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Abstract

We propose a new definition of “horizon molecules” in Causal Set Theory
following pioneering work by Dou and Sorkin. The new concept applies
for any causal horizon and its intersection with any spacelike hypersurface.
In the continuum limit, as the discreteness scale tends to zero, the leading
behaviour of the expected number of horizon molecules is shown to be
the area of the horizon in discreteness units, up to a dimension dependent
factor of order one. We also determine the first order corrections to
the continuum value, and show how such corrections can be exploited to
obtain further geometrical information about the horizon and the spacelike
hypersurface from the causal set.
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1 Introduction

The idea of counting “horizon molecules” in a causal set (causet) approximated by
a black hole spacetime, in order to estimate the black hole entropy, was pioneered
by Dou and Sorkin (DS) [1] *. According to DS: “ [T]he picture of the horizon as
composed of discrete constituents gives a good account of the entropy if we suppose
that each such constituent occupies roughly one unit of Planck area and carries roughly
one bit of entropy. A proper statistical derivation along these lines would require a
knowledge of the dynamics of these constituents, of course. However, in analogy with
[a] gas, one may still anticipate that the horizon entropy can be estimated by counting
suitable discrete structures, analogues of the gas molecules, without referring directly
to their dynamics.”

The original proposal of DS was that a horizon molecule should be the simplest
possible subcauset that is not a single causet element, namely a causal link. A link is
a subcauset of cardinality 2 in which the 2 elements are related, and such that no
other element of the causet is between them in the order. DS proposed that the lower
(minimal) element of the link should be outside the horizon and the upper (maximal)
element should be inside in order to do justice to the idea of the black hole entropy
arising, at least partly if not wholly, from entanglement between degrees of freedom
inside and outside the horizon [3].

The DS proposal gave promising answers in the case of 2-dimensional truncations
of a Schwarzschild black hole and of the dynamical horizon of a spherically symmetric
collapsing shell. Both cases gave the same leading constant term for the expected
value of the number of molecules. However, it was realised by Dou [4] that the
proposed molecules would not work in higher dimensions: in 3 or more dimensions
the number of DS horizon molecules is unbounded for a black hole in an infinite
environment, even at non-zero discreteness scale (this divergence is explained in [5].)
This led to a number of new proposals for horizon molecules of cardinality 3 and 4
[5, 6]. These new proposals did not suffer the same divergence in higher dimensions
as the DS molecule but because of the more complicated molecule structure, the
calculations involved in determining the expected number in greater than 2 dimensions
are challenging. Proof is still lacking that counting one of these higher cardinality
molecules gives the horizon area as desired in greater than 2 spacetime dimensions.

One feature of the DS proposal is that the definition of horizon molecule is the
same whether the hypersurface ¥ on which the entropy of the black hole is evaluated
is spacelike or null. Indeed the successful calculations of DS in 1+1 dimensions
were actually done for null 3. The higher cardinality molecule definitions of Marr

1See [2] for an up-to-date review of Causal Set Theory.



and others were also for ¥ null or spacelike. The calculational impasse, a desire
to extend the concept of horizon molecule to all causal horizons including black
hole, acceleration, and cosmological horizons [7, 8], and a desire to return to the
original attractive DS conception of a molecule as a simple link straddling the horizon,
stimulated a fresh look at the problem. The key to the progress reported in the
current paper was to require the definition of horizon molecule to work when the
hypersurface X is spacelike, but not to require it to work when ¥ is null.

2 The proposal

Let (M, g) be a d-dimensional globally hyperbolic spacetime with a Cauchy surface ¥
which intersects a causal horizon H in a co-dimension 2 spacelike surface J = H N X.
In a nod to the importance of the d = 4 case we will refer to the (d — 2)-volume of
the intersection J as the area of J.

‘H is a causal horizon. i.e. it is the boundary of the past of a future inextendible
timelike curve, 7, of infinite proper future length: H := 0~ (vy). To H we can
associate a past set, M_, and a future set, M, which, together with H, partition
M:

M_:=1"(),
My = M\ (M_UH).

To X we associate past and future sets, M~ and M™ respectively: M* := [£(%).
Again these two sets, together with X, partition M. If we take intersections of these
partitions we obtain the 4 regions MT := M* N M. sketched in figure 1.

Following DS, we consider the Poisson point process of sprinkling at density
p = 1% into M. This process results in a random causet (C, <) which is a possible
substratum to which the continuum (M,g) is an approximation at scales much larger
than the discreteness scale [. The subcausets of C sprinkled into the regions M*, M7
etc., are labelled in the obvious way: C*, C; respectively etc. We will be interested
in the limit p — oo (equivalently [ — 0) and the approach to the limit. We will refer
to this as the continuum limit.

We are interested in the entropy of H on the hypersurface > and we propose a
definition of horizon molecule for H, associated with ¥, using only the structure of C
and its partitions into C* etc.:



Figure 1: An illustration of the geometric setup in d = 3.

Definition. A horizon molecule is a pair of elements of C~, {p_,p+}, such that:
° P < py,
e p_c(C_,
° pi eC,
e p. is the only element in both C~ and the future of p_.

These conditions imply that a horizon molecule is a link. See figure 2 for an illustration
of a horizon molecule. More generally, one can define:

Definition. A horizon n-molecule is a subcauset of C~, {p—,p+1, ..., P+n} such that
o p_ <pyy forallk=1,2...n;
e p_eC_;
e p.,€C, forallk=1,2,...n;

® {pi1,....Dyn} are the only elements in both C~ and the future of p_.
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Figure 2: An illustration of a horizon molecule. The link between the points p is shown in red.
The black dashed lines indicate the future lightcone from p_, from which one can see that only p.
is to its future within the past of ¥. We have also included another dashed line from J to illustrate
the region corresponding to I~ (7).

I(7)

The 1-molecule is the molecule defined previously, and seems most natural as a
definition of a causal set horizon molecule, but we will give results for n > 1 also.

In a given sprinkling, the definition of a horizon n-molecule implies that the
minimal element p_, of each molecule, lies in the spacetime region I~ (M) N MZ_.
In appendix A we show that this implies p_ is in the chronological past of J, by
showing that I= (ML) NMZ =1"(T).

For a given causal set embedded in (M, g), with H and ¥, we define the number,
H, of horizon molecules. Under the sprinkling process, the number H becomes a
random variable, which we denote by H, which depends on the sprinkling density
p, though we don’t make that dependence explicit in the notation. For n-molecules
more generally we define H,, as the number of n-molecules in a sprinkling into (M, g).

We make the following

Claim 1. In the continuum limit, the expected number of horizon molecules is equal
to the area of J, the intersection of the horizon and X, in discreteness units, up to a
dimension dependent constant of order one.

Stated mathematically the claim is

lim p*3 (H) = @ / v, (2.1)
J

p—00

where (-) denotes the mean over sprinklings, dV; is the area measure on 7, and a'®
is a constant that only depends on the dimension d. In the case of infinite causal



horizons, such as a Rindler horizon in Minkowski spacetime, (2.1) is interpreted as
saying that there is a fixed, finite, dimension dependent, mean density of number of
horizon molecules per unit area in discreteness units.

More generally, for n-molecules, we claim

lim p’a* (H,) = a* /dw , (2.2)
p—r00 7

where an depends on d and n.

In this paper we prove this result under certain assumptions, argue that the
approach to the limit involves finite p corrections forming a derivative expansion of
local geometric quantities on J and increasing powers of [, the discreteness length.

2.1 Setting up the calculation

We start by expressing the causal set expectation value as a spacetime integral. The
probability of sprinkling n points in some region of spacetime, R, is given by the
Poisson distribution

Mewwl(n) (2.3)

P(n points in R) = ' :
n!

where p is the density of the sprinkling, and vol(R) is the spacetime volume of R.
For some small region, AR, the probability of sprinkling a single point is

P(1 point in AR) = pvol(AR)e AR ~ p AV | (2.4)

where AV is the volume vol(AR). The probability of sprinkling a horizon n-molecule
whose minimal element lies in a small region AR, about a point p € I~ (J), is
P(horizon n-molecule beginning in AR,) = P(1 point in AR,)
X P(n points in I (p) N M3)
x P(0 points in I (p) N M7)
~ p AV, (PVi(p)" e PV+(P) o=PV-(p)

n!
szv( E” Vi) (2.5)

where AV}, is the small volume, vol(AR,), at p, and where we have defined the
functions Vi (p) := vol(I*(p) " MZ) and V (p) := Vi (p) + V_(p). Figures 3a and 3b
illustrate these volumes.



Figure 3: An illustration of the volumes V (p) and V, (p). We have not shown V_(p), but this can
be worked out from V_(p) = V(p) — Vi (p).

(a) Vi(p) (b) Vi (p)

H H

S Van)
V(p) N

The expected number of horizon n-molecules is a sum of the last line of (2.5) over
all p e I7(J), in the limit that the small volumes AV}, go to zero. In this limit we
replace the sum by an integral over all p € I~ (J) and obtain the following expression
for the expected number of horizon n-molecules

P (H,) = pia / dvp—(pm‘p))neﬂw : (2.6)
=)

n.

where we have multiplied both sides by a factor of p¥.

3 Rindler horizon in Minkowski space with a flat
hypersurface

The simplest case we can consider is an acceleration horizon in Minkowski space with
a flat spacelike hypersurface, which we can take to be a constant time surface in some
inertial frame. The following heuristic argument supports the claim that the result
in this simplest case will give us the leading term in the general case. Consider the
n = 1 case for definiteness. The requirement that p_ is maximal-but-one in C~ means
that it is close to X, and as p — oo it gets closer. The fact that p_ lies in I~ (7)
means that as p_ approaches X, p_ also gets closer to H, (see figure 2).

We can see this tendency by inspecting the integrand of (2.6) in which the
exponential will tend to suppress the integral in the region where pV'(p) > 1. Indeed,
the region where exp(—pV (p)) is non-negligible is a small and decreasing subregion
of I7(J), immediately to the past of 7, converging on J as p increases (see figure 2).
In the limit, the integral can therefore only depend on geometric quantities at 7.
On dimensional grounds, the only geometric quantity that can appear on the RHS
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of (2.1) is the area of J times a dimensionless constant, a¥), which is independent of

the geometry. Later, we will provide more evidence for this, but assuming it is true
we can determine the constant a(® by considering the “all-flat” case of Minkowski
space, flat ¥ and Rindler horizon H. We now turn to this calculation.

Consider d-dimensional Minkowski space with inertial coordinates (2°, z',y%),
a=23,...d—1, and let ¥ be the hypersurface 2 = 0. For this calculation we will
employ the order reversed (past-future swapped) setup for convenience, so that the
integral is over points p € I7(J). H is given by 2° = —z!. The region of integration
is bounded by H and by z° = 2! and 2° > 0. The integrand is independent of y“
and we have

0

P (H,) = / 412y 1(01a0) (1) (3.1)
J
where the (dimensionless) function 11+ lat)(l) is
l—(dn+2)

L(fl,flat)(l) - / dl,o/ d$1(‘7+(l’))n€_p‘~/(x) ’ (32)
0 —x0

n!

where | = p~"/? is the discreteness length. V(z) is the d-dimensional volume of a
solid null cone of height 2°,

V(r) = dd-1 (xo)d ) (3.3)

where Sy := (d + 1)7r%/1“[% + 1] is the volume of a unit d-sphere. Since the flat
cone volume only depends upon z°, we can write it as a function of 2° only.

The calculation of V. () is more complicated and we did not manage to determine
a formula for general dimension d. For d = 2, ‘7+(ac) is given by the following integral:

0 70

1(2%—2!) —x
Vo (z) = / da’® / dz'" (3.4)
0 T

10
171-04,33

For d > 3, we can change to polar coordinates, (R, ¢') (where [ = 3,...,d — 1), in the
y® directions:

y* =R (9) (3.5)

where (%(¢) are the usual functions of the angular coordinates ¢’. For d = 3, it will
be convenient below to sometimes use the coordinate R instead of the coordinate 3.
In such cases, there will be a symmetry about the 2 plane, so that one only needs



to consider R > 0. V,.(x) is given by the following integral:

70

L(z0—z1) —x
~ 2 0 "1
Vi(z) = / dx / dx
0 2zl —z0420

/\/(ZO_xIO)Z_(xll_ml)Z

dR / dQq_s RT3 . (3.6)
0 Sd—S

For d = 2,3, and 4, the above integrals give

d=2: V.(z) :i(xo —z')? (3.7)
d=3: Vi(r) = (")’ tan” ( %)

_%mo — (@ + 2@ — ) (@ ) (3.8)
d=4: V.(z) :418@0 — 2Y)3(52° + 31 . (3.9)

For d = 2 and d = 4, the [ — 0 limit of ]ﬁd’ﬂat)(l) can be be evaluated (using Watson’s
lemma [9]) for any integer n > 1. One finds

1
lim I3710(1) = oY) = 3.10
i FS00(0) = aff) = (3.10)
i 7(4:fat) @ __ 2 1
%%In (1) =a'; :mf (n—|—§> B%(3n+1,n—|—1)
+B%(n+1,3n+1)—B%(n—l—l,3n+1) , (3.11)
where B
Bz(a,b)z/ dss* M1 —s)"t . (3.12)
0

We can also evaluate the [ — 0 limit of I{™/ lat)(l) for n =1 and d = 3. One finds

1
lim I (1) = a® =P = = | (3.13)
1—0 3
1/3\% 5
@ flat) gy @) = (3) _ L9 2y o
}E%II (l)=a" =a; 4(7r) F(g) 0.218853 (3.14)
3
lim 770 (1) = @ = oY = V3 0.173205 | (3.15)
[—0 10



where we have included the d = 2 and d = 4 cases for completeness.

In all cases, the deviation from the limiting value tends to zero exponentially fast.
For future reference, we comment here that were the integral over ° in (3.2) to be
cut off at any finite upper limit, 7 say, this would not affect the value of the [ — 0
limit because the difference will vanish exponentially fast in the limit. This will be
important in the general curvature case below.

4 General curvature

We turn to the general case and provide a more detailed argument for why the flat
result above gives the limiting value of the mean number of molecules per unit horizon
area. Since we can take the discreteness length, [, to be as small as we like in (2.6),
we can take it to be much smaller than the curvature scales of the spacetime and
of the two surfaces H and Y. Concretely, we assume there is a length 7 such that
| << 7 << Lg where Lg denotes the smallest geometric length scale in our setup.
The ratio € := 7/Lg << 1 will be useful as an expansion parameter. Note that
for Causal Set Theory, this is the physically relevant regime because the continuum
approximation is only valid when the curvature length scales involved in the problem
are much larger than the discreteness scale, [.

4.1 Local geometric invariants and Florides-Synge Normal
Coordinates

Y can be considered to be a member of a family of hypersurfaces given by Sx(z) =
constant where Sy(z) is a spacetime function that is zero on ¥, and increases to the
past. Here, 2% (a = 0,1,...,d — 1) are coordinates on M. The components of the
normal covector are given by

Ng := (—g*°0,S%0.5%) 1/?0,5% , (4.1)

The components of the normal vector are n® = ¢%n,;, and it is future pointing. The
projector h9 := ;) + nny, on X, projects vectors onto the tangent space of . The
extrinsic curvature tensor for ¥ is

Kab = nc;dhcahdb . (42)
The trace of the extrinsic curvature is

K :=g"Ku=h"Ky, (4.3)
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where the index of h% is raised using the inverse metric g®.

Similarly H can be considered to be a member of a family of hypersurfaces. We
fix the normalisation of the future-directed normal vector k to H by n -k = —1/v/2.
k is tangent to the null geodesic generators of H. We assume that exactly one such
null geodesic generator passes through any given point on 7,2 and so we can use any
coordinates y*, a = 2,3,...d — 1, on J, to label the generators. We can uniquely
define a second future-directed null vector [, within some neighbourhood about J
within H, as that which satisfies [.k = —1, and is orthogonal to every coordinate
vector 0/0y”. We define the tensor o := 3 + kI, + [*ky, on H, which projects onto
the tangent space of J. Note also that ¢$ = h9 — m®my, where m is a spacelike
vector, normalised as m.m = 1, defined (only on J) as m := V2 [k + (k.n)n]. See
figure 4 for an illustration of these vectors. The null expansion scalar is defined as

0 := kopo™ | (4.4)

where the index of 0% has been raised by g*.

We will need coordinates tailored to our geometrical setup, focussed on the
intersection J, its neighbourhood and the normal vectors, n and k£ to > and H,
respectively. Florides-Synge Normal Coordinates (FSNC’s) can be constructed in a
tubular neighbourhood about a submanifold of any co-dimension in any Riemannian,
or pseudo-Riemannian, manifold [10]. Here we consider the specific case of FSNC’s
based around the co-dimension 2 spacelike submanifold J and tailored to ¥ and H.

For d > 2, one can construct FSNC’s 2¢ = (z4,9%) (a =0,...,d —1, A= 0,1, and
a=2,...,d—1), within a small enough tubular neighbourhood N, as follows. First,
we choose any coordinates y* on J (in general one will have an atlas of charts on 7).
Next, pick any smooth orthogonal frame of vectors for each point ¢ € J, such that
two of the vectors in each frame are orthogonal to J (the transverse directions). We
choose these transverse vectors to be n and m as defined above. Note that n.m = 0,
so that m lies within the part of the tangent space of X that is orthogonal to the
tangent space of 7.

Consider, from each point ¢ € J with coordinates y*, sending out a two parameter
family of geodesics with tangent vectors v = 2°n 4+ 2'm on J. The point p which
is affine parameter distance 1 away from ¢ in J along the geodesic with tangent
vector 2°n + xlm has FSNC’s 2% := (24, y®). For 2° and ' small enough, this is well
defined.

2This assumption will not necessarily hold at all points on 7 because of the existence of caustics.
However, the points on J at which it fails are a set of measure zero and so will not affect our results,
which end up being integrals over 7.
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Figure 4: An illustration of the 24 = (2%, 2!) plane though a point ¢ in J, with the vectors used
in our setup. n is normal to X, k is normal to H, [ is orthogonal to the coordinate vectors 9/9y®
and satisfies k.l = —1, and m is tangent to X. All these vectors are orthogonal to J.

n Vid

In FSNC’s the submanifold J is described by the equation x4 = 0 and the horizon
‘H is given by the equation
=t (4.5)

within the tubular neighbourhood A. The generator of H through ¢ in J with
coordinates y® is described by the curve 2(\) = (A/v/2,\/v/2,3%), where ) is the
affine parameter on the geodesic.

When d = 2 there are no y* coordinates, and the coordinates z* are Riemann
Normal Coordinates (RNC’s) about the intersection 7, which is a point in d = 2.
In what follows we will mostly assume that d > 2, and we will only restrict to the
simpler case of d = 2 when necessary.

We have the coordinate conditions

A

9aB(T, y>xB = nanB . (4.6)
The metric gq(z,y) can be expanded about 7, i.e. in small 24, as

gap(z,y) = nap + O(z) |
9a5(2,y) = gapc(0,y)z” + O(2?) |
90s(7,Y) = 0ap(y) + Gap.c(0,y)2° + O(2?)

where 0,5(y) is the induced metric on J. The metric determinant can be expanded

V—g(z,y) =oly) +O0(x) | (4.10)

where o(y) is the determinant of the metric o,5(y).

13



4.2 Reducing to a local integral

Consider the tubular neighbourhood, N/ O J, in which the FSNC’s have been
constructed, and define the region

R.={pel (J)NN : -7 <2°(p) <0} , (4.11)
where 24 (p) are the transverse coordinates of the point p. 7 is the middle scale of
the hierarchy of scales, | << 7 << Lg, discussed above, and is assumed to be small
enough that this region is inside A/, where the FSNC’s are defined.

Additionally, define the complement R, := I~ (J) \ R,. The integral in (2.6) can
be split into a part over R, and a part over R,.

We need the integral over R, to tend to zero faster than any power of [ so that we
can ignore its contribution to the result in what follows. This will be so if the region

R has finite volume, for example if M itself has finite volume to the past of 3, since

<

/ deV+ <p)ne—pV(p)

/ dV;,V(p)”e_pV(p)

< maxzg [V(p)”e‘pv(”)}/ dv,

-

=V e PVminyol(R,) . (4.12)
In the last line we have defined Vi, as the minimum value of V(p) for p € R,. This
minimum value will be achieved at some p on the future spacelike boundary of R,
and the integral over R, is exponentially suppressed.

If M does not have finite volume to the past of ¥, the integral over R, can
still be exponentially suppressed as [ — 0. For example, this is the case for any
7 > 0 in Minkowski space. We give a plausibility argument why it will be true
more generally. We assume that the level sets of V(p), for all p € I~(J), foliate the
sub-spacetime [~ (J) into compact, measurable leaves. That is, for any v > 0, the
set of all p € I~ (J) such that V(p) = v is some compact measurable set, 3,. Given
this assumption, we can use v as a “time coordinate” on /= () and bound

<

/ deV+ <p)n€fpV(p)

/ d%v(p)nefpV(p)

)

/OO dvv™e " f(v)

vo

where vp is the minimum value V(p) takes for all p € R,, and where f(v) is the
integral of the volume measure \/—g over >,. Following the proof of Watson’s

14



lemma [9], we can bound the integral on the last line if we assume that |f(v)| has at
most exponential growth as v — oo, i.e. |f(v)] < Ce®™, for all v > vy (where C' and
C" are constants that are independent from p). We have that

/ o f(v)e

vo

< / T dot | f(o)]e "

vo

< C’/ dv v"elC'=P)Y

vo

, Cug”
_ (=0 {C’L—Op Lo(C—p?)| . (4.13)

We leave it as an open problem to determine the class of spacetimes for which |f(v)]
has at most exponential growth.

We will henceforth assume that the integral over R, is exponentially suppressed
in the limit and write the expected value as

L) — / A AL ) S (4.14)

n!

13 2

where denotes terms that tend to zero exponentially fast in the limit. The
region R, lies within the region of validity of our FSNC’s, and hence we can write
the expectation value explicitly in terms of our FSNC’s:

2—d p d 4+14n d— 2 —f —pV (z,y)
pt (H,) = d dx V=g(w,y)(Vy (2, y))"e V(o
(4.15)

where we have written the volume V/(p) as a function of the coordinates z# and y®.

Then,
pde<Hn>:/dd2y\/@fﬁd)(y;lﬁ)+'“ : (4.16)
J

where we have defined

—(dn+2) [0 —20
10t = g [t [ L e e )
n! -7 z0 U(y)

The factor 9(”(”;;) makes I\? (y;1,7) a scalar on J and we rewrite it in a coordinate

free notation as I (q7 l,7), where q € J.
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[T(Ld)(q; [, 7) is uniquely specified given the spacetime, ¥, H, the point ¢ € J and
the lengths [ and 7. As [ tends to zero, the region in which the integrand in 19 (g;1,7)

is non-negligible converges on the point ¢, and we conclude that Ir(bd)(q; [,7) has a
small [ expansion of the form

I 0,7) = al® + 13" Gi(q) +O() (4.18)

Here a\” and bm- are constants that only depend upon the dimension d, and the
integer n. The set {G;(q)} is the largest set of mutually independent geometric scalars
of length dimension L~! evaluated at ¢, and the subscript ¢ simply indexes this set.
For example, G;(q) could be the extrinsic curvature scalar K evaluated at ¢, and Gs(q)
could be the null expansion 8 at ¢. In the above equation, the sum over ¢ runs over
the whole set {G;(q)}. Note that the set {G;(¢)} is not unique. Relations between
scalars, such as the contracted form of the Gauss-Codazzi equations [11], mean that
we may have a choice as to which scalars to include in the set {G;(¢)}. Its cardinality,

however, is unique. Given (4.18) we have that
lim I (q;1,7) = a9 | (4.19)
=0

which implies our claim (2.2).

4.3 Expansion of I,gd)(q; l,7)

We will examine the small [ expansion in more detail. It will be convenient to again
switch to an order-reversed setup. In this case, H is given by 2° = —z!, and the
points p of each horizon molecule lie in the region I*(J). We also take V, (z,y) and
V(z,y) to represent the volumes of the corresponding order reversed regions. We
will also order reverse the normal vectors k and n, so that they are past-pointing®.
For a visualisation of this order- reversed setup, imagine reversing the time-axis of
figures 4, 3a, and 3b. The function 14 q, l,T) is given by

—(dn+2)
ID(g:l,7) = /dx/ dat

We are also free too choose the coordinates y* on J, and hence we can choose RNC’s
(within J) centred about ¢ € J. The expressions g(z,y), o(y), Vi(z,y), and V(z,y),

V+ z,y))"e V@) (4.20)

3By order reversing the vectors we ensure that the constants al? and bgdr)b (to be determined in
the following sections) have the same form (in terms of d and n) as those in our original geometric
setup with future-pointing vectors.
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that depend on the coordinates y®, are all evaluated at y* = 0, and hence we will
drop that argument entirely. We also have that ¢(0) = 1 in these RNC’s on J and

I'D(gl,7) = B / dx/ dz'/—g(z) (Vi (x))"e V@ (4.21)

We can introduce spacetime RNC’s Z¢ = (X4,Y®), in a neighbourhood U about ¢,
such that X# = 24, and such that the coordinate vectors 9/0Y* = 3/0y® at q. This
ensures that the determinant of the metric, evaluated at ¢ (y* = Y = 0), has the
same form in terms of the coordinates xA and X4. We can write

/dXO/ AX '/ —g(X) (Vi (X))"e VX (4.22)

in terms of the RNC’S, Z* about q.
The determinant g(X) can be expanded in small X4 relative to the curvature
scales of the spacetime at ¢:

—(dn+2)
I (q7 l,7)

1
—g(X)=1- 6RABXAXB +0(2%) (4.23)

where the Ricci tensor R, has been evaluated at ¢, and we only have a contraction
over the indices A, B = 0,1 as Y® = 0. Ry has length dimensions of L2, and we
can define a dimensionless tensor Ii’ab = LGQRab, using L¢ (the smallest geometric
length scale from our setup). We can also rewrite the above expression in terms of
dimensionless coordinates Z* := Z%/7:

" 1 EED
—g(rX)=1—> () RupXAXB +0(2% (4.24)
6 \ Zc
1 o N
=1- 652RABXAXB +0(%) . (4.25)

In this way we can see that the correction éRABXAXB is O(e?). Recall that ¢ =
7/Lg << 1. We have also written the higher order correction as O(g3). From this
point onwards, it will be more convenient to express higher order corrections in terms
of e.

We turn our attention to the volumes V(X) and V,(X). Given a point p that
has coordinates Z," = (Xpo, Xpl, 0), these volumes can be written as

V(Xp):/R d*Z\/—q(Z) (4.26)
V+(Xp):/R d*Z\/—g(Z) . (4.27)
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where R, :=I1"(p) N IT(X), and R, + := R, NI (H). The metric determinant can
be expanded in small € as

(7] =1 éRabeZb L OE (4.98)

The past boundaries of the regions R, and R, 1 are subregions of the surface X.
The future boundary of R, is some subregion of the past lightcone of p, denoted here
by P := 01~ (p), and the future boundary of R, ; is made up of a subregion of P
and a subregion of H.

In any specific spacetime setup below, we will only consider surfaces >, P, and
‘H, that can be described in the neighbourhood U by twice differentiable functions
Xs%(Z2Y), Xp%(Z7), and X#°(Z%) (i = 1,...,d — 1) *. That is, functions from the
spatial coordinates Z¢ to the time coordinate X°. In the spacetime setups considered
below we will calculate V' (X,) and V,(X,,), and our calculations suggest expansions
of the form

V(X)) = V(X,) (1 + 3G fX) + 0<52>> ,
Vi(X,) = Vi (X,) (1 £ 3G iX) + 0<s2>> . )

where V(X,) and V, (X)) are the volumes from the all-flat case, considered in section
3.

The functions f;(X,) and fi;(X,) must have length dimensions L. Equivalently,
we say that the functions must be homogeneous of degree 1, i.e. fi(AX,) = f;(X,) and
f+:(AX,) = f+.:(X,). We have also written the next order correction in terms of .
This correction will likely involve scalars of length dimension L~2, and homogeneous
functions of the coordinates XpA of degree 2. It seems plausible that one could
rigorously prove the expansions in (4.29) given the assumption that the surfaces ¥,
P, and H are twice differentiable, and that the metric can be expanded as in (4.28).

The above volume expansions actually imply that L(Ld)(q; [,7) has a small [ expan-
sion of the form (4.18). To show this we must use the volume expansions to expand
[r(Ld)(q; [,7) in e. We begin by expanding the different parts of the integrand in (4.22)

4We actually do not require the function X']DO(Zi) to be twice differentiable at p.
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—g(X) =1+0() (4.30)
(Vi (X)) =V (X)" (1 + nzgi(q>f+,i(X) + O(€2>> : (4.31)
eV X) = =V X) G—wv §j@ ) fi(X +pV(ﬂX20 ;o (432)

where we have removed the subscript p from the coordinates X“. Since the ﬂat cone
volume only depends upon X we can take it out of the integral over X! in 14 (q, l,7).

We have
[~(dn+2)  p7 - X0 .
I(g;l,m) = — / dX =PV D / AX'V, (X)"

+§:%@4¢/yﬂXWHXWﬁAX)

V(X / Xm%(X)”fi(X)]

—X0

XO
+ / dX1V+(X)”(O(52) + p‘N/(XO)O(az))} . (4.33)
— X0

The integral in the first line equals the integral JAd l“t)(l) from section 3 up to a
difference which vanishes exponentially fast in the limit as per the comment at the
end of that section.

The X! integrals in lines 2 and 3 of (4.33) both have length dimensions L2
and they both only depend upon X°. Therefore, they must evaluate to functions of
the form

C(x0)dn+z (4.34)

for some constant C'. This fact, together with Watson’s lemma [9], mean that the
expression in square brackets in lines 2 and 3 of (4.33) evaluates to a term of the
form C'l, for some constant C’, as [ — 0. Similarly, the O(g?) corrections in line 4
of (4.33) tend to a function of order O(I?) as I — 0. We therefore have the small [
expansion

I9(q;1,7) = al® + 1) bGi(q) + O() (4.35)
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where @/ have been shown to be the numbers given in section 3. The explicit form

of the constants b can be determined using geometric setups with non-zero scalars
Gi(q). From [12] we do not expect the curvature of P to contribute at first order, and
our explicit calculations in the next section are consistent with this.

5 First order corrections

In this section we will explore the O(l) term in the small [ expansion of Lsd)(q; l,7).
After determining its exact form, we will be able to construct causal set expressions
for extracting more geometrical information about the surfaces H and . In the next
subsection we will explicitly write down the set of independent scalars {G;(q)}, and
in the following section we will use specific setups, a la Gibbons and Solodukhin [13],

to determine the constants b;dz

5.1 General form of the expansion

To find all the independent scalars of dimension L', we consider all possible first
derivatives of vectors and tensors that depend upon the basic dimensionless geometrical
objects at J. We have the metric g, the normal vector n to ¥, the normal vector
k to H, the spacelike vector m, and the null vector [ constructed from these, all as
described in section 4.1. A systematic process of taking first derivatives of these
and forming scalars by contracting gives three independent scalars on J of length
dimension L~!: @ the null expansion of H, K the trace of the extrinsic curvature of
¥, and the component K; := K,m®m? of the extrinsic curvature. See appendix B
for more details. We therefore expect IT(Ld)(q; [, T) to have the small [ expansion

1(g;1,7) = aff + (BOK + 0Ky +000) 1+ 0(2) (5.1)

where 6, K1;, and K are evaluated at ¢ € J. Assuming this form we can determine
the constants by calculating the expansion of ],(fl)(q; I, T) for specific setups.

For d = 2 there is no null expansion 0. Additionally, K = K, and hence these
two scalars are not independent. In that case, we expect a small [ expansion of the
form

IP(g:1,7) =a? + b8P K1+ 0% . (5.2)

We will set up the evaluation of the constants bZ ., for general dimension d but we
will only find the final express1ons for d = 2 and d = 4 and leave the determination of
closed form expressions for b for future work.
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It is worth commenting on the appearance of € in the above expansion for d > 3.
One may worry that this is not geometric, as 6 depends on the choice of parameter A
along the null geodesics ruling H. Here we have chosen a particular parameter by
requiring that the parameter is affine, and that n.k = —1/4/2. If we were to scale
our affine parameter, the value of 6 would scale in the same way. In the calculations

below one can see that the coefficient bgf% would scale in the inverse way, such that the

combination bg?ﬁ remains unchanged. We should therefore think of the combination

béfl,)ﬂ as the truly geometric quantity.

5.2 Determining the constants

5.2.1 b\

To determine the constant bﬂ we choose a setup such that K1 = 6 = 0. Specifically,

we take the spacetime M? (d > 2), with coordinates Z* = (X4, Y®), as in our all-flat
calculations. It will be more convenient to leave the determination of bﬁ{, for d =2,
to the next section. For convenience, we will also stick to a order reversed geometric
setup during the calculations of the three constants. We wish to find the first order
correction to the function 757 (g;1,7), evaluated at some point g, which we take to be

the origin, Z* = 0. Given the order reversed setup, the null surface H is given by

X0 =_Xx' | (5.3)
which ensures that 6 = 0.
In this setup the spacelike surface ¥ is given by the zeroes of the function
Ss(Z)=X"—-aR?® | (5.4)

where R = /d,3Y Y7 is the radius in the Y* directions that was introduced above.
The free parameter a > 0 controls how curved ¥ is. Note that the above equation
only describes X for R small enough such that ¥ is spacelike. One can verify that

K(q)=2a(2—d) , Kul(g)=0 , (5.5)

where we have evaluated the scalars at ¢, and we have taken the normal vector to be
past-pointing, since this is a order reversed setup.

In the Y = 0 plane the surface X is given by the X° = 0 line, and the extrinsic
curvature scalar, K, is constant along this line (its value being 2a(2 — d)). The
future-directed geodesics normal to ¥ within this plane are given by lines of constant
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X! and the proper time along these geodesics is simply X°. The volume V(X) can
be written as a function of X only:

d 0 2
Ay nE@X +06 ))

da(2 —d)
(d+1)

V(X% =V(X9 (1 +

V(X0 (1 + X0+ 0(52)> (5.6)

using the cone volume formula in [14, 15], and the flat cone volume V(X°) given
in (3.3). The formula for V(X?) above is a special case of (4.29) in which K(q) is the
only non-zero scalar in the set {G;(q)}. To be explicit, let us set G1(q) = K(q). We
can use the above expression for V(X)) to determine the form of the function f;(X)
that multiplies G(q) in (4.29):

d 0

fi(X) = mx

(5.7)

We can write down the volume integral for V., (X) in dimensions d > 3. It will be
useful to first define X, as the X4 coordinates at which the three surfaces (P, H
and ) meet. One can verify that

o _ alX® = XH(X0 + XY
0 2a(XO+ XY +1 ’

Xl=-X0 (5.8)

For X! < X! the volume integral is

Vi (X) = Vi (X)

X0 _x/0 \/(XO—X’O)Q—(X’I—Xl)Q
- / A3 / dx" / dx" AR (5.9)
§d-3 0 X1

/ x10
PN, — a

where V. (X) is given in (3.9). Note that the limits of the R integral are only defined
for a > 0, which is what we had assumed above. We have also introduced the notation
Xpny.+ to denote the two values of X' " at which the surface P intersects ¥ (at a

fixed value of X"°). We have

V—2aX"0X0 + X%(aX"® — 1) + a(X°)2
NG

Xpope == + Xt (5.10)
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For X! > X! the volume integral is

Vi (X) = V4 (X)

X905 Xbos o V(XO-X10)2—(x/1-X1)2
— / dQy_s / ax’"® / dX'1 / dR%3
Sd—3 1 /X/O

X0 o ’PmE + \/(XO X/O)z (X’l —X1)2 s
+ ds2 / dX / / dR*™
/gd 3 d=3 X0 x/0

(5.11)
The result, in d = 4, for both cases (X! < X! and X! > X!) is
. 8a (8(X0)2 + 9XOX! 1 3(X1)2) ,
X) = X)[1-— A2
V.00 = V00 ot 0E) 6

Similarly to V(X), we can use this expression for V, (X) to determine the form of
the function fy 1(X) in (4.29). The resulting integrals can be evaluated to determine
the constant bf}l:

3—3n—§4—2n 3 46n+2F n+ 11
b\ - { ( i) n!(3n)!

b = 7 5as/an)D (dn + 2) 7+4n

—F(4n—|—2)<—B%(3n+1,n+1)—|—B%(3n+1,n+1)

F(n—i—%)

B © (4n+1)(4n +3)

s(n+ 1,30 + 1)) 81+ (4 1 1)(12n + 1)n!(3n)!

+nl'(4n + 2) (84"+1 ((12n - 1)Bi (n,3n+1) — 18nB%(n, 3n)>
— 325" (4n 4+ 1) [F1(2; —3n, —n; 3; —1, 3/5)

—2(3n)! 5 Fy(2, —n; 3n + 3; —3/5)])]} , (5.13)

where F(a;by,be;c;x,y) is the Appell hypergeometric function of two variables,
and where 5Fy(a,b;c;z) is the regularised hypergeometric function. In terms of
the hypergeometric function 9F}(a,b;c; z), one defines the regularised function as
2Fi(a,b;¢;2) =2 Fy(a, b; ¢; 2) /T (c).

This complicated expression greatly simplifies when one considers specific values
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of n. For example,

3/4
@_ A 3\ (Y 19 14
bl =102 (W) (4 ~ —0.0355127 | (5.14)
26T (L2
b\ = (%) ~ —0.019236 | (5.15)

L2 1995 /3r3/4

o LT ()
137 10010

~ —0.0132319 . (5.16)

5.2.2 b
Here we take the same setup as above, but with ¥ given by the zeroes of the function
Ss(Z) = X — a(Xh)? (5.17)

for a > 0. Note that this equation only applies for X! small enough such that ¥ is
spacelike. The only non-zero components of the past-pointing normal vector n are

1 2a. X"
n’ = — , o nt=— ¢ , (5.18)
1— 4a2(X1)? 1— 4a2(X1)?
where these vectors live in the tangent space of a point Z% = (X% X! V%) =

(a(X1)? X1, 0), i.e. a point on 3. The resulting scalars K and K;;, at any point on
Y, are
K=Ky =—2a(1 —4a*(X")?) "2 | (5.19)

and hence their values at ¢, i.e. the origin, are
K(q) = Ki(q) = —2a . (5.20)

The normal geodesics from ¥ within the Y plane will remain within the plane.
They will be straight lines of the form

ZYT) = Zy —nY(Zo)T (5.21)

where we have written the normal vector as a function of the point gq (with coordinates
Zy" = (X, X1',0) = (a(Xo"h)?, X1, 0)) at which the geodesic intersects 3. The
minus sign is there so that 7 is the proper time to the future of 3 (the normal n is
past-pointing).

The function L(Ld)(q; [,7) that we wish to evaluate involves integrals over the X
coordinates of a point in the plane normal to 7. In order to evaluate these integrals
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we need to express the cone volume, V(X), in terms of the coordinates X4 of a point
¢1 in this plane. Let 7 be the proper time along a normal geodesic (of the form (5.21))
that intersects the point ¢;, and starts at gy on 3. From [14] we know that the cone
volume can be expressed in terms of 7 as

~ d
V(ir)=V() 1+ —=K O(e? 5.22
) =70 (14 gy Kl +0E) (5:22)
where we have evaluated K at go. We can write K as a function of the coordinates,
X2, of g as ,

K(Xo) = —2a(1 — 4a*(Xo")?) "2 (5.23)

using the above expression for K at any point on .
In order to rewrite V(7) as a function of X4 we need to solve for 7 and X' in
terms of the coordinates X#. Explicitly, we have to solve the following equations:

X0 = a(X")? + . ,
(Xo) 1 — 4a2(X,))2
2aX,"
X' = X, + 20 T , (5.24)
1 — 4a2(X,")?
for 7 and X,'. To the relevant order, one finds
T=X"—a(X"?+0(?) (5.25)
Xot = X' —2a X'+ O(?) . (5.26
We can write K as a function of X4:
K(X)=—-2a—12a*(X")* + O(e®) . (5.27)

The cone volume can be expressed as a function of X4, using equations (5.25)
and (5.27). In d = 2 and 4 we have

d=2 : V(X)=V(X° (1 _2a ((XO)BZ;?’(Xl)z) + 0(52)) : (5.28)
d=4 : V(X)=V(X° (1 _da <(X0)52;)5(X1)2) + 0(52)> : (5.29)

We can also determine the volume V, (X), in d = 2 and 4. In both cases it will be
useful to introduce XAy, as the smallest X! value at which P intersects . Explicitly,

Vi4a(X0— X1 +1-1
2a

Xy = — (5.30)
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In d = 2 the volume integral can be written as

%(XI_XO) . X/1+X0_X1 0
V.(X) = / X’ / qx’

Xpo (X112

0 -xt
+/ dX”/ dx"” | (5.31)
L(x1-x0) a(X'1)2

2

and for d > 3 we have

a(X%)mg)Q —X/O \/(XO_X/O)Q_(X/I_X1)2
Vi(X) :/ de_g/ dx" dX’l/ dR43
gd—3 0

0
YD cad 0
a

%(XO_XI) 0 _X/O . \/(XO—X’O)Z—(X’l_Xl)Q
+ / df2q_3 / dx’ / dx’ / dR%3
Sd=3 a(Xl )? X1_x04x7/0 0

PNE
(5.32)
Evaluating these integrals in d = 2 and d = 4 we get
~ 4
d=2 : V(X)=V,(X) (1 — 5a(XO - XY+ 0(52)) , (5.33)
~ 8a(X? — X1)(4X°% + X1) 9
d=4 X) =V (X)[|1- .34
Vo) = 7 (1= M) o) L )

We have everything we need to evaluate the first order correction to Lsd)(q; I, 7).
In d = 2 we must match the first order correction to a term of the form

WK (@)L (5.35)
in order to determine the constant b\ (we must also use the fact that K(q) = —2a).
We find ;

2I'(n + 3
b2 = (n+5) (5.36)

~6nC(n+2)+3T(n +2)

In d = 4 we must match the first order correction to a term of the form
(MoK (@) + 0 K@) )1 (5.37)

and we must use our existing expression for bgﬁl to solve for the constant bﬁ% (we

must also use the fact that K(q) = K11(q) = —2a). The resulting expression is even
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longer than the expression for bg‘%, so we will not write it here. Instead, we will give

the much simplified expressions one gets for specific values of n:

2 /3\** /11
bW — 2 (2) 17(=)~—0.0887817 5.38
2,1 35 T 4 Y ( )
1 /3\** /15
bW ——— (2] T(=) ~—0.0554886 5.39
830 (L
55432_—54) ~ —0.0413319 . (5.40)
’ 10725+/373/4

5.2.3 b5

In this section we use the same setup as above, but we will take ¥ to be the surface
given by X% = 0, so that K = K;; = 0. To get a non-zero null expansion, , we take
H to be the past lightcone of a point with coordinates Z¢ = (X X! Y%) = (r, —r,0),
for r > 0. This past lightcone will pass through the point ¢ at the origin. We can
describe H by the equation

X0 =r—/(r+X)2+R2 | (5.41)

where R is the radius in the Y directions introduced above. Using (4.4) we find that
d—2

0(q) = (5.42)

V2r

In this setup the volume V(X) is simply the flat volume V(X?). For d > 3 we
can write down the volume integral for V, (X) as

Vi (X) = T2 (X)

L(x0-x1) -X'° Rp
- / A3 / dx"° / ax" / AR (5.43)
Sd—3 0 X1 Ry

PNH
where
2(r + X1 ’
is the X! value at which P intersects H, for a fixed value of X’°, and where we have
defined

Ko = (5.44)

Ry = /(X° =20 — X)X 4 X7) | (5.45)

Rp = \/(X'O—X°+X1—X’l)(X’O—XO—X“rX’l) : (5.46)
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Evaluating this volume integral in d = 4 gives

2(X° + X1')?

Vi (X) =V, (X) <1 BN 3XT) + O<€2)>

(5.47)

Following similar steps to above, we can evaluate the first order correction to
119 (¢;1,7), and match it to an expression of the form

b0 1 (5.48)

to determine the constant bg}%. We find

373n72472n fnfér + 7
b — S N G VI e 2(4n + 1)(6n + 1)n!(3n)!
" V2(4n + 1) (4n + 3)n!T(4n + 2)

+nl'(4n + 2) <9nB% (n,3n) + QB%(n, 3n + 1)>

3
+ 33" 20 (4n + 1) (57)"T (4n + 2) | Fy (2; —3n,—n;3; —1, g) (5.49)
N 3
—2(3n)! o Fy (2, —n;3n + 3; —g) } : (5.50)
For particular values of n we get
2T (i
Y = —w ~ —0.0209261 | (5.51)
’ 35+v/3m3/4
191 (1)
b = — 4 ~ —0.0165665 | 5.52
22 1155/2+/3m3/4 (5.52)
27171 (12)
b = — 4 ~ —0.0136321 . 5.53
B3 T5075/2/3m3/4 (5.33)

6 Causal set geometry

6.1 Extracting the horizon area

We have determined that I\” (g;1,7) has the small | expansion given in (5.1) for d > 2,
and (5.2) for d = 2. For d = 2 and d = 4 we have determined explicit expressions
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for the coefficients al (and a§3)), and we have determined the constants by and bgﬁz

that appear at first order in /. In this section we will discuss how to use the explicit
expressions for these constants to extract continuum geometry from the causal set.

The simplest geometrical quantity to extract is the horizon area. If we are given
a causal set, C, and the corresponding partitions Ci, we can count the number of
horizon molecules H and calculate

2-d
pd
ald)

0, (6.1)

using our above expressions for a(® = agd) in d = 2,3, and 4. If this causal set has
come from a sprinkling into a spacetime with a horizon, then this value corresponds

to the causal set estimate of the continuum horizon area. Under the sprinkling
2-d 2-d

process, this value, %H, becomes the random variable %H, and from our above
arguments we know its expectation value has the following limit

2—d
. pa
1 —H )= [ dV; . 6.2
p:fgo<a<d> > /j 7 (6.2)

That is, it gives the horizon area in the continuum limit. Two questions remain: i) is
2-d

the value %H, for a single causal set, close to the continuum horizon area, and i)

for a finite, but small, [ relative to the curvature scales of the setup, is the expectation
2-d

value %H close to the continuum horizon area?

The second question can be answered, to some extent, immediately, as we have
determined the first order correction to L(Ld)(q; [,7). Recall that we can write the

expectation value of H in terms of ]T(Ld)(q; [,7) as (using (4.16))

P (H) = /j AV ID(glm) 4 | (6.3)

«

where “- -7 denote exponentially suppressed terms in p. We have also written this
integral in a more geometric way than (4.16), without referring to any particular

coordinates on J. We can use the small [ expansion of Il(d)(q; l,7) to see that

K l
<—p<d)H = / Vs +—% / dVy (bﬁf?K +b§?2K11+b§,?{9)+0(12) . (6.4)
a 7 a 7

where the scalars K, Ki;, and #, depend on the point ¢ € J, and so they may vary
across the integral. The expectation value on the left will be close to the continuum
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horizon area if the first order correction is small, that is, if

l

o R (018 + b5 B+ 000) < /dvj . (6.5)
a J

This will be satisfied if [ is much less than any of the curvature scales of the setup,
for all points q € J.
The first question above is more difficult, as it requires us to look at how the

random variable H fluctuates under the sprinkling process. If the fluctuations are
2-d

large, then the value %H, for a single causal set, will likely be very different from
the continuum horizon area. One may be able to estimate the fluctuations numerically
in specific geometrical setups. We have not attempted such an investigation here,
and so we leave the first question as an open problem for future work.

6.2 Extracting other geometry

2-d
In the last section we found that we could count %H to get an estimate for the
horizon area of a causal set. In the continuum limit the expectation value of the
associated random variable was the horizon area, which is proportional to the first
term in the small [ expansion of

/de](d)(q,l,T)—a /de—H/ dv; <b<dK+b< Ku+b§‘29) + O(1?)
J J

(6.6)
We can ask if it is possible to extract the second term in this expansion (the term of
O(1)) using the causal set. That is, can we extract the geometrical quantity

[ vs (B + ¥+ 406) (6.7)
J

by counting something on the causal set.
Following the procedure given in [14, 15], we can get close to extracting the first
order correction using the following causal set random variable:

H, H
143 (—“——m) : (6.8)
i ald

where n # m. From the expansion for 9

value of this random variable. We find
H, H,,
<ld ’ ( o >> / AVir (B0, K + W K+ 850,0) +0() . (6.9)
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where

N AC)
(d . VYin _ Tim
o = 5~ 5 - (6.10)

2—d
The random variable in (6.8) is not as obviously useful as %H, but it may be more
useful in the future when combined with other causal set expressions for extracting
continuum geometry. Perhaps the most interesting thing to note from this expression
is that, for the first time, a causal set expression has been found that depends upon
the null expansion, 6, of some null surface.

7 Entropy

Dou and Sorkin suggest that horizon molecule identification and counting in a causal
set bears the same relation to the black hole entropy as does the counting of molecules
of a gas to the entropy of the gas. The fact that we get the right dependence on
the area and the right order of magnitude, if the discreteness length is of order the
Planck length, is encouraging. We will not know whether our molecules are the “right”
ones, however, until we know the statistical mechanics of black hole thermodynamics
within the full theory of quantum causal sets, in which the entropy is understood in
terms of the number of microstates corresponding to the macrostate of the black hole.

Other plausible molecule definitions are indeed possible to find. Some involve the
causet to the future of ¥. For example, we can take as a horizon molecule a link
p < ¢ in which p is in MZ and is maximal in the past of ¥, and ¢ is in M and is
minimal in the future of ¥. Similar locality arguments to those we have made in
this paper can be made for the claim that the expected number of these molecules
will also give the area of J in discreteness units, up to a (different) factor of order
one. It may be that when we fully understand black hole entropy it will pick out one
molecule definition, or it may turn out that no one definition of horizon molecule is
favoured over any other that works at this level.

The most promising aspect of our investigation is that the result is universal for
all causal horizons in any particular dimension. Following Jacobson and Parentani,
it supports the idea that the thermodynamics of black holes is just one aspect of
the thermodynamics of causal horizons in general. The result reported here is an
encouragement to look for a universal statistical mechanics of causal horizons, so that
black hole entropy, cosmological horizon entropy, and Rindler horizon entropy, all
find a unified explanation.

31



Acknowledgements

We thank Jeremy Butterfield for useful discussions. This research was supported
in part by Perimeter Institute for Theoretical Physics. Research at Perimeter In-
stitute is supported by the Government of Canada through Industry Canada and
by the Province of Ontario through the Ministry of Economic Development and
Innovation. FD is supported in part by STFC grant ST/P000762/1 and APEX
grant APX/R1/180098. 1J is supported by an Irish Research Council Fellowship
(GOIPD/2018/180).

Appendices
A I"(M)H)NM-Z=1(T)

Proof.

(:2:) For any point p € I~ (J), there exists a point ¢ € J such that p < ¢ (the
notation means p is to the chronological past of ¢). So, ¢ € IT(p), and as I (p)
is open, there exists an open neighbourhood O of ¢ such that O C I (p). As J
lies on the boundary of M7 and of M, we have M7 NO # () and M-NO # .
Therefore, p € I~ (MZ). Now, I-(MZ) = MZ, and so p € M_.

(:&:) For any point p € I~ (M) NMZ there exists a future directed timelike curve
from p € MZ to some point p’ € M7 . Such a curve must pass through H at a
single point ¢ € H (proposition 3.15. [16]), and p < ¢ < P/, so ¢ is to the past
of . ¢ lies on a future inextendible null geodesic generator of H, which must
pass though a point ¢’ in ¥. So ¢ e HNXYX =J. As p < ¢, we have p < ¢/,
and so p € I~ (J).

0

B Determining the set of independent scalars

To systematically find all the independent scalars of dimension L~!, we must consider
all possible first order derivatives of contractions of tensors that depend upon the basic
dimensionless geometrical objects of our setup. The basic dimensionless geometrical
objects are the metric g, the future-pointing normal vector n on ¥ (normalised as
n.n = —1), and the future-pointing null vector £ = d/d\ on H (where the affine
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parameter \ is chosen such that kn = —1/ V2on J ). We also have the spacelike
vector m = v/2k —n on J, which is tangent to ¥ and orthogonal to 7. Note that
m.m = 1 and n.m = 0. Lastly, we have the null vector [ on H such that [.k = —1,
and such that [ is orthogonal to all the coordinate vectors 0/dy®, where y* are the
FSNC’s defined above. Let us denote the above set of tensors by & := {g,n, m, k,}.

It is worth noting that we cannot consider any tensors that are independent of
those in &. Such a tensor, by definition, would be unchanged as the tensors in &
vary. This means that this tensor would be constant under changes to the spacetime
geometry, and the embeddings of the sub-manifolds > and . That is, it would be
entirely independent of our geometric setup, and hence any geometric quantity (such
as the volumes V' (X) and V(X)) will be independent from it. An example of such a
tensor would be an arbitrarily chosen vector lying within the tangent space of J.

Any tensor that depends upon & must also be some linear combination of tensor
products and/or contractions of tensors in & (it cannot be anything else if it is to be
a tensor itself). Let us call this space of tensors 2(. To get the right dimensions of
length we consider covariant first order derivatives of tensors A € 2. The product rule
reduces the derivative of a given A € 2 to a linear combination of tensors that are
each of the form of a single derivative of one of the tensors in &, contracted with, or in
a tensor product with, some other A” € 2. Lastly, to form a scalar, we must contract
any remaining indices with some other tensor A” € 2. Any index contractions that
do not involve the index of the covariant derivative, and do not involve the index
of the tensor inside the covariant derivative, will simply result in some constant.
Therefore, the space of possible scalars consists of linear combinations of tensors
formed from a single covariant derivative of one of the tensors in &, contracted with
the minimum number of tensors in & needed to form a scalar. Recall that we also
wish to evaluate the resulting scalars at some point ¢ € J.

Scalars of length dimension L~! will not involve first order derivatives of g, as its
covariant derivative vanishes. Therefore, we can focus on covariant derivatives of n, k,
[, and m. In components, these first order derivatives look like 1,4, ko:p, lap, and mgp.
We need to form scalars from these four tensors using contractions with the minimum
number of tensors from &. Before doing this, it should be noted that these covariant
derivatives are not technically well-defined, as they involve derivatives of n, m, k,
and [, in directions away from the surfaces on which they are defined. Therefore, we
must project the derivatives onto the relevant surfaces using h9, 0%, m®, and k*. As
n is only defined on ¥, we must project the derivative onto the tangent space of X.
This can be done in the following three ways:

(B.1)

b b b
Uz ) na;bh c v TNap0,
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k and [ are defined on H, and so we must project their derivatives onto the tangent
space of H with o or k%

k’a;b/{b s k‘a;bO'bc s la;bk‘b s la;b(fbc . (BQ)

Lastly, m is only defined on [J, so we must project the derivative onto the tangent
space of J with o, i.e. we have
Map0 bc . (BB)

We have 8 well-defined first order derivatives which we can contract with any of the
tensors in &.

Starting with the covariant derivative of n we have na;bmb. To form a scalar
we must contract with another vector. If we contract with n® we get n“na;bmb =
(n.n)pm® — nngym® = —nn,,m®, and hence nn,ym® = 0 (here we have used the
fact that n.n = —1 on X). A contraction with k* will give the same result as a
contraction with m®/+/2, since k% = 1/v/2(n® +m®), and since the contraction with
n® vanishes. We can, therefore, focus on contracting n,,m® with m®. The result is the
component of the extrinsic curvature tensor in the m-direction, i.e. K1; := Kgum®m?,
where K, = n(c;d)hcah‘é.

Next we have n,,h’, which must be contracted with two upstairs indices. This
can be done with two vectors, or with ¢g?°. The only vector we can use is m?, as the
R, in ngpht, will project n, k, and [ to some (possibly zero) multiple of m?. If we
contract with m®m? then we will recover the component K, again, and so this is not
an independent scalar. A contraction with ¢? yields the extrinsic curvature scalar
K = h*K,,.

The last expression involving a covariant derivative of n is nq,0t. The o in this
expression will kill any of the vectors n, m, k, and [, and hence we must contract the
two free indices with ¢g. The result is n,;,0% = K — Ky; (one can verify this using
the fact that 0 = h% — m®m;), and so it is not independent of the other scalars we
have already mentioned.

Moving on to covariant derivatives of k, we have that k,,k® = 0, as the null curves
ruling H are affinely parameterised geodesics. The next term to consider is kq 00,
which must be contracted with two upstairs indices. The ¢®, in this expression will
kill any vector that we can contract with, and hence we must contract both the free
indices with g?. The result is simply the null expansion 0 = k, ;0.

The first expression to consider for [ is la;bkb. As ka;bkb = 0 we have that
kapl*k® = 0, and hence that

0 = kol = (k1) k" — lopk®k® = —l, kK" (B.4)
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where we have used the fact that k.l = —1 on H. Since la;bk“kb = 0, we know that
l.pk? is a covector within the cotangent space of H. The only vector within the
tangent space of H that we can contract it with is k%, but we have just seen that this
contraction vanishes. Therefore, the term I,;k° will not give us any new independent
scalars.

Next we have [,,,0%. Using the fact that [ = v2n —k, and the contractions already
considered above, one can see that this will not give anything new. For the last term
Map0’,, we can use the fact that m = V/2k —n to show that this will also give nothing
new.

In summary, we can only form three independent scalars at a point ¢ € J involving
a single derivative: 6, K;, and K.
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