.001.

(E) Auxin or ethanol (control) were administered at larval stage 4 (L4) on unc-3::mNG::AID; eft-3::TIR1 animals

carrying the VC marker glr-5::gfp. Images were taken at the young adult stage (day 2). A significant increase in the

number of MNs expressing the VC marker was evident in the auxin-treated animals compared to EtOH-treated

controls. N > 11. *p<0.05; ***p<0.001.
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Figure 4. A genetic screen identifies the mid-body Hox protein LIN-39 (Scr/Dfd/Hox4-5) as necessary for ectopic expression of VD and VC terminal

features. (A) Representative images of L4-stage WT, unc-3(n3435), unc-3(n3435); kas1, and unc-3(n3435); lin-39(n1760) animals carrying flp-11::gfp (VD/

VC marker). Arrowheads point to MN cell bodies with gfp marker expression. (B) Quantification graph summarizing results from panel A. The two right-

most bars show quantification of two independent transgenic lines driving lin-39 RNAi specifically in cholinergic MNs (Punc-3 >lin-39 RNAi) of unc-3

Figure 4 continued on next page
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unc-3-depleted MNs is suppressed. We isolated one mutant allele (kas1) (Figure 4A–B). The pheno-

type was 100% penetrant as all unc-3 (n3435); flp-11::gfp animals carrying kas1 in homozygosity con-

sistently displayed a dramatic reduction in ectopic flp-11 expression.

Gross morphological examination of unc-3 (n3435); kas1; flp-11::gfp hermaphrodites revealed

that, unlike unc-3 (n3435); flp-11::gfp animals, the introduction of kas1 is accompanied by a lack of

the vulva organ (vulvaless phenotype). Upon a literature survey for TF mutants that are vulvaless, we

stumbled across the mid-body Hox gene lin-39 (ortholog of Dfd/Scr in flies and Hox4-5 in verte-

brates) (Aboobaker and Blaxter, 2003; Clark et al., 1993), and hypothesized that the molecular

lesion of kas1 may lie in the lin-39 locus. Indeed, Sanger sequencing uncovered a point mutation on

the splice acceptor site (WT: AG > kas1: AA) in the second intron of lin-39 (Figure 4C). Similar to

unc-3 (n3435); kas1 animals, unc-3 (n3435) mutants carrying a previously published strong loss-of-

function (premature STOP) allele of lin-39 (n1760) (Clark et al., 1993) displayed the same loss of

ectopic flp-11 expression (Figure 4A–C), suggesting that kas1 is a loss-of-function mutation of lin-

39. The ectopic expression of flp-11 in unc-3(n3435); kas1 animals can be, at least partially, rescued

by (1) selective expression of lin-39 cDNA in cholinergic MNs, and (2) introduction of the lin-39 wild-

type locus in the context of a ~ 30 kb genomic clone (fosmid) (Figure 4—figure supplement 1), cor-

roborating that the kas1 lesion in the lin-39 locus is the phenotype-causing mutation.

Because flp-11 is expressed in both VD and VC neurons, we next tested whether lin-39 is required

for ectopic expression of VD-specific (ser-2, oig-1) and VC-specific (ida-1) terminal identity genes in

unc-3-depleted MNs. We found this to be the case by either generating unc-3 (n3435); lin-39

(n1760) double mutants (for VD markers) or by performing cholinergic MN-specific RNAi for lin-39 in

unc-3 (n3435) animals (for VC marker) (Figure 4D). RNAi was necessary because VC neurons do not

survive in lin-39 (n1760) animals (Potts et al., 2009), and the use of the n1760 allele could confound

our VC marker quantifications. Of note, all other nerve cord MN subtypes are normally generated in

lin-39 (n1760) single and unc-3 (n3435); lin-39 (n1760) double mutants (Stefanakis et al., 2015), indi-

cating that suppression of the unc-3 phenotype, that is, loss of ectopic VD gene expression in the

double mutants is not due to MN elimination. Taken together, our genetic screen identified the mid-

body Hox gene lin-39 to be necessary for ectopic expression of both VD and VC terminal features in

unc-3-depleted MNs (Figure 4F).

Interestingly, this finding contradicts our initial hypothesis of UNC-3 repressing an intermediary

TF in order to prevent expression of VD and VC features because lin-39 is co-expressed with (not

repressed by) unc-3 in wild-type cholinergic MNs at the mid-body region of the VNC (Figure 4E), as

evident by our single-cell analysis of unc-3 and lin-39 reporters (Figure 4—figure supplement 2). Of

note, 28 cholinergic MNs co-express unc-3 and lin-39, which is in close agreement with the total

number of VD-like (12.1 ± 2.6) and VC-like (10.5 ± 3.7) cells observed in unc-3 mutants (Figure 4E–

F). Moreover, we found that lin-39 acts cell-autonomously as cholinergic MN-specific RNAi against

lin-39 in unc-3 (n3435) animals resulted in a significant reduction of ectopic terminal identity marker

(flp-11, ida-1) expression (Figure 4B–D). In the following Results sections, we describe the molecular

mechanism through which UNC-3 and LIN-39/Hox select and maintain throughout life key terminal

features of cholinergic MNs (Figure 4F).

Figure 4 continued

(n3435) mutants. N > 15. ***p<0.001. N.S: not significant. (C) Genetic locus of lin-39. Molecular lesions for kas1 and n1760 alleles are shown, as well as

the AID::3xFLAG::mNG cassette inserted at the C-terminus (endogenous reporter). (D) Quantification of two VD (ser-2::gfp, oig-1::gfp) and one VC (ida-

1::gfp) markers in WT, unc-3 (n3435), unc-3(n3435); lin-39(n1760) animals at L4. The three right-most bars show quantification of three independent

transgenic lines driving lin-39 RNAi specifically in cholinergic MNs (Punc-3 >lin-39 RNAi) of unc-3 (n3435) mutants. N > 15. ***p<0.001. (E) Summary of

unc-3 and lin-39 expression in cholinergic MNs. See Figure 4—figure supplement 2 for raw data. (F) Schematic that summarizes our findings. In the

wild type (Faumont et al., 2011) panel on the left, lin-39 is normally expressed in cholinergic MNs but unable to induce expression of VD or VC genes.

In the unc-3 mutant, lin-39 is now able to induce expression of alternative identity features (VD or VC) in distinct MN populations.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Ectopic expression of VD terminal identity markers in unc-3 mutants requires LIN-39 but not UNC-30.

Figure supplement 2. LIN-39 is continuously required to activate distinct terminal identity genes in sex-shared and sex-specific cholinergic MNs.
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UNC-3 prevents a switch in the transcriptional targets of LIN-39 in
cholinergic motor neurons
What is the function of LIN-39 in wild-type cholinergic MNs of the VNC? Our previous findings sug-

gested that LIN-39 and UNC-3, together with another mid-body Hox protein, MAB-5 (Antp/Hox6-8)

(Salser et al., 1993), act synergistically to control expression of two cholinergic MN terminal identity

genes (unc-129, ortholog of human BMP; del-1/Degenerin like sodium channel [ortholog of human

SCNN1G]) (Kratsios et al., 2017). To test the extent of this synergy, we examined in lin-39 and

mab-5 null animals the expression of 4 additional cholinergic MN terminal identity genes known to

be controlled by UNC-3 (acr-2/nicotinic acetylcholine receptor; dbl-1/DPP/BMP-like; unc-77/sodium

channel [ortholog of human NALCN], slo-2/potassium sodium-activated channel [ortholog of human

KCNT1]) (Kratsios et al., 2012). In all four cases, we found a statistically significant decrease in lin-

39 mutants, and this effect was exacerbated in lin-39; mab-5 double mutants (Figure 5A–B), indicat-

ing that the synergy of LIN-39 with MAB-5 (and UNC-3) extends to multiple terminal identity genes

in cholinergic MNs (WT panel in Figure 5D). The observed effects were 100% penetrant and consis-

tent with the previously described region-specific expression pattern of lin-39 and mab-5 in VNC

MNs (Figure 5A) (Kratsios et al., 2017). Of note, while MAB-5 collaborates with LIN-39 to activate

cholinergic MN identity genes (Figure 5B), it does not affect the ectopic expression of VD or VC

genes observed in unc-3 mutants (Figure 5—figure supplement 1).

Since UNC-3 controls directly, via its cognate binding site, cholinergic MN terminal identity genes

(Kratsios et al., 2012), we then asked whether this is the case for LIN-39. We analyzed available

ChIP-Seq data for LIN-39 from the modENCODE project (Boyle et al., 2014) and found evidence

for direct LIN-39 binding in the cis-regulatory of all six cholinergic MN terminal identity genes (unc-

129, del-1, acr-2, dbl-1, unc-77, slo-2) (Figure 5C, Figure 5—figure supplement 1). Moreover, we

identified multiple consensus LIN-39 binding sites (previously defined as GATTGATG) (Boyle et al.,

2014) located within the LIN-39 ChIP-Seq peaks in the cis-regulatory region of the aforementioned

genes (Supplementary file 2).

This analysis strongly suggests that LIN-39, similar to UNC-3, regulates directly the expression of

multiple terminal identity genes in cholinergic MNs (Figure 5D). However, in the absence of UNC-3,

the function of LIN-39 in cholinergic MNs is modified. Instead of activating cholinergic MN identity

genes, LIN-39 activates VD or VC terminal identity genes in unc-3-depleted MNs (Figure 4). Taken

together, our data suggest that UNC-3 antagonizes the ability of LIN-39 to activate alternative iden-

tity genes, thereby preventing a switch in the transcriptional targets of LIN-39 (model schematized in

Figure 5D). If this hypothesis is correct, one would expect decreased LIN-39 binding in the cis-regu-

latory region of cholinergic MN terminal identity genes in unc-3 mutants. By performing ChIP-Seq

for LIN-39 in unc-3 mutant animals, we indeed observed decreased LIN-39 binding in the cis-regula-

tory region of the aforementioned genes (Figure 5C, Figure 5—figure supplement 1). As a positive

control, LIN-39 binding in unc-3 mutant animals was observed in other loci, including the lin-39 locus

itself (Figure 5—figure supplement 1), consistent with the known role of LIN-39 in regulating its

own expression (Niu et al., 2011). Similar results were obtained by ChIP-qPCR for LIN-39 targets in

unc-3 mutants animals (Figure 5—figure supplement 1). We conclude that, in the absence of UNC-

3, LIN-39 is released from cholinergic MN terminal identity gene promoters, presumably leading to

increased availability of LIN-39 and thereby activation of alternative identity genes.

LIN-39 is continuously required to control expression of terminal
identity genes in cholinergic MNs
The neuronal function of Hox proteins at post-developmental stages is largely unknown

(Hutlet et al., 2016). The continuous expression of mid-body Hox lin-39 in both developing and

adult cholinergic MNs led us to investigate whether lin-39 is required to maintain expression of ter-

minal identity genes in these neurons. To test this idea, we employed clustered regularly interspaced

short palindromic repeats (CRISPR)/Cas9-based genome engineering and generated an auxin-induc-

ible lin-39 allele (lin-39::mNG::3xFLAG::AID) that also serves as an endogenous lin-39 reporter

(mNG). Animals carrying lin-39::mNG::3xFLAG::AID display no developmental phenotypes and show

nuclear mNG expression in MNs located at the mid-body region of the VNC during development

and adult stages (Figure 6A), corroborating previous observations with a LIN-39 antibody

(Maloof and Kenyon, 1998). Upon crossing the lin-39::mNG::3xFLAG::AID animals with the eft-3::
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Figure 5. UNC-3 prevents a switch in the transcriptional targets of LIN-39 in cholinergic motor neurons. (A) Schematic summarizing the expression

pattern of lin-39 and mab-5 in VNC cholinergic MNs. Below, representative images are shown of unc-77::gfp in WT, lin-39 (n1760), mab-5 (1239) and lin-

39 (n1760); mab-5 (1239) animals at L4 stage. Arrowheads point to MN cell bodies with gfp marker expression. Green fluorescence signal is shown in

white for better contrast. Dotted black box indicates imaged area. (B) Quantification of cholinergic MN terminal identity markers (unc-77, dbl-1, acr-2,
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TIR1 line, we observed hypomorphic effects in the expression of two cholinergic MN identity genes

(acr-2, unc-77) (Figure 4—figure supplement 2, panel C). Although LIN-39 protein is present in the

nuclei of cholinergic MNs of lin-39::mNG::3xFLAG::AID; eft-3::TIR1 animals (Figure 6A), these

effects are likely due to a mild reduction in LIN-39 levels triggered by TIR1. However, post-embry-

onic auxin administration on these animals resulted in efficient LIN-39 protein depletion and signifi-

cantly enhanced these effects (Figure 6A–C, Figure 4—figure supplement 2, panel C). We

therefore conclude that LIN-39 is continuously required to maintain terminal identity features in cho-

linergic MNs.

Next, we sought to determine whether LIN-39 is continuously required for the ectopic activation

of VD and VC terminal features observed in unc-3 null animals. Indeed, auxin administration at L4

stage on unc-3(n3435); lin-39::mNG::3xFLAG::AID animals carrying either a VD (ser-2), VC (glr-5), or

VD/VC (flp-11) marker resulted in a statistically significant suppression of the unc-3 phenotype when

compared to control (treated with ethanol) (Figure 6D–F).

To sum up, our findings with the auxin-inducible (Figure 4—figure supplement 2, panel C) and

null lin-39 alleles (Figures 4F and 5A–B) indicate that, in the presence of UNC-3, LIN-39 is required

to induce and maintain expression of cholinergic MN terminal identity genes (Figure 5D). In the

absence of UNC-3 (Figure 6), LIN-39 is also continuously required - from development and possibly

throughout life - for ectopic activation of VD and VC terminal identity genes (Figure 5D).

LIN-39 is an activator of VD and VC terminal identity genes
The observation that lin-39 is required for ectopic activation of both VD and VC terminal identity

genes in unc-3-depleted MNs prompted us to examine the role of lin-39 in VD and VC neurons of

wild-type animals. Does LIN-39 control the same VD- and VC-specific terminal identity genes that

become ectopically expressed in unc-3 mutants?

To this end, we leveraged our endogenous lin-39 reporter (lin-39::mNG::3xFLAG::AID) to assess

expression in wild-type VD neurons at the mid-body region of the VNC, and found this to be the

case (Figure 7A, Figure 4—figure supplement 2). Next, we found that LIN-39 is required to induce

expression of VD terminal identity genes (ser-2, oig-1) (Figure 7B). To gain further mechanistic

insights, we then asked whether lin-39 acts together with UNC-30, the known activator of GABAer-

gic MN identity genes (Eastman et al., 1999; Jin et al., 1994). Apart from confirming previous

observations of UNC-30 controlling the VD-specific oig-1 gene (Cinar et al., 2005; Howell et al.,

2015), we also found that ser-2 (Figure 7B) and flp-11 (Figure 4—figure supplement 2, panel E)

constitute novel UNC-30 targets in VD neurons. To test for synergistic effects, we focused on ser-2

and flp-11, two VD-expressed terminal identity genes mildly affected in lin-39 or unc-30 single

mutants. We generated lin-39; unc-30 double mutants and observed stronger effects than either sin-

gle mutant (Figure 7B, Figure 4—figure supplement 2, panel E). Such additive effects indicate that

lin-39 and unc-30 act in parallel to activate VD terminal identity genes. Importantly, expression of

other UNC-30 targets in GABAergic MNs, such as flp-13 (DD-specific terminal identity marker)

(Cinar et al., 2005; Shan et al., 2005; Yu et al., 2017) and genes expressed in both DD and VD neu-

rons (unc-25/GAD, unc-47/VGAT), is unaffected in lin-39 mutants (Figure 7B, Figure 4—figure sup-

plement 2, panel F). Unlike UNC-30 that broadly controls multiple terminal features (NT identity and

VD-specific terminal features) in VD neurons, we conclude that lin-39 is selectively required for acti-

vation of VD-specific terminal identity genes (Figure 7F). To test for a maintenance role in VD

Figure 5 continued

slo-2) in WT, lin-39 (n1760), mab-5 (1239) and lin-39 (n1760); mab-5 (1239) animals at L4. N > 15. **p<0.01; ***p<0.001. (C) ChIP-Seq tracks are shown for

LIN-39 on four cholinergic MN terminal identity genes (acr-2, unc-129, dbl-1, del-1). The WT data come from the modENCODE project (Boyle et al.,

2014), whereas the unc-3 (-) data were obtained by performing ChIP-Seq for LIN-39 on unc-3 (n3435); lin-39 (kas9 [lin-39::mNG::3xFLAG::AID] animals.

(D) Schematic showing the transcriptional switch in LIN-39 targets. In WT animals, UNC-3, MAB-5 and LIN-39 co-activate subtype-specific genes in

cholinergic MNs (e.g., unc-77, dbl-1, unc-129, acr-2). In unc-3 mutants, LIN-39 is no longer able to activate these genes, and instead switches to VD- or

VC-specific terminal identity genes. Black font: gene expressed. Gray font: gene not expressed. Gray arrows indicate inactive genetic interactions. COE

motif taken from Kratsios et al. (2012) and LIN-39 site taken from Weirauch et al. (2014) are represented with black rectangles and dots, respectively.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. MAB-5 is not required for ectopic VD or VC marker expression and LIN-39 binding on cholinergic MN genes is affected in unc-3

mutants.
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neurons, we administered auxin at various post-developmental stages (L3, L4, day one adult) on ani-

mals carrying the lin-39::mNG::3xFLAG::AID allele. We found that LIN-39 is continuously required to

maintain expression of the VD terminal identity gene ser-2 (Figure 7C).

The above genetic analysis indicates that LIN-39 and UNC-30/PITX activate expression of VD-spe-

cific genes (left panel in Figure 7F). Similarly, LIN-39 and UNC-3 directly co-activate terminal identity

genes in cholinergic MNs (left panel in Figure 5D). Since the absence of UNC-3 leads to ectopic acti-

vation of VD-specific genes (Figure 5D), we next considered the converse possibility: Does the

absence of UNC-30/PITX lead to ectopic activation of cholinergic MN terminal identity genes in

GABAergic VD neurons? However, this appears not to be the case as expression of 4 cholinergic
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Figure 6. LIN-39 is continuously required to control expression of terminal identity genes. (A) Animals of the lin-39::mNG::3xFLAG::AID; eft-3::TIR1

genotype were either administered ethanol (EtOH) or auxin at the L3 stage. Twenty four hours later, expression of endogenous lin-39 reporter (lin-39::

mNG::3xFLAG::AID) is severely reduced in the nuclei of VNC MNs (arrowheads) at the young adult stage (day 1). mNG green fluorescent signal is

shown in white for better contrast. White dotted line indicates the boundary of intestinal tissue (gut), which tends to be autofluorescent in the green

channel. (B) Quantification of number of MNs expressing the lin-39::mNG::3xFLAG::AID reporter after EtOH (control) and auxin treatment. N > 14.

***p<0.001. (C) Schematic showing time window of auxin administration. (D–F) Auxin or ethanol (control) were administered at larval stage 4 (L4) on

unc-3 (n3435); lin-39::mNG::3xFLAG::AID; eft-3::TIR1 animals carrying either the VD marker ser-2::gfp, the VC marker glr-5::gfp, or the VD/VC marker flp-

11::gfp. Images were taken at the young adult stage (day 1.6 for ser-2, day 1.8 for glr-5 and day two for flp-11). A significant decrease in the number of

MNs expressing the VD marker was evident in the auxin-treated animals compared to EtOH-treated controls. For comparison, quantification of marker

expression is also provided in unc-3 (n3435) mutants. We note that hypomorphic effects in the ethanol treated group have been previously reported for

other AID-tagged TFs in C. elegans (Kerk et al., 2017). Such effects appear to be target gene-specific, as they were observed for glr-5 and flp-11, but

not ser-2 (Figure 6E–F). N > 15. **p<0.01, ***p<0.001, N. S: not significant.
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Figure 7. LIN-39 is an activator of VD terminal identity genes. (A) Schematic summarizing unc-30 and lin-39 expression in VD and DD neurons

populating the VNC. In addition, 4 VD and 2 DD neurons are located in ganglia flanking the VNC (not shown because they were excluded from our

analysis). Raw data on lin-39 expression described in Figure 4—figure supplement 2. (B) Quantification of two VD (ser-2::gfp, oig-1::gfp) and one DD

(flp-13::gfp) markers in WT and lin-39 (n1760) animals at L4. Both VD markers were also tested in unc-30 (e191) mutants. Double lin-39 (n1760); unc-30
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MN markers (acr-2, slo-1, unc-129, del-1), normally co-activated by UNC-3 and LIN-39 (Figure 5A–

B), is unaffected in unc-30 mutants (Figure 7D–F).

Similar to its role in sex-shared VD neurons, does lin-39 control expression of terminal identity

genes in sex-specific VC neurons? We used the auxin-inducible lin-39::mNG::3xFLAG::AID allele to

address this question because, unlike all other nerve cord MNs, the VC neurons do not survive in lin-

39 (n1760) null animals (Potts et al., 2009). We applied auxin at a late larval stage (L3-L4) to knock-

down LIN-39 and observed that VC neurons do not die, providing an opportunity to test for putative

effects on VC terminal identity gene expression. Indeed, we found a statistically significant reduction

in the number of VC neurons expressing srb-16 (compare auxin and ethanol in Figure 4—figure sup-

plement 2, panel D).

Taken together, lin-39 is required for expression of VD- and VC-specific terminal identity genes.

In VD neurons, LIN-39 acts together with UNC-30/PITX to activate expression of VD-specific genes

(left panel in Figure 7F). Collectively, these findings on VD and VC neurons together with observa-

tions on cholinergic MNs (Figure 5D) show that, in different MN subtypes, the mid-body Hox gene

lin-39 controls expression of distinct terminal identity genes, likely due to collaboration with distinct

TFs (i.e., UNC-3 and MAB-5 in cholinergic MNs versus UNC-30 in VD neurons [compare Figure 5D

and Figure 7F]).

LIN-39 acts through distinct cis-regulatory elements to control oig-1
expression in VD and VD-like motor neurons
Does LIN-39 act directly or indirectly to activate VD and VC terminal identity genes? Analysis of

available ChIP-Seq data (modENCODE project) indicates direct regulation of these genes by LIN-39

(Figure 8A, Figure 8—figure supplement 1). However, the low resolution of ChIP-Seq data does

not allow the identification of the exact DNA sequence recognized by LIN-39. Therefore, we interro-

gated the cis-regulatory region of two VD terminal identity genes oig-1 and ser-2 for the presence

of the consensus LIN-39 binding site GATTGATG (Boyle et al., 2014) and found several copies

located within the boundaries of the LIN-39 ChIP-Seq peaks in oig-1 and ser-2 (Supplementary file

2). To test the functionality of these putative LIN-39 binding sites, we honed in on oig-1 and per-

formed a systematic cis-regulatory analysis in the context of transgenic reporter animals. A previous

study identified a minimal 125 bp cis-regulatory element (contained within the LIN-39 peak bound-

aries) upstream of oig-1 as sufficient to drive reporter gene expression in VD neurons (Howell et al.,

2015) (Figure 8A). We independently confirmed this observation, and further found that the 125 bp

element contains a single LIN-39 site. Mutation of this site in the context of transgenic oig-1 reporter

animals (oig-1 125bp LIN-39 site MUT::tagRFP) leads to a significant reduction of tagRFP expression in

VD neurons (Figure 8A–B), phenocoping the effect observed in lin-39 (n1760) null mutants

(Figure 7B). We conclude that, in wild-type animals, LIN-39 acts directly, by recognizing its cognate

site, to activate expression of the VD-specific gene oig-1. Interestingly, a functional binding site for

UNC-30/PITX also exists in this 125 bp element (Howell et al., 2015; Yu et al., 2017), and is spaced

11 base pairs apart from the LIN-39 site (Figure 7D), indicating that LIN-39 and UNC-30 control oig-

1 by recognizing distinct and in close proximity cis-regulatory motifs. Moreover, available UNC-30

ChIP-Seq data further support this possibility as UNC-30 and LIN-39 ChIP-Seq peaks largely overlap

at this 125 bp element (Figure 8A). Lastly, deletion of the region where LIN-39 and UNC-30 peaks

Figure 7 continued

(e191) mutants showed a more severe reduction in expression of the VD marker ser-2::gfp compared to each single mutant. N > 15. ***p<0.001. N. S:

not significant. (C) Auxin or ethanol (control) were administered at larval stage 3 (L3) on lin-39::mNG::3xFLAG::AID; eft-3::TIR1 animals carrying the VD

marker ser-2::gfp. Images were taken at the young adult stage (day 1.5). A significant decrease in the number of MNs expressing the VD marker was

evident in the auxin-treated animals compared to EtOH-treated controls. Similar results were obtained when auxin administration occurred at L4 or day

one adult animals. For comparison, quantification of marker expression is also provided in WT and lin-39 (n1760) animals. N > 15. **p<0.01, ***p<0.001.

N. S: not significant. (D) Several terminal identity markers of cholinergic neurons (acr-2, slo-2, unc-129, del-1) are not ectopically expressed in unc-30-

depleted GABAergic MNs. A strong loss-of-function allele e191 for unc-30 was used (Brenner, 1974; Eastman et al., 1999). Arrowheads point to MN

cell bodies with gfp marker expression. Green fluorescence signal is shown in white for better contrast. (E) Quantification of data presented in panel D.

N. S: not significant. (F) Schematic summarizing the function of LIN-39 and UNC-30 in GABAergic VD neurons. LIN-39 site is taken from

Weirauch et al. (2014). UNC-30 site is taken from Yu et al. (2017).
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Figure 8. LIN-39 acts through distinct cis-regulatory elements to activate oig-1 expression in VD and VD-like neurons. (A) ChIP-Seq tracks are shown for
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overlap in the context of a 2.6 kb oig-1 reporter (oig-1 2.6kb LIN-39 peak #3 DEL) abolish reporter expres-

sion in VD neurons (Figure 8A–B).

We next asked whether LIN-39 acts through the same or distinct cis-regulatory elements to drive

oig-1 expression in VD versus VD-like neurons of unc-3 mutants. While oig-1 reporters in the context

of a large (32.5 kb) genomic clone (fosmid) or a 2.6 kb intergenic region do show expression in both

VD and VD-like neurons of unc-3 mutants, reporter animals carrying 1 kb of cis-regulatory sequence

(that contains the 125 bp element) immediately upstream of ATG showed expression only in VD neu-

rons (Figure 8A). Conversely, a distal 1.6 kb element displayed expression in VD-like cells, but no

expression in VD neurons of either WT or unc-3 animals, suggesting the VD and VD-like elements

are physically separated on the genome. Within the 1.6 kb element, there is a LIN-39 binding peak

(peak #4) based on available ChIP-Seq data on WT animals. Deletion of this peak in the context of a

2.6 kb oig-1 reporter (oig-1 2.6kb LIN-39 peak #4 DEL) resulted in loss of expression in VD-like cells of

unc-3 mutants, whereas reporter expression was maintained in VD neurons (Figure 8A–B). This anal-

ysis strongly suggests that LIN-39 acts through distinct cis-regulatory elements to activate oig-1

expression in VD versus VD-like cells.

The LIN-39-mediated transcriptional switch depends on UNC-3 and LIN-
39 levels
How does the absence of UNC-3 lead to ectopic and lin-39-dependent activation of VD terminal

identity genes in cholinergic MNs (Figure 9D)? In principle, UNC-3 and LIN-39 could physically inter-

act in order to co-activate expression of cholinergic MN terminal identity genes. In the absence of

unc-3, this interaction would be disrupted and LIN-39 becomes available, in cholinergic MNs, to

assume its VD function, that is to activate VD-specific terminal identity genes (Figure 9D). Although

our co-immunoprecipitation (co-IP) experiments on UNC-3 and LIN-39 in a heterologous system

(HEK cells) did not provide evidence for physical interaction (Figure 9—figure supplement 1), the

heterologous context of this experiment still leaves open the possibility that, in cholinergic MNs in

vivo, UNC-3 directly (or indirectly) recruits LIN-39 on terminal identity gene promoters. This scenario

is supported by the observed decrease of LIN-39 binding on cholinergic MN gene loci in unc-3

mutants (Figure 5C). Lastly, the gene dosage experiments presented below firmly suggest there is a

close stoichiometric relationship between UNC-3 and LIN-39, reminiscent of LIM homeodomain TF

stoichiometries described in vertebrate MNs (Song et al., 2009).

Because the decrease of LIN-39 binding is accompanied by ectopic activation of VD terminal

identity genes in unc-3-depleted MNs, we hypothesized that LIN-39 is the rate-limiting factor pres-

ent in limited amount in cholinergic MNs. That is, in the presence of UNC-3, LIN-39 activates cholin-

ergic MN identity genes, but in its absence LIN-39 becomes available to activate alternative identity

(e.g., VD) genes. Quantification of the endogenous expression levels of both proteins indeed

showed lower levels of LIN-39 expression compared to UNC-3 (Figure 9A). Supporting the afore-

mentioned hypothesis, we found a gene dosage relationship between unc-3 and lin-39. Loss of one

unc-3 copy (unc-3 (n3435)/+) caused slight ectopic expression of VD genes (ser-2 in Figure 9B and

flp-11 in Figure 9—figure supplement 2, panel A), but that ectopic expression is decreased by loss

of one lin-39 copy (unc-3 (n3435)/+; lin-39 (n1760)/+) (Figure 9B, Figure 9—figure supplement 2,

panel A). Accordingly, loss of one lin-39 copy in unc-3 null animals (unc-3 (n3435); lin-39 (n1760)/+)

Figure 8 continued

least two transgenic lines were analyzed for each construct. ‘+’ indicates consistent and bright expression in ventral nerve cord (VNC) MNs (either VD or

cholinergic). ‘+/�’ indicates consistent and bright expression in noticeable less number of VNC MNs. ‘�’ indicates no or extremely dim expression in

VNC MNs. ‘N.D.’: Not determined. In the schematic of the transgenes, a known UNC-30 site is shown as a blue box and a bioinformatically predicted

LIN-39 site is represented as a black circle (filled circle indicates the presence of the site while unfilled one indicates deletion of the site). MUT indicates

deletion of the LIN-39 site and DEL indicates deletion of the respective LIN-39 peak region. (B) Images (top part) and quantifications (bottom part) of

selected constructs in the cis-regulatory analysis shown in (A). Animals carrying the oig-1125bp::tagRFP (left panel) with the LIN-39 site deleted show

reduced tagRFP reporter expression in VD neurons; animals carrying the oig-12.6kb LIN-39 peak #3 DEL (middle panel) ectopically express the reporter in

cholinergic MNs of unc-3 mutants, but not in WT animals; animals carrying the oig-12.6kb LIN-39 peak #4 DEL (right panel) do not show ectopic reporter

expression in unc-3-depleted MNs, but do show VD expression in both wild-type and unc-3 mutants. N > 12. ***p<0.001. N. S: not significant.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. LIN-39 binds directly to the cis-regulatory region of VD and VC terminal identity genes.
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Figure 9 continued on next page
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also reduced, but did not eliminate, ectopic expression of VD genes (Figure 9A, Figure 9—figure

supplement 2, panel A). Moreover, knock-down of unc-3 with RNAi specifically in cholinergic MNs

also led to ectopic expression of VD genes (Figure 9C, Figure 9—figure supplement 2, panels

B-C), whereas ectopic expression of UNC-3 in VD neurons resulted in repression of VD gene expres-

sion, presumably by recruiting LIN-39 away from VD promoters (Figure 9C, Figure 9—figure sup-

plement 2, panels B-C). Lastly, we asked whether LIN-39 is sufficient to induce expression of VD

terminal identity genes in cholinergic MNs. Indeed, we found this to be the case (Figure 9C, Fig-

ure 9—figure supplement 2, panels D-E). In conclusion, we propose that the LIN-39-mediated tran-

scriptional switch observed in unc-3 mutants critically depends on UNC-3 and LIN-39 levels, with the

latter being the rate-limiting factor (Figure 9D).

Ectopic expression of VD terminal identity genes in cholinergic motor
neurons is associated with locomotion defects
The dual role of UNC-3 revealed by our molecular analysis (Figure 2) led us to posit that the severe

locomotion defects observed in unc-3 animals may represent a composite phenotype (Bren-

ner, 1974; Yemini et al., 2013). In other words, these defects are not only due to loss of expression

of cholinergic MN terminal identity determinants (e.g., unc-17/VAChT, cha-1/ChAT, del-1/Degen-

erin-like sodium channel, acr-2/acetylcholine receptor [ortholog of CHRNE]), but also due to the

ectopic expression of VD and VC terminal features (e. g., ser-2/serotonin receptor [ortholog of

HTR1D], flp-11/FRMR-like neuropeptide, glr-5/Glutamate receptor [ortholog of GRID], srb-16/GPCR)

in unc-3-depleted MNs. To genetically separate these distinct molecular events, we generated unc-3

(n3435); lin-39 (n1760) double mutants, which do display loss of cholinergic MN terminal identity

genes, but the ectopic expression of VD and VC terminal features is suppressed (Figure 4F). We

predicted that if ectopic expression of VD and VC genes contributes to locomotion defects, then

unc-3 (n3435) mutants would display more severe locomotion defects than unc-3 (n3435); lin-39

(n1760) double mutants. To test this, we performed high-resolution behavioral analysis of freely mov-

ing adult (day 1) C. elegans animals using automated multi-worm tracking technology (Javer et al.,

2018b; Yemini et al., 2013). This analysis can quantitate multiple features related to C. elegans

locomotion (e.g., speed, crawling amplitude, curvature, pause, forward and backward locomotion)

and, most importantly, each feature can be localized to a specific part of the nematode’s body (e.

g., head, mid-body, tail). Since unc-3 and lin-39 expression uniquely overlaps in mid-body nerve

cord MNs that innervate mid-body muscles, we hypothesized that loss of unc-3 and/or lin-39 genes

would have effects on mid-body posture and motion, and thereby focused our analysis on mid-body

curvature features. Of the 49 mid-body features examined, 29 were significantly different in unc-3

single mutants when compared to wild-type (N2 strain) animals (see Supplementary file 3 for all 49

features). Intriguingly, 12 of these 29 features (41.37%) were significantly suppressed in unc-3; lin-39

double mutants (Figure 10A, Figure 10—figure supplement 1, panel A, Supplementary file 3),

suggesting that suppression of these behavioral defects could be attributed to suppression of the

ectopically expressed VD and VC terminal identity genes in these double mutants. We found no evi-

dence for suppression of the remaining 17 features in unc-3; lin-39 double mutants, likely due to the

fact that UNC-3 also controls other terminal identity genes, such as NT pathway genes (Figure 9D),

independently of LIN-39.

Figure 9 continued

The same cholinergic MNs have stronger expression levels of endogenous unc-3::mNG than lin-39::mNG. Quantification of the fluorescence intensities

is shown on the right panel. For details on the quantification, see Materials and Materials and methods. N = 12. ***p<0.001. (B) Quantification of the

VD marker (ser-2::gfp) in unc-3 (n3435), unc-3 (n3435); lin-39 (n1760)/+, unc-3 (n3435)/+, unc-3 (n3435); lin-39 (n1760), unc-3 (n3435)/+; lin-39 (n1760)/+,

and WT animals at L4. N > 15. **p<0.01, ***p<0.001. (C) Representative images of the VD marker (ser-2::gfp) expression on the left in L4 stage

transgenic animals that either down-regulate unc-3 in cholinergic MNs (Punc-3 >unc-3 RNAi), over-express lin-39 in cholinergic MNs (Punc-3 >lin-39

OE), or over-express unc-3 in VD neurons (VD prom [unc-47 prom]>unc-3 OE). Arrowheads point to MN cell bodies with gfp marker expression. Green

fluorescence signal is shown in white for better contrast. Quantification is provided on the right. Two independent transgenic lines were used for Punc-

3 >unc-3 RNAi and Punc-3 >lin-39 OE. N > 13. ***p<0.001. (D) Schematic summarizing the gene dosage experiments.

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. UNC-3 does not physically interact with LIN-39 in a heterologous system.

Figure supplement 2. UNC-3 and LIN-39 levels are crucial for ectopic expression of VD/VC terminal identity marker flp-11.
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Figure 10. Ectopic expression of VD terminal identity genes in cholinergic motor neurons is associated with locomotion defects. (A) Examples of three

mid-body locomotion features that are significantly affected in unc-3 (n3435) animals, but markedly improved in unc-3 (n3435); lin-39 (n1760) double

mutant animals. Each black dot represents a single adult animal. The unit for the first two graphs is 1/microns. The unit for the graph on the right is 1/

(microns*seconds). N = 12. Additional mid-body features affected in unc-3 (n3435) animals, but improved in unc-3 (n3435); lin-39 (n1760) mutants are

Figure 10 continued on next page
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Next, we asked whether ectopic expression of VD terminal identity genes in otherwise wild-type

animals can lead to locomotion defects. To test this, we took advantage of our transgenic animals

that selectively over-express LIN-39 in cholinergic MNs (Pcho-1 >LIN-39, Punc-3 >LIN-39)

(Figure 9C, Figure 10—figure supplement 1, panel D). First, we confirmed that in these animals

expression of cholinergic MN terminal identity genes is unaffected (Figure 10—figure supplement

1, panel D). Second, we found that LIN-39 overexpression led to ectopic activation of VD, but not

VC, terminal identity genes in cholinergic MNs (Figure 10—figure supplement 1, panel D), provid-

ing an opportunity to specifically assess the consequences of ectopic VD gene expression on animal

locomotion. We found that 9 of the 29 (31.03%) mid-body features affected in unc-3 (n3435) animals

were also altered in animals over-expressing lin-39 in cholinergic MNs (Figure 10B, Figure 10—fig-

ure supplement 1, panels B-C, Supplementary file 3).

In conclusion, our behavioral analysis is in agreement with our molecular findings. At the molecu-

lar level, we found that lin-39/Hox is necessary for the ectopic expression of VD terminal identity

genes in unc-3 mutants. At the behavioral level, this lin-39-dependent, ectopic expression of terminal

identity genes is accompanied by locomotion defects.

Discussion
During development, individual neuron types must select their unique terminal identity features,

such as expression of NT receptors, ion channels and neuropeptides. Continuous expression of these

features - from development through adulthood - is essential for safeguarding neuronal terminal

identity, and thereby ensuring neuronal function (Deneris and Hobert, 2014; Hobert, 2011;

Hobert, 2016). Here, we provide critical insights into the mechanisms underlying selection and

maintenance of neuron type-specific terminal identity features by using the well-defined MN popula-

tions of the C. elegans nerve cord as a model. First, we report that, in cholinergic MNs, the terminal

selector-type TF UNC-3 has a dual role; UNC-3 is not only required to promote cholinergic MN iden-

tity features (Kratsios et al., 2012), but also to prevent expression of multiple terminal features nor-

mally reserved for three other ventral cord neuron types (VD, VC, CA). Second, we provide evidence

that cholinergic MNs can secure their terminal identity throughout life by continuously relying on

UNC-3’s dual function. Third, we propose an unusual mechanism underlying this dual function, as we

find UNC-3 necessary to prevent a switch in the transcriptional targets of the mid-body Hox protein

LIN-39 (Scr/Dfd/Hox4-5) (Figure 9D). Lastly, our findings shed light upon the poorly explored, post-

embryonic role of Hox proteins in the nervous system by uncovering that LIN-39 is continuously

required to maintain expression of multiple terminal identity genes in MNs.

UNC-3 determines the function of the rate-limiting factor LIN-39/Hox in
cholinergic motor neurons
Numerous cases of neuron type-specific TFs with a dual role have been previously described in both

vertebrate and invertebrate models systems (Britanova et al., 2008; Cheng et al., 2004;

Kala et al., 2009; Lopes et al., 2012; Mears et al., 2001; Morey et al., 2008; Nakatani et al.,

2007; Sagasti et al., 1999). Although the underlying mechanisms often remain unclear, recent stud-

ies proposed two modes of action. First, such TFs can act directly to activate ‘desired’ terminal iden-

tity features and repress (also directly) alternative identity features (Lodato et al., 2014;

Wyler et al., 2016). Second, neuron type-specific TFs can act indirectly by controlling intermediary

factors. For example, in the mouse spinal cord, a complex of three TFs (Isl1, Lhx3, NLI) specifies MN

Figure 10 continued

provided in Figure 10—figure supplement 1 and Supplementary file 3. *p<0.01, **p<0.001, ***p<0.0001. (B) Examples of three mid-body

locomotion features affected in unc-3 (n3435) mutants and animals over-expressing lin-39 in cholinergic MNs. Each black dot represents a single adult

animal. The unit for the Y axis is 1/(microns*seconds). N = 12. Additional mid-body features affected in unc-3 (n3435) and lin-39 over-expressing animals

are provided in Figure 10—figure supplement 1 and Supplementary file 3. *p<0.01, **p<0.001, ***p<0.0001. (C) Conceptual model summarizing the

findings of this paper. Gray font: not expressed gene. Black font: expressed gene. Gray arrow: inactive genetic interaction. Black arrow: active genetic

interaction.

The online version of this article includes the following figure supplement(s) for figure 10:

Figure supplement 1. Automated worm tracking analysis on unc-3 and unc-3; lin-39 mutants.
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identity by recognizing specific DNA elements in the cis-regulatory region of MN-specific genes and

the homeodomain TF Hb9, and activates their expression. Hb9 functions as a transcriptional repres-

sor of alternative (V2a interneuron) identity genes, thereby consolidating MN identity (Lee et al.,

2008; Song et al., 2009; Thaler et al., 2002). An analogous mechanism operates in V2a interneur-

ons and involves Chx10, a homeodomain protein that represses alternative neuronal identity pro-

grams (Clovis et al., 2016; Lee et al., 2008). Hence, mouse mutants for Hb9 or Chx10 result in

ectopic expression of alternative identity genes (Arber et al., 1999; Clovis et al., 2016;

Thaler et al., 1999). Several TFs (unc-4/Uncx, mab-9/Tbx20, unc-55/COUP, bnc-1/BNC) with repres-

sor activity are known to control aspects of cholinergic MN development in C. elegans (Kerk et al.,

2017; Pflugrad et al., 1997; Pocock et al., 2008; Von Stetina et al., 2007; Winnier et al., 1999).

However, their genetic removal did not result in ectopic expression of alternative (VD, VC) identity

features in cholinergic MNs (data not shown). Although we cannot exclude the involvement of yet-

to-be identified transcriptional repressors acting downstream of UNC-3, our genetic and biochemi-

cal analyses led us to propose the following mechanism underlying UNC-3’s dual role.

In cholinergic MNs, unc-3 and lin-39 are co-expressed, albeit the latter in lower levels

(Figure 9A), suggesting that LIN-39/Hox is a rate-limiting factor whose function is determined by

UNC-3. In wild-type animals, UNC-3 and LIN-39 occupy cis-regulatory elements of cholinergic MN

terminal identity genes, resulting in their activation (Figure 5C) (Kratsios et al., 2012). In the

absence of UNC-3, LIN-39 is released from these elements and becomes available to activate alter-

native identity genes, such as VD-specific terminal identity genes. Several lines of evidence support

this conclusion. First, ChIP-seq data show that LIN-39 binding is decreased in cholinergic MN gene

loci in unc-3 mutants (Figure 5C). Second, our gene dosage experiments show that either lowering

unc-3 levels or increasing lin-39 levels in cholinergic MNs results in ectopic activation of VD identity

genes (Figure 9B–C). Lastly, we performed an extensive cis-regulatory analysis of one VD-specific

gene (oig-1) and identified the element through which LIN-39 acts to induce oig-1 expression in VD-

like cells of unc-3 mutants (Figure 8). Together, these data suggest that the role of UNC-3 in cholin-

ergic MNs is not simply to activate gene expression with LIN-39, but also to ‘recruit’ LIN-39 away

from promoters of alternative identity genes, thereby antagonizing its ability to activate those genes.

Supporting this scenario, ectopic UNC-3 expression in VD neurons results in decreased expression

of VD-specific genes (Figure 9C). Given that the mouse ortholog of unc-3, Ebf2, is co-expressed

with Hox genes in cholinergic MNs of the spinal cord (Catela et al., 2019; Kratsios et al., 2017),

the molecular mechanism described here may be conserved across species. Interestingly, a seminal

study recently described a conceptually similar mechanism in the mouse retina, where CRX recruits

MEF2D to retina-specific enhancers, resulting in selective activation of photoreceptor genes

(Andzelm et al., 2015).

Insights into how neurons maintain their terminal identity features
throughout life
Is there a need for mechanisms that continuously prevent expression of alternative identity features

in a post-mitotic neuron? Or, do such mechanisms become superfluous once neurons have restricted

their developmental potential by committing to a specific terminal identity? This fundamental ques-

tion is poorly explored, in part due to the fact that most neuron type-specific TFs have been studied

during embryonic stages. For example, it is not known whether CRX is continuously required to acti-

vate retina-specific enhancers and simultaneously prevent expression of alternative identity genes

(Andzelm et al., 2015). Our temporally controlled protein depletion experiments uncovered a con-

tinuous requirement for the dual role of UNC-3. Post-embryonic depletion of UNC-3 not only results

in failure to maintain cholinergic MN terminal features (Kratsios et al., 2012), but is also accompa-

nied by ectopic expression of alternative identity features (e.g., VD, VC). These findings reveal a sim-

ple and economical mechanism that can enable individual neuron types to select and maintain their

distinct terminal identity features. That is, the same TF is continuously required - from development

throughout life - to not only activate neuron type-specific identity genes, but also prevent expression

of alternative identity features.
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Maintenance of terminal identity features: A new function of hox
proteins in the nervous system
Across model systems, a large body of work on motor neurons and other neuron types has estab-

lished that, during early development, Hox proteins are required for neuronal diversity, cell survival,

axonal path finding and circuit assembly (Baek et al., 2013; Catela et al., 2016; Estacio-

Gómez and Dı́az-Benjumea, 2014; Estacio-Gómez et al., 2013; Karlsson et al., 2010;

Mendelsohn et al., 2017; Miguel-Aliaga and Thor, 2004; Moris-Sanz et al., 2015; Philippidou and

Dasen, 2013). However, the function and downstream targets of Hox proteins during post-embry-

onic stages are largely unknown. Our contributions towards this knowledge gap are twofold. First,

we found that the mid-body Hox protein LIN-39 is continuously required, from development through

adulthood, to control expression of MN terminal identity genes, thereby revealing a novel role for

Hox proteins in maintaining neuronal identity. Second, we uncovered multiple terminal identity

genes as downstream targets of LIN-39 in different MN subtypes (cholinergic MNs: acr-2, dbl-1, unc-

77, slo-2; VD neurons: oig-1, ser-2, flp-11; VC neurons: srb-16). Since continuous expression of these

genes is essential for MN function, these findings may provide a molecular explanation for the unco-

ordinated locomotion defects observed in lin-39 mutants (Figure 10—figure supplement 1). Given

the maintained expression of Hox genes in the adult nervous system of flies, mice and humans

(Baek et al., 2013; Takahashi et al., 2004; Hutlet et al., 2016), our findings may be broadly

transferable.

Impact on the concept of terminal selector genes
TFs able to broadly activate many distinct terminal identity features of a specific neuron type (e.g.,

NT biosynthesis components, NT receptors, ion channels, neuropeptides) have been termed ‘termi-

nal selectors’ (Hobert, 2008). Several dozens of terminal selectors have been described thus far in

multiple model systems including worms, flies and mice (Hobert, 2011; Hobert, 2016; Hobert and

Kratsios, 2019). However, it is unclear whether terminal selectors are also required to prevent

expression of alternative identity features. Our findings suggest this to be the case by revealing a

dual role for UNC-3, the terminal selector of cholinergic MN identity in C. elegans. In the future, it

will be interesting to see whether other terminal selectors also exert a dual role in order to safeguard

neuronal terminal identity. Supporting this possibility, Pet-1, the terminal selector of mouse seroto-

nergic neurons has been recently shown to repress several terminal identity genes (Wyler et al.,

2016).

Limitations and lessons learned about the control of neuronal terminal
identity
The examination of multiple MN terminal identity markers at single-cell resolution enabled us to

make an interesting observation. Although all unc-3-depleted nerve cord MNs uniformly lose their

cholinergic identity, one subpopulation acquires VD terminal features (‘VD-like’ neurons) and another

subpopulation acquires VC terminal features (‘VC-like’ neurons). This intriguing observation may be

analogous to findings described in the mammalian neocortex, where genetic removal of the TF

Satb2 leads to loss of pyramidal neuron identity (UL1 subtype), and concomitant gain of molecular

features specific to two other pyramidal neuron subtypes (DL, UL2) (Britanova et al., 2008).

Together, the cases of UNC-3 and Satb2 support the notion that neuron type-specific TFs often sup-

press features of functionally related neuronal subtypes (Arlotta and Hobert, 2015).

Although our study employs an extensive repertoire of terminal identity markers for distinct MN

subtypes, the extent of alternative identity features (e.g., VD, VC) being ectopically expressed in

unc-3-depleted MNs remains unknown. Future unbiased transcriptional profiling of unc-3-depleted

MNs could help address this issue. In addition, the strong axonal defects in MNs of unc-3 mutants

preclude any further attempts to assess whether the observed VD-like and VC-like cells, as defined

by molecular markers, also acquire morphological features of VD and VC neurons, respectively

(Prasad et al., 1998). However, the VD-like neurons of unc-3 mutants do not acquire GABAergic

identity like wild-type VD neurons (Figure 2—figure supplement 1, panel A), arguing against a com-

plete cell fate transformation.
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Evolutionary implications of this study
Our findings highlight the employment of economical solutions to evolve novel cell types in the ner-

vous system. The same Hox protein (LIN-39) collaborates with distinct terminal selectors in different

MNs, and this collaboration determines the specificity of LIN-39/Hox function. In GABAergic (VD)

neurons, LIN-39 works together with UNC-30/PITX to control expression of VD terminal identity

genes, whereas in cholinergic MNs LIN-39 synergizes with UNC-3 to control cholinergic MN identity

genes (Figure 7F, 9D). We speculate that the unc-3 mutant ‘state’ may constitute the ‘ground state’.

That is, the ‘VD-like’ neurons, for example, in unc-3 mutants that express LIN-39 may represent an

ancient cell type that was altered to become a new cell type through the recruitment of distinct ter-

minal selectors (conceptual model in Figure 10C). Hence, the amount of genetic information

required for evolution of new cell types is kept to minimum. The recruitment of UNC-30/PITX

enabled ‘VD-like’ cells to fully adopt GABAergic VD neuron terminal identity, as evident by the abil-

ity of UNC-30/PITX to control expression of GABA synthesis proteins (Eastman et al., 1999;

Jin et al., 1994) (Figure 7F). Similarly, recruitment of UNC-3 enabled ‘VD-like’ cells to become cho-

linergic MNs. In this ‘new’ cholinergic cell type, UNC-3 exerts a dual role: it antagonizes the ability

of LIN-39 to activate VD-specific genes, and also synergizes with LIN-39 to co-activate cholinergic

MN terminal identity genes (Figure 9D). We hope the strategy described here of a terminal selector

preventing a Hox transcriptional switch may provide a conceptual framework for future studies on

terminal identity and evolution of neuronal cell types.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Gene
(Caenorhabditis
elegans)

unc-3 Wormbase WBGene00006743

Gene
(Caenorhabditis
elegans)

unc-30 Wormbase WBGene00006766

Gene
(Caenorhabditis
elegans)

lin-39 Wormbase WBGene00003024

Gene
(Caenorhabditis
elegans)

mab-5 Wormbase WBGene00003102

Strain, strain
background
(Caenorhabditis
elegans)

unc-3 (n3435) Bob Horvitz
(MIT, Cambridge MA)

MT10785 Null Allele: deletion

Strain, strain
background
(Caenorhabditis
elegans)

unc-30 (e191) Caenorhabditis
Genetics Center

CB845 Allele: substitution

Strain, strain
background
(Caenorhabditis
elegans)

lin-39(n1760)/dpy-17(e164) unc-32(e189) III. Caenorhabditis
Genetics Center

MT4009 Null Allele: substitution

Strain, strain
background
(Caenorhabditis
elegans)

mab-5 (n1239) III; him-5 (e1490) V Caenorhabditis
Genetics Center

CB3531 Allele: substitution

Strain, strain
background
(Caenorhabditis
elegans)

him-8 (e1489) IV Caenorhabditis
Genetics Center

CB1489 Allele: substitution

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Strain, strain
background
(Caenorhabditis
elegans)

ieSi57 II; unc-3 (ot837 [unc-3::mNG::AID]) Caenorhabditis
Genetics Center

OH13988 CRISPR-generated allele

Strain, strain
background
(Caenorhabditis
elegans)

lin-39 (kas9 [lin-39::mNG::AID]) This paper KRA110 See Materials
and methods,
Section Targeted
genome editing

Strain, strain
background
(Caenorhabditis
elegans)

ieSi57 [eft-3prom::tir1] Caenorhabditis
Genetics Center

CA1200 Genotype: ieSi57 II;
unc-119(ed3) III.

Strain, strain
background
(Caenorhabditis
elegans)

ser-2::gfp Caenorhabditis
Genetics Center

OH2246 Genotype: otIs107 I

Strain, strain
background
(Caenorhabditis
elegans)

oig-1::gfp Caenorhabditis
Genetics Center

OH3955 Genotype: pha-
1(e2123) III; otEx193

Strain, strain
background
(Caenorhabditis
elegans)

ida-1::gfp Caenorhabditis
Genetics Center

BL5717 Genotype: inIs179
II; him-8(e1489) IV

Strain, strain
background
(Caenorhabditis
elegans)

glr-5::gfp Aixa Alfonso
(University of Illinois,
Chicago IL)

AL270 Genotype: icIs270 X

Strain, strain
background
(Caenorhabditis
elegans)

srb-16::gfp Caenorhabditis
Genetics Center

BC14820 Genotype:dpy-
5(e907) I; sEx14820

Strain, strain
background
(Caenorhabditis
elegans)

flp-11::gfp Caenorhabditis
Genetics Center

NY2040 Genotype: ynIs40 V

Strain, strain
background
(Caenorhabditis
elegans)

twk-46::gfp Caenorhabditis
Genetics Center

BC13337 Genotype: dpy-
5(e907) I; sIs12928 V

Strain, strain
background
(Caenorhabditis
elegans)

ilys-4::tagrfp This paper KRA22 Genotype: pha-
1(e2123) III; kasEx22

Strain, strain
background
(Caenorhabditis
elegans)

flp-13::gfp Caenorhabditis
Genetics Center

NY2037 Genotype: ynIs37 III

Strain, strain
background
(Caenorhabditis
elegans)

lin-11::mCherry Oliver Hobert
(Columbia
University,
New York NY)

OH11954 Genotype: lin-11::mCherry +
myo-2::GFP V

Strain, strain
background
(Caenorhabditis
elegans)

klp-4::gfp Caenorhabditis
Genetics Center

BC11799 Genotype: dpy-
5(e907) I; sEx11799

Strain, strain
background
(Caenorhabditis
elegans)

alr-1::egfp Caenorhabditis
Genetics Center

OP200 Genotype: unc-
119(ed3) III;
wgIs200 X

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Strain, strain
background
(Caenorhabditis
elegans)

irx-1::egfp Caenorhabditis
Genetics Center

OP536 Genotype:
unc-119(tm4063) III; wgIs536 I

Strain, strain
background
(Caenorhabditis
elegans)

del-1::gfp Caenorhabditis
Genetics Center

NC138

Strain, strain
background
(Caenorhabditis
elegans)

acr-2::gfp Caenorhabditis
Genetics Center

CZ631 Genotype: juIs14 IV

Strain, strain
background
(Caenorhabditis
elegans)

unc-129::gfp Caenorhabditis
Genetics Center

evIs82b Genotype: evIs82b IV

Strain, strain
background
(Caenorhabditis
elegans)

dbl-1::gfp Caenorhabditis
Genetics Center

BW1935 Genotype: unc-
119(ed3) III; ctIs43
him-5(e1490) V

Strain, strain
background
(Caenorhabditis
elegans)

nca-1::gfp Caenorhabditis
Genetics Center

BC15028 Genotype: dpy-
5(e907) I; sEx15028

Strain, strain
background
(Caenorhabditis
elegans)

slo-2::gfp Caenorhabditis
Genetics Center

BC10749 Genotype: dpy-
5(e907) I; sEx10749

Strain, strain
background
(Caenorhabditis
elegans)

ttr-39::mCherry Caenorhabditis
Genetics Center

CZ8332 Genotype: juIs223 IV

Strain, strain
background
(Caenorhabditis
elegans)

cho-1::rfp Caenorhabditis
Genetics Center

OH13646 Genotype: pha-1(e2123) III; him-
5(e1490) otIs544 V

Strain, strain
background
(Caenorhabditis
elegans)

unc-17::gfp Caenorhabditis
Genetics Center

LX929 Genotype: vsIs48 X

Strain, strain
background
(Caenorhabditis
elegans)

unc-25::gfp Caenorhabditis
Genetics Center

CZ13799 Genotype: juIs76 II

Strain, strain
background
(Caenorhabditis
elegans)

unc-47::mChOpti Caenorhabditis
Genetics Center

OH13105 Genotype: him-
5(e1490) otIs564 V

Strain, strain
background
(Caenorhabditis
elegans)

unc-30::gfp Caenorhabditis
Genetics Center

OP395 Genotype: unc-119(tm4063) III;
wgIs395

Strain, strain
background
(Caenorhabditis
elegans)

ser-2::rfp Mark Alkema
(University of
Massachusetts,
Worcester MA)

AL270 Genotype: zfIs8 IV

Strain, strain
background
(Caenorhabditis
elegans)

oig-1(fosmid)::GFP Caenorhabditis
Genetics Center

OH11809 Genotype: otIs450

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Strain, strain
background
(Caenorhabditis
elegans)

lin-39::gfp Caenorhabditis
Genetics Center

OP18 Genotype: unc-
119(ed3) III; wgIs18

Genetic reagent
(Caenorhabditis
elegans)

Poig-1_1 kb::gfp Oliver Hobert
(Columbia University,
New York NY)

otEx5993
otEx5994
otEx5995

Genetic reagent
(Caenorhabditis
elegans)

Poig-1_1.6 kb::gfp This paper kasEx147
kasEx148

See Materials
and methods

Genetic reagent
(Caenorhabditis
elegans)

Poig-1_2.6 kb_LIN-39
site #3 DEL::gfp

This paper kasEx149
kasEx150

See Materials
and methods

Genetic reagent
(Caenorhabditis
elegans)

Poig-1_2.6 kb_LIN-39
site #4 DEL::gfp

This paper kasEx151
kasEx152

See Materials
and methods

Genetic reagent
(Caenorhabditis
elegans)

Poig-1_125 bp_::tagrfp This paper kasEx80
kasEx81
kasEx82

See Materials
and methods

Genetic reagent
(Caenorhabditis
elegans)

Poig-1_ LIN-39 site
mut 125 bp_::tagrfp

This paper kasEx91
kasEx92
kasEx93

See Materials
and methods

Genetic reagent
(Caenorhabditis
elegans)

Punc-3_558bp > lin-39
RNAi + myo-2::gfp

This paper kasEx68
kasEx69
kasEx70
kasEx71
kasEx72

See Materials
and methods

Genetic reagent
(Caenorhabditis
elegans)

Punc-3_558bp > unc-3
RNAi + myo-2::gfp

This paper kasEx73
kasEx74
kasEx78
kasEx79

See Materials
and methods

Genetic reagent
(Caenorhabditis
elegans)

Punc-3_558bp > lin-
39 cDNA OE + myo-2::gfp

This paper kasEx35
kasEx36
kasEx37
kasEx76
kasEx77

See Materials
and methods

Genetic reagent
(Caenorhabditis
elegans)

Punc-47 > unc-3 cDNA
+ myo-2::gfp

This paper kasEx75 See Materials
and methods

Genetic reagent
(Caenorhabditis
elegans)

Pcho-1_280bp > lin-39
cDNA OE + myo-2::gfp

This paper kasEx38
kasEx39
kasEx41

See Materials
and methods

Genetic reagent
(Caenorhabditis
elegans)

lin-39 fosmid
WRM0616aE11 +
myo-2::gfp

This paper kasEx33
kasEx34

See Materials
and methods

Antibody anti-Myc
(Rabbit polyclonal)

Abcam #ab9106;
RRID:AB_307014

1:1000 dilution

Antibody anti-Flag
(Mouse monoclonal)

Sigma #F3165;
RRID:AB_259529

1:1000 dilution

Antibody anti-Flag
(Rabbit polyclonal)

Sigma, #SAB4301135;
RRID: AB_2811010

1:1000 dilution

Antibody Clean-Blot IP
Detection Reagent
(Mouse monoclonal)

Thermo Fisher #21230;
RRID: AB_2576514

See Materials
and methods

Antibody Flag antibody
coated beads
(Mouse monoclonal)

Sigma, #A2220;
RRID:AB_10063035

See Materials
and methods

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Antibody anti-FLAG M2
magnetic beads
(Mouse monoclonal)

Sigma-Aldric M8823;
RRID: AB_2637089

See Materials
and methods

Recombinant
DNA reagent

pcDNA 3.1(+)-
C-Flag (Plasmid)

Genscript pcDNA 3.1(+) C-terminus Flag-
tagged UNC-3

Recombinant
DNA reagent

pcDNA 3.1(+)-
N-Myc (Plasmid)

Genscript pcDNA 3.1(+) N-terminus Myc-
tagged LIN-39

Recombinant
DNA reagent

Fosmid clone
WRM0616aE11

Source BioScience WRM0616aE11 lin-39::GFP
fosmid clone

Commercial
assay or kit

Gibson Assembly
Cloning Kit

NEB #5510S

Commercial
assay or kit

QIAquick PCR
Purification Kit

QIAGEN #28104

Commercial
assay or kit

Ampure XP beads Beckman
Coulter Life
Sciences

A63881

Commercial
assay or kit

TOPO XL-2 Complete
PCR Cloning Kit

Thermo Fisher K8050

Chemical
compound, drug

Auxin (indole-
3-acetic acid)

Alfa Aesar #10196875

Software,
algorithm

ZEN ZEISS Version 2.3.69.1000,
Blue edition

RRID:SCR_013672

Software,
algorithm

Image J Image J Version 1.52i RRID:SCR_003070

Software,
algorithm

RStudio RStudio Version 1.2.5001

Software,
algorithm

Adobe Photoshop CS6 Adobe Version 13.0 � 64

Software,
algorithm

Adobe Illustrator CS6 Adobe Version 16.0.0 � 64

C. elegans strains
Worms were grown at 15 ˚C, 20 ˚C or 25 ˚C on nematode growth media (NGM) plates seeded with

bacteria (E.coli OP50) as food source (Brenner, 1974).

Forward genetic screen
EMS mutagenesis was performed on unc-3 (n3435); ynIs40 [flp-11::GFP] animals using standard pro-

cedures (Kutscher and Shaham, 2014). Mutagenized L4 animals were visually screened at a dissect-

ing fluorescence microscope for changes in flp-11::GFP expression in VNC MNs. One mutant (kas1)

was retrieved.

Generation of transgenic reporter animals
Reporter gene fusions for cis-regulatory analysis of terminal identity genes were made using either

PCR fusion (Hobert, 2002) or Gibson Assembly Cloning Kit (NEB #5510S). Targeted DNA fragments

were fused (ligated) to tagrfp coding sequence, which was followed by unc-54 3’ UTR. The TOPO XL

PCR cloning kit was used to introduce the PCR fusion fragments into the pCR-XL-TOPO vector (Invi-

trogen). Mutations on LIN-39 motifs were introduced via mutagenesis PCR. The product DNA frag-

ments were either injected into young adult pha-1(e2123) hermaphrodites at 50 ng/ml using pha-1

(pBX plasmid) as co-injection marker (50 ng/ml) and further selected for survival, or injected into

young adult N2 hermaphrodites at 50 ng/ml (plus 50 ng/ml pBX plasmid) using myo-2::gfp as co-

injection marker (3 ng/ml) and further selected for GFP signal.

The fosmid clone WRM0616aE11 (genomic region: III:7519128..7554793) (Source BioScience) that

contains the entire lin-39 locus was linearized by restriction enzyme digestion, mixed with sonicated
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bacterial genomic DNA (12 ng/ml) and injected into young adult N2 hermaphrodites at 15 ng/ml

using myo-2::gfp as co-injection marker (3 ng/ml).

Generation of transgenic animals for RNAi or over-expression
The cDNA (for over-expression) or the exon-rich genomic region (for RNAi) of unc-3 and lin-39 were

amplified by PCR and then ligated to cholinergic (cho-1, unc-3) or GABAergic (unc-47) MN pro-

moters using Gibson Assembly Cloning Kit (NEB #5510S). For unc-3 RNAi, we targeted exons 2–5

with the following primers: FRW: GTCTGTAAAAGATGAGAACCAGCGG, RVS: CTGTCAATAATAAC

TGGATCGCTGG. For lin-39 RNAi, we targeted exons 3–5 with the following primers: FRW:

gtggtcaaactccgaacttaaagtg, RVS: gaaggggcgagaaatgtgtgataac. For over-expression constructs,

DNA products were purified using a PCR purification protocol (QIAGEN), and then injected into

young adult WT hermaphrodites at 50 ng/ml together with 50 ng/ml pBS plasmid (filler DNA) and 3

ng/ml of myo-2::gfp (co-injection marker). For RNAi constructs, complementary sense and anti-sense

exon-rich genomic regions of unc-3 and lin-39 were PCR purified and injected into young adult WT

or unc-3 (n3435) hermaphrodites each at 100 ng/ml with myo-2::gfp as co-injection marker (3 ng/ml)

following previously established procedures (Esposito et al., 2007).

Targeted genome engineering
To generated the lin-39 (kas9 [lin-39::mNG::AID]) allele, CRISPR/Cas9 genome editing was employed

to introduce the mNG::3xFLAG::AID cassette into the lin-39 gene locus before the stop codon.

Micro-injection, selection and strain establishment were performed as previously described

(Dickinson et al., 2015).

Temporally-controlled protein degradation
In the presence of TIR1, AID-tagged proteins are conditionally degraded when exposed to auxin in

the presence of TIR1 (Zhang et al., 2015). Animals carrying auxin-inducible alleles of lin-39 (kas9 [lin-

39::mNG::AID]) or unc-3 (ot837 [unc-3::mNG::AID]) (Kerk et al., 2017) were crossed with ieSi57 [eft-

3prom::tir1] animals that express TIR1 ubiquitously. Auxin (indole-3-acetic acid [IAA]) was dissolved

in ethanol (EtOH) to prepare 400 mM stock solutions which were stored at 4˚C for up to one month.

NGM agar plates with fully grown OP50 bacteria were coated with auxin solution to a final concen-

tration of 4 mM, and allowed to dry overnight at room temperature. To induce protein degradation,

worms of the experimental strains were transferred onto auxin-coated plates and kept at 20˚C. As

control, worms were transferred onto EtOH-coated plates instead. Auxin solutions, auxin-coated

plates, and experimental plates were shielded from light.

Microscopy
Worms were anesthetized using 100 mM of sodium azide (NaN3) and mounted on a 4% agarose pad

on glass slides. Images were taken using an automated fluorescence microscope (Zeiss, Axio Imager.

Z2). Acquisition of several z-stack images (each ~1 mm thick) was taken with Zeiss Axiocam 503

mono using the ZEN software (Version 2.3.69.1000, Blue edition, RRID:SCR_013672). Representative

images are shown following max-projection of 1–8 mm Z-stacks using the maximum intensity projec-

tion type. Image reconstruction was performed using Image J software (RRID:SCR_003070;

Schindelin et al., 2012).

Chromatin immunoprecipitation (ChIP)
ChIP assay was performed as previously described (Yu et al., 2017; Zhong et al., 2010) with the fol-

lowing modifications. Synchronized unc-3 (n3435); lin-39 (kas9 [lin-39::mNG::3xFLAG::AID] worms at

L1 stage were cultured on 10 cm plates seeded with OP50 at 20˚C overnight. Early L3 worms were

cross-linked and resuspended in FA buffer supplemented with protease inhibitors (150 mM NaCl, 10

ml 0.1 M PMSF, 100 ml 10% SDS, 500 ml 20% N-Lavroyl sarsosine sodium, 2 tablets of cOmplete

ULTRA Protease Inhibitor Cocktail [Roche Cat.# 05892970001] in 10 ml FA buffer). The sample was

then sonicated using a Covaris S220 at the following settings: 200 W Peak Incident Power, 20% Duty

Factor, 200 Cycles per Burst for 60 s. Samples were transferred to centrifuge tubes and spun at the

highest speed for 15 min. The supernatant was transferred to a new tube, and 5% of the material

was saved as input and stored at �20˚C. Twenty (20) ml of equilibrated anti-FLAG M2 magnetic
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beads (Sigma-Aldrich M8823) were added to the remainder. The lin-39 (kas9 [lin-39::mNG::3xFLAG::

AID]) CRIPSR-generated allele was used in order to precipitate the immunocomplex comprising the

endogenous LIN-39 protein and the bound DNA. The immunocomplex was incubated and rotated

overnight at 4˚C. On the next day, the beads were washed at 4˚C twice with 150 mM NaCl FA buffer

(5 min each), once with 1M NaCl FA buffer (5 min). The beads were transferred to a new centrifuge

tube and washed twice with 500 mM NaCl FA buffer (10 min each), once with TEL buffer (0.25 M

LiCl, 1% NP-40, 1% sodium deoxycholate, 1 mM EDTA, 10 mM Tris-HCl, pH 8.0) for 10 min, twice

with TE buffer (5 min each). The immunocomplex was then eluted in 200 ml elution buffer (1% SDS in

TE with 250 mM NaCl) by incubating at 65˚C for 20 min. The saved input samples were thawed and

treated with the ChIP samples as follows. One (1) ml of 20 mg/ml proteinase K was added to each

sample and the samples were incubated at 55˚C for 2 hr and then at 65˚C overnight (12–20 hr) to

reverse cross-link. The immunoprecipitated DNA was purified with Ampure XP beads (A63881)

according to manufacturer’s instructions. Library preparation and Illumina sequencing was per-

formed at the Genomics Core facility of the University of Chicago. The LIN-39 ChIP-Seq data on

wild-type animals were generated by the modENCODE project (RRID:SCR_006206).

Real-time quantitative PCR (qPCR) analysis of ChIP DNA
ChIP was performed on unc-3 (n3435); wgIs18 (lin-39 fosmid::GFP) animals as described above. qPCR

analysis of ChIP DNA was performed to probe enrichment of predicted LIN-39 binding sites at four

target genes (acr-2, dbl-1, unc-129, lin-39). Three biological replicates were included. The primers

used are provided in 5’�3’ orientation: acr-2 LIN-39 site (FRW: acattcgcaccaacaaagcg; RVS: aaag-

gacggacccaacagac), acr-2 3’ UTR (FRW: tttcagcgccacatgtgtttg; RVS: attgcctagtgattctgagtagagg),

dbl-1 LIN-39 site (FRW: gcacaatccctcgggatcaa; RVS: TAAGTTTTGCGCTGCTGCTG), dbl-1 3’ UTR

(FRW: atacccgcttctatgtcgcc; RVS: ccgtgacacattgcaccaaa), unc-129 LIN-39 site (FRW: attcgtgtctcg-

cagggaac; RVS: atagaggaaccggcaaaggtg), unc-129 3’ UTR (FRW: ttctgtctgtacatcttccctacc; RVS:

tttgccaagaaacaaagagagcag), lin-39 LIN-39 site (FRW: gacgtctccctctttctcctc; RVS: tccgctttctgagactc-

cac), lin-39 3’UTR (FRW: gttcaagaaaaatattgtgcgttcc; RVS: catttttcgctcgaactgatgga). The amplifica-

tion was conducted in a QuantStudio three using the Power SYBR Green PCR Master Mix

(ThermoFisher Cat.# 4367659), with the following program: Step 1: 95˚C for 10 min; Step 2: 95˚C for

15 s; Step 3: 60˚C for 1 min. Repeat steps 2–3 for 40 times.

Motor neuron identification
Motor neuron (MN) subtypes were identified based on combinations of the following factors: (a) co-

localization with fluorescent markers with known expression pattern, (b) invariant cell body position

along the ventral nerve cord, or relative to other MN subtypes, (c) MN birth order, and (d) number

of MNs that belong to each subtype.

Bioinformatic analysis
To predict the UNC-3 binding site (COE motif) in the cis-regulatory region of unc-129, del-1, acr-2,

unc-77 and slo-2, we used the MatInspector program from Genomatix (Cartharius et al., 2005)

(RRID:SCR_008036). The Position Weight Matrix (PWM) for the LIN-39 binding site is catalogued in

the CIS-BP (Catalog of Inferred Sequence Binding Preferences database) (Weirauch et al., 2014). To

identify putative LIN-39 sites on the cis-regulatory regions of unc-129, del-1, acr-2, unc-77, slo-2,

oig-1, and ser-2, we used FIMO (Find Individual Motif Occurrences)(Grant et al., 2011), which is one

of the motif-based sequence analysis tools of the MEME (Multiple Expectation maximization for

Motif Elicitation) bioinformatics suite (http://meme-suite.org/). To predict the binding site for the

transcription factor UNC-30, we performed FIMO analysis using the UNC-30 binding motif

(WNTAATCHH) described in Cinar et al. (2005). The p-value threshold for the analysis was set at

p<0.005.

Automated worm tracking
Worms were maintained as mixed stage populations by chunking on NGM plates with E. coli OP50

as the food source. The day before tracking, 30–40 L4 larvae were transferred to a seeded NGM

plate and incubated at 20˚C for approximately 24 hr. Five adults are picked from the incubated

plates to each of the imaging plates (see below) and allowed to habituate for 30 min before
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recording for 15 min. Imaging plates are 35 mm plates with 3.5 mL of low-peptone (0.013% Difco

Bacto) NGM agar (2% Bio/Agar, BioGene) to limit bacteria growth. Plates are stored at 4˚C for at

least two days before use. Imaging plates are seeded with 50 ml of a 1:10 dilution of OP50 in M9 the

day before tracking and left to dry overnight with the lid on at room temperature.

Behavioral feature extraction and analysis
All videos were analyzed using Tierpsy Tracker (Javer et al., 2018a) to extract each worm’s position

and posture over time. These postural data were then converted into a set of behavioral features as

previously described (Javer et al., 2018b). From the total set of features, we only considered 48

that are related to midbody posture and motion, as well as the midbody width (see

Supplementary file 3 for feature descriptions and their average values for each strain). For each

strain comparison, we performed unpaired two-sample t-tests independently for each feature. The

false discovery rate was controlled at 5% across all strain and feature comparisons using the Benja-

mini Yekutieli procedure (Kim and van de Wiel, 2008). The p-value threshold to control the false

discovery rate at 0.05 is 0.0032.

Cloning, western blot, and immunoprecipitation
UNC-3, and LIN-39 cDNAs were cloned into the mammalian expression vectors pcDNA 3.1(+)-

C-Flag plasmid and the pcDNA 3.1(+)-N-Myc plasmid by GeneScript, to generate C-terminus Flag-

tagged UNC-3 and N-terminus Myc-tagged LIN-39. The constructs were verified by sequencing at

the sequencing core facility of University of Chicago. The tagged proteins were expressed in

HEK293 cells. Protein expression was detected by standard western blot. Expression of Myc tagged

LIN-39 was detected using anti-Myc (Abcam, #ab9106, RRID:AB_307014), expression of Flag-tagged

UNC-3 in the total cell lysate was detected using mouse anti-Flag (Sigma, #F3165, RRID:AB_

259529), expression of Flag-tagged UNC-3 in the IP was detected using rabbit anti-Flag (Sigma,

#SAB4301135, RRID:AB_2811010). Immunoprecipitation of Flag-tagged UNC-3 was performed

using Flag antibody coated beads (Sigma, #A2220). For the IP, the ‘Clean-Blot IP Detection Reagent’

(Thermo Fisher, #21230) was used as secondary antibody.

Quantification of fluorescence intensity
Images of worms carrying the lin-39::mNG::3xFLAG::AID or unc-3::mNG:: 3xFLAG::AID alleles were

taken on the same slide with the same camera settings at the same development stage. Acquisition

of four z-stack images (each 0.53 mm thick) covering the middle portion of targeted MN cell bodies

was taken with Zeiss Axiocam 503 mono using the ZEN software (Version 2.3.69.1000, Blue edition,

RRID:SCR_013672). Image reconstruction was performed using Image J software following average-

projection the Z-stacks using the average intensity projection protocol. The chosen cells for quantifi-

cation of mNG fluorescence intensity for both genotypes are the same 10 cholinergic MNs: AS2,

DB3, DA2, VA3, VB4, AS3, DA3, VA4, VB5 and DB4. Targeted cell areas were manually selected

with minimum background as region of interest (ROI) and the total fluorescence Intensity was mea-

sured, calculated, and then represented by Image J as Integrated Density – IntDen (ROI). Back-

ground was additionally selected and IntDen (Background) was calculated. The net fluorescence

intensity increase is represented as NeIncr = IntDen(ROI)/Area(ROI) – IntDen (Background)/Area

(Background). 12 NetIncrs of both genotypes were calculated and data were normalized by dividing

the Median of NetIncr (lin-39::mNG::3xFLAG::AID) for better contrast and presented as arbitrary

units (a.u).

Statistical analysis
For data quantification, graphs show values expressed as mean ± standard deviation (STDV). The sta-

tistical analyses were performed using the unpaired t-test (two-tailed). Calculations were performed

using the Evan’s Awesome A/B Tools online software (https://www.evanmiller.org/ab-testing/t-test.

html). Differences with p<0.05 were considered significant. Quantifications are provided in the form

of box-and-whisker plots (Tukey boxplot) with individual data point dot-plotted. In all boxplots, mid-

dle horizontal line represents the median value (equals to Q2). The box illustrates

the interquartile range (IQR), that is from Q1 to Q3. The upper limit indicates either the maximum
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value if maximum <Q3 + 1.5*IQR, or the value that is not higher than Q3 + 1.5*IQR. Similarly, the

lower limit indicates either the minimum value or the value that is not lower than Q1 - 1.5*IQR.
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