Search for Low-Mass Quark-Antiquark Resonances Produced in Association with a Photon at $\sqrt{s} = 13$ TeV

A. M. Sirunyan et al.*
(CMS Collaboration)

(Received 24 May 2019; revised manuscript received 12 October 2019; published 3 December 2019)

A search for narrow low-mass resonances decaying to quark-antiquark pairs is presented. The search is based on proton-proton collision events collected at 13 TeV by the CMS detector at the CERN LHC. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$, recorded in 2016. The search considers the case where the resonance has high transverse momentum due to initial-state radiation of a hard photon. To study this process, the decay products of the resonance are reconstructed as a single large-radius jet with two-pronged substructure. The signal would be identified as a localized excess in the jet invariant mass spectrum. No evidence for such a resonance is observed in the mass range 10 to 125 GeV. Upper limits at the 95% confidence level are set on the coupling strength of resonances decaying to quark pairs. The results obtained with this photon trigger strategy provide the first direct constraints on quark-antiquark resonance masses below 50 GeV obtained at a hadron collider.

DOI: 10.1103/PhysRevLett.123.231803

New resonances coupling to pairs of quarks (generally referred to as Z') are ubiquitous signatures in theories beyond the standard model (SM), appearing in dark matter models [1,2] and models with extra dimensions [3], among others [4–9]. The first dijet searches at a hadron collider were performed by UA1 [10] and UA2 [11], and have been extended to higher resonance masses by CDF [12] and D0 [13] at the Tevatron, and by ATLAS [14] and CMS [15] at the LHC. However, as collision energy and beam intensity have increased, there has been a loss of sensitivity to lower mass resonances, which stems from the increasing cross section of background multijet events, tighter online requirements needed to handle growing event rates, and the large numbers of simultaneous collisions per bunch crossing (pileup). These issues can be partially mitigated by focusing on events in which the resonance is produced in association with high momentum initial-state radiation (ISR). In such a scenario, the two quarks hadronize into a single massive jet. In particular, by considering events with a high transverse momentum (p_T) ISR photon or jet, the ATLAS Collaboration searched for Z' decaying to quark-antiquark pairs [16] and reported a result for resonance masses as low as 100 GeV. The CMS Collaboration used this method with ISR jets to search for Z' with masses as low as 50 GeV [17], the lowest mass then probed by collider experiments.

This analysis, which considers events produced with ISR photons from $p\bar{p}$ collisions at $\sqrt{s} = 13$ TeV, using data collected by the CMS detector in 2016, and corresponding to an integrated luminosity of 35.9 fb$^{-1}$, extends dijet searches to low Z' masses where only indirect measurements [18] provide constraints on the hadronic production of such new physics. This extension to low Z' masses is possible in this analysis because of the reliance on a photon trigger, for which it is feasible to select dijet events using a lower p_T threshold than for jet triggers. However, the mass of the Z' is sufficiently low compared to its momentum that the separate hadronizations of the resulting quark and antiquark merge into a single large-radius jet. This search is performed by looking for a localized excess in the jet mass spectrum in events with a photon and a jet with the two-pronged jet substructure expected for the signal.

The main background, arising from photons produced in association with jets by SM processes, is derived using a data-driven method. Additional resonant SM background processes, composed of $t\bar{t}$ events and the SM production of $W + \gamma$ and $Z + \gamma$, are estimated from simulation, with corrections obtained from control regions in data. The results are interpreted within the framework of a Z' with mass between 10 and 125 GeV, decaying into quarks, and are used to set limits on the quark coupling g_q as a function of the Z' mass.

The CMS detector consists of a silicon tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), a brass and scintillator hadron calorimeter (HCAL), and gas-ionization muon detectors. A superconducting solenoid provides a uniform magnetic field within the detector.
Events are sorted by a two-tiered triggering system [19] to ensure that only events of potential physics interest are recorded. A more detailed description of the CMS detector, including its angular coordinates \(\eta \) and \(\phi \), can be found in Ref. [20].

Events are reconstructed using the CMS particle-flow (PF) [21] algorithm, which combines information from every element of the CMS detector to reconstruct and identify individual particles (called PF candidates). Each particle is classified as either a muon, electron, photon, charged hadron, or neutral hadron. The energy of photons is obtained directly from ECAL measurements. Similar measurements, along with information from the tracker, are used to determine the energy of electrons. Misidentification of particles is possible, so additional isolation and purity requirements on potential photons are imposed [22]. The momentum of muons is measured from the curvature of their tracks. Neutral and charged hadron energies are measured from their deposits in the ECAL and HCAL, with information from the tracker used to further constrain the energy of the charged hadrons. The missing transverse momentum (\(p_T^{\text{miss}} \)) is defined as the negative vector sum of all reconstructed particles in an event. The PF candidates are clustered into jets using FastJet [23] with the anti-\(k_T \) algorithm [24] and a distance parameter of 0.4 and 0.8 for AK4 and AK8 jets, respectively. Particles produced in additional collisions within the same bunch crossing are suppressed by applying a weight to each PF candidate, calculated by the pileup-per-particle identification [25] algorithm. Jets are corrected as a function of their \(p_T \) and pseudorapidity (\(\eta \)) to match the observed detector response [26]. Jets arising from the hadronization of b quarks are identified using the CSVv2 algorithm [27].

The signal benchmark model [28] used in this analysis and in Refs. [16,17] features a vector resonance \(Z' \), with the coupling constant to quarks set to \(g_q' = 1/6 \), at which the \(Z' \) width is well below the resolution of the detector. It was simulated to leading order with the MADGRAPH5_aMC@NLO [29] generator, with MLM matching [30] between jets from matrix element calculations and the parton showers. Up to 3 additional jets are allowed in the matrix element calculation. The model assumes no interaction between the SM \(Z \) and the \(Z' \). The same generator is used to model at leading order the quantum chromodynamic production of multijet events, which can include radiated photons, and the \(\gamma + \text{jets} \) background, where the photon is part of the hard interaction, as well as to next-to-leading order, the backgrounds \(W + \gamma \) and \(Z + \gamma \). The multijet and \(\gamma + \text{jet} \) components are treated together as a single nonresonant background, with the angle between the leading photon and the nearest jet used to define a phase space for each sample. Events from the multijet sample are removed if they are in the \(\gamma + \text{jets} \) phase space. The POWHEG 2.0 [31–33] generator is used to model \(\bar{t}t \) events at next-to-leading order. All signal and background generators are interfaced with PYTHIA 8.212 [34], with the CUETP8M1 underlying event tune [35], to simulate parton showering and hadronization effects. The generated events are processed through a GEANT4 [36] simulation of the CMS detector. This simulation includes effects from both in-time and out-of-time pileup. The parton distribution function set NNPDF3.0 [37] is used to produce all simulated samples. Where necessary, differences between the reconstruction of simulated and real quantities are corrected by applying scale factors to the simulation, derived from control regions in data [26].

The trigger strategy used by this search is to require one photon with \(p_T > 175 \) GeV and \(|\eta| < 3.0 \). To ensure a full triggering efficiency for events that satisfy the subsequent selection, offline photons are required to have \(p_T > 200 \) GeV and \(|\eta| < 2.4 \). Events with additional identified photons of \(p_T > 14 \) or leptons of \(p_T > 10 \) GeV are discarded to avoid overlap with other searches and to reduce backgrounds from electroweak sources. Even leptons in a pair that are sufficiently collinear to be reconstructed as a single jet are generally also tagged as separate leptons and thus excluded. The \(Z' \rightarrow q\bar{q} \) decay is assumed to correspond to the highest momentum AK8 jet in the event. Only events with leading jet \(p_T > 200 \) GeV are considered. To reduce the contribution from \(\bar{t}t \), events with an AK4 jet with \(p_T > 30 \) GeV and satisfying the loose working point [27] of the CSVv2 algorithm (excluding AK4 jets within \(\Delta R < 0.6 \) of the leading AK8 jet), or with \(p_T^{\text{miss}} > 75 \) GeV, are discarded.

A separation \(\sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} > 2.2 \) is required between the leading AK8 jet and the photon in the event. The soft drop mass algorithm (with \(\beta = 0, z_{\text{cut}} = 0.1 \)) [38,39] is used to remove soft and wide-angle radiation from the jet, and the resulting distribution of “groomed jet mass” \((m_{\text{SD}}) \) is inspected for localized excesses. The modeling of \(m_{\text{SD}} \) has been tested for masses only down to 10 GeV [40]; thus 10 GeV is the lowest signal mass considered by this analysis. The highest signal mass considered is 125 GeV, above which there is a low probability of reconstructing the \(Z' \) as a single jet. The selected events are divided into signal and control regions based on the \(\eta \) of the photon, with the boundary between the regions chosen to maximize the sensitivity of the analysis. Events with photon \(|\eta| < 2.1 \) are considered to be in the signal region. The events with \(|\eta| > 2.1 \), in which the photon is more likely to have been radiated in a multijet process rather than in a hard scattering, define the \(\eta \) control region to perform substructure measurements of jets with kinematic variables similar to those of jets in the signal region. These variables are computed only on jet constituents that have survived the soft drop algorithm.

The variable \(N_2^\perp \) [41,42] is used to further separate signal jets with two-pronged substructure from the background. This variable is defined using a combination of functions that correlate angles among the constituents of the jet to categorize the substructure. A jet originating from a two-pronged decay is more likely to have a low value of \(N_2^\perp \). In
The uncertainty in the background estimate in each bin. The shaded region represents the total uncertainty in the data in each bin. The signal region. By construction, this selection will have a background efficiency of exactly 10% for the sample in the signal region. The nonresonant background is estimated from a data-driven method described below, with the simulated samples used for validation only. The other backgrounds are taken from simulation and their shapes and normalizations allowed to vary in a final fit of the passing and failing regions, with a correction derived from a $t\bar{t}$ control region, also described below.

The nonresonant background in the signal region is estimated by considering the events that have passed all selection requirements except $N^2_{\text{DDT}} < 0$. In the η control region, the pass-to-fail ratio of background events for the $N^2_{\text{DDT}} < 0$ requirement is one to nine, independent of jet p_T and ρ. In the signal region, this ratio is taken to be a smooth function $F(p_T, \rho)$ which models the differences between the N^2_{DDT} variable in the η control and signal regions. The relationship between passing (N_P) and failing (N_F) events is then $N_P = F(p_T, \rho)N_F$, for each bin of p_T and ρ. The deviation of F from a flat ratio corresponds to the difference between the signal and control regions. The unknown function F is expanded into a polynomial series:

$$F(p_T, \rho) = \sum_{i} \sum_{j} a_{ij} p_T^i \rho^j,$$

where the unknown coefficients a_{ij} are determined by a simultaneous likelihood fit of the passing and failing events, in which the signal and resonant backgrounds are allowed to float. The number of coefficients in the fit is determined by performing the Fisher F tests [44] on progressively higher order polynomial combinations of p_T and ρ. The optimal polynomial form is found to be third order in both p_T and ρ.

While this fit to data ensures that differences in the nonresonant background modeling of the N^2_{DDT} variable are accounted for, consistent behavior in data and simulation for resonances is not assured. A dedicated $t\bar{t}$ control region is defined, built from events containing a high-p_T muon, with the selection optimized to be dominated by $t\bar{t}$ production. The efficiency of the $N^2_{\text{DDT}} < 0$ requirement is measured by fitting the W-mass peak (where the hadronization products from both quarks merge into one jet) in the passing and failing jet mass distributions of this control region, for both data and simulated samples. This efficiency, an explicit parameter of the fit, is used to correct relative yields for the nonresonant background.
resonant $t\bar{t}$ events and the $W + \gamma$ and $Z + \gamma$ backgrounds obtained from simulation in the passing and failing regions. The data-to-simulation efficiency scale factor is found to be 0.909 ± 0.046 (stat + syst), and is applied to all the resonant backgrounds, as well as to the signal.

To model the m_{SD} distribution in the signal region, a binned 2D maximum likelihood fit is performed on the events passing and failing the $N_{DDT}^2 < 0$ requirement, in all (p_T, ρ) bins of the signal region [17]. In the fit, all SM processes and the signal are allowed to float simultaneously. Signal shapes are taken from simulation. The fit is performed for the background-only (null) hypothesis and for signal hypotheses for each simulated signal mass (10, 25, 50, 75, 100, and 125 GeV), as well as for interpolated mass shapes derived by vertical template morphing [45] these simulated event distributions to cover a signal mass range of 25, 50, 75, 100, and 125 GeV, as well as for interpolated mass shapes derived by vertical template morphing [45] these simulated event distributions to cover a signal mass range of 25, 50, 75, 100, and 125 GeV. To ensure proper modeling of the high mass tail, the fit is performed on events with masses up to 201 GeV. The m_{SD} distribution of the signal region, summed over all p_T and ρ bins, is shown in Fig. 1. The contributions from resonant backgrounds are evaluated as part of the likelihood, with their shapes and normalizations allowed to vary within the systematic uncertainties in the initial estimates (see Table I). The average value of the nonresonant background efficiency in the signal region determined by the fit is 9%.

The uncertainty in the nonresonant background originates from the systematic uncertainty in the fit and the statistical uncertainty from the number of events in the region failing the $N_{DDT}^2 < 0$ requirement. The signal, $t\bar{t}$, $W + \gamma$, and $Z + \gamma$ backgrounds are affected by correlated shape and normalization uncertainties. We constrain the efficiency of the selection based on N_{DDT}^2 in the $t\bar{t}$ control region, with the scale factor uncertainty applied to the yields of signal and the resonant backgrounds in the final fit to the signal region. The jet mass scale and resolution uncertainties are considered as uncertainties in the shape of the signal and the resonant background components in the fit. Finally, uncertainties associated with the jet energy corrections [26], trigger efficiency, lepton veto efficiency, resonant background normalizations and the integrated luminosity determination [46] are applied to the expected yields of the signal and the resonance backgrounds. These are summarized in Table I. To validate the robustness of the fit, a goodness-of-fit test and bias tests are performed using simulated data with a variety of simulated signals injected. No significant bias is observed for any Z' mass.

The results of the fit are used to set 95% confidence level (C.L.) upper limits on $g_{Z'q}$. Upper limits are computed under a modified frequentist approach, using the CL$_s$ criterion [47,48]. A profile likelihood ratio is used as the test statistic and its distribution under the null and alternate hypotheses are determined with asymptotic approximations [49]. Limits are shown in Fig. 2 as a function of the resonance mass. Coupling values above the solid curves are excluded at 95% C.L. Systematic uncertainties are treated as nuisance parameters, which are modeled with log-normal priors and profiled in the limit calculations. Values of $g_{Z'q}$ greater than 0.3 are excluded at 95% CL for the entire mass range. For most of the mass range below 50 GeV, made accessible by the trigger strategy, the exclusion from this analysis is more stringent than the indirect limits set by measurements of the Z boson and Υ meson decay widths [18].

TABLE I. The systematic uncertainties included in the computation of the limit on the coupling strength of Z' to quarks.

<table>
<thead>
<tr>
<th>Systematic effect</th>
<th>Affected processes</th>
<th>Uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polynomial fit†</td>
<td>Nonresonant</td>
<td>1–5</td>
</tr>
<tr>
<td>Electron veto</td>
<td>$t\bar{t}$, W, Z, Z'</td>
<td>0.5</td>
</tr>
<tr>
<td>Muon veto</td>
<td>$t\bar{t}$, W, Z, Z'</td>
<td>0.5</td>
</tr>
<tr>
<td>Jet mass smear†</td>
<td>$t\bar{t}$, W, Z, Z'</td>
<td>0.7</td>
</tr>
<tr>
<td>Jet energy corrections</td>
<td>$t\bar{t}$, W, Z, Z'</td>
<td>2</td>
</tr>
<tr>
<td>Luminosity</td>
<td>$t\bar{t}$, W, Z, Z'</td>
<td>2.5</td>
</tr>
<tr>
<td>Trigger†</td>
<td>$t\bar{t}$, W, Z, Z'</td>
<td>3</td>
</tr>
<tr>
<td>N_{DDT}^2 efficiency</td>
<td>$t\bar{t}$, W, Z, Z'</td>
<td>5</td>
</tr>
<tr>
<td>Photon ID</td>
<td>$t\bar{t}$, W, Z, Z'</td>
<td>6</td>
</tr>
<tr>
<td>Jet mass scale†</td>
<td>$t\bar{t}$, W, Z, Z'</td>
<td>6</td>
</tr>
<tr>
<td>$W + \gamma$ normalization†</td>
<td>W</td>
<td>11</td>
</tr>
<tr>
<td>$Z + \gamma$ normalization</td>
<td>Z</td>
<td>45</td>
</tr>
<tr>
<td>$t\bar{t}$ normalization†</td>
<td>$t\bar{t}$</td>
<td>54</td>
</tr>
</tbody>
</table>

![FIG. 2. Upper limits at 95% C.L. on the coupling strength $g_{Z'q}$ of $Z' \rightarrow q\bar{q}$. The observed limit is shown as a solid black line, while the expected limit is dashed. The green (dark) and yellow (light) bands represent 1 and 2 standard deviation intervals. Limits from other searches and the indirect constraint from measurements of the Υ and Z boson decay widths [18] are also shown.](image-url)
In summary, a search for a low mass Z' resonance decaying to $qar{q}$ pairs has been presented, using data from proton-proton collisions at the LHC with a center-of-mass energy of 13 TeV. Jet substructure and decorrelation techniques are implemented to search for narrow resonances over a smoothly falling background of the jet groomed mass. No significant excess is observed above the standard model expectation. Upper limits are placed on the quark coupling strength g'_q of Z' bosons with masses between 10 and 125 GeV. Below 50 GeV, the results obtained with this trigger strategy probe the lowest diquark resonance masses reached by a hadron collider.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF

I. De Bruyn,
L. Dodd,
B. Gomber,
M. Grothe,
M. Herndon,
A. Hervé,
U. Hussain,
P. Klabbers,
A. Lanaro,
K. Long,
R. Loveless,
T. Ruggles,
A. Savin,
V. Sharma,
W. H. Smith,
and N. Woods

(CMS Collaboration)

1 Yerevan Physics Institute, Yerevan, Armenia
2 Institut für Hochenergiephysik, Wien, Austria
3 Institute for Nuclear Problems, Minsk, Belarus
4 Universiteit Antwerpen, Antwerpen, Belgium
5 Vrije Universiteit Brussel, Brussel, Belgium
6 Université Libre de Bruxelles, Bruxelles, Belgium
7 Ghent University, Ghent, Belgium
8 Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9 Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
10 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
11a Universidade Estadual Paulista, São Paulo, Brazil
11b Universidade Federal do ABC, São Paulo, Brazil
12 Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
13 University of Sofia, Sofia, Bulgaria
14 Beihang University, Beijing, China
15 Institute of High Energy Physics, Beijing, China
16 State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
17 Tsinghua University, Beijing, China
18 Universidad de Los Andes, Bogota, Colombia
19 Universidad de Antioquia, Medellin, Colombia
20 University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
21 University of Split, Faculty of Science, Split, Croatia
22 Institute Rudjer Boskovic, Zagreb, Croatia
23 University of Cyprus, Nicosia, Cyprus
24 Charles University, Prague, Czech Republic
25 Escuela Politecnica Nacional, Quito, Ecuador
26 Universidad San Francisco de Quito, Quito, Ecuador
27 Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
28 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
29 Department of Physics, University of Helsinki, Helsinki, Finland
30 Helsinki Institute of Physics, Helsinki, Finland
31 Lappeenranta University of Technology, Lappeenranta, Finland
32 IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
33 Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France
34 Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
35 Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
36 Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
37 Georgian Technical University, Tbilisi, Georgia
38 Tbilisi State University, Tbilisi, Georgia
39 RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
40 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
41 RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
42 Deutsches Elektronen-Synchrotron, Hamburg, Germany
43 University of Hamburg, Hamburg, Germany
44 Karlsruhe Institute of Technology, Karlsruhe, Germany
45 Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
46 National and Kapodistrian University of Athens, Athens, Greece
47 National Technical University of Athens, Athens, Greece
48 University of Ioánnina, Ioánnina, Greece
49 MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
50 Wigner Research Centre for Physics, Budapest, Hungary
51 Institute of Nuclear Research ATOMKI, Debrecen, Hungary
Institute of Physics, University of Debrecen, Debrecen, Hungary
Eszterhazy Karoly University, Karoly Robert Campus, Gyöngyös, Hungary
Indian Institute of Science (IISc), Bangalore, India
National Institute of Science Education and Research, HBNI, Bhubaneswar, India
Panjab University, Chandigarh, India
University of Delhi, Delhi, India
Saha Institute of Nuclear Physics, HBNI, Kolkata, India
Indian Institute of Technology Madras, Madras, India
Bhabha Atomic Research Centre, Mumbai, India
Tata Institute of Fundamental Research-A, Mumbai, India
Tata Institute of Fundamental Research-B, Mumbai, India
Indian Institute of Science Education and Research (IISER), Pune, India
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
University College Dublin, Dublin, Ireland
INFN Sezione di Bari, Bari, Italy
Università di Bari, Bari, Italy
Politecnico di Bari, Bari, Italy
INFN Sezione di Bologna, Bologna, Italy
Università di Bologna, Bologna, Italy
INFN Sezione di Catania, Catania, Italy
Università di Catania, Catania, Italy
INFN Sezione di Firenze, Firenze, Italy
Università di Firenze, Firenze, Italy
INFN Laboratori Nazionali di Frascati, Frascati, Italy
INFN Sezione di Genova, Genova, Italy
Università di Genova, Genova, Italy
INFN Sezione di Milano-Bicocca, Milano, Italy
Università di Milano-Bicocca, Milano, Italy
INFN Sezione di Napoli, Napoli, Italy
Università di Napoli "Federico II", Napoli, Italy
Università della Basilicata, Potenza, Italy
Università G. Marconi, Roma, Italy
INFN Sezione di Padova, Padova, Italy
Università di Padova, Padova, Italy
Università di Trento, Trento, Italy
INFN Sezione di Pavia
Università di Pavia
INFN Sezione di Perugia, Perugia, Italy
Università di Perugia, Perugia, Italy
INFN Sezione di Pisa, Pisa, Italy
Università di Pisa, Pisa, Italy
Scuola Normale Superiore di Pisa, Pisa, Italy
INFN Sezione di Roma, Rome, Italy
Sapienza Università di Roma, Rome, Italy
INFN Sezione di Torino, Torino, Italy
Università di Torino, Torino, Italy
Università del Piemonte Orientale, Novara, Italy
INFN Sezione di Trieste, Trieste, Italy
Università di Trieste, Trieste, Italy
Kyungpook National University, Daegu, Korea
Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
Hanyang University, Seoul, Korea
Korea University, Seoul, Korea
Kyung Hee University, Department of Physics
Sejong University, Seoul, Korea
Seoul National University, Seoul, Korea
University of Seoul, Seoul, Korea
Sungkyunkwan University, Suwon, Korea
Riga Technical University, Riga, Latvia
Vilnius University, Vilnius, Lithuania
California Institute of Technology, Pasadena, California, USA
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
University of Colorado Boulder, Boulder, Colorado, USA
Cornell University, Ithaca, New York, USA
Fermi National Accelerator Laboratory, Batavia, Illinois, USA
University of Florida, Gainesville, Florida, USA
Florida International University, Miami, Florida, USA
Florida State University, Tallahassee, Florida, USA
Florida Institute of Technology, Melbourne, Florida, USA
University of Illinois at Chicago (UIC), Chicago, Illinois, USA
The University of Iowa, Iowa City, Iowa, USA
Johns Hopkins University, Baltimore, Maryland, USA
The University of Kansas, Lawrence, Kansas, USA
Kansas State University, Manhattan, Kansas, USA
Lawrence Livermore National Laboratory, Livermore, California, USA
University of Maryland, College Park, Maryland, USA
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
University of Minnesota, Minneapolis, Minnesota, USA
University of Mississippi, Oxford, Mississippi, USA
University of Nebraska-Lincoln, Lincoln, Nebraska, USA
State University of New York at Buffalo, Buffalo, New York, USA
Northeastern University, Boston, Massachusetts, USA
Northwestern University, Evanston, Illinois, USA
University of Notre Dame, Notre Dame, Indiana, USA
The Ohio State University, Columbus, Ohio, USA
Princeton University, Princeton, New Jersey, USA
University of Puerto Rico, Mayaguez, Puerto Rico, USA
Purdue University, West Lafayette, Indiana, USA
Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
University of Tennessee, Knoxville, Tennessee, USA
Texas A&M University, College Station, Texas, USA
Texas Tech University, Lubbock, Texas, USA
Vanderbilt University, Nashville, Tennessee, USA
University of Virginia, Charlottesville, Virginia, USA
Wayne State University, Detroit, Michigan, USA
University of Wisconsin—Madison, Madison, Wisconsin, USA

Deceased.
Also at Vienna University of Technology, Vienna, Austria.
Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
Also at Universidade Estadual de Campinas, Campinas, Brazil.
Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
Also at Universidade Federal de Pelotas, Pelotas, Brazil.
Also at Université Libre de Bruxelles, Bruxelles, Belgium.
Also at University of Chinese Academy of Sciences, Beijing, China.
Also at Institute for Theoretical and Experimental Physics named by A.I.Alikhanov of NRC «Kurchatov Institute», Moscow, Russia.
Also at Joint Institute for Nuclear Research, Dubna, Russia.
Also at British University in Egypt, Cairo, Egypt.
Also at Suez University, Suez, Egypt.
Also at Purdue University, West Lafayette, Indiana, USA.
Also at Université de Haute Alsace, Mulhouse, France.
Also at Tbilisi State University, Tbilisi, Georgia.
Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.
Also at University of Hamburg, Hamburg, Germany.
Also at Brandenburg University of Technology, Cottbus, Germany.