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ABSTRACT. We study the spectrum of a system of second order differential operator D,, per-
turbed by a non-selfadjoint matrix valued potential V. We prove that eigenvalues of D,,, + V'
are located near the edges of the spectrum of the unperturbed operator D,,.

1. STATEMENT OF THE MAIN RESULTS

Spectral properties of non-selfadjoint operators have been recently a subject of interest of
many papers. A particular interest was related to the location of eigenvalues of differential
operators in the complex plane C. The corresponding results for Schrodinger operators can be
found in [1], [3]-[4] and in [5]. Some other problems were studied in the papers [6]-[10] and [12].

The operator we study is related to the quantum theory of a material consisting of two layers
of graphene. Namely, we consider the operator D = D,, + V', where

m 402 1,0 10 1/, 0 1 0
D (9 o 19 >0
m (482 —m) ’ O 2 (8:1:1 3 i 8x2> 0 = <8371 i a$2> m=0

This operator acts in the Hilbert space L?*(R?;C?). The domain of D is the Sobolev space
H?(R% C?). The potential V is a not necessary self-adjoint matrix-valued function

where the matrix elements are allowed to take complex values. For the matrix V' we denote

> WVig(a)?

4,j=1,2

Assuming that V' decays at the infinity in some integral sense we would like to answer the
question: ”Where are the eigenvalues of D located?”

Note that since D2, = A?+m?, the spectrum o(D,,) of D,, is the set (—oo, m]U[m, o). Our
results show that the eigenvalues of D are located near the edges of the absolutely continuous
spectrum, i.e. near the points +£m. Since the spectrum of the unperturbed operator has two
edges, our results resemble some of the theorems of the paper [2] related to the Dirac operator.
However, the main difference between the two papers is that we study a differential operator
on a plane, while the article [2] deals with operators on a line.

Theorem 1.1. Let k ¢ o(D,,) be an eigenvalue of the operator D. Let 1 < p < 4/3. Then

Cp Jge [V (2)Pd \/‘k’ \/’k+m‘+1 S1, 2wl
[P k+m
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with C, > 0 independent of V', k and m. In particular, if m = 0, then

MP1§3%%/JV@W%a 1< p<4/3.
R

The next statement tells us about what happens when p — 1.

Theorem 1.2. Let k ¢ o(D,,) be an eigenvalue of the operator D. Let u? = k? — m?. Then

c(jlul sup [ V)ldy+ sup [ (14 e =) IVildy)-+
z€R? J |z—y|<(2]p]) L z€R?

k — k
+O/|V km,/ m V o +1
k:+m k—m

where the constant C' > 0 is independent of V', k and m.

Note that this statement also holds true for m = 0.

Corollary 1.1. Let m = 0 and let k ¢ R be an eigenvalue of the operator D. Then
(|l sup | V)ldy+sup [ (L+]inla = ol]) [V )ldy)-+
z€R? J |g—y|<(2|k|)~1 zeR? JR2

—1—30/ |V (x)|dz > 1,
R2
where the constant C' > 0 is independent of V and k.

In particular, we see that if m = 0, then for small V| the eigenvalues of D are situated in the
circle {k € C: |k| < r} of radius r which has the following asymptotical behavior

C
rf\exp<—m>, as /]V]da:—>0.

The proof of Theorems 1.1 and 1.2 are given in Section 2. In Section 3 we consider a special case
where V = iW?, W = W*, In this case we can get a more precise information about location of
the complex eigenvalues, see Theorem 3.1. It is interesting to note that if m = 0 (no gap in the
continuous spectrum), then perturbations by such matrix-functions do not create any complex
eigenvalues. Here we have similarities with the result obtained for the one dimensional Dirac
operators in [2].

2. PROOFS OF THE MAIN RESULTS
In order to prove our main results we need the Birman-Schwinger principle formulated below.

Proposition 2.1. Let V = WoW,, where Wi and Wy are two matriz-valued decaying functions.
A point k € C\ o(D,,) is an eigenvalue of D if and only if —1 is an eigenvalue of the operator

X (k) := Wi(D,, — k)" *Wh.
In particular, if k € C\ o(D,,) is an eigenvalue of D then || X (k)|| > 1.
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The proof of this statement is standard and it is left to the reader as an exercise.

Below we always denote
W= VTV

and use the Birman-Schwinger principle with W, = W and W, = VW12,
Proof of Theorem 1.1. Since
(Dyy — k)t = (D + k) (Dyy — k) YDy + k) = (D, + k) (D2, — k)7,
it is easy to see that
(1) (D — k)" = (myo + k — ) (A — i)™ + (Do — ) ",

where
Do — 0 402 (1 0
0= 42 o) = \o -1)°

One can also note that the last term in the right hand side of (1) can be rewritten in the form
(2) (Do =)' = (Do + p)(A% = )",

The operator (A% — )71 is an integral operator with the kernel

() = o (H(VAr) = Hlivir))

where H(z) = Hél)(z) is the Hankel function of first kind and r = |z — y|. It is a simple
consequence of the fact that

1
(& =) =g (A= = (A ).
The kernel of (—A — p)~" is 47YH(\/mr). Another useful representation of g(z,y) follows
from the fact that the kernel of (—A — p)~! equals (see [11])

(2m) " Ko(—iy/lz — y),

e * T R t\-1/2
Ko(z) = v/ 5o U (14 =) at .
0(2) T(1/2) 22/0 e ( +22) ; larg z| < 7

Let us define

G(z)=H(z) — H(iz).
We need to know the behaviour of the function G only in the region 0 < argz < 7/2, where
we have

where

!G(Z)H!G’(Z)H\G”(Z)!S\/—CW if |z >1/2.

The behaviour of the function G near zero is determined by the expansion of the Hankel function
in the neighbourhood of z = 0. It turns out that

G <C, |G| < Cilelnlz™h [G"(2)] < Cilnfe™, i [zl < 1/2.

Let p,(|Jz — y|) be the kernel of the integral operator (Dy — u)~*

y’) _ i (MG(\/E’$_9’) 3§G(\/ﬁ’$—y’))

8u \2G(yplz —y) pG(alz —yl)
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Therefore

|oulz — = 3 |\/2|M\ G(Vule =y + [02G(Vulz — yDP? + 102G (Vulz — y])*.
As a consequence, if we denote by pg(|z — y|) the kernel of the operator (Dy — €)~! then
(3) lpe(r)] < Clnr™, it r<1/2,
and
(4) lpe(r)] < Cr=Y/2, it r>1/2

In order to prove the latter relations, one has to differentiate the integral kernel of (A% — p?)~1,
using the formulas

or 1z r 17

Dz 271’ 022 473
and

(97"_12 0?r 122

9z 21 9 A4r¥
Since the integral kernel of (A% — p?)~! is —G(\/_T) we obtain from (2) that

0*G(e/?r) |2 1/2

022

azG(ew/%) 2 i0/2, .2
| e
< Cr |G ()| + |G ()| + |G(e?r))).

The positive constants in the inequalities (3) and (4) do not depend on 6 € [0,7/2]. In
particular,

8lea(r)] < (

M :=supsup [ |po(lz —y|)|'dy <oo,  ¢>4.
0 zeR2 JR2

Let us estimate now the norm of the operator T = W (D — €?)~'W with the kernel
T(z,y) = W(z)ps(lz — y )W (y).

For that purpose, we estimate the sesquie-linear form of this operator :

Tuw)= [ [ oW @lle = y)W(g)uty) dedy

(T 0) ‘/Rz/RQ z)po(lz — y[)W (y)u (y)dfcdy2 <
L 1@l = sl ) P dody / L W@l = s (o) oy <

2
(sup ol = DI ()2 dy) ol ol <

Obviously,

2/q 1 1
(/ pole = yDidy) VIR Jul® o2, 4o =1, >4
R2 p q

Therefore,
1T <ClVI,, 1<p<4/3.
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We are now able to estimate the norm of the operator T, = W(Dy — k)~'W for k ¢ o(Dy).
Indeed,

|(T/€u7 ’U)| =

/R 2 /R o@W (@)pa(v/IMlJe = y)W ()uy) d:rdy‘ _

Lot RDW /ol = W /s Tt/ o/ TRD dxdy' <

kP2

cl\|\v
VORIV IDI otV = s el o)

Consequently,

ClVl
175 < T/
Observe now that the kernel of the operator (A* — 1*)~! is the function iG(\/k|z —y|)/(8u).

The function G(y/7t|r —y|) has the same properties as pg(+/|jt||x —y|). Moreover it is bounded.
Therefore, by mimicking the above arguments, one proves that

(5) WA )W < OVl <)< uys,

p|Cr=7p”

This leads to the estimate

C V(z)Pd
|W/(D — k) WP < fR2||p1’ <\/’k+m \/‘/H——m+1>’ W= k=,

Now the statement of our theorem follows from the fact that if k is an eigenvalue of D = D,,,+V,
then |W(D,, — k)"'W| > 1. The proof is complete.

In the picture below we describe the areas of possible location of complex eigenvalues depending
on the value of C' [, |V (x)|? dz, where m =1 and p = 1.2.
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Proof of Theorem 1.2. As before we use the representation
(D — k)™ = (mro +k — ) (A" — )™ + (Do — 1) .

The operator (A% — p?)~! is an integral operator with the kernel

() = o (H (Vi) = Hlivir))

where H(z) = Hél)(z) is the Hankel function of first kind. Again we denote
G(z) = H(z) — H(iz).

We need to know the behavior of the function G only in the region 0 < arg z < /2, where this
function is bounded. The boundedness of G implies the estimate (5) with p = 1.

It remains to estimate the norm of the operator T, = W (Do — )" 'W for Imp > 0. We
already know that if 1 = |u|e? the operator (Dy — u)~! is an integral operator with the kernel
po(v/ ]l |z — y|), where pg is a function having the properties

(6) lpo(r)] < Clnr™t it r<1/2,
and
(7) lpo(r)| < Cr Y2, if  r>1/2

The positive constants in these inequalities do not depend on 6 € [0, w]. As before, we estimate
the sesquie-linear form of this operator :

(Taev) = [ [ oW/ Tulle = y)W (0)uty) dody
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Obviously,
2
|(T,u,v) <

/Rg /Rz po(\/Iullz — y)W (y)uly) dzdy
L [ 1ol Tl — i1 ) oy / L W@l = ) P dady <
(Sgp /R [po(\/ 11| —y|>||v<y>|dy> )2 [lo]|

Therefore,

[Tl < sup /R2 oo (V| llz = yDIIV (y)| dy.
The bounds (6) and (7) imply

sup / ooV THlle — DIV ) dy

<c (Ilnlull o | Vildy+ sup [ <1+|1n|x—y||>|v<y>|dy),
z€R? J|z—y|<(2|p])~? z€R2 JR2

which leads to

730 < ¢ (Imlullsup [ Vildy+ s [ (14 ke o) Vildy).
lz—y|<2lu)~* R?

z€R?2 rcR2

Since
W (D — k)W < W (myo + k — o) (A = i) "' W | + || T
and since (5) holds with p = 1, we obtain

W (D, — k)~'W|

c(unmnsup/ |v<y>|dy+sup/ (14 Infz =yl |V( >|dy)
z€R? J |z—y|<(2|p|) ! z€R?

=N =h

The statement of Theorem 1.2 follows from the fact that if k is an eigenvalue of D = D,,, + V/,
then ||W(D,, — k)"'W]|| > 1.

3. A SPECIAL CASE

Consider now a special case, when V(z) = iW?(z), where W (z) = W*(z) is a matrix valued
function. It turns out, that in this case we can get a more precise information about the spectral
properties of the operator D.

Theorem 3.1. Let k ¢ o(D,,) be an eigenvalue of the operator D = D,, +V , where V. = iW?2.
Let o be the number in the upper half-plane defined by p* = k* — m?. Then

k k— 1
8) (0(‘ﬂ—1‘+‘—m—1)+1) —/ tr[V]da > 1,
U Iz 4 Jge
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where the constant C' is independent of V', m and k.

Proof. According to the Birman-Schwinger principle, k is an eigenvalue of the operator D if
and only if 1 is an eigenvalue of the operator X = —iW (D,,, — k)~'T. On the other hand, if 1
is an eigenvalue of X then ||[ReX]|| > 1. Since,

ReX = WIm(D,, — k)~'W,

we would like to have the explicit expression for the operator Im(D,, — k)~!. Let us first obtain
this representation for the case m = 0. Observe that Dy is the operator with the symbol

(e i 0.

The eigenvalues of this matrix are £[& + i&|2. The orthogonal projections P;(€) and P (€),
£ =& + i&, onto the eigenvectors depend only on arg(£). Therefore, the symbol of Dy is

€2 PL(E) — |67 Pa(€),
which implies that the integral kernel of Im (Dy — k)~! is

) - (Imk) Py (€) (Imk) P (§)
(2m) /R exp(iE(z —y)) ((|§|2 " Rek)?Z + (Imk)? | ([¢ = Re k) + (Im k)Z) dc.

It follows from this representation that the kernel of the operator Im (Dy — k)~! is bounded by
1/4 as using polar coordinates and changing variables |¢|? = ¢ we obtain

Imk 1
-1

Consequently,

[Whn (Do — k)W < tx (Whn (Do — k)W) < § / tr W2(2)da.
R2

If m > 0, then we have

1
[ReX| < \@mm% Tk (A - Mrle W Tm(Dy — )W |
and that
my,+k—p Sl('k’+m_1’ k:—m_lD
24 2 1 I

It remains to note that according to (5) with p = 1,
(A2 — 12| < c/ x| V] da
R2
The proof is completed. ([l

The next result says that the spectrum of the operator Dy is stable with respect to small
perturbations of the form V = iW?2.
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Corollary 3.1. Let m = 0 and let V = iW? with W* = W. Assume that

1
(9) —/ tr|V]dr < 1.
4 Jpo

Then the operator D = Dy + V' does not have eigenvalues outside of the real line R, i.e. the
spectrum of D is real.
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