
A finite element error analysis for

axisymmetric mean curvature flow∗

John W. Barrett† Klaus Deckelnick‡ Robert Nürnberg†

Abstract

We consider the numerical approximation of axisymmetric mean curvature flow with the
help of linear finite elements. In the case of a closed genus-1 surface, we derive optimal
error bounds with respect to the L2– and H1–norms for a fully discrete approximation.
We perform convergence experiments to confirm the theoretical results, and also present
numerical simulations for some genus-0 and genus-1 surfaces.
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1 Introduction

Mean curvature flow is one of the simplest prototypes for a geometric evolution equation, and
it has been studied extensively in differential geometry and numerical analysis over the last few
decades. For a family of closed hypersurfaces (S(t))t≥0 ⊂ R3 this geometric evolution law is
given by

VS = km on S(t) , (1.1)

where VS denotes the normal velocity of S(t) in the direction of the normal ~νS(t), and km is the
mean curvature of S(t), i.e. the sum of its principal curvatures. For an introduction to mean
curvature flow and important results we refer to Mantegazza (2011).

The approximation of mean curvature flow for two-dimensional surfaces with the help of para-
metric finite elements goes back to the seminal work by Dziuk (1991), and other methods have
since been proposed, see e.g. Barrett et al. (2008); Elliott and Fritz (2017). The first convergence
proof for a parametric method has only very recently been obtained in Kovács et al. (2019) for
a system that employs the position, the normal vector and the mean curvature as variables.
Optimal H1–error bounds are proven for a spatial discretization by surface finite elements of
order k ≥ 2 and backward difference formulae for time integration. For surfaces that can be
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Figure 1: Sketch of Γ and S, as well as the unit vectors ~e1, ~e2 and ~e3.

written as a graph, error bounds have previously been shown in Deckelnick and Dziuk (1995b,
2000). We refer to the review articles Deckelnick et al. (2005); Barrett et al. (2019b) for fur-
ther information on the numerical approximation of mean curvature flow and related geometric
evolution equations, where the former article also surveys level set and phase field methods not
discussed in this introduction.

In this paper we consider mean curvature flow in an axisymmetric setting. We set

I = R/Z , with ∂I = ∅ , or I = (0, 1) , with ∂I = {0, 1} ,

and let ~x(t) : I → R2 parameterize Γ(t), which is the generating curve of a surface S(t) that
is axisymmetric with respect to the x2–axis, see Figure 1. Here we allow Γ(t) to be either a
closed curve, parameterized over R/Z, which corresponds to S(t) being a genus-1 surface without
boundary. Or Γ(t) may be an open curve, parameterized over [0, 1], which corresponds to S(t)
being a genus-0 surface, e.g. a sphere. Then the two endpoints of Γ(t) are attached to the
x2–axis, on which they can freely move up and down. In particular, we always assume that, for
all t ∈ [0, T ],

~x(ρ, t) · ~e1 > 0 ∀ ρ ∈ I \ ∂I , (1.2a)

~x(ρ, t) · ~e1 = 0 ∀ ρ ∈ ∂I . (1.2b)

Let us denote by ~τ and ~ν a unit tangent and a unit normal to Γ(t), respectively. It was shown
in Barrett et al. (2019a) that mean curvature flow, (1.1), for an axisymmetric surface can be
formulated as

~xt · ~ν = κ − ~ν · ~e1

~x · ~e1
in I × (0, T ] , (1.3a)

~xρ · ~e2 = 0 on ∂I × (0, T ] , (1.3b)

where κ = ~κ · ~ν and ~κ = 1
|~xρ|

(
~xρ
|~xρ|

)
ρ

is the curvature vector. In particular, we observe that a

solution of the system

~xt −
1

|~xρ|

(
~xρ
|~xρ|

)
ρ

+
~ν · ~e1

~x · ~e1
~ν = ~0 (1.4)

will satisfy (1.3a). Note that the leading part in the above problem is the same as in the curve
shortening flow

~xt −
1

|~xρ|

(
~xρ
|~xρ|

)
ρ

= ~0 . (1.5)
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Hence it is natural to use numerical methods designed for (1.5), in order to approximate axisym-
metric mean curvature flow. Optimal error bounds for a semi–discrete scheme approximating
(1.5) have been obtained in Dziuk (1994), and various schemes based on (1.4) are considered in
Barrett et al. (2019a), although no error analysis is given. A difficulty of the approaches using
(1.5) and (1.4) lies in the fact that, in view of

1

|~xρ|

(
~xρ
|~xρ|

)
ρ

=
1

|~xρ|2
[~xρρ − (~xρρ · ~τ)~τ ] ,

the resulting systems are degenerate in the tangential direction. One way to address this prob-
lem is DeTurck’s trick, which essentially consists in removing this degeneracy by introducing
an additional tangential motion via a suitable reparameterization. In the case of the curve
shortening flow, it is natural to consider the system

~xt −
~xρρ
|~xρ|2

= ~0 , (1.6)

for which a semi–discretization by linear finite elements was analyzed in Deckelnick and Dziuk
(1995a). A whole family of schemes based on DeTurck’s trick were introduced in Elliott and
Fritz (2017), both for curves and surfaces. It turns out that for curves the analysis of Deckelnick
and Dziuk (1995a) can be generalized to these methods.
The application of DeTurck’s trick to our problem amounts to replacing (1.4) by the system

~xt −
~xρρ
|~xρ|2

+
~ν · ~e1

~x · ~e1
~ν = ~0 . (1.7)

If we multiply this equation by ~x · ~e1 |~xρ|2 and note that ~e1 = (~ν · ~e1)~ν + |~xρ|−2 (~xρ · ~e1) ~xρ, we
are led to the following system of PDEs

~x · ~e1 |~xρ|2 ~xt − ((~x · ~e1) ~xρ)ρ + |~xρ|2 ~e1 = ~0 , (1.8)

on which we base the numerical scheme to be analyzed in this paper. In Section 2 we derive
a weak formulation of (1.8) together with a natural fully discrete approximation using linear
finite elements in space and a backward Euler scheme in time. The method is semi–implicit and
hence requires the solution of a linear problem at each time step. In Section 3 we prove the main
result of our paper, which are optimal error bounds both in H1 and in L2 in the case I = R/Z,
i.e. for genus-1 surfaces. Let us remark that on using our techniques, it is straightforward to
also obtain optimal L2–error bounds for a fully discrete approximation of the curve shortening
flow, something that to the best of our knowledge has not yet appeared in the literature. In
Section 4 we briefly discuss an alternative formulation of axisymmetric mean curvature flow and
the associated discretization. Finally, in Section 5 we perform some numerical experiments to
investigate the robustness and the accuracy of the introduced scheme.

We end this section with a few comments about notation. The L2–inner product on I is denoted
by (·, ·). We adopt the standard notation for Sobolev spaces, denoting the norm of W `,p(I)
(` ∈ N, p ∈ [1,∞] by ‖ · ‖`,p and the semi-norm by | · |`,p. For p = 2, W `,2(I) will be denoted by
H`(I) with the associated norm and semi-norm written, as respectively, ‖·‖` and |·|`. The above
are naturally extended to vector functions, and we will write [W `,p(I)]2 for a vector function with
two components. In addition, we adopt the standard notation W `,p(a, b;B) (` ∈ N, p ∈ [1,∞],
(a, b) an interval in R, B a Banach space) for time dependent spaces with norm ‖ · ‖W `,p(a,b;B).

Once again, we write H`(a, b;B) if p = 2. Furthermore, C denotes a generic positive constant
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independent of the mesh parameter h and the time step size ∆t, see below. For later use we
recall the well–known Sobolev embedding

|f |0,∞ ≤ C ‖f‖1 ∀ f ∈ H1(I) . (1.9)

2 Weak formulation and finite element discretization

Let V ∂0 = {~η ∈ [H1(I)]2 : ~η · ~e1 = 0 on ∂I}. A weak formulation for (1.8) is given as follows.

(P): Let ~x(0) ∈ V ∂0 . For t ∈ (0, T ] find ~x(t) ∈ V ∂0 such that(
(~x · ~e1) ~xt, ~η |~xρ|2

)
+ ((~x · ~e1) ~xρ, ~ηρ) +

(
~η · ~e1, |~xρ|2

)
= 0 ∀ ~η ∈ V ∂0 . (2.1)

It can be shown that the weak formulation (2.1), despite the degenerate weight in the second
term, weakly enforces the boundary condition (1.3b), see Barrett et al. (2019a, Appendix A) for
the necessary techniques.

In order to define our finite element approximation of (P), let [0, 1] =
⋃J
j=1 Ij , J ≥ 3, be a

decomposition of [0, 1] into intervals given by the nodes qj , Ij = [qj−1, qj ]. For simplicity we
assume that the subintervals form an equipartitioning of [0, 1], i.e. that

qj = j h , with h =
1

J
, j = 0, . . . , J .

Clearly, if I = R/Z we identify 0 = q0 = qJ = 1.

We define the finite element spaces V h = {χ ∈ C(I) : χ |Ij is affine, j = 1, . . . , J}, V h = [V h]2

and V h
∂0

= V h∩V ∂0 . Let {χj}Jj=j0 denote the standard basis of V h, where j0 = 0 if I = (0, 1) and

j0 = 1 if I = R/Z. For later use, we let πh : C(I)→ V h be the standard interpolation operator at
the nodes {qj}Jj=0. In addition we introduce Zh = {χ ∈ L∞(I) : χ |Ij is constant, j = 1, . . . , J}
and define P h : L1(I)→ Zh by

(P hf)|Ij =
1

h

∫
Ij

f dρ , j = 1, . . . , J. (2.2)

It is well–known that for k ∈ {0, 1}, ` ∈ {1, 2}, p ∈ [2,∞] it holds that

h
1
p
− 1
r |η|0,r + h |η|1,p ≤ C |η|0,p ∀ η ∈ V h , r ∈ [p,∞] , (2.3a)

|f − πhf |k,p ≤ C h`−k |f |`,p ∀ f ∈W `,p(I) , (2.3b)

|f − P hf |0,p ≤ C h |f |1,p ∀ f ∈W 1,p(I) . (2.3c)

In order to discretize in time, let tm = m∆t, m = 0, 1, . . . ,M , with the uniform time step
∆t = T

M > 0. Throughout this paper, we make use of the following short hand notations. For
a function f ∈ C([0, T ];B), with some Banach space B, we let fm = f(tm). In addition, for a
sequence of functions (gm)m∈N0 , gm ∈ B, we let

Dtg
m+1 =

gm+1 − gm

∆t
.
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For two sequences, (fm)m∈N0 and (gm)m∈N0 , we observe the discrete product rule

Dt(f
m+1 gm+1) = (Dtf

m+1) gm+1 + fmDtg
m+1 , (2.4)

as well as the following useful summation by parts formula, for n = 0, . . . ,M − 1:

∆t

n∑
m=0

Dtf
m+1 gm = fn+1 gn −∆t

n∑
m=1

fmDtg
m, if f0 = 0 . (2.5)

Moreover, it is not difficult to show that for any f ∈ H1(0, T ;L2(I)) it holds that

∆t
n∑

m=k

|Dtf
m+1|20 ≤

∫ tn+1

tk

|ft|20 dt , 0 ≤ k ≤ n ≤M − 1 . (2.6)

Our fully discrete finite element approximation of (2.1) is given as follows.

(Ph,∆t) Let ~X0 = πh~x(0) ∈ V h
∂0

. For m = 0, . . . ,M − 1, find ~Xm+1 ∈ V h
∂0

, such that(
( ~Xm · ~e1)Dt

~Xm+1, ~η | ~Xm
ρ |2
)

+
(

( ~Xm · ~e1) ~Xm+1
ρ , ~ηρ

)
+
(
~η · ~e1, | ~Xm

ρ |2
)

= 0 ∀ ~η ∈ V h
∂0 . (2.7)

Lemma. 2.1. Let ~Xm ∈ V h
∂0

with ~Xm · ~e1 > 0 and | ~Xm
ρ | > 0 in I. Then there exists a unique

solution ~Xm+1 ∈ V h
∂0

to (2.7).

Proof. As (2.7) is a linear system, where the number of unknowns equals the number of equations,
it is enough to show uniqueness. We hence consider the homogeneous system and assume that
~X ∈ V h

∂0
is such that(

( ~Xm · ~e1) ~X, ~η | ~Xm
ρ |2
)

+ ∆t
(

( ~Xm · ~e1) ~Xρ, ~ηρ

)
= 0 ∀ ~η ∈ V h

∂0 . (2.8)

Choosing ~η = ~X in (2.8) yields that(
~Xm · ~e1 | ~X|2, | ~Xm

ρ |2
)

+ ∆t
(
~Xm · ~e1, | ~Xρ|2

)
= 0 ,

and our assumptions on ~Xm imply that ~X = ~0.

We are now in a position to formulate the main result of this paper, which are optimal H1– and
L2–error bounds in the case of genus-1 surfaces.

Theorem. 2.2. Let ∂I = ∅. Suppose that (1.8) has a solution ~x satisfying

~x ∈ C0([0, T ]; [W 2,∞(I)]2), ~xt ∈ L2(0, T ; [H2(I)]2), ~xtt ∈ L2(0, T ; [L2(I)]2) , (2.9)

as well as
|~xρ| > 0, ~x · ~e1 > 0 in I × [0, T ] . (2.10)

Then there exist h0, γ ∈ R>0 such that (Ph,∆t) has a unique solution ( ~Xm)m=0,...,M , and the
following error bounds hold:

max
m=0,...,M

‖πh~xm − ~Xm‖21 + ∆t
M−1∑
m=0

|Dt(π
h~xm+1 − ~Xm+1)|20 ≤ C

(
h4 + (∆t)2

)
; (2.11)

provided that 0 < h ≤ h0 and ∆t ≤ γ
√
h. Furthermore, if ∆t ≤ C h2 it holds that

max
m=0,...,M

|~xm − ~Xm|0 + h max
m=0,...,M

|~xm − ~Xm|1 ≤ C h2 . (2.12)
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Remark. 2.3. At present we are not able to prove similar bounds for genus-0 surfaces. Note
that in this case one has to deal in addition with the boundary conditions (1.2b) and (1.3b),
which state that the curve meets the x2–axis at a right angle. An error analysis for curve
shortening flow subject to normal contact to a given boundary has been carried out in Deckelnick
and Elliott (1998), based on the formulation (1.6). However, it is not straightforward to apply
the corresponding analysis to our setting because of the presence of ~x · ~e1, which degenerates at
the boundary. As we shall see in Section 5, the method nevertheless performs well in practice.

3 Error analysis

In this section, we prove the main result of this paper, Theorem 2.2. Hence we assume that
∂I = ∅, so that I = R/Z and V h

∂0
= V h. To begin, note that (2.9) and (2.10) imply that there

exist constants c0, c1, C0 ∈ R>0 such that the solution of (1.8) satisfies

‖~x(·, t)‖1 ≤ C0 in [0, T ] , c0 ≤ |~xρ| ≤ C0 in I × [0, T ] , ~x · ~e1 ≥ c1 in I × [0, T ] . (3.1)

We claim that ~X0, . . . , ~Xn solving (Ph,∆t) exist uniquely for every n ∈ {0, . . . ,M} and satisfy

‖ ~Xm‖1 ≤ 2C0 ,
c0

2
≤ | ~Xm

ρ | ≤ 2C0 in I , ~Xm · ~e1 ≥
c1

2
in I , m = 0, . . . , n (3.2)

provided that ∆t ≤ γ
√
h for a suitably chosen γ > 0. Clearly (3.1) and (2.3b) imply that the

assertion holds for n = 0 provided that 0 < h ≤ h0 and h0 is sufficiently small. Now let us
assume for an n ∈ {0, . . . ,M − 1} that ~Xm ∈ V h, 0 ≤ m ≤ n, solving (2.7) exist and satisfy
(3.2). Lemma 2.1 implies the existence of ~Xn+1, and we shall derive the corresponding bounds
(3.2) with the help of an error analysis. To do so, let us decompose the error

~xm − ~Xm = (~xm − πh~xm) + (πh~xm − ~Xm) =: ~dm + ~Em . (3.3)

We note that, for k ∈ {0, 1} and p ∈ [2,∞] we have from (2.3b), (2.9) and (2.6) that

|~dm|k,p ≤ C h2−k |~xm|2,p ≤ C h2−k , m = 0, . . . , n , (3.4a)

∆t

M−1∑
m=0

|Dt
~dm+1|2k ≤ C h4−2k

∫ T

0
|~xt|22 dt ≤ C h4−2k . (3.4b)

In addition, we infer from Evans (1998, Theorem 4, Section 5.9.2) and (2.9) that

~xt ∈ C0([0, T ]; [H1(I)]2) ,

and hence, on recalling (2.3b),

‖Dt~x
m+1‖1 + ‖Dtπ

h~xm+1‖1 ≤ C ‖~xt‖C0([0,T ];[H1(I)]2) ≤ C , m = 0, . . . ,M − 1 . (3.5)

Furthermore, (3.2), (1.9), (2.3b) and (2.9) imply that

‖ ~Xm‖1,∞ + ‖ ~Em‖1,∞ ≤ C , m = 0, . . . , n . (3.6)

6



We begin by taking the difference of (2.1) for t = tm+1 and (2.7), in order to obtain the error
relation(

( ~Xm · ~e1)Dt
~Em+1, ~η | ~Xm

ρ |2
)

+
(

( ~Xm · ~e1) ~Em+1
ρ , ~ηρ

)
=
[(

( ~Xm · ~e1)Dtπ
h~xm+1, ~η | ~Xm

ρ |2
)
−
(
(~xm+1 · ~e1) ~xm+1

t , ~η |~xm+1
ρ |2

)]
+
[(
~Xm · ~e1) (πh~xm+1)ρ, ~ηρ

)
−
(
(~xm+1 · ~e1) ~xm+1

ρ , ~ηρ
)]

+
(
~η · ~e1, | ~Xm

ρ |2 − |~xm+1
ρ |2

)
=:

3∑
i=1

Ti(~η) ∀ ~η ∈ V h .

If we set ~η = ∆tDt
~Em+1 and sum over m = 0, . . . , n, we obtain

∆t
n∑

m=0

(
~Xm · ~e1 |Dt

~Em+1|2, | ~Xm
ρ |2
)

+
n∑

m=0

(
( ~Xm · ~e1) ~Em+1

ρ , ~Em+1
ρ − ~Emρ

)
= ∆t

n∑
m=0

3∑
i=1

Ti(Dt
~Em+1) . (3.7)

Observing that
b (b− a) ≥ 1

2 (b2 − a2) ∀ a, b ∈ R , (3.8)

and using (2.5) with ~E0 = ~0, we obtain that

n∑
m=0

(
( ~Xm · ~e1) ~Em+1

ρ , ~Em+1
ρ − ~Emρ

)
≥ 1

2

n∑
m=0

(
~Xm · ~e1, | ~Em+1

ρ |2 − | ~Emρ |2
)

= 1
2

(
~Xn · ~e1, | ~En+1

ρ |2
)
− 1

2 ∆t

n∑
m=1

(
Dt

~Xm · ~e1, | ~Emρ |2
)
.

Combining this with (3.7) yields, on recalling (3.2), that

c2
0 c1

8
∆t

n∑
m=0

|Dt
~Em+1|20 +

c1

4
| ~En+1

ρ |20

≤ 1
2 ∆t

n∑
m=1

(
DtX

m · ~e1, | ~Emρ |2
)

+ ∆t
n∑

m=0

3∑
i=1

Ti(Dt
~Em+1) . (3.9)

In order to treat the first term on the right hand side of (3.9) we write Dt
~Xm = Dtπ

h~xm−Dt
~Em.

Observing that | ~Emρ |0,∞ + |Dtπ
h~xm|0,∞ ≤ C in view of (3.6), (1.9), (3.5), we deduce that

1
2 ∆t

n∑
m=1

(
Dt

~Xm · ~e1, | ~Emρ |2
)
≤ C ∆t

n∑
m=1

(
|Dtπ

h~xm|0,∞ | ~Emρ |20 + | ~Emρ |0,∞ |Dt
~Em|0 | ~Emρ |0

)
≤ ε∆t

n−1∑
m=0

|Dt
~Em+1|20 + Cε ∆t

n∑
m=1

| ~Emρ |20 . (3.10)
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In the above ε > 0 is a parameter that will later be chosen to be sufficiently small, while Cε is
a positive constant depending on ε. Next, let us write

T1(Dt
~Em+1) =

(
(( ~Xm − ~xm+1) · ~e1)Dtπ

h~xm+1, Dt
~Em+1 | ~Xm

ρ |2
)

+
(

(~xm+1 · ~e1) (Dtπ
h~xm+1 − ~xm+1

t ), Dt
~Em+1 | ~Xm

ρ |2
)

+
(

(~xm+1 · ~e1) ~xm+1
t , Dt

~Em+1
(
| ~Xm

ρ |2 − |~xm+1
ρ |2

))
=:

3∑
j=1

T j1 . (3.11)

Since
~xm+1 − ~Xm = ~Em + ~dm + ∆tDt~x

m+1 (3.12)

and | ~Xm
ρ |2 ≤ 4C2

0 in I, we obtain with the help of (1.9), (2.9), (3.6), (3.5) and (3.4a) that

∆t

n∑
m=0

T 1
1 ≤ C ∆t

n∑
m=0

|Dtπ
h~xm+1|0,∞

(
| ~Em|0 + |~dm|0 + ∆t |Dt~x

m+1|0
)
|Dt

~Em+1|0

≤ ε∆t

n∑
m=0

|Dt
~Em+1|20 + Cε ∆t

n∑
m=1

| ~Em|20 + Cε
(
h4 + (∆t)2

)
. (3.13)

In view of (2.3b) we have

|Dtπ
h~xm+1 − ~xm+1

t |0 =

∣∣∣∣ 1

∆t

∫ tm+1

tm

πh~xt − ~xt + ~xt − ~xm+1
t dt

∣∣∣∣
0

≤ 1

∆t

∫ tm+1

tm

|πh~xt − ~xt|0 dt+
1

∆t

∫ tm+1

tm

|~xt − ~xm+1
t |0 dt

≤ C h2

√
∆t

(∫ tm+1

tm

|~xt|22 dt

) 1
2

+
√

∆t

(∫ tm+1

tm

|~xtt|20 dt

) 1
2

,

so that we may estimate, on noting (2.9),

∆t

n∑
m=0

T 2
1 ≤ C ∆t

n∑
m=0

|Dtπ
h~xm+1 − ~xm+1

t |0 |Dt
~Em+1|0

≤ ε∆t
n∑

m=0

|Dt
~Em+1|20 + Cε

(
h4

∫ T

0
|~xt|22 dt+ (∆t)2

∫ T

0
|~xtt|20 dt

)

≤ ε∆t
n∑

m=0

|Dt
~Em+1|20 + Cε

(
h4 + (∆t)2

)
. (3.14)

In order to treat T 3
1 , recall (3.11), we write, on noting (3.12),

|~xm+1
ρ |2 − | ~Xm

ρ |2 = 2 (~xm+1
ρ − ~Xm

ρ ) · ~xm+1
ρ − |~xm+1

ρ − ~Xm
ρ |2

= 2 ~Emρ · ~xm+1
ρ + 2 ~dmρ · ~xm+1

ρ + 2 ∆tDt~x
m+1
ρ · ~xm+1

ρ − | ~Emρ + ~dmρ + ∆tDt~x
m+1
ρ |2 .
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Therefore, on recalling ‖~xm+1‖2,∞+ |~xm+1
t |0,∞ ≤ C, as well as (3.5), (3.4a) and (3.6), we obtain,

with the help of an integration by parts, that

∆t
n∑

m=0

T 3
1

≤ −2 ∆t

n∑
m=0

(
(~xm+1 · ~e1) ~xm+1

t , Dt
~Em+1 (~dmρ · ~xm+1

ρ )
)

+ C ∆t
n∑

m=0

|Dt
~Em+1|0

(
| ~Emρ |0 + ∆t |Dt~x

m+1
ρ |0

)
+ C ∆t

n∑
m=0

|Dt
~Em+1|0

(
| ~Emρ |0,∞ | ~Emρ |0 + |~dmρ |0,∞ |~dmρ |0 + ∆t |~xm+1

ρ − ~xmρ |0,∞ |Dt~x
m+1
ρ |0

)
≤ 2 ∆t

n∑
m=0

([
(~xm+1 · ~e1) (~xm+1

t ·Dt
~Em+1) ~xm+1

ρ

]
ρ
, ~dm

)

+ ε∆t

n∑
m=0

|Dt
~Em+1|20 + Cε ∆t

n∑
m=1

| ~Emρ |20 + Cε
(
(∆t)2 + h4

)
≤ 2 ∆t

n∑
m=0

(
(~xm+1 · ~e1) (~xm+1

t ·Dt
~Em+1
ρ ) ~xm+1

ρ , ~dm
)

+ ε∆t
n∑

m=0

|Dt
~Em+1|20 + Cε ∆t

n∑
m=1

| ~Emρ |20 + Cε
(
(∆t)2 + h4

)
. (3.15)

Concerning the first term on the right hand side of (3.16), we deduce from (2.5) with ~E0 = ~0,
(2.9), (2.4), (3.4a), (3.4b), (2.6) and (3.5) that

∆t
n∑

m=0

(
(~xm+1 · ~e1) (~xm+1

t ·Dt
~Em+1
ρ ) ~xm+1

ρ , ~dm
)

=
(

(~xn+1 · ~e1) (~xn+1
t · ~En+1

ρ ) ~xn+1
ρ , ~dn

)
−∆t

n∑
m=1

(
Dt[(~x

m+1 · ~e1) (~xm+1
ρ · ~dm) ~xm+1

t ], ~Emρ

)
≤ C | ~En+1

ρ |0 |~dn|0 + C ∆t
n∑

m=1

(
|~dm|0,∞

[
|Dt~x

m+1
t |0 + ‖Dt~x

m+1‖1
]

+ |Dt
~dm|0 |~xmt |0,∞

)
| ~Emρ |0

≤ ε | ~En+1
ρ |20 + ∆t

n∑
m=1

| ~Emρ |20 + Cε h
4 .

This implies together with (3.15) that

∆t

n∑
m=0

T 3
1 ≤ ε | ~En+1

ρ |20 + ε∆t

n∑
m=0

|Dt
~Em+1|20 + Cε ∆t

n∑
m=1

| ~Emρ |20 + Cε
(
(∆t)2 + h4

)
. (3.16)

Combining (3.11), (3.13), (3.14) and (3.16) we obtain that

∆t
n∑

m=0

T1(Dt
~Em+1) ≤ ε

(
| ~En+1

ρ |20 + ∆t
n∑

m=0

|Dt
~Em+1|20

)
+Cε

(
∆t

n∑
m=1

‖ ~Em‖21 + h4 + (∆t)2

)
.

(3.17)
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Let us next investigate the terms involving T2(Dt
~Em+1) in (3.9). Since

∫
Ij

(f − πhf)ρ ηρ dρ = 0

for all η ∈ V h and j = 1, . . . , J , and on recalling the definitions of P h and ~dm from (2.2) and
(3.3), we may write

T2(Dt
~Em+1) =

(
( ~Xm · ~e1) (πh~xm+1)ρ, Dt

~Em+1
ρ

)
−
(

(~xm+1 · ~e1) ~xm+1
ρ , Dt

~Em+1
ρ

)
=
(

(( ~Xm − ~xm+1) · ~e1) ~xm+1
ρ , Dt

~Em+1
ρ

)
−
(

( ~Xm · ~e1 − P h[ ~Xm · ~e1]) ~dm+1
ρ , Dt

~Em+1
ρ

)
=: T 1

2 + T 2
2 . (3.18)

Applying (2.5) with ~E0 = ~0, we obtain that

∆t
n∑

m=0

T 1
2 =

(
(( ~Xn − ~xn+1) · ~e1) ~xn+1

ρ , ~En+1
ρ

)
−∆t

n∑
m=1

(
Dt

[
(( ~Xm − ~xm+1) · ~e1) ~xm+1

ρ

]
, ~Emρ

)
=: T̃ −∆t

n∑
m=1

T̃ 1
2 . (3.19)

Using the identity

~xn+1 − ~Xn = ~dn+1 + ~En+1 + ∆tDtπ
h~xn+1 −∆tDt

~En+1 ,

and on recalling (2.9), (3.2), (1.9), (3.4a) and (3.5) we may estimate

T̃ ≤ C |~xn+1 − ~Xn|0 | ~En+1
ρ |0

≤ C
(
|~dn+1|0 + | ~En+1|0 + ∆t |Dtπ

h~xn+1|0 + ∆t |Dt
~En+1|0

)
| ~En+1

ρ |0

≤ ε
(
| ~En+1

ρ |20 + ∆t |Dt
~En+1|20

)
+ Cε ∆t | ~En+1

ρ |20 + Cε | ~En+1|20 + Cε
(
h4 + (∆t)2

)
.

Regarding the second term on the right hand side of (3.19), we obtain, on noting (2.4), (2.9),
(3.12), (1.9), (3.5), (3.4a), (2.6) and (3.4b), that

−∆t
n∑

m=1

T̃ 1
2 ≤ C ∆t

n∑
m=1

[
|~xm+1 − ~Xm|0,∞ |Dt~x

m+1
ρ |0 + |Dt(~x

m+1 − ~Xm)|0
]
| ~Emρ |0

≤ C ∆t

n∑
m=1

(
‖ ~Em‖1 + |~dm|0,∞ + ∆t ‖Dt~x

m+1‖1
)
|Dt~x

m+1
ρ |0 | ~Emρ |0

+ C ∆t
n∑

m=1

(
|Dt

~Em|0 + |Dt
~dm|0 + ∆t |DtDt~x

m+1|0
)
| ~Emρ |0

≤ ε∆t
n−1∑
m=0

|Dt
~Em+1|20 + Cε ∆t

n∑
m=1

‖ ~Em‖21 + Cε
(
h4 + (∆t)2

)
,

where we used the fact that
∑n

m=1 ∆t |DtDt~x
m+1|20 ≤ C

∫ T
0 |~xtt|

2
0 dt ≤ C. If we insert the above

estimates into (3.19) we deduce that

∆t

n∑
m=0

T 1
2 ≤ (ε+ Cε ∆t) | ~En+1

ρ |20 + ε∆t

n∑
m=0

|Dt
~Em+1|20 + Cε | ~En+1|20

+ Cε ∆t
n∑

m=1

‖ ~Em‖21 + Cε
(
h4 + (∆t)2

)
. (3.20)
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A further application of (2.5) yields together with (2.4), (2.3c) and (3.4a), on recalling (3.6),
that

∆t
n∑

m=0

T 2
2 = −

(
( ~Xn · ~e1 − P h[ ~Xn · ~e1]) ~dn+1

ρ , ~En+1
ρ

)
+ ∆t

n∑
m=1

(
Dt

[
( ~Xm · ~e1 − P h[ ~Xm · ~e1]) ~dm+1

ρ

]
, ~Emρ

)
≤ C h |( ~Xn · ~e1)ρ|0,∞ |~dn+1

ρ |0 | ~En+1
ρ |0 + C ∆t h

n∑
m=1

|( ~Xm · ~e1)ρ|0,∞ |Dt
~dm+1
ρ |0 | ~Emρ |0

+ C ∆t h
n∑

m=1

|Dt( ~X
m · ~e1)ρ|0 |~dmρ |0,∞ | ~Emρ |0

≤ C h2 | ~En+1
ρ |0 + C ∆t

n∑
m=1

| ~Emρ |20 + C h2 ∆t

n∑
m=1

|Dt
~dm+1|21 + C ∆t h2

n∑
m=1

‖Dt
~Xm‖1 | ~Emρ |0 .

(3.21)

We have that ‖Dt
~Xm‖1 ≤ ‖Dt

~Em‖1 + ‖Dtπ
h~xm‖1 ≤ C (h−1 |Dt

~Em|0 + 1), on recalling (2.3a)
and (3.5). Hence it follows from (3.21) and (3.4b) that

∆t
n∑

m=0

T 2
2 ≤ C h2 | ~En+1

ρ |0 + C ∆t
n∑

m=1

| ~Emρ |20 + C h4 + C h∆t
n∑

m=1

|Dt
~Em|0 | ~Emρ |0

≤ ε

(
| ~En+1

ρ |20 + ∆t
n−1∑
m=0

|Dt
~Em+1|20

)
+ Cε ∆t

n∑
m=1

| ~Emρ |20 + Cε h
4 . (3.22)

If we combine (3.20) and (3.22) we obtain, on recalling (3.18), that

∆t

n∑
m=0

T2(Dt
~Em+1) ≤ (ε+ Cε ∆t) | ~En+1

ρ |20 + ε∆t

n∑
m=0

|Dt
~Em+1|20 + Cε | ~En+1|20

+ Cε ∆t
n∑

m=1

‖ ~Em‖21 + Cε
(
h4 + (∆t)2

)
. (3.23)

The term T3(Dt
~Em+1) can be treated in a similar way as T 3

1 , and we obtain

∆t

n∑
m=0

T3(Dt
~Em+1) ≤ ε | ~En+1

ρ |20 + ε∆t

n∑
m=0

|Dt
~Em+1|20 + Cε ∆t

n∑
m=1

| ~Emρ |20 + Cε
(
h4 + (∆t)2

)
.

(3.24)
Let us insert (3.10), (3.17), (3.23) and (3.24) into (3.9). After first choosing ε > 0 and then
∆t > 0 sufficiently small, we obtain

c2
0 c1

16
∆t

n∑
m=0

|Dt
~Em+1|20 +

c1

8
| ~En+1

ρ |20 ≤ C | ~En+1|20 +C ∆t
n∑

m=1

‖ ~Em‖21 +C
(
h4 + (∆t)2

)
. (3.25)

Finally, recalling that ~E0 = ~0 we may write

| ~En+1|20 =

n∑
m=0

(
| ~Em+1|20 − | ~Em|20

)
= ∆t

n∑
m=0

(
Dt

~Em+1, ~Em + ~Em+1
)
,
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and hence

2C | ~En+1|20 ≤ ε∆t
n∑

m=0

|Dt
~Em+1|20 + Cε ∆t

n∑
m=1

| ~Em|20 + Cε ∆t | ~En+1|20 .

Adding this bound to (3.25) and choosing first ε > 0 and then ∆t > 0 sufficiently small, we
deduce that

∆t

n∑
m=0

|Dt
~Em+1|20 + ‖ ~En+1‖21 ≤ C ∆t

n∑
m=1

‖ ~Em‖21 + C
(
h4 + (∆t)2

)
. (3.26)

The same arguments as above show that (3.26) also holds with n replaced by k, for all 0 ≤ k ≤ n.
Hence the discrete Gronwall inequality implies that

∆t

n∑
m=0

|Dt
~Em+1|20 + ‖ ~En+1‖21 ≤ C

(
h4 + (∆t)2

)
. (3.27)

Let us use (3.27) in order to show that (3.2) holds for ~Xn+1. Clearly, we have from (2.3a),
(3.4a), (3.27) and ∆t ≤ γ

√
h that

| ~Xn+1
ρ − ~xn+1

ρ |0,∞ ≤ | ~En+1
ρ |0,∞ + |~dn+1

ρ |0,∞

≤ C h−
1
2 | ~En+1

ρ |0 + C h ≤ C
(

∆t h−
1
2 + h

)
≤ C (γ + h). (3.28)

Combining (3.28) and (3.1) yields that c0
2 ≤ | ~X

n+1
ρ | ≤ 2C0 provided that 0 < h ≤ h0 and h0, γ

are small enough. The remaining bounds in (3.2) can be shown in a similar way, thus completing
the induction step. The error bounds (2.11) and (2.12) now follow from (3.27), (3.3), (2.3b) and
(2.9).

4 An alternative formulation

In this section we briefly consider an alternative formulation of axisymmetric mean curvature
flow in the case I = R/Z. Upon discretization, this new formulation yields an unconditionally
stable fully discrete scheme, for which optimal error bounds can be shown.

The new formulation is given by

(~x · ~e1)2 |~xρ|2 ~xt − ((~x · ~e1)2 ~xρ)ρ + (~x · ~e1) |~xρ|2 ~e1 = ~0 , (4.1)

and it can be obtained from (1.8) by multiplication with ~x · ~e1 and then adding the tangential
term

−(~x · ~e1) (~xρ · ~e1) ~xρ .

A weak formulation for (4.1) is given as follows.

(Q) Let ~x(0) ∈ [H1(I)]2. For t ∈ (0, T ] find ~x(t) ∈ [H1(I)]2 such that(
(~x · ~e1)2 ~xt, ~η |~xρ|2

)
+
(
(~x · ~e1)2 ~xρ, ~ηρ

)
+
(
~x · ~e1, ~η · ~e1 |~xρ|2

)
= 0 ∀ ~η ∈ [H1(I)]2 . (4.2)
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An appealing aspect of (Q) is that it allows for a simple a-priori bound. In fact, on choosing
~η = ~xt in (4.2), we obtain that solutions to (4.2) satisfy

1
2

d

dt

(
(~x · ~e1)2, |~xρ|2

)
=
(
(~x · ~e1)2 ~xρ, (~xt)ρ

)
+
(
~x · ~e1, ~xt · ~e1 |~xρ|2

)
= −

(
(~x · ~e1)2 |~xt|2, |~xρ|2

)
≤ 0 .

(4.3)
Mimicking the same testing procedure on the discrete level allows for an unconditional stability
result, see Lemma 4.1 below.

Our fully discrete finite element approximation of (4.2) is given as follows.

(Qh,∆t) Let ~X0 = πh~x(0) ∈ V h. For m = 0, . . . ,M − 1, find ~Xm+1 ∈ V h, such that(
( ~Xm · ~e1)2Dt

~Xm+1, ~η | ~Xm
ρ |2
)

+
(

( ~Xm · ~e1)2 ~Xm+1
ρ , ~ηρ

)
+
(
~Xm+1 · ~e1, ~η · ~e1 | ~Xm+1

ρ |2
)

= 0

∀ ~η ∈ V h . (4.4)

We remark that while our scheme (Ph,∆t), recall (2.7), requires the solution of two independent
linear systems at each time step, for the approximation (Qh,∆t) one has to solve a coupled
nonlinear system at each time step.

The following fully discrete analogue of the energy estimate (4.3) holds.

Lemma. 4.1. Let ( ~Xm)m=0,...,M be a solution to (Qh,∆t). Then it holds that

1
2

(
( ~Xm+1 · ~e1)2, | ~Xm+1

ρ |2
)

+ ∆t
(

( ~Xm · ~e1)2 |Dt
~Xm+1|2, | ~Xm

ρ |2
)
≤ 1

2

(
( ~Xm · ~e1)2, | ~Xm

ρ |2
)
,

(4.5)
for m = 0, . . . ,M − 1. In particular, for n ∈ {0, . . . ,M − 1} we have that

1
2

(
( ~Xn+1 · ~e1)2, | ~Xn+1

ρ |2
)

+ ∆t
n∑

m=0

(
( ~Xm · ~e1)2 |Dt

~Xm+1|2, | ~Xm
ρ |2
)
≤ 1

2

(
( ~X0 · ~e1)2, | ~X0

ρ |2
)
.

(4.6)

Proof. Choosing ~η = ∆tDt
~Xm+1 in (4.4) and recalling (3.8) yields that

0 = ∆t
(

( ~Xm · ~e1)2 |Dt
~Xm+1|2, | ~Xm

ρ |2
)

+
(

( ~Xm · ~e1)2 ~Xm+1
ρ , ( ~Xm+1 − ~Xm)ρ

)
+
(
~Xm+1 · ~e1, ( ~X

m+1 − ~Xm) · ~e1 | ~Xm+1
ρ |2

)
≥ ∆t

(
( ~Xm · ~e1)2 |Dt

~Xm+1|2, | ~Xm
ρ |2
)

+ 1
2

(
( ~Xm · ~e1)2, | ~Xm+1

ρ |2 − | ~Xm
ρ |2
)

+ 1
2

(
( ~Xm+1 · ~e1)2 − ( ~Xm · ~e1)2, | ~Xm+1

ρ |2
)

= ∆t
(

( ~Xm · ~e1)2 |Dt
~Xm+1|2, | ~Xm

ρ |2
)

+ 1
2

(
( ~Xm+1 · ~e1)2, | ~Xm+1

ρ |2
)
− 1

2

(
( ~Xm · ~e1)2, | ~Xm

ρ |2
)
.

This proves (4.5). Summing for m = 0, . . . , n then yields the desired result (4.6).

We conclude this section by remarking that with the help of a Brouwer fixed point theorem,
see e.g. Zeidler (1986, Prop. 2.8), it is possible to prove the existence of a solution ~Xm+1 ∈ V h

to (4.4), provided that ∆t is chosen sufficiently small. The uniqueness of this solution can also
be established. Finally, using the techniques from Section 3, we can prove that the solutions of
(Qh,∆t) satisfy error bounds similar to the ones in Theorem 2.2.
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J max
m=0,...,M

|πh~xm − ~Xm|0 EOC max
m=0,...,M

‖πh~xm − ~Xm‖1 EOC

32 5.2374e-03 — 2.5485e-02 —

64 1.3027e-03 2.01 6.3712e-03 2.00

128 3.2528e-04 2.00 1.5928e-03 2.00

256 8.1294e-05 2.00 3.9821e-04 2.00

512 2.0322e-05 2.00 9.9552e-05 2.00

Table 1: Errors for the convergence test for (5.1) over the time interval [0, 1] for the scheme
(Ph,∆t) with the additional right hand side (πh ~fm+1

P , ~η).

J max
m=0,...,M

|πh~xm − ~Xm|0 EOC max
m=0,...,M

‖πh~xm − ~Xm‖1 EOC

32 6.4254e-03 — 4.2861e-02 —

64 1.6055e-03 2.00 1.0794e-02 1.99

128 4.0133e-04 2.00 2.7037e-03 2.00

256 1.0033e-04 2.00 6.7624e-04 2.00

512 2.5082e-05 2.00 1.6908e-04 2.00

Table 2: Errors for the convergence test for (5.1) over the time interval [0, 1] for the scheme
(Qh,∆t) with the additional right hand side (πh ~fm+1

Q , ~η).

5 Numerical results

5.1 Genus-1 surfaces

In order to perform a convergence experiment for an evolving torus, we compute a right hand
side ~fP for (1.8) so that

~x(ρ, t) =

(
g(t) + cos(2π ρ)

sin(2π ρ)

)
, where g(t) = 2 + sin(π t) , (5.1)

is the solution. We then compare e.g. ~xm+1 to the discrete solution ~Xm+1 of (2.7), with the
added right hand side (πh ~fm+1

P , ~η). As the time step size we choose ∆t = h2, for h = J−1 = 2−k,
k = 5, . . . , 9. The results in Table 1 confirm the optimal convergence rate from Theorem 2.2.
As a comparison, we provide the corresponding computation for the scheme (Qh,∆t) in Table 2,
where the same optimal convergence rates can be observed.

It is known that a torus, described by the equation (R−
√
x2

1 + x2
3)2 + x2

2 = r2, that evolves by
mean curvature flow, will either close up the hole and try to merge to a genus-0 surface, or it
will shrink to a circle. Here the critical parameter is the ratio between the torus’s large radius
R > 0, and the smaller radius r ∈ (0, R). We first demonstrate the two different behaviours
by repeating the experiments in Barrett et al. (2019a, Figs. 2, 3), see also Barrett et al. (2008,
Figs. 5, 6). In particular, in the first experiment we let R = 1 and r = 0.7. As expected, we
obtain a surface that closes up towards a genus-0 surface, see Figure 2. As the discretization
parameters we choose J = 512 and ∆t = 10−4. For the second experiment we choose a torus
with large radius R = 1 and small radius r = 0.5, which means that we obtain a shrinking
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Figure 2: Evolution for a torus with radii R = 1, r = 0.7. Plots are at times t =
0, 0.025, 0.05, 0.075, 0.082. We also visualize the axisymmetric surface Sm generated by Γm

at times t = 0 and t = 0.082, where Γm = ~Xm(I).

evolution towards a circle. We show the evolution for the same discretization parameters in
Figure 3. In addition, we show the final distribution of vertices as well as the evolution of the
ratio

rm =
maxj=1,...,J | ~Xm(qj)− ~Xm(qj−1)|
minj=1,...,J | ~Xm(qj)− ~Xm(qj−1)|

(5.2)

over time. We can see that compared to the corresponding ratio plots in Barrett et al. (2019a,
Fig. 4), the schemes (Ph,∆t) and (Qh,∆t) are performing relatively well. In particular, even close
to the singularity of the flow, when the surface shrinks to a circle and then vanishes, the ratio
appears to remain bounded.

In order to find the critical value of r, that dictates whether a torus with radii R = 1 and r under
mean curvature flow closes up towards a genus-0 surface, or shrinks to a circle, we repeated the
above simulations for various values of r. In our experiments, and with the finer discretization
parameters of J = 2048 and ∆t = 10−5, we observe that this critical value of r appears to lie in
the interval [0.641, 0.642]. We support this finding with the two simulations shown in Figure 4.

Next we present an example for mean curvature flow of a genus-1 surface that is generated from
the initial data ~X0 parameterizing a closed spiral. As can be seen from Figure 5, the spiral
slowly untangles, until the surface approaches a shrinking torus, that will once again shrink to
a circle. For this experiment we use the discretization parameters J = 1024 and ∆t = 10−6, for
T = 0.029.

5.2 Genus-0 surfaces

We recall that the error bounds in Theorem 2.2 are only shown for the case of a closed curve.
Nevertheless, in this section we want to consider surfaces that are topologically equivalent to a
sphere, and so ~x parameterizes an open curve with endpoints on the x2–axis.

It is easy to show that a sphere of radius r(t), with

r(t) = [r2(0)− 4 t]
1
2 ,
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Figure 3: Evolution for a torus with radii R = 1, r = 0.5. Plots are at times t =
0, 0.05, 0.1, 0.13, 0.137. We also show plots of the ratio rm over time for the schemes (Ph,∆t),
middle, and (Qh,∆t), right. Below we visualize the axisymmetric surfaces generated by Γm at
times t = 0 and t = 0.137.

Figure 4: Evolution for a torus with radii R = 1, r = 0.642 (left) and R = 1, r = 0.641 (right).
Plots are at times t = 0, 0.05, 0.1, 0.2, 0.24, 0.2442 (left) and t = 0, 0.05, 0.1, 0.2, 0.28, 0.2866
(right).
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Figure 5: Evolution for a genus-1 surface generated by a spiral. Plots are at times t =
0, 0.01, 0.02, 0.029. Below we visualize the axisymmetric surfaces generated by the curves.

J max
m=0,...,M

|πh~xm − ~Xm|0 EOC max
m=0,...,M

‖πh~xm − ~Xm‖1 EOC

32 9.4734e-04 — 1.2405e-02 —

64 2.4143e-04 1.97 4.6319e-03 1.42

128 6.0919e-05 1.99 1.6925e-03 1.45

256 1.5299e-05 1.99 6.1050e-04 1.47

512 3.8335e-06 2.00 2.1852e-04 1.48

Table 3: Errors for the convergence test for (5.3) over the time interval [0, 0.125] for the scheme
(Ph,∆t).

is a solution to (1.1). In fact, the parameterization

~x(ρ, t) = r(t)

(
sin(π ρ)

cos(π ρ)

)
(5.3)

solves (1.8). Hence we can compare e.g. ~xm+1 to the discrete solution ~Xm+1 of (2.7) and perform
a convergence experiment. As before, we choose ∆t = h2, for h = J−1 = 2−k, k = 5, . . . , 9. The
results in Table 3 indicate that despite the open curve case not being covered in Theorem 2.2,
we seem to observe quadratic convergence in the L2–norm, and convergence of order O(h

3
2 ) in

the H1–norm.

We remark that the main reason we restricted our attention in Section 4 to the case of closed
curves, is that it is not clear whether that alternative formulation is well-posed at the boundary.
Let us give a formal justification for this observation: a smooth function satisfying (1.2b),

(1.3b) will have the property that ~xt · ~e1 is small and
~xρ
|~xρ| behaves like ±~e1 close to ∂I. Using

this information in (4.1), one sees that

~xρρ · ~xρ
|~xρ|3

+
1

~x · ~e1
≈ 0 close to ∂I , (5.4)
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Figure 6: Evolution for a disc of dimension 9× 1× 9. Solution at times t = 0, 0.5, 1, 1.15. We
also show the distribution of vertices on Γm at time t = 1. Below we show plots of the ratio rm

over time for the scheme (Ph,∆t), left, and the adapted scheme (Qh,∆t∂0
), right.

implying that ( 1
|~xρ|)ρ becomes large close to ∂I. This suggests that the approach using (4.1) is

not appropriate for describing the evolution of genus-0 surfaces. For the formulation (1.7), on
the other hand, we would obtain

~xρρ · ~xρ
|~xρ|3

= −
(

1

|~xρ|

)
ρ

≈ 0 close to ∂I , (5.5)

which is clearly satisfied by (5.3). In fact, the difference between the two formulations can be

clearly seen in practice. Let (Qh,∆t∂0
) be the scheme (Qh,∆t) with V h replaced by V h

∂0
, i.e. the

obvious generalisation of the scheme to the case of I = (0, 1). We now compare the behaviour of
this adapted scheme to (Ph,∆t), with particular attention to the movement of the vertices near
the boundary. To this end, let the initial surface be given by disc of dimension 9× 1× 9. Under
mean curvature flow, the disc shrinks to a nearly spherical shape, and then shrinks to a point,
see Figure 6. For the scheme (Ph,∆t), with discretization parameters J = 128 and ∆t = 10−4,
we observe that the distribution of vertices close to the boundary remains uniform, as is to be
expected from (5.5). Further away from the boundary the density of vertices increases, which
leads to a moderate increase of the ratio (5.2) over time. Close to the extinction time that ratio

reduces again. The scheme (Qh,∆t∂0
), on the other hand, exhibits a very nonuniform distribution

of vertices close to the boundary, with the length of the elements increasing as the boundary is
approached. Of course, this is in line with the analysis in (5.4). Overall, this leads to a far more
pronounced increase in the ratio (5.2) over time, compared to the scheme (Ph,∆t).

We end this section with an experiment for an initial dumbbell shape. For the experiment in
Figure 7 we used the discretization parameters J = 512 and ∆t = 10−4. During the evolution the
neck of the dumbbell is thinning, until this eventually leads to pinch-off, one of the singularities
that can occur for mean curvature flow.
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Figure 7: Evolution for a dumbbell. Solution at times t = 0, 0.05, 0.1, 0.104. We also visualize
the axisymmetric surfaces generated by Γm at times t = 0 and t = 0.104.
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