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Abstract. This paper describes a calibration procedure for the double structure constitutive model ICDSM 
(Imperial College Double Structure Model), developed for highly expansive clays, when the model is applied 
to MX-80 bentonite. Firstly, the model calibration process is discussed and organised in a number of 
hierarchical steps. These steps involve the estimation of the macrostructural parameters that can be derived 
from oedometer, isotropic and triaxial laboratory data. Estimation of the microstructural parameters is more 
challenging due to the limited knowledge of an expansive clay’s fabric and of the physico-chemical 
phenomena that control its evolution upon wetting. Nevertheless, this paper discusses the available sources 
of data and identifies the appropriate information that is needed to characterise the micro-structural behaviour
of the bentonite. Finally, through the simulation of a swelling pressure test on a bentonite plug, the hydration 
of the material is studied as a hydro-mechanical coupled process. Particular attention is devoted to the 
evolution of the stress state of the sample, which is compared to the experimental measurements in order to 
demonstrate that the constitutive model accurately reproduces the expansive behaviour of MX-80 bentonite.

1 Introduction
The constitutive model ICDSM has been developed at 
Imperial College for the modelling of unsaturated, highly 
expansive clays ([1]). The complexity of the model 
requires a hierarchical calibration process. The 
interpretation of experimental evidence through a double 
porosity structure framework is a delicate matter requiring 
knowledge of the micro-structure of compacted clays 
which is still largely unknown. However, as discussed in 
[2] for the Barcelona Expansive Model (BExM), the 
double structure should be accounted for in order to 
capture the expansive behaviour of compacted clays. In 
this paper a calibration process, specific to the IC DSM, 
is proposed for MX-80 bentonite. This process does not 
follow the same patterns suggested over the years for the 
Barcelona Basic Model (BBM, [3]), for example in [4]. In 
particular, the calibration procedure is divided into four 
different steps: isotropic, oedometric, triaxial and 
microstructural characterisation. Subsequently, the model 
is employed to study a radial swelling pressure test carried 
out in [5], which consisted of constant volume saturation 
followed by a swelling phase. The numerical results 
obtained with the ICDSM are compared with the 
experimental data and the results given by the Imperial 
College Single Structure Model (ICSSM, [6]).  

2 Overview of the IC DSM
Two stress variables are used in the present framework. 
One is the equivalent stress σ = σnet+ sair, where σnet is the 
net stress, defined as σnet = σtot - patm, σtot being the total 

stress and patm being the atmospheric pressure. sair is the 
air entry value. The second stress variable is the 
equivalent suction, seq = s - sair , s being the matric suction. 

The model accounts for the double-porosity structure, 
typical of compacted expansive clays, by introducing two 
interactive scales of structure: the macrostructure and the 
microstructure. The fabric is characterised through a 
model parameter labelled “the void factor”, defined as the 
ratio of microstructural void ratio, em, over the total void 
ratio, e: 

 VF = em /e  (1) 

For consistency e= em + eM, where eM is the 
macrostructural void ratio. Thus, the void factor expresses 
whether the fabric of the material is predominantly 
influenced by the microstructure or by the macrostructure. 

The macrostructure is governed by the ICSSM 
developed in [6]. Conversely, in accordance with 
experimental evidence, the microstructure is assumed to 
be saturated and its behaviour is purely volumetric. 
Consequently, the effective stress principle holds and the 
material behaviour at this level is controlled by the mean 
microstructural effective stress, defined as:  

 p’ = p + seq  (2) 

where p is the mean equivalent stress. Similar to the 
assumption in the Barcelona Expansive Model (BExM, 
[7]), the change in microstructural effective stress triggers 
both reversible and irreversible strains. At the 
microstructural level the elastic strains are quantified as 
follows: 

E3S Web of Conferences 92, 15002 (2019)	 https://doi.org/10.1051/e3sconf/20199215002
IS-Glasgow 2019

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution  
License 4.0 (http://creativecommons.org/licenses/by/4.0/).



 

                                 Δεe
m = Δp’/Km  (3) 

where the microstructural bulk modulus is defined as: 

                             Km = ((1+ em)/κm) p’  (4) 

where κm is the elastic compressibility parameter of the 
microstructure. The material’s elastic behaviour upon 
changes of equivalent stress and/or equivalent suction is 
defined by contributions from both the macrostructure 
and the microstructure. The void factor, VF, is used to 
weight the contribution of each term, hence obtaining the 
following total elastic strains due to changes in equivalent 
suction:  

                      Δεe
s = (VF/Km +(1-VF)/KM

s)Δseq  (5) 

KM
s is the macrostructural bulk modulus with respect to 

changes in equivalent suction and it is defined as:  

                       KM
s = ((1+ eM)/κs) (seq+ patm)  (6) 

κs being the elastic compressibility parameter of the 
macrostructure with respect to changes in equivalent 
suction. Moreover, the global bulk modulus with respect 
to changes in equivalent stress is:  

                       Kbulk = 1/( VF/Km +(1-VF)/KM
σ)  (7) 

where KM
σ is the macrostructural bulk modulus with 

respect to changes in equivalent stress, which is defined 
as:  

                       KM
σ = ((1+ eM)/κ) p  (8) 

κ being the elastic compressibility parameter of the 
macrostructure with respect to changes in equivalent 
stress. Finally, Young’s modulus is evaluated as:  

                       E =3Kbulk(1-2μ)  (9) 

where μ is Poisson’s ratio. With these components the 
elastic constitutive behaviour is defined. Microstructural 
plastic strains are assumed to be equal to the elastic micro-
strains multiplied by a scalar, fβ, which presents the 
interaction function:  

                                Δεp
β = fβ Δεe

m  (10) 

The expression for fβ given in [7] is adopted. In the case 
of micro-compression: 

                     fβ = cc1+ cc2(pr/p0) Cc3   if pr/p0≥0 

                          or   fβ = cc1   if pr/p0<0  (11) 

and in the case of micro-swelling:  

                     fβ = cs1+ cs2(1-pr/p0) Cs3   if pr/p0≥0 

                          or   fβ = cs1+ cs2   if pr/p0<0  (12) 

where cc1, cc2, cc3 and cs1, cs2, cs3 are shape coefficients and 
the ratio pr/p0 is an expression of the degree of openness 
of the structure ([1]), as it takes into account the distance 
of the current stress state from the yield surface. p0 is the 

isotropic yield stress and pr is related to the current stress 
state. 

At every loading step during a finite element analysis, 
one of the fβ functions from Equations (11) and (12) is 
active, depending on whether the microstructure is 
swelling or contracting, which in [7] is established 
according to the sign of the microstructural effective 
stress change. However, in a finite element analysis, this 
selection is problematic because the integration of the 
constitutive model equations to obtain the change in mean 
microstructural effective stress, Δp’, from the changes in 
total strains, Δε, requires prior knowledge of its value (i.e. 
Δp’ is an unknown in the iterative solution of the 
governing equations). Consequently, an alternative 
criterion from that reported in the literature is adopted 
here, which relies on the total strain changes when 
selecting the active interaction function: 
 
 Δεvol≥0 → micro-swelling 
 Δεvol<0 → micro-compression 
 
where Δεvol is the change in volumetric total strain. This 
adjustment in the formulation allows the implementation 
of the model in a general finite element software, required 
to solve boundary value problems.  

Thus, the model allows the contribution of the 
microstructure to the irreversible behaviour to be included 
in a relatively simple conceptual manner. However, this 
complicates the formulation because the microstructural 
plastic mechanism cannot be associated with a proper 
yield surface and, hence, it cannot be defined within the 
classical plasticity theory. Details on how this issue has 
been overcome, as well as the model’s implementation in 
a finite element code, are discussed in [1]. 

Irreversible changes due to loading imply the 
evolution of the material at both scales. The state of the 
microstructure is monitored by the void factor, VF, which, 
in the model formulation, acts as a hardening parameter. 
Its evolution law is defined as follows:  

                       ΔVF = (Δe/e)( Δp’/(Km Δεvol))  (13) 

On the other hand, the macrostructure follows the familiar 
hardening law of the critical state framework:  

                       Δ p*
0 = p*

0(v/(λ(0)-κ))Δεp
vol  (14) 

where p*
0 is the equivalent fully saturated yield stress, v is 

the specific volume, λ(0) is the fully saturated 
compressibility coefficient and Δεp

vol is the change in 
plastic volumetric strain. The latter is the sum of two 
contributions, the macrostructural one, indicated with the 
subscript LC, and the microstructural one, indicated with 
the subscript β:  

                       Δεp
vol = Δεp

vol,LC + Δεp
vol,β  (15) 

As a result, the macrostructural hardening ensures the 
coupling between the two structures. However, while the 
micro-scale influences the evolution of the 
macrostructure, the opposite does not apply. 

Finally, the model takes into account that the fabric of 
the material undergoes permanent changes upon 
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hydration. This means that the double porosity structure 
disappears upon full saturation and the material assumes 
a single porosity structure ([8]). Such change is 
irreversible. Consequently, once the suction has reduced 
below the air-entry value, the void factor is set to zero and 
the microstructure ceases to exist.  

3 Calibration 
Observed soil behaviour combines macrostructural and 
microstructural contributions, preventing the use of 
iterative calibration methods, such as the one proposed by 
[4] for the BBM ([3]), when calibrating the IC DSM. 
Limited knowledge of the micro-structure behaviour 
represents a complication that, at present, cannot be fully 
resolved. It is important, therefore, to prioritise the 
calibration of parameters that can be derived directly from 
experimental data, i.e. those that characterise only one 
level of structure. Calibration is carried out in four steps: 
isotropic, oedometric, triaxial and microstructural 
characterisation, as discussed below for the case of 
compacted MX-80 bentonite.  

3.1 Isotropic characterisation 

As indicated by Equation (7), the elastic bulk modulus 
combines macro- and micro-structure contributions. 
Consequently, κ is no longer directly measurable through 
the slope of the Unloading Reloading Line (URL) and 
cannot be dissociated from κm. Without preliminary 
knowledge of κm, only a suitable range of values can be 
established for κ. As post-yield compressibility can be 
estimated with more certainty, it is prioritised. 

Three isotropic tests, T1, T2 and T3, by [9], 
comprising a wetting phase and a loading phase on 
compacted MX-80 bentonite (Figure 1), are selected from 
the literature. Each loading phase is approximated by the 
URL and the VCL (Virgin Compression Line), yielding 
the slopes reported in Table 1. The ICL slope for T1 
represents a direct measurement of the model parameter 
λ(0), and ICL slopes for T2 and T3 are used to fit the 
expression λ(seq)=λ(0)[(1-r) e-βSeq+r] ([6]), as illustrated 
in Figure 2. The parameters obtained are: λ(0)=0.25, 
r=0.61, β=0.00007 1⁄kPa and κ=0.08. κ has been chosen 
within the range of measured URL slopes. 

It is noted that, in T2 and T3, the post-yield slope is 
still changing at the end of the experiment implying that 
the axial loading stopped prematurely. Consequently, if 
the capacity of the laboratory equipment allows it, 
extending compression paths to higher loads would be 
beneficial for calibration purposes. 

 
Fig. 1. Experimental stress paths, [9]. 

 
Fig. 2. Calibration of the post-yield compressibility function, 
λ(seq). 

Table 1. Interpretation of the isotropic tests: measured slopes 
of the Unloading Reloading Line (URL) and Isotropic 

Compression Line (ICL). 

Tests seq [MPa] URL slope ICL slope 
T1 0 0.1 0.25 
T2 8 0.05 0.19 
T3 38 0.03 0.16 

3.2 Oedometric characterisation 

Oedometer data provide information on the 
compressibility coefficient with respect to changes in 
suction, κs. Nevertheless, as expressed in Equation (5), the 
elastic strains due to changes in suction also depend on κm, 
therefore the value of κs is chosen within a range of 
realistic values as outlined below. 

Two oedometer tests by [10] on compacted MX-80 
bentonite, V1 and V2 in Figure 3, are selected. Focusing 
on the initial wetting phase, a range of values from 
approximately 0.05 to 0.09 can be defined for the elastic 
compressibility coefficient κs. 
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3.3 Triaxial characterisation 

Since the microstructure is assumed to have a purely 
volumetric behaviour, any information about the triaxial 
characterisation of the material refers solely to the macro-
structure, as characterised in [6]. Hence, in principle, the 
strength parameters, Mf and Mg, and the shape parameters 
of the yield and plastic potential surfaces in the (p,J) 
plane, i.e. αf, μf, αg and μg, can be directly estimated.  

Two triaxial tests, one undrained and one drained, 
conducted on fully saturated samples of normally 
consolidated MX-80 bentonite by [11] are considered. 
The stress paths are shown in Figure 4(a) and Figure 4(b), 
respectively. In both figures the critical state line (CSL) is 
shown (dashed line) and it has a slope of Mf =0.5. It can 
be argued that the material seems to soften after reaching 
a peak deviatoric stress. Such behaviour would be typical 
of an over-consolidated sample rather than a normally 
consolidated one. Additional information about sample 
preparation could perhaps render the interpretation of 
these tests slightly less ambiguous. As only a limited 
amount of triaxial testing on unsaturated MX-80 bentonite 
can be found in the literature it is difficult to characterise 
the shape of the yield and plastic potential surfaces in the 
(p,J) plane. Consequently, despite the flexibility of the IC 
DSM which allows for virtually any shape ([6]), it was 
decided to opt for an associated modified Cam-Clay 
ellipse. Therefore, the shape parameters are set to αf = αg 
= 0.4 and μf  = μg  = 0.9 and Mf  = Mg is imposed.  

3.4 Microstructural characterisation 

The IC DSM defines three microstructural parameters: 
VF, κm and fβ.  

The void factor, VF, weights the contributions of the 
micro- and macro-structure to the elastic behaviour, as 
shown in Equations (5) and (7). In order to determine its 
initial value, it is believed that a Mercury Intrusion 
Porosimetry (MIP) investigation would be suitable. MIP 
shows the distribution function of the diameter of the 
pores. Consequently by defining an arbitrary separation 
between micro-pore and macro-pore diameters, the ratio 
of micro-pores over total pores, i.e. the void factor, can be 
obtained. Nevertheless, MIP-based investigations are 
quite scarce and, more importantly, further research and 
collaboration between experimentalists and numerical 
analysts is required to define a reliable relationship 
between the void factor and the pore size distribution 
function. 

The microstructural elastic compressibility parameter, 
κm, contributes to the elastic response of the material to 
changes in effective stress and equivalent suction. At 
present, to the authors’ knowledge, there is no laboratory 
test that is designed to provide useful information for its 
estimation. In fact, the physico-chemical phenomena that 
take place within the micro-structure that are responsible 
for the swelling of single grain particles ([8]), are still 
partly unknown. A suitable method for the measurement 
of κm can therefore be envisaged as more of a chemical 
issue than a mechanical one. At present, however, the 
adopted approach assumes simply that κm must be 

comparable to the macrostructural compressibility 
coefficients. 

 
Fig. 3. Experimental stress paths, [10]. 

 

 
Fig. 4. Estimation of the CSL slope from an undrained triaxial 
test (a, above) and a drained triaxial test (b, below). 

The interaction functions, fβ, control the 
microstructural contribution to plasticity, according to 
Equation (10). Given the arbitrary nature of this 
assumption, it is impossible to associate fβ with a precise 
physical meaning and, therefore, with a measurement 
method. It can be envisaged that, upon improvement of 
the knowledge of the micro-structure, fβ will be 
conceptually reinterpreted. For the moment, coefficients 
cc1, cc2, cc3 and cs1, cs2, cs3 are set to values taken from the 
literature ([7]): cc1= cs1=-0.1, cc2= cs2=1.1 and cc3= cs3=2.  
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Table 2. Model calibration for MX-80 bentonite. 

Parameter Value 

αf = αg , 1st shape parameter YS and PP 0.4 
μf  = μg , 2nd shape parameter YS and PP 0.9 
Mf  = Mg  , strength parameter YS and PP 0.5 
pc , Characteristic pressure (MPa) 1 
λ(0), Fully saturated compressibility 
coefficient 0.25 

κ, elastic compressibility coefficient, Macro 0.08 
r , maximum soil stiffness parameter 0.61 
, soil stiffness increase parameter (1/kPa) 0.00007 
s , elastic compressibility coefficient w.r.t. 
suction, Macro (kPa) 0.06 

 , Poisson’s ratio 0.4 
m , elastic compressibility coefficient, 
micro (kPa) 0.18 

cs, cscs, swelling interaction function 
coefficients -0.1,1.1,2 

cc, cccc, contraction interaction function 
coefficients -0.1,1.1,2 

VF, void factor 0.4 
sair , air-entry value of suction for wetting 
and drying paths (MPa) 1 

Table 3. Hydraulic parameters for MX-80 bentonite. 

Retention curve Value 
α, fitting parameter 0.000028 
n, fitting parameter 1.3 
m, fitting parameter 1.0 
sΩ, suction at which Ω becomes zero (MPa) 4·102 

Sr0, residual degree of saturation 0.15 
s0, suction in the long term (MPa) 4·102 

Permeability Value 
ksat, saturated permeability (m/s) 3·10-13 
kmin, minimum permeability (m/s) 2·10-14 
s1, suction (MPa) 1 
s2, suction (MPa) 20 

3.5 Additional parameters 

Additional parameters include: Poisson ratio, μ=0.4 
([12]), the air-entry value of suction, sair=1 MPa ([13]) 
and the characteristic pressure, pc=1 MPa. These are 
based on engineering judgement as no direct 
measurements are available. The complete list of IC DSM 
parameters for MX-80 bentonite is reported in Table 2. 

From a hydraulic standpoint, the bentonite is 
characterised with a Van Genuchten ([14]) retention curve 
fitted to data provided by [13]. The logarithm of 
permeability is assumed to vary linearly from the 
saturated, ksat, to a minimum, kmin, value of permeability, 
when suction changes from s1 to s2, according to the model 
by [15]. All parameters are listed in Table 3. 

4 Numerical analysis and discussion 
The radial swelling test by [5] is simulated in the bespoke 
finite element code ICFEP ([15]) comprises the constant 
volume saturation of a cylindrical sample of compacted 
MX-80 bentonite, 46.8mm in diameter and 40mm high, 
followed by free expansion in the radial direction until a 
radial strain of 6.5% is reached. Hydration is imposed by 
providing the lateral boundary with free access to water. 
Once the swelling pressures stabilise, the sample is 
trimmed circumferentially, allowing for the outward 
radial strain of 6.5% upon hydration. 

A coupled consolidation, axi-symmetric analysis of 
the test was performed, employing 54 8-noded elements 
with displacement degrees of freedom in each node and 
pore pressure degrees of freedom in the corner nodes. 
Initially, the soil has axial and radial stresses of 1.896 and 
0.621 MPa, respectively and a suction of 48 MPa, 
corresponding to a water content of 13% under a dry 
density of 1.6 Mg/cm3. 

During confined hydration horizontal and vertical 
displacements are set to zero along the vertical and 
horizontal boundaries of the mesh, respectively. The 
nodal suction at the right-hand side vertical boundary is 
progressively decreased until seq = 0, while the remaining 
boundaries are impermeable. Trimming of the sample is 
then simulated by excavating the appropriate elements, 
while the lateral displacement constrains on the right-
hand side vertical boundary are lifted. A suction decrease 
is re-established on the same boundary until the radial 
swelling reaches the desired value of 6.5%. At this point, 
the lateral confinement is also re-established under further 
reduction in suction. 

The evolutions of total axial stress and total radial 
stress are shown in Figures 5 and 6, respectively. Results 
from analyses with the ICDSM and the ICSSM are shown. 
The results obtained using the new double-structure 
model are very encouraging, in spite of the uncertainties 
highlighted in the calibration process. The ICSSM, on the 
contrary, under-predicts the stress level. This is because 
the micro-structure in compacted clays is responsible for 
a considerable amount of the swelling.  

The material seems to exhibit anisotropic behaviour, 
since the peak measured values of σr (10 MPa) and σa (12 
MPa) do not coincide. The anisotropy could be caused by 
the one-dimensional compaction process operated by [5] 
or, alternatively, could be a material feature worth 
investigating experimentally. The model, on the other 
hand, predicts isotropic behaviour, as expected. 

Figure 7 shows two predictions for the radial swelling 
test, each of which is based on different input parameters 
and, in particular, on the choice of microstructural 
parameters. The one labelled “Cal#1” is the same as that 
shown in Figure 6 and was obtained by employing  the 
model parameters in Table 2, while “Cal#2” was obtained 
by only changing the values of cc= cs=5, m=0.1 (as in 
[7]) and s=0.091 (which corresponds to the highest 
measured value). Both predictions show an excellent 
agreement with the test data and, at present, there is 
insufficient experimental evidence to choose one 
calibration over the other. Hence there are difficulties in 
characterising unequivocally the material.  
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Fig. 5. Axial swelling pressure evolution in time. 

 
Fig. 6. Radial stress evolution in time. 

5 Conclusions 

The IC DSM has proven effective at reproducing the 
expansive behaviour of MX-80 bentonite during a radial 
swelling test. The double porosity structure considered in 
the formulation strongly improves the numerical 
predictions compared to predictions obtained from the 
single porosity IC SSM model. Nevertheless, the 
proposed calibration of the IC DSM has highlighted the 
scarcity of experimental data for a suitable estimation of 
the micro-structure’s compressibility and plastic 
contribution. The importance of investigating the material 
fabric at the micro-scale, using for example the MIP 
technique, has been emphasised, as this would pave the 
way for an improvement of the IC DSM’s conceptual 
representation of the micro-structure and its calibration. 
 

 
Fig. 7. Radial stress in time obtained through analyses run with 
different microstructural calibrations of the IC DSM. 

The work presented in this paper is funded by Wood PLC and 
Radioactive Waste Management Ltd., UK. 
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