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Abstract

A combined numerical-experimental method that enables accurate predic-

tion of not only the elastic moduli and tensile failure strengths of syntactic

foams, but also accounts for the experimentally observed scatter in these

measurements is presented. In general, for the systems studied, an increase

in microsphere content resulted in an increase in tensile modulus and a de-

crease in tensile strength. At low particle loading ratios, the variance in

the measured experimental strength can be almost entirely attributed to the

distribution of inter-particle distances between the microspheres, whilst at

high particle loadings, geometric variance in the microstructure is shown to

be only partially responsible for the observed scatter in strength data. Thus,

for the first time, a direct link between the underlying microstructure and

the experimentally observed scatter in fracture strength is drawn and sub-

stantiated with modelling.
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1. Introduction

Composite foams are known as syntactic foams when filled with hollow

microspheres. They are an efficient method to reduce weight in a high per-

formance part without compromising on mechanical properties. This makes

these materials particularly suitable candidates for applications in aerospace,

marine, military and transport. In these applications, lightweight, load-

bearing performance is crucial [1]. The porosity in a syntactic foam is located

entirely within the impermeable shell of the microsphere [2]. Not only does

this make these materials stronger and stiffer than conventional foams, it

also limits moisture uptake, a key requirement for marine applications [3].

A micrograph of a densely packed syntactic foam is given in Figure 1. In

this Figure, the microspheres are composed of borosilicate glass while the ma-

trix is an epoxy resin. The foam can be seen to consist of three major phases,

(1) the matrix, (2) the hollow glass spheres including both the external shell

and the internal void and (3) some porosity external to the microspheres.

The external porosity arises as a consequence of the manufacturing process

where, due to the proximity of the microspheres to each other, the uncured

resin has failed to completely fill the volume between the spheres. It can

also be observed that the amount of matrix porosity is minimal, and so the

effect of porosity is neglected in this work. By tailoring the individual struc-

tural and mechanical parameters of the syntactic foam composite such as

the choice of matrix material, diameter and volume fraction of the micro-

spheres, the optimum properties for a particular structural application can

be achieved.

Experimental investigations are currently the most accurate and reliable
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Figure 1: Scanning electron micrograph of a fractured syntactic foam sample. The volume

fraction of the glass microspheres is ≈ 64 %

method of obtaining mechanical properties of syntactic foams. Experimental

investigations into the mechanical properties of syntactic foams have been

conducted by several authors, including tensile properties [4–6], compressive

properties [7–9] and flexural properties [10]. Analytical methods, adapted

from those methods used to describe solid composite materials, have also

been applied to syntactic foams although these have mainly focused on pre-

dicting the effective elastic properties of syntactic foams. As in the case of

solid particulate composites, analytical models to predict the strength of a

syntactic foam are almost non-existent in the literature.

Recently numerical methods, such as the Finite Element Method, have

been used to model the syntactic foam using the smallest possible microme-

chanical unit cell structure, commonly referred to as the Representative Vol-

ume Element (RVE), to predict macroscopic material behaviour. Early mod-

elling attempts by, for example, Marur [11] and Antunes et al. [12] focused
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on determining the elastic properties of syntactic foams. These early stud-

ies adopted a unit cell approach and only briefly addressed the problem of

particle-particle interactions. A summary of the efforts to use numerical ap-

proaches to homogenise the elastic properties of syntactic foams is provided

by Bardella et al. [13] and other references therein.

Yu et al. [14] adopted a stochastic approach to the numerical prediction

of the strength of syntactic foams. They used a random sequential adsorption

approach to generate the microstructures. A condensing process proposed

by Segurado and Llorca [15] was used to obtain a higher volume fraction

of particles. Interactions between the glass microspheres and the matrix

were assumed to obey a traction-separation law, although no physical jus-

tification for the choice of parameters was given by the authors. Nian et

al. [16] reverted to a unit cell approach to model both the tensile modulus

and strength of syntactic foams. Work by Bardella et al. [17] have modelled

the failure of syntactic foam composites using a multi-particle unit cell ap-

proach. They use an average strain energy density to determine failure of the

glass microspheres [18]. Bardella et al. actively model polydisperse systems

by considering blends of different microspheres, although each microsphere

within a family is considered to have a nominally identical radius. Moreover,

they demonstrated that when microspheres are coated with polyurethane,

this triggers a different failure mode than that observed for an untreated

foam. A central open question left by the work of Bardella et al. is that

their model predictions of failure only predict a very small variation with

strength when considering a syntactic foam with either a low or high vol-

ume fraction of glass microspheres [18]. They duly note that their prediction
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disagrees with experimental results reported by Gupta et al. [19]. Gupta

et al. [19] and Tagliava et al. [20] both report a decrease in experimentally

measured flexural strength as the volume fraction of microspheres increases.

Many of these earlier works have emphasised the brittle nature of the

failure of syntactic foams. Indeed, a thorough inspection of the experimental

results show significant error bars on the reported strength values. Brittle

failure typically implies a natural degree of scatter in the strength of nomi-

nally identical specimens. Understanding the source of scatter has important

engineering and design implications. The strength that can be safely used for

design will be less than the average strength. The allowable design strength

will depend on the exact form of the distribution of strengths measured exper-

imentally. The current work aims to build on the recent literature and make

numerical predictions of the observed experimental variance in the fracture

strength.

2. Computational Model

2.1. Generation of Model Geometry

A common method used to study the micromechanics of particulate com-

posites is to assume that the bulk strength behaviour of the particles can

be adequately described by a regular arrangement of particles e.g. [21–23].

The assumption of regularity, while providing detailed information on the

interaction between particles, does not account for the variation in inter-

particle distance that would be commonly encountered in a real micro- or

nano-composite. These models are therefore unable to predict experimen-

tally observed variations in the strength of syntactic foams, which often fail
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in a brittle manner and with a high degree of scatter associated with the

measured failure strength [24].

The random sequential algorithm (RSA) [25] is widely applied to generate

random distribution of microspheres within a unit cell. In the first step in the

algorithm, the position of the first particle is randomly selected within the

unit cell. Next, the position of the second particle is selected and a collision

check is performed between the two particles. If an overlap is detected, then

the positioning of the second particle is replaced until no overlap is detected.

This process is repeated with each new particle being checked for collisions

with all of the previously placed particles. While this algorithm is elegant in

its simplicity, it is not efficient to use for high volume fractions of particles.

Indeed, several authors have reported only achieving volume fractions of up

to 30% in three-dimensional space using this method [15, 24, 26].

In order to obtain packing fractions approaching the random close pack-

ing limit of 64%, the approach first outlined by Lubachevsky and Stillinger

[27] for close packing of disks is adopted. A variation of this algorithm was

used by Bardella et al. [17]. This algorithm is based on a molecular dynam-

ics approach where the particles move around inside a volume an interact

with each other. In the first instance, the desired number of particles are

placed within the unit cell using the RSA approach described previously.

The individual particles are sized such that they occupy a very small volume

in comparison to the overall volume of the space which is to be packed. A

velocity vector, vi is assigned to each particle and each particle is prescribed

a growth rate with respect to time. The first time-step, dt, is calculated to

coincide with the time of the first particle-particle collision, i.e. event driven
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simulation. Subsequent time-steps are calculated using the same approach.

The radius of the particles, ri, at each time-step, i, increase according to the

following growth law:

ri = r0,i(1 + kt) (1)

where r0,i is the initial radius of the ith particle and k is a small positive value

chosen to control the rate of growth. The choice of k is not arbitrary but can

greatly affect the packing dynamics of the system. In general a large value

relative to the particle velocities will cause a jammed irregular configuration

while very small values will result in a much more crystalline packing. In-

deed, Lubachevsky and Stillinger have surmised that in the limit a+→ 0 the

algorithm should eventually reach the maximum packing fraction allowable.

Collisions between particles are treated elastically. The treatment of parti-

cles which intersect the boundary of the unit cell have been dealt with in

two ways. The first option that has been implemented within the procedure

limits particles to be contained entirely within the unit cell; i.e. there are

no particles intersecting the boundary, a ’hard’ boundary condition whereby

any particles which intersect the boundary reflect of the cell wall. Such a

system is preferable because non-physical stress concentrations occurring at

the interface between the microspheres, matrix and the boundary of the rep-

resentative volume failure, which can cause premature failure of the model,

are produced. The procedure is also capable of handling particles which in-

tersect the surface of the RVE by prescribing periodic boundary conditions

on the faces of the unit cell. This means that when a particle or part of a

particle leaves the unit cell through a face, it reappears at the opposing face.

This represents a so-called ’soft’ boundary condition and results in models
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which can be used to accurately explore the maximum packing fraction of

different families of particles. A flowchart outlining the main steps and se-

quencing involve in the particle the particle placement algorithm is given in

Figure ??.

2.2. Construction of the Finite Element Model

A Python script was used to automate the pre- and post-processing of the

finite element models in Abaqus 6.12 [28]. An example of typical microstruc-

tures generated with a ’soft’ boundary condition is given in Figure 3. The

positions and radii of the spherical particles generated via the Lubachevsky-

Stillinger algorithm described in Section 2.1 are used as inputs for generation

of the model. The automated nature of the finite element implementation

allows the simultaneous investigation of many instantiations of randomly gen-

erated models at a specified volume fraction with minimal user interaction.

This allows the examination of statistical variation in measured properties

at a specified volume of microspheres. The stochastic models were meshed

automatically using 4-node tetrahedral element for the matrix (C3D4), 8-

node cohesive elements for the microsphere/matrix interface, COH3D8, and

8-node hexahedral elements for the microspheres (C3D8R). The model uses

the mm-MPa system of units with the global mesh size set at 0.5rms, where

rms is the microsphere radius. A mesh convergence study was conducted

to ensure that at the chosen mesh size, the results were independent of the

meshing approach. The mesh size was automatically refined locally for the

microspheres, at the microsphere/matrix interface and for the cohesive ele-

ments. In order to avoid meshing errors when running the model, two checks

were defined within the pre-processing step. The first defines a minimum

8



distance that a sphere must be from any boundary in the unit cell, this was

set as 0.1rms. If the sphere is within the unit cell then it is included in the

model. The second check ensures that the spheres are not touching. Fi-

nally, the microspheres are scaled such that there is at least a distance of

0.1rms between microspheres. This allows the insertion of a thin layer of

cohesive elements around each microsphere. The cohesive elements govern

the debonding behaviour of the microspheres from the matrix.

Each representative volume element was subjected to a steadily increasing

quasi-static strain in the positive x-direction. Brittle failure was prescribed

in both the glass microspheres and the matrix resin. Symmetry planes were

applied to the faces of the model pointing in the negative x, y and z direction

respectively, while the remaining faces were set as traction-free. The simula-

tions were run using Abaqus/Explicit. This allows the numerical framework

to effectively model the the complete fracture process, whereas an implicit

procedure would fail to converge once the strong non-linearities associated

with cracking begin to appear. As no strain rate effects are expected at

quasi-static rates of loading, mass scaling was used to reduce the runtime of

the models while ensuring that inertial effects remained negligible.

The model was split into two steps, each with a defined number of output

time intervals, in order to reduce the computational time for each model. The

first step comprises of 5 time intervals up to 20% of the applied strain. From

20% to 100% of applied load 60 time intervals were prescribed. The Python

script also automatically generates the stress-strain curve for each simulation.

Only eight time intervals were used for post processing purposes - the initial

four time-steps were used to evaluate the tensile modulus, while the final
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Table 1: Material properties used in the current work.

Properties Matrix Microspheres

Young’s modulus [GPa] 3.17 70

Poisson’s ratio [-] 0.35 0.2

Failure strength [MPa] 93.25 965

Fracture energy [J/m2] 100 6 [30]

four intervals prior to failure were used to evaluate the failure strength. The

strain was taken as the applied strain at the time interval of the simulation,

whilst the stress was calculated using the volumetric homogenisation method

[29].

2.3. Material properties

The material properties are shown in Table 1. The epoxy matrix is mod-

elled as a linear elastic material and the microsphere particles are the IM30K

hollow glass microspheres from 3M, with an average diameter of 16µm, and

a particle radius to wall thickness fraction of 10 [31]. In the current work no

consideration was given to the distribution of particle size of the IM30K glass

microspheres. Both materials were assumed to behave in a brittle manner.

The failure strength of the glass microspheres was estimated based on the

reported crush strength, 193 MPa, as per the data sheet. The reported crush

strength is the pressure at which 90% of the microspheres have survived a

hydrostatic compression test. Treating the microspheres as a thin walled

spherical vessel, it can be noted that the maximum stress in the microsphere
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wall can then be calculated by:

σ =
PRms

2tw
, (2)

where P is the applied pressure and Rms/tw is the ratio of the particle radius

to wall thickness. Thus, the estimated failure strength of the glass micro-

spheres is calculated as 5P = 5 × 193 = 965 MPa. It is important to note

that this value is a compressive strength being used as a tensile failure stress

in the numerical models. This can be rationalised by considering the ex-

tremely small value of the wall thickness, i.e. sub-micron, and noting the

reduced potential for the existence of a flaw exceeding the critical flaw size

at this length scale. It is therefore not unreasonable, in the absence of better

information, to then assume that the tensile and compressive strengths of

the glass are equal at this length scale.

The fracture energy of the glass was taken from the literature as 6 J/m2[30].

The fracture energy of the epoxy matrix was measured directly using single-

edge notch bend tests. The second parameter required to construct the cohe-

sive zone model, the fracture strength, is difficult to measure independently

but is expected to be of the order of the tensile yield strength. The fracture

strength and fracture energy of the cohesive interface between the micro-

spheres and the matrix are also unknown. However, a close examination of

the fracture surface in Figure 1 reveals glass microspheres with a very clean

and smooth surface, with little evidence of residual epoxy adhering to the

surface of the particles. This indicates that the values for interface cohesive

strength and fracture energy should be significantly lower than that of the

resin matrix.

Finally, it is important to note the limitations of the models, when com-
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pared to real world materials and applications. We have assumed that all of

the microspheres have the same diameter, i.e. the nominal diameter given

by the datasheet [31]. Incorporating polydispersity into the model can be

readily achieved, but the size of the micromechanical model required to be

statistically representative can become unduly large. Bardella et al. [18]

have presented work on polydisperse spheres and demonstrate the ability to

predict the order of collapse of the microspheres under compression, namely

the lightest microspheres collapse first. In the current work the high-strength

microspheres are never observed to collapse. Thus, the role of polydispersity

is relatively unimportant for the syntactic foam presented here. However, in

order to extend the functionality and applicability of the models presented

here to model syntactic foams manufactured with low strength microspheres,

or blends of high and low strength microspheres, the role of polydispersity

would have to be considered. For similar reasons, the effect of the presence

of matrix voids have also been neglected. Matrix voids do exist and are es-

pecially prevalent at high volume fraction syntactic foams. Nevertheless, in

spite of the idealisations and simplifications made in the model, some im-

portant information can be obtained about the behaviour of syntactic foam

composites.

3. Experimental Methods

3.1. Materials

A standard diglycidylether of bis-phenol A (DGEBA) epoxy resin was

used as the base resin in the current work. The resin, Araldite LY556, was

obtained from Huntsman, UK and has an epoxide equivalent weight (EEW)
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of 185 g/eq. The curing agent used was iso-phorone diamine (IPD) obtained

from Sigma=Aldrich, UK, with an amine equivalent weight of 43 g/eq. Sam-

ples containing 10-30% microsphere volume fractions were manufactured by

combining the resin and curing agent in the stoichiometric ratio. The re-

quired amount of microspheres, with the appearance of a fine powder, were

then added to the mixture under continuous stirring to ensure the micro-

spheres were adequately dispersed. The mixture was subsequently degassed

in a vacuum chamber for 10 minutes and a plaque of material cast in a sili-

cone mould. Samples of 40 and 50% microsphere volume fraction could not

be made using this method as the sheer quantity of microspheres in the resin

forms a highly viscous paste. This resulted in an inhomogeneous mixture of

microsphere dense and resin dense regions which are unsuitable for testing.

The highest volume fraction sample, nominally 60% volume fraction, was

manufactured using a closed mould under pressure. This method overcomes

the problem of microsphere agglomeration but does not allow precise control

of the volume fraction in the resultant composite; and only tightly packed

samples can be made, i.e. systems with a particle volume fraction close to

their maximum theoretical volume fraction of randomly packed particles.

3.2. Determination of tensile properties

Tensile tests were performed on the bulk epoxy resin as well as the glass

microsphere modified epoxy systems to obtain the tensile Young’s modulus

and the tensile failure strength. The tests were conducted in accordance with

ISO-527 [32]. Dumbbell shaped specimens of type 5A with a gauge length of

30 mm were machined from 3 mm thick cast plaques of material. The tests

were conducted at a constant crosshead displacement rate of 1 mm/min with
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the strain measured directly on the sample using a clip-gauge extensometer.

Each tensile test sample was carefully prepared by polishing the edges of the

sample within the gauge length to ensure a smooth finish and to minimise

the influence of the sample preparation on the fracture strength. At least five

specimens were tested for each formulation in order to assess the variability

of Young’s modulus. An additional 15 specimens were tested in order to

generate enough experimental data to statistically analyse the variation in

fracture strength of the glass-microsphere modified epoxy composites.

4. Results and Discussion

4.1. Experimental Results

The experimentally determined values of Young’s modulus and fracture

strength are given in Table 2. It can be seen that the Young’s modulus

increases with the addition of glass microspheres up to 40 vol.%. No further

increase was observed with increased microsphere loading of ≈60 vol.%. The

fracture strength was observed to decrease with increasing particle loading.

It is of interest to note that the standard deviation of the fracture strengths

also decreases with increased particle loading, excluding the results for the

resin without any particulate modification. This will be discussed further in

conjunction with the numerical predictions.

Analytical models for predicting the strength of particulate composites

are less prevalent in the literature than those for predicting the moduli. A

common approach assumes that the strength is determined by the effective

area of load-bearing matrix. This gives rise to equations where the strength
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Table 2: Experimentally measured mechanical properties of different syntactic foam for-

mulations.

vf E [GPa] σf [MPa]

0 2.90±0.09 76.3±4.8

10 2.96±0.27 64.9±10.2

20 3.62±0.18 55.4±10.0

30 3.99±0.27 43.3±7.1

40 4.88±0.33 -

60 4.79±0.30 34.9±2.8

is described by a power law.

σc = σm(1− aV n
p ) (3)

where σc and σm are the strengths of the composite and matrix respectively,

Vp is the volume fraction of the reinforcing particle and a and n are constants

that depend on the particle geometry and arrangement in the composite.

Nielsen [33] introduced the concept of a stress-concentration factor and, for

particles arranged cubically in a matrix, arrived at the following relationship

σc = σm(1− V 2/3
p )K (4)

where K is the stress concentration factor. Nielsen suggested that a suitable

value of K as 0.5. Nicolais and Narkis [34] also considered a matrix with

particles arranged in a cubic format. They assumed that fracture took place

in the minimum cross-section of the matrix phase. Equation 3 can then be

rewritten as:

σc = σm(1− 1.21V 2/3
p ) (5)
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The experimentally obtained fracture strengths are plotted in Figure 4.

Predictions made using both the Nielsen model and the Nicolais-Narkis model

are also given. In each of these models, the fracture strength of the unmod-

ified epoxy was used as the matrix strength, i.e. σm = 76.3 MPa. Using a

stress concentration factor of, K = 0.5, as suggested by Nielsen results in

very poor agreement between the experimental observations and the analyt-

ical predictions. A value of K = 1 gives a much better agreement with the

experimental observations, although there is still significant under-prediction

of the fracture strength for syntactic foams with a very high volume fractions

of particles. The Nicolais-Narkis model under-predicts the experimental ob-

servations and is in general a poorer indicator of the experimental than the

Nielsen model, K = 1. Finally, it is important to observe that both of the

analytical models employed are unable to capture the large standard devia-

tions in the experimental data, but only provide an average value of fracture

strength.

4.2. Numerical Predictions

4.2.1. Calibration of the cohesive properties

The failure parameters of the cohesive law, fracture energy and cohesive

strength, can be difficult to extract experimentally. Previous methods have

relied on calibration with experimental data. While the equivalent resin fail-

ure properties can be derived from macroscopic experiments, e.g. fracture

toughness tests, differences in stress states at the microscopic level mean

they may not be the correct properties to use at the microstructural scale.

As such a calibration process was conducted. This calibration process follows

a similar approach to that outlined by Carolan et al. [35]. The first assump-
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tion in the process is that fracture strength in tension is likely to be strongly

dependent on the cohesive strength damage parameters and more weakly

dependent on the cohesive fracture energy. The process relies on recognising

that when adjusting either of the cohesive strength damage parameters, i.e.

σm or σint, the effect of adjusting either parameter independently of the other

on the predicted failure strength of the syntactic foam will be pronounced to

a greater or lesser degree in the materials with a high volume fraction of mi-

crospheres than those with a low volume fraction of microspheres. Similarly,

adjusting the fracture energy of either the interface, Gint, or of the matrix,

Gm will affect the predicted macroscopic fracture strength to a greater or

lesser degree, depending on the microsphere volume fraction. Since, these

parameters are assumed to be a constant, i.e. it is assumed that the cohesive

properties of the resin, σm and Gm, and of the interface, σint and Gint, do not

change with microsphere volume fraction, it is possible to isolate a particu-

lar combination of these four parameters that best predict the experimental

behaviour of the syntactic foams over the range of entire volume fractions

investigated.

The calibration process begins with an initial estimate for the cohesive

properties of the matrix and the interface, σm, Gm, σint and Gint. For the

matrix properties, it is prudent to take the experimentally measured values

outlined in Section 4.1. The interface properties are much more difficult to

measure, but some logical assumptions can be made to make a good first ap-

proximation of the relevant values. First, it can be assumed that the proper-

ties will be of the order of the cohesive properties of the matrix. Moreover, the

fracture surface presented in Figure 1 clearly show clean microspheres with
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no residual resin on the particles. This implies that the adhesion between

the microspheres and the resin is relatively poor, so it would be expected

that σint < σm and Gint < Gm.

Sensible upper and lower bounds on the cohesive properties of the inter-

face and matrix are selected. The initial upper bounds for both the resin and

interface are set to be twice the values measured experimentally, while the

initial lower bound is set to some arbitrarily small value. The initial values

for the optimisation routine are chosen according to the following rules.

G(i) =
Glb +Gub

2
(6)

σ(i) =
σlb + σub

2
(7)

where i represents the iteration number and lb and ub denote the lower and

upper bound respectively. A reduced number (n = 5) of models are evaluated

at each volume fraction and the mean failure strength from the models, σnum,

is compared to the mean failure strength from the experimental data, σexp.

The upper and lower bounds for the cohesive properties are then updated ac-

cording to the rules outlined in Table 3. In order to speed up the calibration

process, the unit cell with the failure strength closest to the mean value is

automatically selected and only this unit cell is evaluated over the remaining

iterations. The optimisation routine is terminated once the cohesive proper-

ties change by less than 1% between iterations. The calibration procedure

for the cohesive properties of the interface and resin are run sequentially.

Following the calibration procedure the cohesive properties used in the nu-

merical model for the interface and resin are chosen as. Gint = 0.04 kJ/m2,

Gres = 0.075 kJ/m2, σint = 23.2 MPa and σresin = 102.8 MPa. The value
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of interfacial strength arrived at as a result of the calibration process agrees

well with values reported previously in the literature for syntactic foams [6]

and glass fibre epoxy composites [36–38].

It is of interest to note that the calibration procedure has changed the

values of cohesive strength and fracture energy from those measured in the

bulk resin via fracture testing. The fracture energy has decreased from 0.100

kJ/m2 to 0.075 kJ/m2 while the cohesive strength has increased marginally

from 93.25 MPa to 102.8 MPa. While the exact reason for this change has

not been investigated, it is thought to be related to the effect the particles

have on locally increasing the level of constraint in the matrix, forcing the

epoxy matrix to behave as a stronger, more brittle material.

Table 3: Optimisation rules for updating cohesive properties.

Case 10 vol. % 55 vol. %

σnum < σexp Glb(i+ 1) = G(i)+Glb(i)
2

σlb(i+ 1) = σ(i)+σlb(i)
2

σnum > σexp Gub(i+ 1) = G(i)+Gub(i)
2

σub(i+ 1) = σ(i)+σub(i)
2

4.2.2. Tensile Modulus

The numerically predicted tensile modulus is plotted in Figure 5 and com-

pared to the experimentally obtained results. Reasonably good agreement

between the numerical predictions and the experimentally measured values is

observed. The micromechanical numerical model is capable of picking up the

plateau in Young’s modulus observed experimentally, although the numeri-

cal model does under predict the Young’s modulus of highly filled syntactic

foams.
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4.2.3. Failure strength

Figure 6 presents a comparison of the numerical predictions of failure

strength made by the micromechanical method developed in this work with

the experimentally observed failure strengths. Excellent agreement is ob-

served between the predictions and measurements indicating that the devel-

oped model is capable of predicting the tensile failure response of polymer-

matrix glass-microsphere syntactic foams across a wide range of particle load-

ings. This result is, in and of itself, hardly surprising, since the general trend

of decreasing strength with increasing particle loading can be recovered by

the simple analytical models such as Nicolais-Narkis and Nielsen and the

cohesive parameters used in the study were calibrated using representative

microstructural geometries from the study. The numerical model however,

does reveal some interesting information when considering the experimentally

observed scatter in failure strengths. The standard deviation of both the ex-

perimentally measured and numerically predicted failure strength, SD(σf ),

is plotted in Figure 7. It can be observed that, both in the experiment and in

the numerical model, the standard deviation of the strength decreases with

increasing microsphere loading. A similar reduction in standard deviation

with increased microsphere loading was reported by Tagliava et al. [20] for

flexural strength results, although no remark on the significance of this result.

However, Gupta et al. reported no obvious trend in standard deviation for

compressive strength. Both Tagliava et al. and Gupta et al. investigated the

same vinyl ester, glass syntactic foam composites. Moreover, in the current

work, there is remarkable agreement in the degree of scatter obtained be-

tween the experimental measurements and the numerical predictions. This
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lends the presented numerical model a predictive power not reported be-

fore in the literature; an ability to describe the scatter observed in strength

experiments.

In the current work, the only difference between different instantiations of

a microstructural model at a given volume fraction is the geometry, i.e. the

positions of the microspheres within the unit cell relative to each other. All

other possible variables have been kept constant, e.g. σint, although in reality,

these values may differ from microsphere to microsphere, and even across the

surface of one microsphere. Thus, it is apparent that the experimentally ob-

tained variation in fracture strength, σf , can, at least in part, be attributable

to the randomness of the underlying microstructure. To emphasise this point,

the variation in the distribution of microspheres was measured at each volume

fraction. For each microsphere, the nearest neighbour, ie. the microsphere

closest to that microsphere, was identified. The distance between the pair of

nearest neighbour microspheres was subsequently computed. This is termed

the inter-particle distance, (IPD). Finally, the standard deviation of these

computed distances was then taken as a single-value representation of the

randomness of the microsphere placements. In Figure 8 the standard devia-

tion of the numerically obtained fracture strength, SD(σf ), is plotted versus

the standard deviation of the inter-particle distance, dIPD, normalised with

respect to the diameter of the microspheres, dms. A very strong correla-

tion between the variation in microstructural geometry and the variation in

syntactic foam strength can be observed. The evidence presented in Fig-

ure 8 strongly supports the argument that variation in fracture strength of

syntactic foams is governed by the microstructure.
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4.3. Weibull Analysis

Strength measurements of nominally identical syntactic foam specimens

typically exhibit large degrees of scatter in the measured data [39]. Conse-

quently, the strength of syntactic foams is poorly defined using an approach

based solely on considering the average and standard deviation of the experi-

mentally measured strengths. A more informative approach is to use Weibull

statistics to quantitatively characterise the scatter in strength data.

The Weibull distribution has been used extensively in the ceramics com-

munity to accurately describe the strength distribution of brittle materials

[40–43]. This theory assumes a direct correlation between the density of

flaws, and the subsequent strength distribution. In the micromechanical

models, the flaws can be assumed to be the glass microspheres. The theory

is based on the weakest link hypothesis, whereby specimen failure is due to

the failure of the weakest volume element. While recent research may have

shown this not to be strictly accurate, the distribution does provide a simple

and straightforward characterisation method [42, 43]. For a three-parameter

Weibull distribution the cumulative failure probability of a material subjected

to a uniform stress, σ is given by:

F (σ) = 1− e
(
−
[
σ−σth
σ0

]m)
(8)

where σ0 is the characteristic Weibull strength, σth is a threshold strength,

below which no failure will occur, and m is the shape parameter for the

Weibull distribution, known as the Weibull modulus. A low Weibull modulus,

m, is indicative of a wide degree of scatter in the measured strength data.

For most brittle materials, this is of the order of 1-10 [44]. Equation 8 is a
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three-parameter distribution. For many materials the threshold strength, σth

is taken to be zero and the distribution reduces to the more commonly used

two-parameter distribution. Wachtman et al. [44] have described a second

type of three parameter distribution, whose cumulative failure probability is

described by:

FP (σ) = 1− e
(
−
[
σ
σ0

]m
+
[
σP
σ0

]m)
(9)

where σP is the proof stress. Note that Equation 9 is not equivalent to the

classic three-parameter distribution in Equation 8. Wachtman proposes it

as an alternative three parameter distribution which has found considerable

application in describing the variation in strength data after a proof stress

procedure has been carried out. This form of the distribution better repre-

sents the data in the current work.

Figure 9 presents a statistical comparison between the experimental mea-

surements and the numerical predictions for syntactic foam composites at low

volume fraction, 10%, and at high volume fraction, 55%-60%. A number of

observations may be made from a close inspection of these graphs. Firstly,

there is excellent agreement between the experimental measurements and the

numerical predictions for the stochastic models with a microsphere volume

fraction of 10%. Both the experimental results and the numerical predictions

exhibit a lower tail to the distributions. As discussed previously, the exis-

tence of a lower tail to the distribution indicates some lower bound, or proof

stress, below which failure will not occur. One can also argue about the ex-

istence of an upper bound in the experimental and numerical data presented

for the 10 vol.% syntactic foams. In a similar argument to that made for

the lower tail, the existence of an upper tail indicates that there also exists
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anmaximum strength which can be achieved in the syntactic foam compos-

ite. The excellent agreement between experiment and prediction implies that

the variation in the underlying microstructure is indeed responsible for the

observed variation in fracture strengths experimentally.

In the case of the highly filled syntactic foam, the correlation between

the experimental measurements and numerical predictions is not as good as

in the case at lower volume fractions. The stochastic models predicted a

slightly tighter distribution than the experimental observations. Neverthe-

less, the essential features of the three-parameter Weibull distribution are

still captured, i.e. the existence of a lower tail to the Weibull distribution. In

a highly filled syntactic foam composite, where the particle volume fraction

approaches the random close packing limit, there cannot be much variation

in microstructure, in terms of the distance between particles. Any variation

between microstructures can only manifest as a variation in the inclination

of the vector connecting nearest neighbour centres to the direction of the

applied external loading. Indeed, at the random close packing limit, all mi-

crospheres (except rattlers that occur sporadically), will be touching their

nearest neighbours by definition. Thus the geometric variation in the the

microstructure alone, is insufficient to explain the observed variance in frac-

ture strength.

4.4. Parametric Study

To further understand the role of the matrix, σresin and interface, σint

strength on the failure behaviour of syntactic foam composites a parametric

study was carried out. For each volume fraction, the matrix strength, σresin,

was increased and decreased by 50%, i.e. 1.5× σresin and 0.67× σresin, while
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keeping the value of the interface strength, σint constant. The results of

this study are presented in Figure 10 (a). It can be seen that by changing

the value of σresin, large differences in the average fracture strength can be

obtained at low volume fractions of microspheres, while for heavily loaded

syntactic foam composites, no significant changes can be observed,

Figure 10 (b) presents the results of the corollary, whereby the interface

strength, σint was increased and decreased by 50% with σresin held constant.

While some differences in average fracture strength can be observed at low

volume fractions, these are not as significant as in the case presented in Figure

10 (a). Moreover, large improvements in the average fracture strength can be

made for highly filled composite syntactic foams by adjusting the interface

strength.

Once again, the use of Weibull statistics to analyse the stochastic models

provides much more insight into the underlying behaviour. The effect of

varying the cohesive strength of the resin, σresin, on the resulting Weibull

distribution of fracture strengths is given in Figure 11 for a volume fraction

of (a) 10% and (c) 55-60%, while the effect of varying the cohesive strength

of the interface, σint, is given in Figure 11 (b) and (d) for the same volume

fractions. The vertical lines represent the input cohesive strength values of

either the resin or the interface.

In the case of a low volume fraction syntactic foam composite, increasing

or decreasing σresin by 50%, Figure 11, does not alter the shape of the Weibull

distribution, except that the entire curve shifts to higher values of strength,

this means that the Weibull modulus, m, does not change significantly, but

the characteristic strength, σ0 does. On the other hand, modulating the
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value of σint, Figure 11 (b), does not have much of an effect on the fracture

strengths recorded at the upper end of the distribution, but a divergence in

fracture strengths is noted at progressively lower strength values. Indeed,

in the case where σint is reduced to 0.67×σint a very significant lower tail

emerges. The scatter in the experimental values increase and a reduction in

the Weibull modulus is thus calculated.

A different picture appears when one considers the high volume fraction

syntactic foams. Adjusting the cohesive strength of the resin, σresin, as shown

in Figure 11 (c) has very little effect on the distribution at the lower end of

the predicted values, but a divergence at the upper end is predicted. While

a potential increase in the characteristic strength of the syntactic foam is

obviously welcome, in this case, it is tempered by a reduction in Weibull

modulus. Finally, adjusting the cohesive interface strength, σint, has the

effect of translating the predicted fracture strengths, much like the effect

adjusting σresin had in Figure 11 (a).

Thus, it appears that the tensile fracture behaviour of syntactic foams

is governed by the strength properties of the matrix when low volume frac-

tion syntactic foams are considered, but by the interfacial strength between

the microspheres and the matrix when high volume fractions are concerned.

Moreover, the extreme upper and lower values of fracture strength predicted

using the micromechanical models are conservatively bounded by the cohe-

sive properties of the interface and the resin. From a design point of view,

it would be preferable to design using predictable material properties. Such

a material would have as high Weibull modulus, m, i.e. a low scatter in

strength properties. The numerical models suggest that such an increase in
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m can be achieved by reducing the gap between the cohesive strength of the

matrix, σresin, and that of the interface between the microspheres and the

matrix, σint.

5. Conclusions

A numerical method for predicting the mechanical properties of syntactic

foams has been developed. The method is capable of predicting the failure

of syntactic foams across a wide range of particle loading, from very low vol-

ume fraction up to systems where the particle packing fraction approaches

the random close packing limit. The importance of the correct choice of both

numerical homogenisation scheme and initial cohesive stiffness when formu-

lating a micromechanical model is demonstrated. Moreover, the model can

predict the expected variance in fracture strength for a given microsphere

volume fraction. The variation in fracture strength has been linked to the

randomness of the underlying geometry. A sensitivity study of the cohe-

sive parameters controlling the failure mechanisms has demonstrated that,

at high microsphere volume fraction, the strength of the cohesive interface is

critical in controlling the overall failure strength of the syntactic foam, while

at low microsphere volume fractions, the strength of the matrix is more im-

portant. The results highlight the importance of considering randomness

and variation in the microstructure of syntactic foam composites, or indeed

particulate composites in general. The modelling approach developed has al-

lowed, for the first time, accurate predictions of the mechanical performance

including the experimentally observed scatter of this important class of mate-

rials. These materials are finding novel application in the aerospace, marine
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and transport sectors. The combined experiments and modelling presented

can be used to design stronger syntactic foam composites and allow for more

robust design of components containing syntactic foam composites
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Figure 2: Particle placement algorithm (RSA = Random Sequential Adsorption, L-S =

Lubachevsky-Stillinger algorithm).
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(a) 10 vol.%. (b) 55 vol.%.

Figure 3: The FEA model of the syntactic foam for (a) vf = 10% and (b) vf = 55%. The

matrix materials is coloured yellow and the microspheres are shown in grey.
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Figure 4: Fracture strength versus microsphere vol.%. Theoretical predictions made using

the Nielsen (K = 1 and K = 0.5) and Nicolais-Narkis models are also shown.
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Figure 5: Comparison of experimentally measured Young’s modulus with numerical pre-

dictions made by the micro-mechanical model.
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Figure 6: Comparison of experimentally measured failure strength with numerical predic-

tions made by the micro-mechanical model.
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Figure 7: Comparison of the experimentally measured standard deviation of fracture

strength with the numerical prediction.
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Figure 8: Corrleation between variation in normalised inter-particle distance, dIPD/dms

and syntactic foam tensile fracture strength, σf . The linear fit is to guide the reader.
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Figure 9: Weibull distribution of experimental measurements and numerical predictions

for syntactic foams with 10 vol.% (squares) and 55-60 vol.% (circles).
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(a) Effect of varying σresin.
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(b) Effect of varying σint.

Figure 10: Effect of cohesive parameters on the predicted failure strength of composite

syntactic foams.
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(a) 10 vol.%, effect of varying σm.
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(b) 10 vol.%, effect of varying σint.
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(c) 55 vol.%, effect of varying σm.
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(d) 55 vol.%, effect of varying σint.

Figure 11: Effect of varying σresin and σint on the resultant Weibull distribution.The

vertical lines represent the input cohesive strength values for σm and σint.
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