
GEOPHYSICAL RESEARCH LETTERS

Supporting Information for “Causes of higher climate

sensitivity in CMIP6 models”
Mark D. Zelinka1 *, Timothy A. Myers1, Daniel T. McCoy2, Stephen

Po-Chedley1, Peter M. Caldwell1, Paulo Ceppi3, Stephen A. Klein1, and Karl

E. Taylor1

1Lawrence Livermore National Laboratory, Livermore, CA, USA

2Institute of Climate and Atmospheric Sciences, University of Leeds, Leeds, UK

3Grantham Institute, Imperial College London, London, UK

Contents of this file

1. Text S1 to S6

2. Figures S1 to S11

3. Tables S1 and S2

Introduction In this Supporting Information, we provide tables of forcing, feedback, and

ECS in individual CMIP5 and CMIP6 models (Tables S1 and S2), additional figures that

support the results in the main text (Figures S1-S11), Text S1 explaining sensitivity to

choice of radiative kernel, Texts S2 and S3 providing more information about the approx-

imate partial radiative perturbation and Webb et al. (2006) techniques for decomposing
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cloud feedbacks, Text S4 detailing our implementation of the Dufresne and Bony (2008)

decomposition of individual contributions to ECS, Text S5 explaining how the cloud con-

trolling factor analysis is performed, and Text S6 explaining how the cloud water phase

analysis is performed.

Text S1.

Kernel Residuals

Residuals in the radiative kernel technique can arise from several sources. Discrepancies

between the mean climate state and/or radiative transfer scheme of the model used to

generate the kernel and the model being diagnosed is one source. The assumption that one

can linearly sum radiative flux anomalies due to perturbations in individual atmospheric

layers or in individual fields is also imperfect, causing additional error.

Kernel residuals are quantified by comparing the actual model-produced clear-sky feed-

backs with the sum of all kernel-derived clear-sky feedbacks (Shell et al., 2008). Following

Caldwell, Zelinka, Taylor, and Marvel (2016), models for which these quantities are within

15% of each other in both the longwave (LW) and shortwave (SW) are considered to have

passed this clear-sky linearity test. Having estimated radiative feedbacks with the kernels

of Soden et al. (2008), Shell et al. (2008), Block and Mauritsen (2013), Huang, Xia, and

Tan (2017), Pendergrass, Conley, and Vitt (2018), and Smith et al. (2018), we find the

greatest number of models pass this clear-sky linearity test when employing the Huang

et al. (2017) kernels, so we use them throughout the paper. We stress however that the

results shown in this paper are qualitatively unchanged when using any of the other ker-

nels. Notably, while the absolute values of individual feedbacks depend on kernel, both
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the inter-model spread in individual feedbacks and the CMIP5-to-CMIP6 change in the

strength of individual feedbacks are essentially identical for all kernels (Figure S2).

Text S2.

Approximate Partial Radiative Perturbation (APRP) Technique

We use the approximate partial radiative perturbation (APRP) technique of Taylor et al.

(2007) to separate the SW low cloud feedback into its amount and scattering components.

The method approximates the atmospheric SW radiative transfer by representing the

atmosphere as a single layer that scatters and absorbs SW radiation passing through

it. It is assumed that absorption occurs only on the incident beam’s first pass through.

Atmospheric scattering and absorption parameters for this one-layer atmosphere are then

derived such that the upwelling and downwelling SW radiative fluxes at the surface and

TOA match those produced by the GCM. The sensitivity of the TOA SW fluxes to changes

in these parameters holding all else fixed can then be estimated. Assuming that in overcast

regions, non-cloud atmospheric constituents absorb and scatter the same proportion of

SW radiation as they would if clouds were abruptly cleared from the scene, one can isolate

the effects on TOA SW radiation from changes in cloud cover, absorption, and scattering.

Unlike changes in SW cloud radiative effect, cloud feedbacks diagnosed using APRP

are due solely to cloud changes rather than to a combination of cloud and non-cloud

changes. We refer to the SW cloud feedback component due to change in cloud cover as the

“cloud amount” component. We combine the scattering and (much smaller) absorption

components into a single “scattering” component that is very similar to the cloud optical

depth component diagnosed with cloud radiative kernels (Zelinka et al., 2012, 2013, 2016).

December 2, 2019, 8:58pm



X - 4 :

Taylor et al. (2007) found global mean errors in SW cloud feedbacks derived with APRP

that were no larger than 10% when compared with the more accurate PRP technique. We

find close agreement between kernel- and APRP-derived SW cloud feedbacks in CMIP5

and CMIP6 (Figure S5).

Text S3.

Webb et al. (2006) Cloud Feedback Classification

The technique of Webb et al. (2006) compares the relative strengths of LW and SW

cloud feedbacks at each grid box to infer the type(s) of cloud changes that are most likely

to have caused the feedback. Every grid box is classified into one of eight categories that

are defined mathematically in the caption of Figure 3 of Webb et al. (2006). For example,

a location with a large positive SW cloud feedback but a near-zero LW cloud feedback

would be classified as arising from fewer and/or thinner low clouds. Following Soden and

Vecchi (2011), we use the adjusted- rather than unadjusted-CRE feedback as our measure

of cloud feedback, and we aggregate the eight categories produced by the Webb et al.

(2006) method into the two recommended by Zelinka et al. (2016): low and non-low cloud

feedbacks. Low cloud feedbacks are identified where the SW component is large but the

LW component is small. These are the A and E categories of Webb et al. (2006). Non-low

cloud feedbacks are identified where there are large but opposing feedbacks in the SW

and LW, feedbacks in the LW with no change in the SW, or LW and SW feedbacks of the

same sign. These are the B, C, D, F, G, and H categories of Webb et al. (2006).

Webb et al. (2006) demonstrated a close match between the inferred cloud types causing

the feedback at any given location with those derived more directly from International
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Satellite Cloud Climatology Project (ISCCP) simulator output. We have also verified

that low and non-low cloud feedbacks estimated in this manner agree closely with those

computed using the Zelinka et al. (2016) method for the 11 models used in this study for

which ISCCP simulator output is available (not shown).

Text S4.

Contributors to ECS in Each Model

Following Dufresne and Bony (2008) and Vial, Dufresne, and Bony (2013), we com-

pute the global surface temperature change arising from the forcing and each individual

feedback based on its strength relative to the Planck feedback (Figure S7). This can be

thought of as the global temperature response necessary for Planck radiative damping to

remove the forcing- or feedback-induced TOA imbalance. As discussed by Caldwell et al.

(2016), this breakdown can be misleading for quantitatively assessing inter-model spread,

so we focus on aspects that are insensitive to methodology.

Since multi-model mean forcing and non-cloud feedbacks are only slightly changed in

CMIP6, the global temperature response to these is only slightly greater in CMIP6 (2.9K

vs 2.7K). Cumulative temperature changes arising from non-cloud feedbacks and forcing

exhibit modest inter-model spread (upward pointing triangles). Once the temperature

contributions from cloud feedback are included, the spread is dramatically increased.

Text S5.

Cloud Controlling Factor Analysis

To better quantify the reasons why extratropical low cloud amount and scattering feed-

backs have become more positive in CMIP6 relative to CMIP5, we utilize cloud controlling
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factor (CCF) analysis, a technique that is extensively reviewed in Klein, Hall, Norris, and

Pincus (2017). This analysis exploits the fact that clouds respond quickly to their en-

vironment, and hence one can decompose greenhouse warming-induced cloud changes as

the product of a time-invariant sensitivity of cloud properties to individual CCFs and the

change in those CCFs with climate change. Following Myers and Norris (2016), we use

sea surface temperature (SST ), estimated inversion strength (EIS), surface temperature

advection (Tadv), relative humidity at 700 hPa (RH700) and pressure vertical velocity at

700 hPa (ω700) to explain changes in low cloud properties. The physical bases for the

low cloud dependence on these five CCFs are discussed in many studies (Myers & Norris,

2016; Klein et al., 2017; Zelinka et al., 2018).

We apply the Myers and Norris (2016) analysis to anomalies in low cloud cover (LCC)

and in-cloud LWP for low clouds (LWPlow) in the southern extratropics (30-60◦S) as

follows. First, we compute deseasonalized monthly anomalies in cloud properties and

cloud controlling factors at each oceanic grid box in the 30-60◦S latitude band from the

first 50 years of each model’s piControl simulation. Anomalies in LCC and LWPlow are

estimated as the total cloud cover and LWP anomalies, respectively, where the local TOA

radiation anomaly is attributable to low clouds. Attribution to low clouds is performed

by comparing the relative strengths of anomalies in LW and SW cloud radiative effects,

defined as the clear- minus all-sky difference in upwelling TOA LW and SW radiative

fluxes, respectively. This follows the same approach as is used for attributing cloud

feedbacks to clouds at different altitudes (Webb et al., 2006), which is detailed in Text

S3. Second, for each variable, we create a single vector of the resulting anomalies from all
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grid boxes. These vectors contain a mix of spatial and temporal variability of interannual

anomalies. Third, because the CCFs have different units, we normalize the CCF vectors

by their current-climate spatio-temporal standard deviations taken from ERA5 ((C3S),

2017) between 1982 and 2018. (This is the reason why sensitivities are expressed in

‘per σ’ units and why the changes in CCFs with warming are in units of ‘σ per K’ in

Figure 3A-D.) Finally, multiple linear regression is applied to these vectors. The resultant

regression coefficients provide estimates of the dependence of low cloud properties on each

of the five CCFs in the absence of confounding changes in the other four CCFs. Necessary

diagnostics are not available for all models, so the sample size noted in Figure 3 is reduced

relative to that of Figure 1.

Text S6.

Cloud Water Phase Analysis

Following McCoy, Hartmann, Zelinka, Ceppi, and Grosvenor (2015), we estimate the

liquid condensate fraction (LCF) as a function of atmospheric temperature in each model

as follows. At each atmospheric layer and for each month, we compute the ratio of

liquid water mass fraction to total (liquid plus ice) water mass fraction. These liquid

and ice water mass fractions, known respectively as ‘clw’ and ‘cli’ in CMIP parlance,

include both large-scale and convective clouds and are the mass of cloud water divided

by the mass of air (including the water in all phases) in each grid cell. Any grid cell

with a total water mass fraction less than 10−7 kg/kg is ignored. These ratios were

then averaged into bins of atmospheric temperature. Figure S10A shows the resultant

LCF curves for each model providing sufficient data (which is a smaller number than
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elsewhere in the paper; see sample sizes printed in the legend). The temperature at which

each LCF curve intersects a value of 0.5 represents the temperature at which ice and

liquid phases are present in equal proportion, and is referred to as T5050 (McCoy et al.,

2015). Histograms of T5050 values are shown in Figure S10B. To assist in visualizing

the CMIP5 and CMIP6 distributions, overlain are kernel density estimates that represent

non-parametric inferences of the underlying probability density functions of the T5050

populations.
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Figure S1. Gregory plots showing global and annual mean TOA net radiation anomalies

plotted against global and annual mean surface air temperature anomalies. Best-fit ordinary

linear least squares lines are shown. The y-intercept of the line (divided by 2) provides an

estimate of the effective radiative forcing from CO2 doubling (ERF2x), the slope of the line

provides an estimate of the net climate feedback parameter (λ), and the x-intercept of the line

(divided by 2) provides an estimate of the effective climate sensitivity (ECS). These values are

printed in each panel. Models are ordered by ECS.
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Figure S2. As in Figure 1C, but showing mean and across-model standard deviations of (blue)

CMIP5 and (orange) CMIP6 feedbacks estimated with each of the six radiative kernels.
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Figure S3. As in Figure 1A-C, but for the conventional feedback breakdown in which Planck

and LR feedbacks are computed holding specific humidity fixed and the water vapor feedback

quantifies the change in net TOA radiation due to temperature-mediated increases in specific

humidity. Owing to their strong anti-correlation across models (Soden & Held, 2006), we also

show the combined LR and WV feedbacks (LR+WV).
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Figure S4. ECS plotted against (A) net cloud feedback and (B) SW low cloud feedback.

Asterisks indicate statistically significant correlation coefficients at 95% confidence. Neither of

the differences between CMIP5 and CMIP6 regression slopes is significant at 95% confidence.
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Figure S5. Global mean kernel-derived SW cloud feedbacks plotted against those derived

using APRP for (blue) CMIP5 and (orange) CMIP6. Asterisks indicate statistically significant

correlation coefficients at 95% confidence.
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Figure S6. Changes in multi-model mean ECS due to hypothetical uniform shifts of forcing

holding all else fixed, feedback holding all else fixed, and the combination of forcing and feedback

holding all else fixed. Imposed forcing and feedback shifts are equal to the difference in multi-

model mean ERF2× and λ, respectively, between CMIP5 and CMIP6. Shifts are performed

separately for CMIP5 and CMIP6 and then averaged. The change in mean ECS expressed as a

percentage of the actual CMIP5-to-CMIP6 change is printed in each bar.

December 2, 2019, 8:58pm



X - 18 :

1 0 1 2 3 4 5 6
Temperature Contribution [K]

inmcm4
GISS-E2-R
GISS-E2-H

GFDL-ESM2G
GFDL-ESM2M
IPSL-CM5B-LR

MRI-CGCM3
MIROC5

NorESM1-M
bcc-csm1-1

bcc-csm1-1-m
CCSM4

CNRM-CM5
FGOALS-g2

MPI-ESM-MR
MPI-ESM-P

ACCESS1-3
MPI-ESM-LR

CanESM2
ACCESS1-0
GFDL-CM3
BNU-ESM

CSIRO-Mk3-6-0
IPSL-CM5A-MR
IPSL-CM5A-LR

FGOALS-s2
HadGEM2-ES

MIROC-ESM
CMIP5 MMM

INM-CM4-8
CAMS-CSM1-0

NorESM2-LM
MIROC6

MIROC-ES2L
GISS-E2-1-G

MPI-ESM1-2-HR
FGOALS-f3-L

BCC-CSM2-MR
GISS-E2-1-H
MRI-ESM2-0

BCC-ESM1
SAM0-UNICON

GFDL-CM4
EC-Earth3

CNRM-CM6-1-HR
EC-Earth3-Veg
IPSL-CM6A-LR

CESM2-WACCM
NESM3

CNRM-ESM2-1
CNRM-CM6-1

CESM2
E3SM-1-0

UKESM1-0-LL
HadGEM3-GC31-LL

CanESM5

CMIP6 MMM

1.0

1.9

2.7

3.3
3.4

1.1

2.0

2.9

3.5

3.9 MULTI-
MODEL
MEANS

CM
IP5

CM
IP6

Contributions to ECS

Total
Non-cloud
CloudForcing LR+RH Albedo Cloud Residual

TR TR TR TR TREX EX EX EX EX

Figure S7. Contributions of forcing and feedbacks to ECS in each model and for the multi-

model means. Contributions from the tropical and extratropical portion of the feedback are shown

in light and dark shading, respectively. Black dots indicate the ECS in each model, while upward

and downward pointing triangles indicate contributions from non-cloud and cloud feedbacks,

respectively. Numbers printed next to the multi-model mean bars indicate the cumulative sum

of each plotted component. Numerical values are not printed next to residual, extratropical

forcing, and tropical albedo terms for clarity. Models within each collection are ordered by ECS.
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Figure S8. Cloud feedbacks due to low and non-low clouds in the (light shading) tropics

and (dark shading) extratropics in each model and for the multi-model means. Non-low cloud

feedbacks are separated into LW and SW components, and SW low cloud feedbacks are separated

into amount and scattering components. “Others” represents the sum of LW low cloud feedbacks

and the small difference between kernel- and APRP-derived SW low cloud feedback. Insufficient

diagnostics are available to compute SW cloud amount and scattering feedbacks for the FGOALS-

g2 and CAMS-CSM1-0 models. Black dots indicate the global mean net cloud feedback in each

model, while upward and downward pointing triangles indicate total contributions from non-low

and low clouds, respectively. Models within each collection are ordered by global mean net cloud

feedback. December 2, 2019, 8:58pm
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Figure S9. (A) SW low cloud amount feedback plotted against the change in low cloud cover.

(B) SW low cloud scattering feedback plotted against the change in in-cloud liquid water path

for low clouds. All quantities are marine averages over 30-60◦S, with CMIP5 shown in blue and

CMIP6 shown in orange. Asterisks indicate statistically significant correlation coefficients at 95%

confidence.
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Figure S10. (A) Liquid condensate fraction (LCF) as a function of temperature for individual

(blue) CMIP5 and (orange) CMIP6 models. LCF is defined as the ratio of liquid water path to

total water path between 30 and 80 degrees latitude in both hemispheres. Multi-model means are

indicated with thick lines. (B) Distribution of T5050 values (the temperatures at which LCF =

0.5) for CMIP5 and CMIP6 models, with kernel density estimates overlain. Multi-model means

are indicated with vertical lines.
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Figure S11. ECS estimated using all 150 annual anomalies from the abrupt-4xCO2 experiment

plotted against ECS estimated using only the last 130 annual anomalies for (blue) CMIP5 and

(orange) CMIP6 models. The dashed line indicates the 1:1 line, and solid lines extend to the

multi-model average ECS values. The difference between CMIP5 and CMIP6 regression slopes

is significant at 95% confidence.
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