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ABSTRACT. We show that the set of augmentations of the Chekanov–Eliashberg algebra of a Leg-
endrian link underlies the structure of a unital A-infinity category. This differs from the non-unital
category constructed in [BC14], but is related to it in the same way that cohomology is related to
compactly supported cohomology. The existence of such a category was predicted by [STZ17], who
moreover conjectured its equivalence to a category of sheaves on the front plane with singular support
meeting infinity in the knot. After showing that the augmentation category forms a sheaf over the
x-line, we are able to prove this conjecture by calculating both categories on thin slices of the front
plane. In particular, we conclude that every augmentation comes from geometry.
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1. INTRODUCTION

A powerful modern approach to studying a Legendrian submanifold Λ in a contact manifold V is
to encode Floer-theoretic data into a differential graded algebra A(V,Λ), the Chekanov–Eliashberg
DGA. The generators of this algebra are indexed by Reeb chords; its differential counts holomorphic
disks in the symplectization R×V with boundary lying along the Lagrangian R×Λ and meeting the
Reeb chords at infinity [Eli98, EGH00]. Isotopies of Legendrians induce homotopy equivalences of
algebras, and the homology of this algebra is called Legendrian contact homology.

A fundamental insight of Chekanov [Che02] is that, in practice, these homotopy equivalence
classes of infinite dimensional algebras can often be distinguished by the techniques of algebraic
geometry. For instance, the functor of points

fields → sets
k 7→ {DGA morphisms A(V,Λ)→ k}/DGA homotopy

is preserved by homotopy equivalences of algebras A(V,Λ) [FHT01, Lem. 26.3], and thus fur-
nishes an invariant. Collecting together the linearizations (“cotangent spaces”) ker ε/(ker ε)2 of the
augmentations (“points”) ε : A(V,Λ)→ k gives a stronger invariant: comparison of these lineariza-
tions as differential graded vector spaces is one way that Legendrian knots have been distinguished
in practice since the work of Chekanov.

As the structure coefficients of the DGA A(V,Λ) come from the contact geometry of (V,Λ), it
is natural to ask for direct contact-geometric interpretations of the algebro-geometric constructions
above, and in particular to seek the contact-geometric meaning of the – a priori, purely algebraic
– augmentations. In some cases, this meaning is known. As in topological field theory, exact
Lagrangian cobordisms between Legendrians give rise (contravariantly) to morphisms of the corre-
sponding DGAs [EGH00, Ekh12, EHK16]. In particular, exact Lagrangian fillings are cobordisms
from the empty set, and so give augmentations.

However, not all augmentations arise in this manner. Indeed, consider pushing an exact filling
surface L of a Legendrian knot Λ in the Reeb direction: on the one hand, this is a deformation of
L inside T ∗L, and so intersects L – an exact Lagrangian – in a number of points which, counted
with signs, is −χ(L). On the other hand, this intersection can be computed as the linking number at
infinity, or in other words, the Thurston–Bennequin number of Λ: tb(Λ) = −χ(L). Now there is a
Legendrian figure eight knot with tb = −3 (see e.g. [CN13] for this and other examples); its DGA
has augmentations, and yet any filling surface would necessarily have genus −2.

This obstruction has a categorification, originally due to Seidel and made precise in this context
by Ekholm [Ekh12]. Given an exact filling (W,L) of (V,Λ) (where we will primarily focus on
the case V = R3 and W = R4), consider the Floer homology HFt(L,L), where the differential
accounts only for disks bounded by L and a controlled Hamiltonian perturbation of L for time < t,
i.e. loosely those disks with action bounded by t. There is an inclusionHF−ε(L,L)→ HF∞(L,L).
The former has generators given by self-intersections of L with a small perturbation of itself, and
the latter has generators given by these together with Reeb chords of Λ. The quotient of these chain
complexes leads to what is called “linearized contact cohomology” in the literature; for reasons to
be made clear shortly, we write it as Hom−(ε, ε)[1]. That is, we have:

(1.1) HF−ε(L,L)→ HF∞(L,L)→ Hom−(ε, ε)[1]
1−→ .
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Finally, since the wrapped Fukaya category of R4 is trivial, we get an isomorphism Hom−(ε, ε) ∼=
HF−ε(L,L). On the other hand,HF−ε(L,L) ∼= H∗c (L;k). In particular, taking Euler characteristics
recovers:

−tb(Λ) = χ(Hom−(ε, ε)) = χ(H∗c (L;k)) = χ(L).

One could try to construct the missing augmentations from more general objects in the derived
Fukaya category. To the extent that this is possible, the above sequence implies that the categor-
ical structures present in the symplectic setting should be visible on the space of augmentations.
An important step in this direction was taken by Bourgeois and Chantraine [BC14], who define a
non-unital A∞ category which we denote Aug−. Its objects are augmentations of the Chekanov–
Eliashberg DGA, and its hom spaces Hom−(ε, ε′) have the property that the self Homs are the
linearized contact cohomologies. The existence of this category was strong evidence that augmen-
tations could indeed be built from geometry.

On the other hand, when V = T∞M is the cosphere bundle over a manifold, Λ ⊂ V is a
Legendrian, and k is a field, a new source of Legendrian invariants is provided by the category
Sh(M,Λ;k) of constructible sheaves of k-modules on M whose singular support meets T∞M in
Λ [STZ17]. The introduction of this category is motivated by the microlocalization equivalence
of the category of sheaves on a manifold with the infinitesimally wrapped Fukaya category of the
cotangent bundle [NZ09, Nad09]:

µ : Sh(M ;k)
∼−→ Fukε(T

∗M ;k).

In particular, to a Lagrangian brane L ⊂ T ∗M ending on Λ, there corresponds a sheaf µ−1(L) with
the property that

HomSh(M)(µ
−1(L), µ−1(L)) = HomFukε(T ∗M)(L,L) = HF+ε(L,L) = H∗(L;k),

and we write Sh(M,Λ;k) := µ−1(L).
Like ordinary cohomology, the category Sh(M,Λ;k) is unital; like compactly supported coho-

mology, the Bourgeois–Chantraine augmentation category Aug−(Λ;k) is not. In an augmentation
category matching the sheaf category, the Hom spaces would fit naturally into an exact sequence

(1.2) HF+ε(L,L)→ HF (L,L)→ Hom+(ε, ε)[1]
1−→ .

Together these observations suggest the following modification to the Bourgeois–Chantraine con-
struction. As noted in [BC14], Aug− can be defined from the n-copy of the Legendrian, ordered
with respect to the displacement in the Reeb direction. To change the sign of the perturbations, in
the front diagram of the Legendrian we re-order the n-copy from top to bottom, instead of from
bottom to top. The first main result of this article, established in Sections 3 and 4, is that doing so
yields a unital A∞ category.

Theorem 1.1 (see Definition 4.3 and Theorem 4.20). Let Λ be a Legendrian knot or link in R3. We
define a unital A∞ category Aug+(Λ;k) whose objects are DGA maps ε : A(R3,Λ) → k, i.e.,
augmentations. This category is invariant up to A∞ equivalence under Legendrian isotopies of Λ.

It turns out that the cohomology H∗Hom+(ε, ε) of the self-hom spaces in Aug+(Λ;k) is exactly
(up to a grading shift) what is called linearized Legendrian contact homology in the literature; see
Corollary 5.6. Moreover, if Λ is a knot with a single base point, then two objects of Aug+(Λ;k) are
isomorphic in the cohomology category H∗Aug+ if and only if they are homotopic as DGA maps
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A(R3,Λ) → k; see Proposition 5.19. In particular, it follows from work of Ekholm, Honda, and
Kálmán [EHK16] that augmentations corresponding to isotopic exact fillings of Λ are isomorphic.

There is a close relation between Aug−(Λ) and Aug+(Λ). Indeed, our construction gives both,
and a morphism from one to the other. We investigate these in Section 5, and find:

Theorem 1.2 (see Propositions 5.1, 5.2, and 5.4). There is an A∞ functor Aug− → Aug+ carrying
every augmentation to itself. On morphisms, this functor extends to an exact triangle

Hom−(ε, ε′)→ Hom+(ε, ε′)→ H∗(Λ;k)
[1]−→ .

Moreover, there is a duality
Hom+(ε, ε′) ∼= Hom−(ε′, ε)†[−2].

Here, the † denotes the cochain complex dual of a cochain complex, i.e., the underlying vector space
is dualized, the differential is transposed, and the degrees are negated.

When ε = ε′, Sabloff [Sab06] first constructed this duality, and the exact sequence in this case is
given in [EES09]. When the augmentation comes from a filling L, the duality is Poincaré duality,
and the triangle is identified with the long exact sequence in cohomology

H∗c (L;k)→ H∗(L;k)→ H∗(Λ;k)
[1]−→ .

That is, there is a map of triangles (1.1)→ (1.2), so that the connecting homomorphism identifies
the inclusion Hom−(ε, ε)→ Hom+(ε, ε) with the inclusion HF−ε(L,L)→ HF+ε(L,L).

The category Aug+ in hand, we provide the hitherto elusive connection between augmentations
and the Fukaya category. We write C1(Λ;k) ⊂ Sh(R2,Λ;k) for the sheaves with “microlocal rank
one” along Λ, and with acyclic stalk when z � 0.

Theorem 1.3 (see Theorem 7.1). Let Λ ⊂ R3 be a Legendrian knot, and let k be a field. Then there
is an A∞ equivalence of categories

Aug+(Λ;k)
∼−→ C1(Λ;k).

Via the equivalence between constructible sheaves and the Fukaya category, we view this theorem
as asserting that all augmentations come from geometry. In total, we have a host of relations among
categories of sheaves, Lagrangians and augmentations. These are summarized in Section 8.

We remark that the first four authors [NRSS17] have shown that the groupoid of isomorphisms in
the truncation π≥0Aug+(Λ;Fq) has homotopy cardinality qtb(Λ)/2RΛ(q1/2 − q−1/2), where RΛ(z) is
the ruling polynomial of Λ; thus the same is true of C1(Λ;Fq), resolving Conjecture 7.5 of [STZ17].

The Bourgeois–Chantraine categoryAug−(Λ;k) can also be identified with a category of sheaves.
If we define HomSh−(F ,G) := HomSh(F , r∗−εG) where rt is the front projection of Reeb flow, then
there is a non-unital dg category Sh−(R2,Λ;k) whose morphism spaces are HomSh− . We write
C(−)

1 for the sheaves with “microlocal rank one” along Λ and with acyclic stalk when z � 0. Similar
arguments (which we do not give explicitly in this paper) yield an equivalence Aug−(Λ;k)

∼−→
C(−)

1 (Λ;k). Further properties and relations to existing constructions are discussed in Section 5.

Summary of the Paper

The preceding gives an account of the main results of this paper and their relevance to the study of
Legendrian knots. Since much of the remainder of the paper is technical, a straightforward summary
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in plain English may be helpful for the casual reader, or as a reference for those who get lost in the
weeds. We address only topics not already discussed above.

To create a category whose objects are augmentations, we must define the morphisms and com-
positions. At first glance, there seems to be little to do beyond adapting the definitions that already
appear in the work of Bourgeois and Chantraine [BC14] to account for the reversal in ordering link
components. Yet there is an important distinction. In ordering the perturbations as we do, we are
forced to consider the presence of “short” Reeb chords, traveling from the original Legendrian to
its perturbation. These short chords were also considered in [BC14] and indeed have appeared in a
number of papers in contact topology; however, Bourgeois and Chantraine ultimately do not need
them to formulate their augmentation category, whereas they are crucial to our formulation.

The higher products in the augmentation category involve multiple perturbations and counts of
disks bounding chords – including short chords – traveling between the different perturbed copies.
The way to treat this scenario is to consider the Legendrian and its perturbed copies as a single
link, then to encode the data of which copies the chords connect with the notion of a “link grading”
[Mis03]. So we must consider the DGA of a link constructed from a number of copies of an original
Legendrian, each with different perturbations — and we must repeat this construction for each nat-
ural number to define all the different higher products in the A∞ category. As the different products
must interact with one another according to the A∞ relations, we must organize all these copies and
perturbations and DGAs coherently, leading to the notion of a consistent sequence of DGAs. We
provide this definition and show that a consistent sequence of DGAs with a link grading produces
an A∞ category, which in the case described above will be the augmentation categoryAug+(Λ). To
keep these general algebraic aspects distinct from the specific application, we have collected them
all in Section 3.

In Section 4, we construct consistent sequences of DGAs for Legendrian knots Λ in R3, result-
ing in the category Aug+(Λ). It is important to note that the consistent sequence of DGAs that
we construct for a Legendrian knot does not apply to Legendrians in higher than one dimension:
see Remark 1.4 for some brief discussion of this. Accordingly, as distinct from the category of
Bourgeois and Chantraine, a general version of our category in higher dimensions would not be
algebraically determined by the DGA of the Legendrian in general, although we show that it is for
one-dimensional knots (see Proposition 4.26). Another complication in the definition of the cate-
gory is that it includes “base points,” additional generators of the DGA which are needed both for the
comparison to sheaves, i.e. to reduce DGA computations to purely local considerations, and in order
to prove independence of perturbation. We have so far been vague about what “perturbation” means.
We can perturb a Legendrian in a 1-jet bundle with a Morse function, and we do this, but we might
also take a copy of the front projection translated in the Reeb direction, and then use the resolution
procedure [Ng03]. (If one simply translates a Lagrangian projection in the Reeb direction, every
point in the projection would correspond to a chord!) Of course, one wants to show independence
of choices as well as invariance of the category under Legendrian isotopy, all up to A∞ equivalence.
This is done in Theorem 4.20. The reader who wants to see how the definition plays out in explicit
examples is referred to Section 4.4. We then establish a number of properties of Aug+ in Section 5,
including the exact triangle and duality stated in Theorem 1.2.

With the category in hand, we are in a position to compare with sheaves. Of course, Fukaya–Floer
type categories are non-local, depending as they do on holomorphic disks which may traverse large
distances. Sheaves, on the other hand, are local. Comparison is made possible by the bordered
construction of the DGA [Siv11], where locality is proven: the DGA of the union of two sets is
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determined by the two pieces and their overlap. These results are reviewed and extended for the
present application in Section 6. The idea of the bordered construction is simple: holomorphic disks
exiting a vertical strip would do so along a chord connecting two strands. By including such chords
in the definition of the bordered algebra one shows that the DGA of a diagram glued from a left half
and a right half is the pushout of the DGA of the two halves over the algebra of purely horizontal
strands.

Now once we put the front diagram in plat position and slice it into horizontal strips, we can apply
the bordered construction and achieve locality as discussed above. Since sheaves are by definition
local — this is the sheaf axiom — we are in a position to compare the two categories, and can do so
strip by strip. We can further prepare the strips so that each is one of the following four possibilities:
no crossings or cusps, one crossing, all the left cusps, all the right cusps. Note that to ensure that the
gluings are themselves compatible, we also must compare the restriction functors from these cases
to the left and right horizontal strip categories. Interestingly, while all these cases are dg categories,
the restriction functors are only equivalent as A∞ functors, and this accounts for the difference in
the glued-together categories at the end: the augmentation category is A∞ and the sheaf category
is dg. All these equivalences and compatibilities are shown in Section 7. The case-by-case nature
means the proof is somewhat lengthy, but it is straightforward. And that’s it.

Remark 1.4. It should be possible to construct the augmentation category Aug+(Λ) for general
Legendrians in arbitrary (and in particular higher-dimensional) 1-jet spaces. Here we explain why
we restrict ourselves in this paper to the setting of J1(R), in contrast to Bourgeois and Chantraine’s
more general treatment of Aug−(Λ) in [BC14]. The consistent sequences of DGAs mentioned in
the above summary are constructed from the n-copies of Λ, each of which is built by using a Morse
function f to perturb n copies of Λ and then further perturbing at the critical points of f to make
the xy-projection generic. For Legendrians in R3, the latter perturbation can be done explicitly so
that the resulting DGAs are described in terms of A(R3,Λ) by the algebraic construction of Sub-
section 3.4, and this produces the “short” Reeb chords mentioned above. Even with this algebraic
description, the proof of invariance of Aug+(Λ) requires substantial effort. In higher dimensions,
one can define Aug+(Λ) by making choices for the necessary perturbations, but these choices are
non-canonical and proving invariance under all choices of perturbations is much harder. By contrast,
the invariance of Aug−(Λ) is simpler since it omits the short Reeb chords, but as a consequence it
fails to be a unital category.

In particular, most of the technical material in Sections 3 and 4 is developed from scratch specif-
ically to deal with the incorporation of the short Reeb chords into the augmentation category. The
extra trouble required to do so (in comparison with [BC14]) is worthwhile in the end, because many
interesting properties of Aug+(Λ) are either false or unknown for Aug−(Λ). Most importantly,
Aug+(Λ) satisfies Theorem 1.3 while Aug−(Λ) does not; in addition, as mentioned above, we give
a precise characterization of isomorphism inAug+(Λ) in Subsection 5.3, and we show in [NRSS17]
that the homotopy cardinality of Aug+(Λ;Fq) recovers the ruling polynomial of Λ.
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2. BACKGROUND

2.1. Contact geometry.

To denote a choice of coordinates, we write Rx to mean the space R coordinatized by x, and
similarly for R2

xz, etc. We consider Legendrian knots and links Λ in J1(Rx) ∼= T ∗Rx × Rz
∼= R3

xyz

and their front projections ΦΛ = πxz(Λ) where πxz : R3
xyz → R2

xz. We take the contact form for
the standard contact structure on J1(R) to be α = dz − y dx with Reeb vector field Rα = ∂z. In
higher dimensions one could take Λ ⊂ J1(Rn) ∼= T ∗Rn × Rz, in which case α = dz −

∑
i yidx

i

and Rα = ∂z, but we focus on 1-dimensional knots and links in this paper.
Consider T ∗R2

xz with coordinates (x, z, px, pz) and exact symplectic structure ω = dθ defined by
the primitive θ = −pxdx − pzdz. For any ρ > 0 the cosphere bundle S∗ρR2

xz := {p2
x + p2

z = ρ2} ⊂
T ∗R2

xz with induced contact form α = −pxdx − pzdz defined by restricting θ is contactomorphic
to the unit cosphere bundle S∗1R2

xz via dilation by 1/ρ in the fibers. We define T∞R2
xz := S∗1R2

xz,
thinking of ρ large describing the “cosphere at infinity.” There is a contact embedding of R3

xyz

as a hypersurface of T ∗R2
xz by the map (x, y, z) 7→ (x = x, z = z, px = y, pz = −1). By scaling

(x, z, px, pz) 7→ (x, z, px√
p2x+p2z

, pz√
p2x+p2z

) this hypersurface is itself contactomorphic to an open subset

of T∞R2
xz which we call T∞,−R2

xz or just T∞,−R2, the minus sign indicating the downward direction
of the conormal vectors. In this way, we equate, sometimes without further mention, the standard
contact three-space with the open subset T∞,−R2 of the cosphere bundle of the plane. Our knots
and links live in this open set.

Given a front diagram ΦΛ, we sometimes use planar isotopies and Reidemeister II moves to put
the diagram in “preferred plat” position: with crossings at different values of x, all left cusps hor-
izontal and at the same value of x, and likewise for right cusps. The maximal smoothly immersed
submanifolds of ΦΛ are called strands, maximal embedded submanifolds are called arcs, and max-
imal connected components of the complement of ΦΛ are called regions. A Maslov potential µ is a
map from the set of strands to Z/2k such that at a cusp, the upper strand has value one greater than
the lower strand. Here k is any integer dividing the gcd of the rotation numbers of the components
of Λ.

2.2. The LCH differential graded algebra.

In this subsection, we review the Legendrian contact homology DGA for Legendrian knots and
links in R3. For a more detailed introduction we refer the reader, for example, to [Che02, Ng03,
ENS02]. Here, we discuss a version of the DGA that allows for an arbitrary number of base points
to appear, as in [NR13], and our sign convention follows [EN15] (which essentially agrees with the
one used in [ENS02]).

2.2.1. The DGA.

Let Λ be a Legendrian knot or link in the contact manifold R3 = J1(R) = T∞,−R2. The DGA
of Λ is most naturally defined via the Lagrangian projection (also called the xy-projection) of Λ,
which is the image of Λ via the projection πxy : J1(R)→ Rxy. The image πxy(Λ) ⊂ Rxy is a union



AUGMENTATIONS ARE SHEAVES 9

of immersed curves. After possibly modifying Λ by a small Legendrian isotopy, we may assume
that πxy|Λ is one-to-one except for some finite number of transverse double points which we denote
{a1, . . . , ar}. We note that the {ai} are in bijection with Reeb chords of Λ, which are trajectories of
the Reeb vector field Rα = ∂z that begin and end on Λ.

To associate a DGA to Λ, we fix a Maslov potential µ for the front projection πxz(Λ), taking
values in Z/2r where r is the gcd of the rotation numbers of the components of Λ. In addition,
we choose sufficiently many base points ∗1, . . . , ∗M ∈ Λ so that every component of Λ \ {∗i} is
contractible, i.e., at least one on each component of the link.

The Chekanov–Eliashberg DGA (C–E DGA), also called the Legendrian contact homology DGA,
is denoted simply (A, ∂), although we may write A(Λ, ∗1, . . . , ∗M) when the choice of base points
needs to be emphasized. The underlying graded algebra, A, is the noncommutative unital (asso-
ciative) algebra generated over Z by the symbols a1, . . . , ar, t1, t

−1
1 , . . . , tM , t

−1
M subject only to the

relations tit−1
i = t−1

i ti = 1. (In particular, ti does not commute with t±1
j for j 6= i or with any of the

ak.)
A Z/2r-valued grading is given by assigning degrees to generators and requiring that for homo-

geneous elements x and y, x · y is also homogeneous with |x · y| = |x| + |y|. To this end, we
set |ti| = |t−1

i | = 0. A Reeb chord ai has its endpoints on distinct strands of the front projection,
πxz(L), and moreover the tangent lines to πxz(Λ) at the endpoints of ai are parallel. Therefore, near
the upper (resp. lower) endpoint of ai, the front projection is a graph z = fu(x) (resp. z = fl(x))
where the functions fu and fl satisfy

(fu − fl)′(x(ai)) = 0,

and the critical point at x(ai) is a nondegenerate local maximum or minimum (by the assumption
that ai is a transverse double point of πxy(Λ)). The degree of ai is

|ai| = µ(aui )− µ(ali) +

{
0, if fu − fl has a local maximum at x(ai),
−1, if fu − fl has a local minimum at x(ai),

where µ(aui ) and µ(ali) denote the value of the Maslov potential at the upper and lower endpoint of
ai. (For this index formula in a more general setting, see [EES05a, Lemma 3.4].)

Remark 2.1. Note that adding an overall constant to µ does not change the grading of A. In
particular, when Λ is connected, |a| is independent of the Maslov potential and corresponds to the
Conley–Zehnder index associated to the Reeb chord a. This can be computed from the rotation
number in R2 of the projection to the xy-plane of a path along Λ joining the endpoints of a; see
[Che02].

The differential ∂ : A → A counts holomorphic disks in the symplectization R × J1(R) with
boundary on the Lagrangian cylinder R×Λ, with one boundary puncture limiting to a Reeb chord of
Λ at +∞ and some nonnegative number of boundary punctures limiting to Reeb chords at −∞. For
Legendrians in J1(R), we have the following equivalent (see [ENS02]) combinatorial description.

At each crossing ai of πxy(Λ), we assign Reeb signs to the four quadrants at the crossing according
to the condition that the two quadrants that appear counterclockwise (resp. clockwise) to the over-
strand have positive (resp. negative) Reeb sign. In addition, to define (A, ∂) with Z coefficients, we
have to make a choice of orientation signs as follows: At each crossing, ai, such that |ai| is even, we
assign negative orientation signs to the two quadrants that lie on a chosen side of the understrand at
ai. All other quadrants have positive orientation signs. See Figure 2.1.
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−

−
++

ai ai

FIGURE 2.1. Left: the Reeb signs of the quadrants of a crossing of πxy(Λ). Right:
he two possible choices of orientation signs at a crossing ai with |ai| even. The
shaded quadrants have negative orientation signs while the unshaded quadrants have
positive orientation signs. At a crossing of odd degree, all quadrants have positive
orientation signs.

For l ≥ 0, let D2
l = D2 \ {p, q1, . . . , ql} denote a disk with l + 1 boundary punctures labeled

p, q1, . . . , ql in counterclockwise order. Given generators a, b1, . . . , bl ∈ A, we define ∆(a; b1, . . . , bl)
to be the space of smooth, orientation-preserving immersions u : (D2

l , ∂D
2
l )→ (R2

xy, πxy(Λ)) up to
reparametrization, such that

• u extends continuously to D2; and
• u(p) = a and u(qi) = bi for each 1 ≤ i ≤ l, and the image of a neighborhood of p (resp. qi)

under u is a single quadrant at a (resp. bi) with positive (resp. negative) Reeb sign.

We refer to the u(p) and u(qi) as the corners of this disk. Traveling counterclockwise around u(∂Dl)
from a, we encounter a sequence s1, . . . , sm (m ≥ l) of corners and base points, and we define a
monomial

w(u) = δ · w(s1)w(s2) . . . w(sm),

where w(si) is defined by:
• If si is a corner bj , then w(si) = bj .
• If si is a base point ∗j , then w(si) equals tj or t−1

j depending on whether the boundary
orientation of u(∂D2

l ) agrees or disagrees with the orientation of Λ near ∗j .
• The coefficient δ = ±1 is the product of orientation signs assigned to the quadrants that

are occupied by u near the corners at a, b1, . . . , bl. (See also Remark 5.9 concerning sign
choices.)

We then define the differential of a Reeb chord generator a by

∂a =
∑

u∈∆(a;b1,...,bl)

w(u)

where we sum over all tuples (b1, . . . , bl), including possibly the empty tuple. Finally, we let ∂ti =
∂t−1
i = 0 and extend ∂ over the whole DGA by the Leibniz rule ∂(xy) = (∂x)y + (−1)|x|x(∂y).

Remark 2.2. An equivalent definition with more of the flavor of Floer homology can be made by
taking ∆(a; b1, . . . , bl) to consist of holomorphic disks in R×J1(R), modulo conformal reparametriza-
tion and vertical translation. If this approach is taken, then the location of the boundary punctures
p, q1, . . . , ql needs to be allowed to vary along ∂D2 in a manner that preserves their cyclic ordering.
See [ENS02].

Theorem 2.3 ([Che02, ENS02]). For any Legendrian Λ ⊂ J1(R) with base points ∗1, . . . , ∗M , the
differential ∂ : A(Λ, ∗1, . . . , ∗M) → A(Λ, ∗1, . . . , ∗M) is well-defined, has degree −1, and satisfies
∂2 = 0.
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An algebraic stabilization of a DGA (A, ∂) is a DGA (S(A), ∂′) obtained as follows: The algebra
S(A) is obtained fromA by adding two new generators x and y with |x| = |y|+1 (without additional
relations), and the differential ∂′ satisfies ∂′x = y, ∂′y = 0, and ∂′|A = ∂.

Theorem 2.4. Let Λ1,Λ2 ⊂ J1(R) be Legendrian links with base points chosen so that each com-
ponent of Λ1 and Λ2 contains exactly one base point. If Λ1 and Λ2 are Legendrian isotopic, then for
any choice of Maslov potential on Λ1, there is a corresponding Maslov potential on Λ2 such that the
Legendrian contact homology DGAs (A1, ∂1) and (A2, ∂2) are stable tame isomorphic.

The meaning of the final statement is that after stabilizing both the DGAs (A1, ∂1) and (A2, ∂2)
some possibly different number of times they become isomorphic. Moreover, the DGA isomorphism
may be assumed to be tame, which means that the underlying algebra map is a composition of certain
elementary isomorphisms with have a particular simple form on the generators. (We will not need
to use the tame condition in this article.)

Allowing more than one base point on some components of Λ provides essentially no new infor-
mation, yet is convenient in certain situations. The precise relationship between DGAs arising from
the same link equipped with different numbers of base points is given in Theorems 2.21 and 2.22 of
[NR13]. See also the proof of Proposition 4.22 of this article where relevant details are discussed.

2.2.2. The resolution construction.

Often, a Legendrian link Λ ⊂ J1(R) is most conveniently presented via its front projection. For
computing Legendrian contact homology, we can obtain the Lagrangian projection of a link Λ′ that
is Legendrian isotopic to Λ by resolving crossings so that the strand with lesser slope in the front
projection becomes the overstrand, smoothing cusps, and adding a right-handed half twist before
each right cusp; the half twists result in a crossing of degree 1 appearing before each right cusp. See
Figure 4.1 below for an example. We say that Λ′ is obtained from Λ by the resolution construction.
(See [Ng03] for more details.)

Thus, by applying the resolution procedure to a Legendrian Λ with a given front diagram and
Maslov potential µ, we obtain a DGA (A, ∂) (for Λ′) with Reeb chord generators in bijection with
the crossings and right cusps of πxz(Λ). The grading of a crossing of πxz(Λ) is the difference in
Maslov potential between the overstrand and understrand of the crossing (more precisely, overstrand
minus understrand), and the grading of all right cusps is 1. Moreover, supposing that Λ is in preferred
plat position, the disks involved in computing ∂ have almost the same appearance on πxz(Λ) as they
do on the Lagrangian projection of Λ′. The exception here is that when computing the differential of
a right cusp c, we count disks that have their initial corner at the cusp itself, and there is an “invisible
disk” whose boundary appears in the Lagrangian projection as the loop to the right of the crossing
before c that was added as part of the resolution construction. Invisible disks contribute to ∂c a term
that is either 1 or the product of t±1

i corresponding to base points located on the loop at the right
cusp.

2.2.3. The link grading.

Assume now that Λ is a Legendrian link with

Λ = Λ1 t · · · t Λm,
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where each Λi is either a connected component or a union of connected components. In this setting,
there is an additional structure on the DGA A(Λ), the “link grading” of Mishachev [Mis03].

Definition 2.5. WriteRij for the collection of Reeb chords of Λ that end on Λi and begin on Λj , so
that R = tmi,j=1Rij . The Reeb chords in Rij are called pure chords if i = j and mixed chords if
i 6= j.

In addition, write T ii for the collection of generators tj, t−1
j corresponding to base points belong-

ing to Λi, and set T ij = ∅ for i 6= j. Finally, put S ij = Rij t T ij .
For 1 ≤ i, j ≤ m, we say that a word a`1 · · · a`k formed from generators in S = tS ij is com-

posable from i to j if there is some sequence of indices i0, . . . , ik with i0 = i and ik = j, such that
a`p ∈ S ip−1ip for p = 1, . . . , k. Observe that the LCH differential ∂(a) of a Reeb chord a ∈ Rij is a
Z-linear combination of composable words from i to j. One sees this by following the boundary of
the holomorphic disk: this is in Λi between a and a`1 , in some Λi1 between a`1 and a`2 , and so forth.
Note in particular that a mixed chord cannot contain a constant term (i.e., an integer multiple of 1)
in its differential. That the differentials of generators, ∂(a), are sums of composable words allows
various algebraic invariants derived from (A, ∂) to be split into direct summands. A more detailed
discussion appears in a purely algebraic setting in Section 3, and the framework developed there is
a crucial ingredient for the construction of the augmentation category in Section 4.

The invariance result from Theorem 2.4 can be strengthened to take link gradings into account.
Specifically, if (A, ∂) is the DGA of a link Λ = Λ1 t · · · t Λm with generating set S = qmi,j=1S ij ,
then we preserve the decomposition of the generating set when considering algebraic stabilizations
by requiring that new generators x, y are placed in the same subset S ij for some 1 ≤ i, j ≤ m. We
then have:

Proposition 2.6 ([Mis03]). If Λ = Λ1 t · · · t Λm and Λ′ = Λ′1 t · · · t Λ′m are Legendrian isotopic
via an isotopy that takes Λi to Λ′i for 1 ≤ i ≤ m, then there exist (iterated) stabilizations of the
DGAs of Λ and Λ′, denoted (SA, ∂) and (SA′, ∂′), that are isomorphic via a DGA isomorphism
f : SA → SA′, with the property that for a generator a ∈ S ij of SA, f(a) is a Z-linear combination
of composable words from i to j in SA′. (Multiples of 1 may appear if i = j.) Moreover, if each Λi

and Λ′i contains a unique basepoint ti and the isotopy takes the orientation of Λi to the orientation
of Λ′i, then we have f(ti) = ti.

2.3. A∞ categories.

We follow the conventions of Keller [Kel01], which are the same as the conventions of Getzler–
Jones [GJ90] except that in Keller the degree of mn is 2 − n whereas in Getzler-Jones it is n − 2.
In particular we will use the Koszul sign rule: for graded vector spaces, we choose the identification
V ⊗ W → W ⊗ V to come with a sign v ⊗ w 7→ (−1)|v||w|w ⊗ v, or equivalently, we demand
(f ⊗ g)(v⊗w) = (−1)|g||v|f(v)⊗ g(w). Note that the sign conventions that we use differ from, say,
the conventions of Seidel [Sei08]; so for instance, reading off the multiplication operations from the
differential in Legendrian contact homology requires the introduction of a sign, see (3.1).

An A∞ algebra A is a graded module equipped with operations mn : A⊗n → A for n ≥ 1. These
operations have degree 2− n and obey a complicated tower of relations. The first is that (m1)2 = 0,
and the second ensures that m2 is associative after passing to cohomology with respect to m1.
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The relations are nicely expressed in terms of the bar construction. This goes as follows. Let
T (A[1]) :=

⊕
k≥1A[1]⊗k be the positive part of the tensor co-algebra. Let b : T (A[1]) → T (A[1])

be a co-derivation – i.e., a map satisfying the co-Leibniz rule – of degree 1. Then, by the co-Leibniz
rule, b is determined by the components bk : A[1]⊗k → A[1].

Let s : A → A[1] be the canonical degree −1 identification a 7→ a. Taking mk, bk to be related
by s ◦ mk = bk ◦ s⊗k, the A∞ relations are equivalent to the statement that b is a co-differential,
i.e., b2 = 0. It is even more complicated to write, in terms of the mk, the definition of a morphism
A→ B ofA∞ algebras; suffice it here to say that the definition is equivalent to asking for a co-DGA
morphism T (A[1])→ T (B[1]). That is:

Proposition 2.7 ([Sta63, Kad85]). Let A be a graded free module, and let TA =
⊕

k≥1A
⊗k. Then

there is a natural bijection between A∞ algebra structures on A and square zero degree 1 coderiva-
tions on the coalgebra T (A[1]). This equivalence extends to a bijection between A∞ morphisms
A → B and dg-coalgebra morphisms T (A[1]) → T (B[1]), which preserves the underlying map
A→ B.

Because in practice our A∞ algebras will be given in terms of b but we will want to make explicit
calculations of the mk, especially m1 and m2, we record here the explicit formula relating their
behavior on elements. For elements ai ∈ A, the Koszul sign rule asserts

s⊗k(a1 ⊗ · · · ⊗ ak) = (−1)|ak−1|+|ak−2|+···+|a1|s⊗k−1(a1 ⊗ · · · ⊗ ak−1)⊗ s(ak)
= (−1)|ak−1|+|ak−3|+|ak−5|+···s(a1)⊗ s(a2)⊗ · · · ⊗ s(ak)

so:

mk(a1, a2, . . . , ak) = s−1 ◦ bk ◦ s⊗k(a1 ⊗ a2 ⊗ · · · ⊗ ak)
= (−1)|ak−1|+|ak−3|+|ak−5|+···s−1bk(s(a1)⊗ s(a2)⊗ · · · ⊗ s(ak)).

In terms of the mk, the first three A∞ relations are:

m1(m1(a1)) = 0

m1(m2(a1, a2)) = m2(m1(a1), a2) + (−1)|a1|m2(a1,m1(a2))

m2(a1,m2(a2, a3))−m2(m2(a1, a2), a3) = m1(m3(a1, a2, a3)) +m3(m1(a1), a2, a3)

+ (−1)|a1|m3(a1,m1(a2), a3)

+ (−1)|a1|+|a2|m3(a1, a2,m1(a3)).

These are the standard statements that m1 is a differential on A, m1 is a derivation with respect to
m2, and m2 is associative up to homotopy. In general, the A∞ relations are

(2.1)
∑

(−1)r+stmu(1
⊗r ⊗ms ⊗ 1⊗t) = 0

for n ≥ 1, where we sum over all r, s, t ≥ 0 with r + s + t = n and put u = r + 1 + t. Note that
when the left hand side is applied to elements, more signs appear from the Koszul convention.

The notion of an A∞ morphism of A∞ algebras f : A → B can also be described explicitly, as
a collection of maps fn : A⊗n → B of degree 1 − n satisfying certain relations; see [Kel01]. We
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record the explicit expressions for the first two here:

f1(m1(a1)) = m1(f1(a1))

f1(m2(a1, a2)) = m2(f1(a1), f1(a2)) +m1(f2(a1, a2)) + f2(m1(a1), a2) + (−1)|a1|f2(a1,m1(a2)).

These assert that f1 commutes with the differential, and respects the product up to a homotopy given
by f2.

The notions of A∞ categories and A∞ functors are generalizations of A∞ algebras and their
morphisms. An A∞ category has, for any two objects ε1, ε2, a graded module Hom(ε1, ε2). For
n ≥ 1 and objects ε1, . . . , εn+1, there is a degree 2− n composition

mn : Hom(εn, εn+1)⊗ · · · ⊗ Hom(ε1, ε2)→ Hom(ε1, εn+1)

satisfying (2.1) where the operations appearing on the left are understood to have appropriate sources
and targets as determined by ε1, . . . , εn+1.

Remark 2.8. An equivalent way to formulate the A∞ condition on a category is as follows. For a
finite collection of objects ε1, . . . , εn, letA(ε1, . . . , εn) :=

⊕
Hom(εi, εj) carry compositionsMk de-

fined by first multiplying matrices and then applying the mk. (I.e., form End(
⊕

εi) without assum-
ing
⊕

εi exists.) The condition that the category is A∞ is just the requirement that all A(ε1, . . . , εn)
are A∞ algebras.

The definition of an A∞-functor F is a similar generalization of morphism of A∞ algebras; along
with a correspondence of objects ε 7→ F (ε) we have for any objects ε1, . . . , εn+1 a map

Fn : Hom(εn, εn+1)⊗ · · · ⊗ Hom(ε1, ε2)→ Hom(F (ε1), F (εn+1))

satisfying appropriate relations.
Often, A∞ categories are not categories in the usual sense due to the absence of identity mor-

phisms and the failure of associativity of composition (which only holds up to homotopy). However,
associativity does hold at the level of the cohomology category which is defined as follows. The first
A∞ relation shows that

m1 : Hom(ε1, ε2)→ Hom(ε1, ε2)

is a differential: m2
1 = 0. The cohomology category is defined to have the same objects as the

underlying A∞ category, but with morphism spaces given by the cohomology H∗(Hom(ε1, ε2)).
Composition is induced by m2, which descends to an associative multiplication map

m2 : H∗Hom(ε2, ε3)⊗H∗Hom(ε1, ε2)→ H∗Hom(ε1, ε3).

An A∞ category is strictly unital if for any object ε, there is a morphism eε ∈ Hom(ε, ε) of degree
0 such that:

• m1(eε) = 0;
• for any objects ε1, ε2, and any a ∈ Hom(ε1, ε2), m2(a, eε1) = m2(eε2 , a) = a;
• all higher compositions involving eε are 0.

Proposition 2.9. For anyA∞ category, the corresponding cohomology category is a (usual, possibly
non-unital) category, and it is unital if the A∞ category is strictly unital.

An A∞ functor F induces an ordinary (possibly, non-unital) functor between the corresponding
cohomology categories. In the case that the two A∞ categories have unital cohomology categories,
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F is called an A∞ equivalence (or quasi-equivalence) if the induced functor on cohomology cate-
gories is an equivalence of categories in the usual sense, in particular preserving units. The notion
of A∞ equivalence satisfies the properties of an equivalence relation, cf. Theorem 2.9 of [Sei08].

To verify that a given A∞ functor F is an equivalence, it suffices to check that, on cohomology
categories, F is essentially surjective (i.e. every object is isomorphic to one that appears in the image
of F ) and fully faithful (i.e. induces isomorphisms on hom spaces). The property of preserving units
in cohomology follows as a consequence.

2.4. Legendrian invariants from sheaves.

In this section we review some notions of sheaf theory, and how they are applied in [STZ17] to
the study of Legendrian knots.

First we recall the definition; explanations follow. Put M = R2
xz and let Λ ⊂ R3 ∼= T∞,−M be

a Legendrian knot. Then ShΛ(M ;k) is the dg category of sheaves with coefficients in k, singular
support at infinity contained in Λ, and with compact support in M . In fact, we use a slight variant:
when we take M = Ix × Rz with Ix ⊂ Rx, we will require only that sheaves have zero support for
z � 0. By [GKS12, STZ17], a Legendrian isotopy Λ  Λ′ induces an equivalence of categories
ShΛ(M ;k) ∼= ShΛ′(M ;k).

2.4.1. Sheaves.

For a topological space1 T , we write Op(T ) for the category whose objects are open sets of T
and whose morphisms are inclusions of open sets. A presheaf on T valued in some category C is
by definition a functor F : Op(T )op → C. In particular, when U ⊂ V there is a restriction map
F(V )→ F(U).

A presheaf is said to be a sheaf if the corresponding functor takes covers to limits. More precisely,
whenever given a collection of opens Ui indexed by i ∈ I , the restriction maps induce a morphism

F

(⋃
i∈I

Ui

)
→ lim
∅6=J⊂I

F

(⋂
j∈J

Uj

)
One says F is a sheaf assuming these morphisms are all isomorphisms. When C is the category of
sets or abelian groups, the limit on the right is already determined as the equalizer of the diagram∏
F(Ui) ⇒

∏
F(Ui ∩ Uj). However, the definition above makes sense in more general settings,

in particular for various sorts of homotopical categories, e.g. the (∞, 1) categories of [Lur09b].
In particular, this definition of sheaf is appropriate to define sheaf of categories, or sheaf of dg
categories, or sheaf of A∞ categories.

In classical references such as [KS94], the derived category of sheaves is defined by beginning
with the category of sheaves of k-modules, taking complexes of such objects, and then taking the
Verdier localization along quasi-isomorphisms. The well-behavedness of this localization is under-
written by the existence of injective resolutions. One then showed a posteriori that the resulting
category was ‘triangulated’.

1We always assume our topological spaces are locally compact Hausdorff; in fact in this article we will only be
concerned with sheaves on manifolds.
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From a more modern point of view, the category of complexes of sheaves is a dg category, and
thus so is its localization along quasi-equivalences [Dri04]. In this dg version, the natural hom space
between objects is itself a complex, whose H0 is the old hom. Some discussion of how to set up
various sheaf-theoretic functors in the dg context can be found in [Nad09, Sec. 2.2].

(From an even more modern point of view, one could just directly consider sheaves valued in an
appropriate (∞, 1) category of complexes.)

In any event, we write the resulting dg category of sheaves as Sh(M ;k). The extra information in
the dg version is crucial in gluing arguments. In addition, we want to prove an equivalence between
a category of sheaves and the A∞ category of augmentations. As the latter is an A∞ category, we
certainly need the dg structure on the former.

2.4.2. Microsupport.

To each complex F of (not necessarily constructible) sheaves of k-modules is attached a closed
conic subset SS (F ), called the “singular support” of F . This captures the failure of F to be locally
constant for a sheaf F , or cohomologically locally constant for a complex. This notion was intro-
duced by Kashiwara and Schapira, and extensively developed in [KS94]. We recall one of several
equivalent definitions provided in [KS94, Chap. 5].

Consider a covector ξ ∈ T ∗M . If there is some C1 function f , locally defined near x, with
f(x) = 0 and dfx = ξ, such that

colimU3xH
∗(U ;F )→ colimV 3xH

∗(f−1(−∞, 0) ∩ V ;F )

is not an isomorphism, then we say ξ is singular for F . (The map on colimits is induced by the
evident restriction map for V ⊂ U .) The singular support is the closure of the locus of singular
covectors.

We define ShΛ(M ;k) ⊂ Sh(M ;k) to be the full subcategory defined by such F with SS(F ) ⊂ Λ
for a Legendrian subspace Λ of T∞M , and similarly for ShΛ(M ;k).

2.4.3. Constructible sheaves and combinatorial models.

When Λ is the union of conormals to a subanalytic stratification of M , then ShΛ(M ;k) consists
of sheaves constructible with respect to the stratification – i.e., locally constant when restricted to
each stratum. The theory of constructible sheaves in this sense is developed in detail in [KS94,
Chap. 8].

For sufficiently fine stratifications, the category of constructible sheaves admits a well known
combinatorial description.

Definition 2.10. Given a stratification S, the star of a stratum s ∈ S is the union of strata that
contain s in their closure. We view S as a poset category in which every stratum has a unique map
(generization) to every stratum in its star. We say that S is a regular cell complex if every stratum is
contractible and moreover the star of each stratum is contractible.

Now if C is any category and A is an abelian category, we write Funnaive(C,A) for the dg
category of functors from C to the category whose objects are cochain complexes in A, and whose
maps are the cochain maps. We write Fun(C,A) for the dg quotient [Dri04] of Funnaive(C,A) by
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the thick subcategory of functors taking values in acyclic complexes. For a ring k, we abbreviate
the case where A is the abelian category of k-modules to Fun(C,k).

Proposition 2.11 ([Kas84, Thm. 1.10], [She85],[Nad09, Lemma 2.3.3]). Let S be a Whitney strati-
fication of the space M . Consider the functor

(2.2) ΓS : ShS(M ;k)→ Fun(S,k) F 7→ [s 7→ Γ(star of s;F )].

If S is a regular cell complex, then ΓS is a quasi-equivalence.

Remark 2.12. Note in case S is a regular cell complex, the restriction map from Γ(star of s;F ) to
the stalk of F at any point of s is a quasi-isomorphism.

We use these constructions as follows. Our Λ is not a union of conormals; but it will be contained
in such a union (possibly after a small contact isotopy to make Λ subanalytic), so ShΛ(M ;k) can
be described as constructible sheaves satisfying certain extra conditions.

Specifically, for us Λ ⊂ R3 ∼= T∞,−R2 ⊂ T∞R2. If we take S the stratification of R2 in which
the zero-dimensional strata are the cusps and crossings, the one-dimensional strata are the arcs, and
the two-dimensional strata are the regions, and ΛS the union of conormals to these strata, then

ShΛ(R2;k) ⊂ ShΛS (R2;k) = ShS(R2;k).

Because Λ ⊂ R3 ∼= T∞,−R2, every covector with pz > 0 is nonsingular, which means that every
local restriction map which is downward is required to be a quasi-isomorphism. The easiest objects
to describe are those in which all downward morphisms are in fact required to be identities. In
Section 3.4 of [STZ17], we term such objects legible. Such objects can be described in terms of a
diagram of maps between the stalks at top dimensional strata, as depicted in Figure 2.2 near an arc,
a cusp, or a crossing.

FIGURE 2.2. Legible objects in various neighborhoods of a front diagram.

To recover the sort of diagram described in the equivalence of Proposition 2.11 from such a
description of a legible object, one assigns to each stratum the chain complex placed in the region
below, and takes the corresponding downward generization map to be the identity. Then the upward
generization maps are defined as the composition with this downward equality and the map depicted
in the legible diagram.

Using the microsupport conditions, it is calculated in [STZ17, Section 3.4] what additional con-
ditions must be satisfied by the maps indicated in Figure 2.2 in order that the corresponding sheaf
have microsupport in the Legendrian lift of the depicted front. There is no condition along a line, as
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in the leftmost diagram. At a cusp, the composition of the maps on the cusps is required to be the
identity map of V •. At a crossing, the square around the crossing must commute and have acyclic
total complex.

For front diagrams of Legendrian tangles with no cusps, it is shown in [STZ17, Proposition 3.22]
that all sheaves with the corresponding microsupport are in fact quasi-isomorphic to sheaves associ-
ated to legible objects. The same is not true for arbitrary front diagrams.

2.4.4. Microlocal monodromy.

Given an object F ∈ Sh(R2,Λ;k) ⊂ Sh(R2,ΛS ;k), there corresponds under ΓS of Proposition
2.11 a functor ΓS(F ) from the poset category of S to chain complexes of k-modules. Then to a pair
of an arc a on a strand and a region r above it (so r = star of r is an open subset of star of a), we
have a morphism a → r and there is an associated upward generization map ρ = ΓS(F )(a → r)
given by ρ : Γ(star of a;F ) → Γ(r;F ). If we take a legible representative for ΓS(F ) then ρ can
also be associated to a map from the region s below a to the region r above, as in Figure 2.2. The
microlocal monodromy will be constructed from the map ρ.

Recall that a Maslov potential µ on the front diagram of a Legendrian knot Λ (with rotation
number 0) is a map from strands to Z such that the value assigned to the upper strand at a cusp is
one more than the value of the lower strand. Now let ∆ be the unique lift of S|πxzΛ, i.e. the induced
stratification of the knot Λ itself. Note there is one arc in ∆ for each arc of S, but two points for
each crossing. The microlocal monodromy of an object F ∈ Sh(R2,Λ), denoted µmon(F ), begins
life as a functor from strata of ∆ to chain complexes: µmon(F )(a) = Cone(ρ)[−µ(a)]. Note the
Maslov potential is used to determine the shift. In [STZ17, Section 5.1] it is shown how to treat the
zero-dimensional strata of ∆ and that µmon maps arrows of the ∆ category to quasi-isomorphisms
— see [STZ17, Proposition 5.5]. As a result, µmon defines a functor from Shc(R2,Λ;k) to local
systems (of chain complexes) on Λ :

µmon : Shc(R2,Λ;k)→ Loc(Λ;k).

Definition 2.13. We define C1(Λ, µ;k) ⊂ Shc(R2,Λ) to be the full subcategory consisting of objects
F such that µmon(F ) is a local system of rank-one k-modules in cohomological degree zero.

Example 2.14. Let ≡n be the front diagram with n infinite horizontal lines labeled 1, 2, . . . , n from
top to bottom, and let Λ be the corresponding Legendrian. Let µ be the Maslov potential µ(i) = 0
for all i. The associated stratification S is a regular cell complex, and therefore every object of
C1(Λ, µ;k) ⊂ Shc(R2,Λ;k) has a legible representative. To the bottom region we must assign 0
due to the subscript “c.” If V • is assigned to the region above the n-th strand, then the microlocal
monodromy on the nth strand is the cone of the unique map from 0 to V •, i.e. V • itself. Microlocal
rank one means then that V • is a rank-one k-module in degree zero. Moving up from the bottom
we get a complete flag in the rank-n k-module assigned to the top region. For details and further
considerations, see Section 7.3.

In Theorem 7.1 we show that the category C1(Λ, µ;k) is equivalent to the category of augmenta-
tions to be defined in Section 4.
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2.4.5. Sheaves of categories.

As mentioned above, it makes sense to consider sheaves valued in any category C in which the
notion of limit makes sense; in particular, in a category of categories. Here we want to work with
categories of dg or A∞ categories. To do this we need some appropriate homotopical framework for
category theory, for instance the (∞, 1)-categories as developed in [Lur09b]. It is also possible, and
equivalent, to work in the older ‘model category’ framework — the model structures on the category
of dg or A∞ categories present the corresponding (∞, 1)-category. The relevant notion of limit is
what is called a homotopy limit in the model category setting, and just the limit in the setting of
(∞, 1)-categories.

If X is a locally compact Hausdorff topological space, and A is a 1-category such as sets or Z-
modules, it is a standard result that the assignment U 7→ Sh(U) extends to a sheaf on X valued in
the (2, 1)-category of categories. (That is, restriction maps do not compose strictly, but only up to a
homotopy.) Such sheaves of categories are sometimes called ‘stacks’ in the old literature.

In the (∞, 1)-categorical framework, there is a similar result for categories of sheaves which
themselves take values in a (presentable) (∞, 1)-category C, for instance in an appropriate (∞, 1)-
category of A∞ categories. The fact that a category of sheaves assembles itself into a presheaf of
categories is a tautology. One must check that covers are carried to limits; we do not know of a
reference for this result in the literature, so provide an argument here in a footnote.2

This fact as stated, in terms of presentable categories, applies directly to the categories of all
sheaves of unbounded complexes (localized along quasi-isomorphisms). However the full subcat-
egories with perfect stalks, or constructible with respect to some prescribed stratification, or with
some prescribed microsupport, are all characterized locally, hence form subsheaves of full subcate-
gories.

In fact, we make little essential use of the above generalities, since for the most part we only work
with constructible sheaves of categories on R. One source of these is the following:

Lemma 2.15. Let π : R2 → R be the projection to the second factor. Let S be a reasonable (e.g.
Whitney B) stratification of R2, such that π on each stratum has maximally nondegenerate derivative.
Let S ′ be a stratification of R such that the image under π of any stratum in S is S ′-constructible.
Then the assignment U 7→ ShS(π−1(U)) extends to a sheaf of dg categories on R, constructible
with respect to S ′.

To compute with constructible sheaves of categories on R, we note that Proposition 2.11 holds
for sheaves of categories, so long as one understands Fun(S, C) in the appropriate sense, i.e. as
functors of quasicategories from (the nerve of) S to C. That is, 2-cells go to homotopies, etc.

2One way to extract this result from what is written (as explained to us by Nick Rozenblyum, errors in translation
due to us): it suffices to check the ‘universal’ example where C is the category of spaces, since in general Sh(X,C) ∼=
Sh(X,Spaces) ⊗ C by [Lur17, Prop. 4.8.1.17] and [Lur09a, Prop. 1.1.12]. For an open inclusion u : U ⊂ X , the
restriction u∗ : Sh(X,Spaces) → Sh(U, Spaces) has a fully faithful left adjoint given by the extension by the empty
set, denote it u!. Note that u!(Sh(U, Spaces)) is identified with the overcategory Sh(X,Spaces)/u!pt; this is because
the point is initial and there are no maps to the empty set. By adjunction, showing that the limit over the restriction maps
of the Sh(U, Spaces) is Sh(X,Spaces) is equivalent to showing that the same for the colimit over the extension by
zero maps. A homotopy cover (i.e. including overlaps) uα : Uα → X means literally that X is the gluing of the Uα in
the category of topological spaces; it follows easily that colimuα!pt = ptX . The fact that the overcategories over these
objects obey the same colimit is [Lur09b, Thm. 6.1.3.9(3); Prop 6.1.3.10(2)].
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However, when S is a stratification of R, the corresponding poset looks like • ← • → • ← · · · ←
• → •, hence there are no nondegenerate 2-cells in the nerve, so this complication can be essentially
ignored for the purpose of describing objects of ShS(R).

In describing morphisms between objects of Fun(S, C), it is important to remember that such a
morphism is a diagram which commutes up to specified homotopies (the possible homotopies being
encoded by the 2-cells in C). When taking a stratification of R, one has homotopy-commutative
squares in the maps between diagrams, but never nontrivial compositions of such squares, so there
is no need to consider higher homotopies. These considerations will arise later when describing
maps of sheaves of A∞-categories.

Finally, we will want to compute the global sections of a constructible sheaf of categories on R,
which is given as a functor out of a diagram · · · ← • → • ← • → · · · . By definition of sheaf
(and recalling how this diagram is obtained from the cover by stars in Proposition 2.11), the global
sections is the limit of this diagram. Evidently this can be computed by iterated pullbacks; we recall
in the next subsection how to actually compute such pullbacks.

2.4.6. Pullbacks of categories.

To actually calculate limits in the (∞, 1)-category of dg or A∞ categories, the model structure
provided by Tabuada and Toën [Tab05, Toë07] is useful. In fact we will be only interested in calcu-
lating pullbacks, which are given by the following formula.

Let p : A → C and q : B → C be two functors between dg categories A,B,C. Objects of the
fiber product dg category A ×C B are triples x = (a, b, f), with f ∈ homC

0(p(a), q(b)) a closed
isomorphism. Morphisms are

homk(x, x′) = homk
A(a, a′)⊕ homk

B(b, b′)⊕ homk−1
C (p(a), q(b′))

with differential D = d + d′ where d = dA ⊕ dB ⊕ dC and d′ : homk
A(a, a′) ⊕ homk

B(b, b′) →
homk

C(p(a), q(b′)) defined by

d′(u⊕ w) = f ′ ◦ p(u)− q(w) ◦ f

The composition between (u,w, v) ∈ hom(x, x′) and (u′, w′, v′) ∈ hom(x′, x′′) is

u′ ◦ u⊕ w′ ◦ w ⊕ q(w′) ◦ v − v′ ◦ p(u)

which lies in homk
A(a, a′′)⊕homk

B(b, b′′)⊕homk−1
C (p(a), q(a′′)) as required. It is associative on the

nose.
In our application, we will prefer to require f to be the identity rather than an isomorphism. We

write (A ×C B)strict for the full subcategory of the product whose objects can be obtained in this
manner. In general, the inclusion (A×C B)strict → A×C B is not essentially surjective, and in fact
we will see examples where this fails. However we have the following:

Definition 2.16. A morphism of categories q : B → C has the isomorphism lifting property if,
whenever there is some isomorphism φ : q(b) ∼= c, then in fact there is some b′ ∈ B with c = q(b′)

and some isomorphism φ̃ : b ∼= b′ with φ = q(φ̃).
A morphism of dg or A∞ categories q : B → C has the weak isomorphism lifting property if

ho(q) : ho(B) → ho(C) has the isomorphism lifting property. It has the strict isomorphism lifting
property if for any closed degree zero map φ : q(b) ∼= c which becomes an isomorphism in ho(C),
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there is some b′ with q(b′) = c and some closed degree zero map φ̃ : b ∼= b′ which becomes an
isomorphism in ho(B), such that q(φ̃) = φ.

Remark 2.17. This is evidently some sort of fibrancy condition, but we do not know exactly how it
relates to the model structures on dg categories.

Lemma 2.18. Given p : A → C and q : B → C morphisms of dg categories, suppose that q has
the strict isomorphism lifting property. Then the inclusion A×strC B → A×C B is an equivalence.

Proof. We need only check essential surjectivity. Consider some object (a, b, φ : p(a) ∼= q(b)) ∈
A×C B. By the lifting property, there must be some b′ ∈ B with q(b′) = p(a), and a (closed degree
zero quasi-) isomorphism b ∼= b′ in B. Consider the object (a, b′, id : p(a) = q(b′)) ∈ A×strC B. The
map b ∼= b′ induces an isomorphism (a, b′, id : p(a) = q(b′)) ∼= (a, b, φ : p(a) ∼= q(b)). �

We end this section by summarizing some properties of constructible sheaves of A∞ categories
over a line.

Proposition 2.19. Let C be a constructible sheaf of categories on a line, with respect to a stratifica-
tionZ with zero dimensional strata zi and one-dimensional strata ui,i+1 = (zi, zi+1). The associated
diagram (as in Prop. 2.11) has maps

C(ui−1,i)
ρL←− Czi

ρR−→ C(ui,i+1).

If zi < zi+1 < . . . < zj are the zero dimensional strata in the interval (a, b), then sections are
calculated by

C((a, b)) ≡ Czi ×C(ui,i+1) Czi+1
× . . .× Czj .

Objects of this fibre product are tuples (ξi, ξi+1, . . . , ξj; fi,i+1, . . . , fj−1,j) where ξk ∈ Czk and
fk,k+1 : ρR(ξk)→ ρL(ξk+1) is an isomorphism in C.

This fibre product contains a full subcategory

(Czi ×C(ui,i+1) Czi+1
× . . .× Czj)strict

in which the fk,k+1 must all be the identity morphism, i.e., ρR(ξk) = ρL(ξk+1).
If all ρL have the “isomorphism lifting property,” i.e., that any isomorphism φ : ρL(ξ) ∼ η′ is

in fact the image under ρL of some isomorphism ψ : ξ ∼ ξ′. Then the inclusion of the strict fibre
product in the actual fibre product is an equivalence.

Proof. The only new thing is we have allowed many strata in the strictification; the result follows
from Lemma 2.18 by induction. �
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3. AUGMENTATION CATEGORY ALGEBRA

In this section, we describe how to obtain a unital A∞ category from what we call a “consistent
sequence of differential graded algebras.” Our motivation is the fact that if we start with a Legendrian
knot or link Λ in R3 and define its m-copy Λm to be the link given by m copies of Λ perturbed in
the Reeb direction, then the collection of Chekanov–Eliashberg DGAs for Λm (m ≥ 1) form such
a consistent sequence, as we will see in Section 4. First, however, we present a purely algebraic
treatment, defining a consistent sequence of DGAs A(•) and using it to construct the augmentation
category Aug+(A(•),k) along with a variant, the negative augmentation category Aug−(A(•),k).
We then show that Aug+(A(•),k) is unital, though Aug−(A(•),k) may not be (see Section 4 or
[BC14]).

3.1. Differential graded algebras and augmentations.

For the following definition, by a DGA, we mean an associative Z-algebraA equipped with a Z/m
grading for some even m ≥ 0, and a degree −1 differential ∂ that is a derivation. The condition that
m is even is necessary for the Leibniz rule ∂(xy) = (∂x)y + (−1)|x|x(∂y) to make sense, though
many of our results continue to hold if m is arbitrary and A is instead an R-algebra where R is a
commutative unital ring with −1 = 1 (e.g., R = Z/2).

Definition 3.1. A semi-free DGA is a DGA equipped with a set S = R t T of homogeneous
generators

R = {a1, . . . , ar}
T = {t1, t−1

1 , . . . , tM , t
−1
M }

such that A is the result of taking the free noncommutative unital algebra over Z generated by the
elements of S and quotienting by the relations ti · t−1

i = t−1
i · ti = 1. We require in addition that

|ti| = 0 and ∂ti = 0.

We note that our use of “semi-free” is nonstandard algebraically but roughly follows [Che02].

Definition 3.2. Let k be a field; we view it as a DGA by giving it the zero grading and differential.
A k-augmentation of a semi-free DGA A is a DGA map ε : A → k. That is, it is a map of the
underlying unital algebras, annihilating all elements of nonzero degree, and satisfying ε ◦ ∂ = 0.

Remark 3.3. An augmentation ε is uniquely determined by ε(ai) ∈ k for each ai ∈ R, along with
invertible elements ε(ti) ∈ k.

Given an augmentation ε : A → k, we define the k-algebra

Aε := (A⊗ k)/(ti = ε(ti)).

Since ∂ti = 0, the differential ∂ descends to Aε.
We write C for the free k-module with basisR. We have

Aε =
⊕
k≥0

C⊗k;

and we further define Aε+ ⊂ Aε by
Aε+ :=

⊕
k≥1

C⊗k.
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Note that ∂ need not preserve Aε+. A key observation, used extensively in Legendrian knot theory
starting with Chekanov [Che02], is that this can be repaired.

Consider the k-algebra automorphism φε : Aε → Aε, determined by φε(a) = a+ ε(a) for a ∈ R.
Conjugating by this automorphism gives rise to a new differential

∂ε := φε ◦ ∂ ◦ φ−1
ε : Aε → Aε.

Proposition 3.4. The differential ∂ε preserves Aε+, and in particular, descends to a differential on
Aε+/(Aε+)2 ∼= C.

Proof. WriteAε = k⊕Aε+ and denote the projection mapAε → k by π; then π∂ε(ai) = πφε∂(ai) =
ε∂(ai) = 0, and it follows that π∂ε sends Aε+ to 0. �

Let C∗ := Homk(C,k). The generating set R = {ai} for C gives a dual generating set {a∗i } for
C∗ with 〈a∗i , aj〉 = δij , and we grade C∗ by |a∗i | = |ai|.

Recall that for a k-module V , we write T (V ) :=
⊕

n≥0 V
⊗n for the tensor algebra, and T (V ) :=⊕

n≥1 V
⊗n. The pairing extends to a pairing between T (C∗) and T (C) determined by

(ai1ai2 · · · aik)∗ = (−1)
∑
p<q |aip ||aiq |a∗ik · · · a

∗
i2
a∗i1 :

that is, 〈a∗ik · · · a
∗
i2
a∗i1 , ai1ai2 · · · aik〉 = (−1)

∑
p<q |aip ||aiq | and all other pairings are 0. (The sign

comes from the fact that we are reversing the order of the ai’s, and is necessary for the dual of a
derivation to be a coderivation, which in turn we need for the correspondence between A∞ algebras
and duals of DGAs.) On the positive part T (C∗) of the tensor algebra T (C∗), we define ∂∗ε to be the
co-differential dual to ∂ε:

〈∂∗εx, y〉 = 〈x, ∂εy〉.
Shift gradings by defining C∨ := C∗[−1]; then T (C∗) = T (C∨[1]). By Proposition 2.7, the co-

differential ∂∗ε now determines an A∞ structure on C∨. We write the corresponding multiplications
as

mk(ε) : (C∨)⊗k → C∨.

Concretely, mk(ε) is given as follows. For a ∈ R, a is a generator of C with dual a∗ ∈ C∗. Write
the corresponding element of C∨ as a∨ = s−1(a∗), where s : C∨ → C∨[1] = C∗ is the degree −1
suspension map, and note that

|a∨| = |a∗|+ 1 = |a|+ 1.

Now we have

mk(ε)(a
∨
i1
, · · · , a∨ik) = (−1)

|a∨ik−1
|+|a∨ik−3

|+···
s−1∂∗ε (a

∗
i1
· · · a∗ik)

= (−1)
∑
p<q |aip ||aiq |+|a∨ik−1

|+|a∨ik−3
|+···

s−1∂∗ε (aik · · · ai1)∗,
and also

〈∂∗ε (aik · · · ai1)∗, a〉 = 〈(aik · · · ai1)∗, ∂εa〉 = Coeffaik ···ai1 (∂εa).

Combining these, and using the fact that∑
1≤p<q≤k

|aip ||aiq |+|a∨ik−1
|+|a∨ik−3

|+· · · ≡
∑

1≤p<q≤k

|a∨ip ||a
∨
iq |+

∑
j

(j−1)|a∨ij |+k(k−1)/2 (mod 2),

we obtain the following formula for mk in terms of the differential ∂ε:

(3.1) mk(ε)(a
∨
i1
, · · · , a∨ik) = (−1)σ

∑
a∈R

a∨ · Coeffaik ···ai1 (∂εa),
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where

σ = k(k − 1)/2 +

(∑
p<q

|a∨ip ||a
∨
iq |

)
+ |a∨i2|+ |a

∨
i4
|+ · · · .

For future reference, we note in particular that

σ =

{
0 k = 1

|a∨i1||a
∨
i2
|+ |a∨i2|+ 1 k = 2.

We write C∨ε := (C∨,m1(ε),m2(ε), . . .) to mean C∨ viewed as an A∞ algebra, rather than just as
a k-module. In this context, and when there is no risk of confusion, we simply write mk for mk(ε).

3.2. Link grading.

Here we give several viewpoints on link grading, which is an additional structure on the DGA of
a Legendrian link in the case where the link has multiple components; the notion and name are due
to Mishachev [Mis03]. We then discuss how it interacts with the A∞ structure from Section 3.1.

Definition 3.5. Let (A, ∂) be a semi-free DGA with generating set S = R t T . An m-component
weak link grading on (A, ∂) is a choice of a pair of maps

r, c : S → {1, . . . ,m}
satisfying the following conditions:

(1) for any a ∈ R with r(a) 6= c(a), each term in ∂a is an integer multiple of a word of the form
x1 · · ·xk where c(xi) = r(xi+1) for i = 1, . . . , k − 1 and r(x1) = r(a), c(xk) = c(a) (such
a word is called “composable”);

(2) for any a ∈ Rwith r(a) = c(a), each term in ∂a is either composable or constant (an integer
multiple of 1);

(3) for any i, we have r(ti) = c(t−1
i ) and c(ti) = r(t−1

i ).
The maps r, c form an m-component link grading if they also satisfy

(4) r(ti) = c(ti) = r(t−1
i ) = c(t−1

i ) for all i.
We write S ij := (r × c)−1(i, j), and likewise Rij and T ij . We call elements of S ii diagonal and
elements of S ij for i 6= j off-diagonal. Note that all elements of T are required to be diagonal in a
link grading.

The motivation for this definition is that if Λ = Λ1 t · · · t Λm is an m-component Legendrian
link, then the DGA for Λ has an m-component link grading: for each Reeb chord a, define r(a) (re-
spectively c(a)) to be the number of the component containing the endpoint (respectively beginning
point) of a, and define r(ti) = c(ti) = r(t−1

i ) = c(t−1
i ) to be the number of the component con-

taining the corresponding base point. More generally, if Λ is partitioned into a disjoint union of m
sublinks (where each may consist of more than one link component), then the DGA for Λ similarly
has a natural m-component link grading.

Given a DGA with an m-component weak link grading, a related DGA to consider is the “com-
posable DGA” (A′, ∂′), cf. [BEE12, §4.1]. Here A′ is generated over Z by

S ′ = Rt T t {e1, . . . , em}
with r, c extended to S ′ by defining r(ei) = c(ei) = i, quotiented by the relations
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• xy = 0 if x, y ∈ S ′ with c(x) 6= r(y)
• ti · t−1

i = er(ti) and t−1
i · ti = ec(ti)

• for x ∈ S ′, xei = x if c(x) = i, and eix = x if r(x) = i
• 1 =

∑m
i=1 em.

The differential ∂′ is defined identically to ∂, extended by ∂′(ei) = 0, except that for each Reeb chord
a with r(a) = c(a), each constant term n ∈ Z in ∂a is replaced by ner(a): that is, the idempotent ei
corresponds to the empty word on component i. We can now write

A′ =
m⊕

i,j=1

(A′)ij

where (A′)ij is generated by words x1 · · · xk with r(x1) = i and c(xk) = j, and ∂′ splits under this
decomposition.

It will be useful for us to have a reformulation of the composability properties of (A′, ∂′) in terms
of matrices. To this end, consider the algebra morphism

` : A′ → A⊗ End(Zm)

x 7→ x⊗ |r(x)〉〈c(x)| x ∈ S
ei 7→ 1⊗ |i〉〈i| i = 1, . . . ,m,

where |r〉〈c| is the m ×m matrix whose (r, c) entry is 1 and all other entries are 0. Note that A ⊗
End(Zm), i.e., the m×m matrices with coefficients in A, is naturally a DGA: it is a tensor product
of DGAs, where End(Zm) carries the 0 differential. (That is, the differential ∂ onA⊗End(Zm) acts
entry by entry.) The weak link grading property now just states that ` is a DGA map from (A′, ∂′)
to (A⊗ End(Zm), ∂).

For a variant on this perspective, and the one that we will largely use going forward, suppose
that r, c is a weak link grading and that ε : A → k is an augmentation. We say that ε respects the
link grading on A if ε(a) = 0 for all a ∈ R with r(a) 6= c(a) (“mixed Reeb chords”); note that
ε(ti) = ε(t−1

i )−1 6= 0 for all i, so r(ti) = c(ti) and thus r, c must be an actual link grading. In
this case, the twisted differential ∂ε = φε ◦ ∂ ◦ φ−1

ε preserves the link grading, and we can drop the
discussion of idempotents ei since ∂ε contains no constant terms. More precisely, recall that Aε is
the k-algebra (A⊗ k)/(ti = ε(ti)), and define the k-algebra map

` : Aε → Aε ⊗ End(Zm)

a 7→ a⊗ |r(a)〉〈c(a)| a ∈ R.

Then the structure of the m-component link grading implies that ` is a DGA map from (Aε, ∂ε) to
(Aε ⊗ End(Zm), ∂ε).3

For the remainder of this subsection, we suppose that (A, ∂) is a semi-free DGA equipped with a
link grading.

3For yet another perspective, one can combine the twisted differential with the composable algebra. Consider the
path algebra A′′ over k on the quiver whose vertices are 1, . . . ,m and whose edges are the Reeb chords a, where edge
a goes from vertex i to vertex j if r(a) = i and c(a) = j. Then ∂ε descends to a differential on A′′ that respects the
splitting A′′ = ⊕i,j(A′′)ij , where (A′′)ij is generated as a k-module by paths beginning at i and ending at j. In this
context, the idempotent ei corresponds to the empty path at i.
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Proposition 3.6. The two-sided ideal generated by the off-diagonal generators is preserved by ∂.
More generally, if π : {1, . . . ,m} = P1 t · · · t Pk is any partition, let Jπ be the two-sided ideal
generated by all elements a with r(a), c(a) in different parts. Then Jπ is preserved by ∂.

Proof. Let g be an off-diagonal generator, and y1 · · · yk be a word in ∂g. Then r(g) = r(y1), c(yi) =
r(yi+1), and c(yk) = c(g). So if moreover r(yi) = c(yi) for all i, we would have r(g) = c(g), a
contradiction.

The argument in the more general case is similar. �

Note thatA/Jπ remains a semi-free algebra with generators T and some subset ofR; it moreover
inherits the link grading.

Definition 3.7. For a partition π of {1, . . . ,m}, we write Aπ := A/Jπ. In the special case where
π = I t Ic for some I ⊂ {1, . . . , n}, we write AI for the subalgebra of AItIc generated by the
elements of

∐
i,j∈I S ij (that is, further quotient by elements a with r(a), c(a) ∈ Ic). Finally, we will

write Ai := A{i}.
Proposition 3.8. For any I ⊂ {1, . . . ,m}, the algebra AI is preserved by the differential inherited
by AItIc .
Proposition 3.9. For any partition π : {1, . . . ,m} = P1 t · · · tPk, we have Aπ = AP1 ? · · · ?APk .

In particular, an augmentation of A which annihilates generators a with r(a), c(a) in different
parts is the same as a tuple of augmentations of the APα .

Let ε : A → k be an augmentation. We write Cij for the free k-submodule of C generated by
Rij , so that C =

⊕
i,j C

ij . Similarly we split C∨ =
⊕

C∨ij . The product then splits into terms

mk(ε) : C∨i1j1 ⊗ C
∨
i2j2
⊗ · · · ⊗ C∨ikjk → C∨ij.

Proposition 3.10. Assume ε respects the link grading. Then the product mk(ε) : C∨i1j1 ⊗ C∨i2j2 ⊗
· · · ⊗ C∨ikjk → C∨ij vanishes unless ik = i, j1 = j, and ir = jr+1.

Proof. Up to a sign, the coefficient of a∨ in the product mk(a
∨
n1
, . . . , a∨nk) is the coefficient of

ank · · · an1 in ∂εa. Since a ∈ Rij , this vanishes unless ik = i, j1 = j, and ir = jr+1. �

That is, the nonvanishing products are:

mk : C∨ikik+1
⊗ · · · ⊗ C∨i1i2 → C∨i1ik+1

.

Proposition 3.11. Let A be a semi-free DGA with an m-component link grading. Let ε be an
augmentation which respects the link grading. There is a (possibly nonunital) A∞ category on the
objects {1, . . . ,m} with morphisms Hom(i, j) = C∨ij , with multiplications mk as above.

Proof. The A∞ relations on the category follow from the A∞ relations on the algebra Cε, as per
Remark 2.8. �

Proposition 3.12. Let ε : A → k be an augmentation respecting the link grading. Let π be a
partition of {1, . . . ,m}. Suppose i0, . . . , ik are in the same part P of π. Then computing mk in A,
Aπ, and AP gives the same result.

Proof. The element mk is computed using the length k terms of the twisted differential in which
the terms above appear. The assumption that the augmentation respects the link grading means that
off-diagonal terms will not contribute new things to the twisted differential. �
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3.3. A∞-categories from sequences of DGAs.

For bookkeeping, we introduce some terminology. We write ∆+ for the category whose objects
are the sets [m] := {1, . . . ,m} and whose morphisms are the order-preserving inclusions. Such
maps [m] → [n] are enumerated by m-element subsets of [n]; we denote the map corresponding
to I ⊂ [n] by hI : [m] → [n]. We call a covariant functor ∆+ → C a co-∆+ object of C.4 For
a co-∆+ object X : ∆+ → C, we write X[m] := X({1, . . . ,m}). We denote the structure map
X[m]→ X[n] corresponding to a subset I ⊂ [n] also by hI .

For example, ∆+ itself, or more precisely the inclusion ∆+ → Set, is a co-∆+ set. Another
example of a co-∆+ set is the termwise square of this, ∆2

+, which has ∆2
+[m] = {1, . . . ,m}2.

Definition 3.13. A sequence A(•) of semi-free DGAs (A(1), ∂), (A(2), ∂), . . . with generating sets
S1,S2, . . . is consistent if it comes equipped with the following additional structure:

• the structure of a co-∆+ set S with S[m] = Sm;
• link gradings Sm → {1, . . . ,m} × {1, . . . ,m}.

This structure must satisfy the following conditions. First, the link grading should give a morphism
of co-∆+ sets S → ∆2

+. Second, for anym-element subset I ⊂ [n], note that the map hI : Sm → Sn
induces a morphism of algebras hI : A(m) → A(n)

I . We require this map be an isomorphism of
DGAs.

Remark 3.14. There is a co-∆+ algebraA withA[m] = A(m) and the structure maps induced from
the structure maps on the Sm. This however is generally not a co-∆+ DGA – the morphisms do not
respect the differential.

Lemma 3.15. Let A(•) be a consistent sequence of DGAs. Then in particular:

• The map hi : A(1) → A(m)
i is an isomorphism, and

A(m)
{1}t{2}t···t{m} = A(m)

1 ?A(m)
2 ? · · · ?A(m)

m = h1(A(1)) ? · · · ? hm(A(1)) = A(1) ? · · · ?A(1).

In particular, an m-tuple of augmentations of A(1) induces a augmentation of A(m) which
respects the link grading.
• The map hij : S2 → Sm induces a bijection hij : S12

2 → S ijm and hence an isomorphism
hi,j : C∨12 → C∨ij .
• Let (ε1, ε2, . . . , εm) be a tuple of augmentations of A(1), and let ε be the corresponding

diagonal augmentation of A(m). Let 1 ≤ i1 < i2 < · · · < ik+1 ≤ m be any increasing
sequence. Then the composite morphism

(3.2) C∨12 ⊗ · · · ⊗ C∨12

hikik+1
⊗···⊗hi1i2−−−−−−−−−−→ C∨ikik+1

⊗ · · · ⊗ C∨i1i2
mk(ε)−−−→ C∨i1ik+1

h−1
i1ik+1−−−−→ C∨12

does not depend on anything except the tuple (εi1 , . . . , εik+1
).

Proof. The first part of the first statement holds by definition; the equation following is Proposition
3.9. The second statement again holds by definition. The third statement is Proposition 3.12. �

We will associate an A∞-category to a consistent sequence of DGAs.

4Co-∆+ is pronounced “semi-cosimplicial.” We only use ∆+ for bookkeeping – while the following construction
bears some family resemblance to taking a resolution of A(1), we have been unable to express it in this manner.
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Definition 3.16. Given a consistent sequence of DGAs (A(m), ∂) and a coefficient field k, we define
the augmentation category Aug+(A(•),k) as follows:

• The objects are augmentations ε : A(1) → k.
• The morphisms are

Hom+(ε1, ε2) := C∨12 ⊂ A(2),

where ε is the diagonal augmentation (ε1, ε2).
• For k ≥ 1, the composition map

mk : Hom+(εk, εk+1)⊗ · · · ⊗ Hom+(ε2, ε3)⊗ Hom+(ε1, ε2)→ Hom+(ε1, εk+1)

is defined to be the map of (3.2).

Proposition 3.17. Aug+(A(•),k) is an A∞ category.

Proof. TheA∞ relations can then be verified by observing that all compositions relevant to any finite
relation can be computed in some fixed A∞ category of the sort constructed in Proposition 3.11. �

Remark 3.18. We emphasize that the A∞ algebra Hom+(ε, ε) is not the A∞ algebra obtained by
dualizing (A(1))ε. In particular, the former can be unital when the latter is not.

Definition 3.19. Given two consistent sequences (A(•), ∂) and (B(•), ∂), we say a sequence of DGA
morphisms

f (m) : (A(m), ∂)→ (B(m), ∂)

is consistent if:
(1) Each f (m) preserves the subalgebra generated by the invertible generators.
(2) The f (m) are compatible with the link gradings in the following sense. For any generator,

ai ∈ Sm, f(ai) is a Z-linear combination of composable words in B(m) from r(ai) to c(ai),
i.e. words of the form x1 · · ·xk with c(xi) = r(xi+1) for i = 1, . . . , k−1, and r(x1) = r(ai),
c(xk) = c(ai). Note that constant terms are allowed if r(ai) = c(ai).

As a consequence of this requirement, a well-defined DGA morphism of composable
algebras arises from taking (f (m))′(ai) to be f (m)(ai) with all occurrences 1 replaced with
the idempotent er(ai) for generators ai of A(m). Moreover, the following square commutes:

(3.3)

(A(m))′
(f (m))′

//

`
��

(B(m))′

`
��

A(m) ⊗ End(Zm)
f (m)⊗1// B(m) ⊗ End(Zm).

(3) For any I : [m] ↪→ [n], note that, by the previous axiom, f (n) induces a well defined homo-
morphism f

(n)
I : (A(n)

I , ∂)→ (B(n)
I , ∂). We require the following diagram to commute:

(3.4)

A(m) f (m)

//

��

B(m)

��

A(n)
I

f
(n)
I // B(n)

I ,

where the vertical arrows are the definitional isomorphisms hI .
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A consistent sequence of DGA morphisms f (m) : (A(m), ∂) → (B(m), ∂) gives rise to an A∞-
functor

F : Aug+(B(•),k)→ Aug+(A(•),k)

according to the following construction. On objects, for an augmentation ε : (B(1), ∂) → (k, 0) we
define

F (ε) = f ∗ε := ε ◦ f
where f := f (1) : (A(1), ∂)→ (B(1), ∂). Next, we need to define maps

Fk : HomB+(εk, εk+1)⊗ · · · ⊗ HomB+(ε1, ε2)→ HomA+(f ∗ε1, f
∗εk+1).

Consider the diagonal augmentation ε = (ε1, . . . , εk+1) of B(k+1), and let f (k+1)
ε := Φε ◦ f (k+1) ◦

Φ−1
(f (k+1))∗ε

. Here, we used that f (k+1) passes to a well defined map (A(k+1))(f (k+1))∗ε → (B(k+1))ε.

Observe that f (k+1)
ε ((A(k+1))

(f (k+1))∗ε
+ ) ⊂ (B(k+1))ε+, i.e. no constant terms appear in the image of

generators. We then define Fk, up to the usual grading shift, by dualizing the component of f (k+1)
ε

that maps from
C1,k+1 → C ′

1,2 ⊗ · · · ⊗ C ′k,k+1

and making use of the consistency of the sequence to identify the grading-shifted duals C ′∨i,i+1 and
C∨1,k+1 with HomB+(εi, εi+1) and HomA+(f ∗ε1, f

∗εk+1) respectively.

Proposition 3.20. If the sequence of DGA morphisms f (m) is consistent, then F is an A∞-functor.
Moreover, this construction defines a functor from the category of consistent sequences of DGAs and
DGA morphisms to A∞ categories.

Proof. Using the third stated property of a consistent sequence, we see that the required relation for
the map Fk : HomB+(εk, εk+1)⊗· · ·⊗HomB+(ε1, ε2)→ HomA+(f ∗ε1, f

∗εk+1) follows from the identity
f

(k+1)
ε ∂(f (k+1))∗ε = ∂εf

(k+1)
ε . That the construction preserves compositions and identity morphisms

is clear from the definitions. �

3.3.1. The negative augmentation category.

For a given consistent sequence of DGAs (A(•), ∂) , there is a kind of dual consistent sequence
obtained by reversing the order of components in the link grading. That is, for each m ≥ 1, we form
a new link grading, (r × c)∗, as the composition

Sm
r×c→ {1, . . . ,m} τ→ {m, . . . , 1}

where τ reverses the ordering: τ(k) = m − k + 1. The structure of a consistent sequence for this
new link grading is then provided by altering the maps hI to h∗I = hτ(I).

Definition 3.21. Given a consistent sequence of DGAs (A(•), ∂) and a coefficient ring k, we define
the negative augmentation category Aug−(A(•),k) to be the augmentation category associated, as
in Definition 3.16, to the sequence of DGAs (A(m), ∂) with link grading (r × c)∗ and co-∆+ set
structure on the Sm given by the h∗I .

The category Aug−(A(•),k) can also be described in a straightforward manner in terms of the
original link grading and hI for (A(m),k) as follows:
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• The objects are augmentations ε : A(1) → k.
• The morphisms are

Hom−(ε2, ε1) := C∨21 ⊂ A(2)

where ε is the diagonal augmentation (ε1, ε2) (note the reversal of the order of inputs).
• For k ≥ 1, let (ε1, ε2, . . . , εk+1) be a tuple of augmentations of A(1), and let ε be the corre-

sponding diagonal augmentation of A(k+1). Then

mk : Hom−(ε2, ε1)⊗ Hom−(ε3, ε2)⊗ · · · ⊗ Hom−(εk+1, εk)→ Hom−(εk+1, ε1)

is the composite morphism

(3.5) C∨21 ⊗ · · · ⊗ C∨21

h12⊗···⊗hk,k+1−−−−−−−−→ C∨21 ⊗ · · · ⊗ C∨k+1,k

mk(ε)−−−→ C∨k+1,1

h−1
1,k+1−−−→ C∨21.

Remark 3.22. (i) In the preceding formulas, objects were indexed in a manner that is reverse to
our earlier notations. This is to allow for easy comparison of the operations inAug+(A(•),k)
and Aug−(A(•),k) that correspond to a common diagonal augmentation ε = (ε1, . . . , εk+1)
of (A(k+1), ∂).

(ii) The subscripts of the h maps are the same as in (3.2). However, in these two settings, they
are applied to different generators from the Sm.

Proposition 3.23. The map (ε1, ε2) 7→ Hom+(ε1, ε2) underlies the structure of anA∞ bifunctor from
Aug− to chain complexes and likewise the map (ε1, ε2) 7→ Hom−(ε1, ε2) underlies the structure of
an A∞ bifunctor from Aug+ to chain complexes.

Proof. Consider the diagonal augmentation ε on A(3) induced by the tuple (ε1, ε2, ε3). Then the
composition on Cε gives us in particular:

m2 : Hom+(ε1, ε3)⊗ Hom−(ε2, ε1) = C∨13 ⊗ C∨21 → C∨23 = Hom+(ε2, ε3)

m2 : Hom−(ε3, ε2)⊗ Hom+(ε1, ε3) = C∨32 ⊗ C∨13 → C∨12 = Hom+(ε1, ε2)

m2 : Hom+(ε1, ε2)⊗ Hom−(ε3, ε1) = C∨12 ⊗ C∨31 → C∨32 = Hom−(ε3, ε2)

m2 : Hom−(ε3, ε1)⊗ Hom+(ε2, ε3) = C∨31 ⊗ C∨23 → C∨21 = Hom−(ε2, ε1).

The first two and the analogous higher compositions give Hom+ the structure of a bifunctor on
Aug−, since the compositions are taking place in an A∞ algebra as described in Proposition 3.11.
Similarly, the second two and their higher variants give Hom− the structure of a bifunctor onAug+.

�

Remark 3.24. Note from the proof of Proposition 3.23 that we have maps

m2 : Hom±(ε2, ε3)⊗ Hom±(ε1, ε2)→ Hom±(ε1, ε3)

for all choices of (±,±,±) except (+,+,−) and (−,−,+). These six choices correspond to the six
different ways to augment the components of the 3-copy with ε1, ε2, ε3 in some order. For (+,+,+)
and (−,−,−), we recover the usual m2 multiplication in the A∞ categories Aug+ and Aug−.
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3.4. A construction of unital categories.

Let (A, ∂) be a semi-free DGA with generating set S = R t T where R = {a1, . . . , ar} and
T = {t1, t−1

1 , . . . , tM , t
−1
M }. Suppose further that (A, ∂) is equipped with a weak link grading (r×c) :

S → {1, . . . , l} × {1, . . . , l}. (As in Definition 3.5, this means r × c satisfies all the conditions of a
link grading except that the elements of T are not required to be diagonal.)

We will construct a consistent sequence from the above data.5

Proposition 3.25. Let (A, ∂) be a semi-free DGA with a weak link grading as above. We define a
sequence of algebras A(•) with A(1) = A, where A(m) has the following generators:

• aijk , where 1 ≤ k ≤ r and 1 ≤ i, j ≤ m, with degree |aijk | = |ak|;
• xijk , where 1 ≤ k ≤M and 1 ≤ i < j ≤ m, with degree |xijk | = 0;
• yijk , where 1 ≤ k ≤M and 1 ≤ i < j ≤ m, with degree |yijk | = −1;
• invertible generators (tik)

±1 where 1 ≤ k ≤M and 1 ≤ i ≤ m.

We organize the generators with matrices. Consider the following elements of Mat(m,A(m)) :
Ak = (aijk ), ∆k = Diag(t1k, . . . , t

m
k ),

Xk =


1 x12

k · · · x1m
k

0 1 · · · x2m
k

...
... . . . ...

0 0 · · · 1

 , Yk =


0 y12

k · · · y1m
k

0 0 · · · y2m
k

...
... . . . ...

0 0 · · · 0

 .
We introduce a ring homomorphism

Φ : A → Mat(m,A(m))

ak 7→ Ak

tk 7→ ∆kXk

t−1
k 7→ X−1

k ∆−1
k

and a (Φ,Φ)-derivation

αY : A → Mat(m,A(m))

s 7→ Yr(s)Φ(s)− (−1)|s|Φ(s)Yc(s), s ∈ S.

Then there is a unique derivation ∂m on A(m) such that (applying ∂m to matrices entry by entry):

∂m∆ = 0

∂mYk = Y 2
k

∂m ◦ Φ = Φ ◦ ∂ + αY .

Furthermore, this derivation is a differential: (∂m)2 = 0.

5The following construction comes from the geometry of the m-copies of a Lagrangian projection (cf. Proposition
4.14), but we require it in some non-geometric settings in order to prove invariance. Thus it is convenient to carry out
the algebra first. In the geometric case, the identity (∂m)2 = 0 is automatic because ∂m is the differential of a C–E
DGA.
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Proof. The uniqueness of such a derivation follows because taking s = tk determines ∆−1∂mΦ(tk) =
∆−1∂m(∆kXk) = ∂mXk, and taking s = a determines ∂mΦ(ak) = ∂mAk. Existence follows be-
cause the above specifies its behavior on the generators, and the equation ∂m ◦ Φ = Φ ◦ ∂ + αY
need only be checked on generators since both sides are (Φ,Φ)-derivations. (Recall that f is a
(Φ,Φ)-derivation when f(ab) = f(a)Φ(b) + (−1)|a|Φ(a)f(b).)

We turn to checking (∂m)2 = 0. Evidently

(∂m)2(∆k) = 0, (∂m)2Yk = (∂Yk)Yk + (−1)−1Yk(∂Yk) = Y 3
k − Y 3

k = 0,

and we compute

(∂m)2 ◦ Φ = ∂m ◦ (Φ ◦ ∂ + αY ) = Φ ◦ ∂2 + αY ◦ ∂ + ∂m ◦ αY = αY ◦ ∂ + ∂m ◦ αY
so it remains only to show, for any s ∈ S, that

(3.6) ∂mαY (s) = −αY (∂s).

In order to verify this identity, recall from Definition 3.5 the DGA homomorphism ` : A′ →
A ⊗ End(Zl) arising from the weak link grading on A, where (A′, ∂′) denotes the composable
algebra and A⊗ End(Zl) has differential ∂ ⊗ 1. We compose the maps Φ⊗ 1 and αY ⊗ 1 with ` to
define maps

Φ̃ : A′ `−→ A⊗ End(Zl) Φ⊗1−−→ Mat(m,A(m))⊗ End(Zl)

α̃Y : A′ `−→ A⊗ End(Zl) αY ⊗1−−−→ Mat(m,A(m))⊗ End(Zl).

The identity ∂m ◦ Φ = Φ ◦ ∂ + αY immediately implies (∂m ⊗ 1) ◦ Φ̃ = Φ̃ ◦ ∂′ + α̃Y . Moreover, if
we can show for any s ∈ S that

(3.7) (∂m ⊗ 1) ◦ α̃Y (s) = −α̃Y ◦ ∂′(s),
then (3.6) will follow. This is because we can then compute

(∂m ◦ αY (s))⊗ |r(s)〉〈c(s)| = (∂m ⊗ 1) ◦ (αY ⊗ 1) ◦ `(s)
= (∂m ⊗ 1) ◦ α̃Y (s)

(−αY ◦ ∂(s))⊗ |r(s)〉〈c(s)| = (−αY ⊗ 1) ◦ (∂ ⊗ 1) ◦ `(s)
= (−αY ⊗ 1) ◦ ` ◦ ∂′(s)
= −α̃Y ◦ ∂′(s),

and these last two quantities are equal.
To establish (3.7), we define an element of Mat(m,A(m))⊗ End(Zl) by the formula

Y =
l∑

i=1

Yi ⊗ |i〉〈i|

and verify the identities

∂mY = Y2, α̃Y (s) = [Y, Φ̃(s)]

where s ∈ S and [x, y] = xy − (−1)|x||y|yx denotes the graded commutator. Note that α̃Y and
[Y, Φ̃(·)] are both (Φ̃, Φ̃)-derivations from A′ to Mat(m,A(m)) ⊗ End(Zl). Therefore, since they
agree on a generating set for A′, it follows that α̃Y (x) = [Y, Φ̃(x)] holds for any x ∈ A′.
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Now the Leibniz rule ∂[x, y] = [∂x, y] + (−1)|x|[x, ∂y], together with |Y| = −1, gives

(∂m ⊗ 1) ◦ α̃Y (s) = [(∂m ⊗ 1)Y, Φ̃(s)]− [Y, (∂m ⊗ 1)Φ̃(s)]

= [Y2, Φ̃(s)]− [Y, (∂m ⊗ 1)Φ̃(s)].

Similarly, we compute that

α̃Y (∂′s) = [Y, Φ̃(∂′s)]

= [Y, (∂m ⊗ 1)Φ̃(s)]− [Y, α̃Y (s)]

= [Y, (∂m ⊗ 1)Φ̃(s)]− [Y, [Y, Φ̃(s)]]

and we can verify either directly or using the graded Jacobi identity that the last term on the right is
equal to [Y2, Φ̃(s)]. Thus, (∂m ⊗ 1) ◦ α̃Y (s) = −α̃Y (∂s) holds as desired. �

Proposition 3.26. TheA(m) above comes with a m-component link grading given by (r× c)(aijk ) =

(r × c)(xijk ) = (r × c)(yijk ) = (i, j) and (r × c)(tik) = (i, i). Given I : [m] ↪→ [n], we define
hI(s

ij) = sI(i),I(j). This gives A(•) the structure of a consistent sequence of DGAs.

Proof. By inspection. The fact that the above formula gives a link grading follows because the
differential was defined by a matrix formula in the first place. Also, the matrix formulas are identical
for all m ≥ 1, so the identification of generators extends to a DGA isomorphism (A(m), ∂m) →
(A(n)

I , ∂n). �

Remark 3.27. The link grading defined in Proposition 3.26 is unrelated to the initial weak link
grading on A that was used in Proposition 3.25 in defining differentials on the A(m). In particular,
for A(1) = A the two gradings are distinct if the initial weak link grading has l > 1.

Proposition 3.28. Let A be a DGA with weak link grading, and A(•) the consistent sequence from
Proposition 3.25. Then the A∞ category Aug+(A(•)) is strictly unital, with the unit being given by

eε = −
M∑
j=1

(y12
j )∨ ∈ Hom+(ε, ε)

for any ε ∈ Aug+(A(•)).

Proof. We recall the properties of a strict unit element: we must show that m1(eε) = 0, that
m2(eε1 , a) = m2(a, eε2) = a for any a ∈ Hom+(ε1, ε2), and that all higher compositions involving
eε vanish.

Inspection of the formula for ∂2 : A(2) → A(2) yields

∂2(a12
k ) = y12

r(ak)a
22
k − (−1)|ak|a11

k y
12
c(ak) + · · ·

∂2(x12
k ) = (t11

k )−1y12
r(tk)t

22
k − y12

c(tk)

∂2(y12
k ) = 0,

and so if we write ∂(ε,ε) for the differential φ(ε,ε) ◦∂ ◦φ−1
(ε,ε) onA(2), then for 1 ≤ k ≤ r the coefficient

of (a12
k )∨ in −m1eε is

〈m1

M∑
j=1

(y12
j )∨, (a12

k )∨〉 = 〈
M∑
j=1

y12
j , ∂(ε,ε)a

12
k 〉 = 〈y12

r(k) +y12
c(k), ∂(ε,ε)a

12
k 〉 = ε(ak)−(−1)|ak|ε(ak) = 0.
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(In the final equality, we used the fact that ε(ak) = 0 unless |ak| = 0.) A similar computation shows
that 〈m1

∑M
j=1(y12

j )∨, (x12
k )∨〉 = 0, and 〈m1

∑M
j=1(y12

j )∨, (y12
k )∨〉 = 0 holds since ∂y12

k = 0. Thus
m1(eε) = 0.

The formula for ∂3 : A(3) → A(3) yields

∂3(a13
k ) = y12

r(k)a
23
k − (−1)|ak|a12

k y
23
c(k) + · · ·

∂3(x13
k ) = (t11

k )−1y12
r(k)t

22
k x

23
k − x12

k y
23
c(k) + · · ·

∂3(y13
k ) = y12

k y
23
k .

Using (3.1), we calculate that

m2(eε, (a
12
k )∨) = (−1)|a

∨
k |+1(−1)|ak|(a12

k )∨ = (a12
k )∨

and similarlym2((a12
k )∨, eε) = (a12

k )∨. In the same manner, we find thatm2(eε, (x
12
k )∨) = m2((x12

k )∨, eε) =
(x12

k )∨ andm2(eε, (y
12
k )∨) = (y12

k )∨; note that form2((x12
k )∨, eε) = (x12

k )∨, we have eε ∈ Hom+(ε, ε)
and x∨k ∈ Hom+(ε, ε′) for some ε, ε′, and the corresponding diagonal augmentation (ε, ε, ε′) of A(3)

sends both t11
k and t22

k to ε(tk).
Finally, all higher order compositions involving eε vanish for the following reason: In any dif-

ferential of a generator in any of the A(m), the yijk appear only in words that have at most 2 non-t
generators. Therefore, when ε is a pure augmentation of A(m), occurences of yijk in the differential
of the other generators must be in words of length 2 or less. �

Proposition 3.29. Let f : (A, ∂) → (B, ∂) be a DGA morphism between algebras with weak
link gradings (with the same number of components), which respects the weak link gradings in the
sense of (2) from Definition 3.19. Then f extends, in a canonical way, to a consistent sequence of
morphisms

f (m) : (A(m), ∂m)→ (B(m), ∂m)

inducing a unital A∞ morphism of categories Aug+(B(•)) → Aug+(A(•)). This construction de-
fines a functor, i.e. it preserves identity morphisms and compositions.

Proof. Given f : (A, ∂) → (B, ∂) we produce morphisms f (m), m ≥ 1, by requiring that the
following matrix formulas hold (again applying f (m) entry-by-entry):

f (m)(∆k) = ∆k, f (m)(Yk) = Yk,

and when x ∈ A is a generator,

(3.8) f (m) ◦ ΦA(x) = ΦB ◦ f(x).

(Note that taking x = tk uniquely specifies f (m)(Xk) = ∆−1
k · ΦB ◦ f(tk).) This characterizes the

value of f (m) on generators, and we extend f (m) as an algebra homomorphism. Equation (3.8) then
holds for all x ∈ A, as the morphisms on both sides are algebra homomorphisms.

Next, note that the (Φ,Φ)-derivation αY : A → Mat(m,A(m)) satisfies

αY (w) = Yi Φ(w)− (−1)|w|Φ(w)Yj
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for any composable word in A from i to j. This is verified by inducting on the length of w: if
w = a · b with a composable from i to k and b composable from k to j, then

αY (ab) = αY (a) Φ(b) + (−1)|a|Φ(a)αY (b)

= (Yi Φ(a)− (−1)|a|Φ(a)Yk)Φ(b) + (−1)|a|Φ(a)(Yk Φ(a)− (−1)|b|Φ(a)Yj)

= Yi Φ(ab)− (−1)|a·b|Φ(ab)Yj.

Because f respects the link gradings, if x ∈ S ij is a generator of A then f(x) is a Z-linear combi-
nation of composable words from i to j in B, so we have

f (m) ◦ αY (x) = f (m)(Yi ΦA(x)− (−1)|x|ΦA(x)Yj)

= Yi (f
(m) ◦ ΦA)(x)− (−1)|x|(f (m) ◦ ΦA)(x)Yj

= Yi (ΦB ◦ f)(x)− (−1)|f(x)|(ΦB ◦ f)(x)Yj

= αY ◦ f(x).

(3.9)

To verify that f (m) is a DGA map, we need to verify that f (m)∂m = ∂mf (m) holds when applied
to any generator ofA(m). For the entries of ∆ or Y , this is immediate. For the remaining generators,
it suffices to compute using (3.8) and (3.9) that for x ∈ S,

f (m) ◦ ∂m ◦ Φ(x) = f (m) ◦ Φ ◦ ∂(x) + f (m) ◦ αY (x)

= Φ ◦ f ◦ ∂(x) + αY ◦ f(x)

= Φ ◦ ∂ ◦ f(x) + αY ◦ f(x)

= ∂m ◦ Φ ◦ f(x)− αY ◦ f(x) + αY ◦ f(x)

= ∂m ◦ f (m) ◦ Φ(x).

The consistency of the f (m) follows since the matrix formulas used for different m all appear identi-
cal; we get a morphism of A∞ categories by Proposition 3.20. The construction preserves identities
by inspection.

That the construction of this Proposition defines a functor is clear from the definitions combined
with the functoriality of the construction in Proposition 3.20. �
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4. THE AUGMENTATION CATEGORY OF A LEGENDRIAN LINK

In this section, we apply the machinery from Section 3 to define a new category Aug+(Λ) whose
objects are augmentations of a Legendrian knot or link Λ in R3. As mentioned in the Introduction,
this category is similar to, but in some respects crucially different from, the augmentation category
constructed by Bourgeois and Chantraine in [BC14], which we write as Aug−(Λ). Our approach in
fact allows us to treat the two categories as two versions of a single construction, and to investigate
the relationship between them.

We begin in Section 4.1 by considering the link consisting of m parallel copies of Λ for m ≥ 1,
differing from each other by translation in the Reeb direction, and numbered sequentially. In the
language of Section 3, the DGAs for these m-copy links form a consistent sequence of DGAs, and
we can dualize, using Proposition 3.17, to obtain an A∞ category: Aug+ if the components are
ordered from top to bottom, and Aug− if from bottom to top.

Associating a DGA to the m-copy of Λ requires a choice of perturbation; the construction of
Aug− is independent of this perturbation, but Aug+ is not. For the purposes of defining Aug+, we
consider two explicit perturbations, the Lagrangian and the front projectionm-copies. In Section 4.2,
we show that the A∞ category associated to the Lagrangian perturbation is constructed algebraically
from the DGA of Λ using Proposition 3.25, and conclude that Aug+ is unital.

In Section 4.3, we then proceed to prove invariance of Aug+ under choice of perturbation and
Legendrian isotopy of Λ. In Section 4.4, we present computations of Aug+ and Aug− for some
examples.

4.1. Definition of the augmentation category.

We recall our contact conventions. For a manifold M , we denote the first jet space by J1(M) =
T ∗M × Rz, the subscript indicating that we use z as the coordinate in the R direction. We choose
the contact form dz − λ on J1(M), where λ is the Liouville 1-form on T ∗M (e.g. λ = y dx on
T ∗R = R2). With these conventions, the Reeb vector field is ∂/∂z.

Definition 4.1. Let Λ ⊂ J1(M) be a Legendrian. For m ≥ 1, the m-copy of Λ, denoted Λm, is the
disjoint union of m parallel copies of Λ, separated by small translations in the Reeb (z) direction.
We label the m parallel copies Λ1, . . . ,Λm from top (highest z coordinate) to bottom (lowest z
coordinate).

The m-copy defined above is not immediately suitable for Legendrian contact homology, as the
space of Reeb chords is not discrete; we need to perturb the m-copy so that there are finitely many
Reeb chords. A standard method for perturbing a Legendrian is to work within a Weinstein neigh-
borhood of Λ, contactomorphic to a neighborhood of the 0-section in J1(Λ). One then chooses a
C1-small function f : Λ → R, and replaces Λ with the 1-jet of several small multiples of f (along
with another small perturbation to make the picture generic, see “Lagrangian projection m-copy”
below). In order to apply the algebraic constructions of the previous section, it will be important to
perturb the m-copies of Λ in a consistent manner, i.e, in a way that produces a consistent sequence
of DGAs. We will do this only in the 1-dimensional case; see Remark 4.5 for a discussion of issues
involved with extending to higher dimensions.
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We now specialize to the case of a 1-dimensional Legendrian Λ ⊂ J1(R) where we use coordi-
nates (x, y, z) ∈ J1(R) = T ∗R × R. In this case, we introduce two perturbation6 methods for the
m-copies of Λ that result in consistent sequences of DGAs, one described in terms of the Lagrangian
(xy) projection of Λ and other via the front projection (xz) projection of Λ. Recall from Section 2.2
that the resolution procedure [Ng03] gives a Legendrian isotopic link whose Reeb chords (crossings
in the xy diagram) are in one-to-one correspondence with the crossings and right cusps of the front.

c1

c2

(c1)

(c2)

a1 a2 a3
a1 a2 a3

a4

a5

FIGURE 4.1. The Legendrian trefoil, in the front (left) and xy (right) projections,
with Reeb chords labeled (and a correspondence chosen between left and right cusps
in the front projection).

Here are our two perturbation schemes in more detail:
• “Front projection m-copy.” Beginning with a front projection for Λ, take m copies of this

front, separated by small translations in the Reeb direction, and labeled 1, . . . ,m from top
to bottom; then resolve to get an xy projection, or equivalently use the formulation for the
DGA for fronts from [Ng03]. Typically, we denote this version of the m-copy as Λm

xz.

Λ1

Λ2

Λ3

tk,1

tk,2

tk,3

x23
k

x13
k

x12
k Λ1

Λ2

Λ3

y23
k

y13
k

y12
k

FIGURE 4.2. The xy projection of Λm
f pictured near local maxima (left) and local

minima (right) of f . The shaded quadrants of the xijk indicate negative orientation
signs. Note that in intervals bordered on the left by a local minimum of f and on
the right by a local maximum of f the components appear from top to bottom (with
respect to the oriented normal to Λ) in order Λ1, . . . ,Λm, and in remaining intervals
the top to bottom ordering is Λm, . . . ,Λ1.

• “Lagrangian projection m-copy.” Beginning with an xy projection for Λ (which e.g. can
be obtained by resolving a front projection), take m copies separated by small translations

6Strictly speaking the resolution construction does not produce a C0-small perturbation of the original Legendrian,
although we occasionally make this abuse in our terminology.
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in the Reeb (z) direction. Let f : Λ → R be a Morse function whose critical points are
distinct from the crossing points of the xy-projection. Use this function to perturb the copies
in the normal direction to the knot in the xy plane. Away from critical points of f , the result
appears as m parallel copies of the xy projection of Λ, while the xy projection remains
m-to-1 at critical points of f . Finally, perturb the projection near critical points of f so
that a left-handed (resp. right-handed) half twist appears as in Figure 4.2 when passing local
minima (resp. local maxima) of f according to the orientation of Λ. We denote this perturbed
m-copy as Λm

f .
An example of this construction where f has only two critical points, with the local mini-

mum placed just to the right of the local maximum appears, in Figure 4.4. Here, the two half
twists fit together to form what is commonly called a “dip” in the xy-projection, cf. [Sab05].

Associating a Legendrian contact homology DGA to the perturbed m-copy Λm
xz or Λm

f requires
a further choice of Maslov potentials to determine the grading, as well as a choice of orientation
signs and base points. Suppose that a choice of Maslov potential, orientation signs, and base points
has been made for Λ itself. As usual, we require that each component of Λ contains at least one
base point, and we further assume that the locations of base points are distinct from local maxima
and minima of f . Then, we equip each of the parallel components of Λm

xz and Λm
f with the identical

Maslov potential, and place base points on each of the copies of Λ in Λm
xz or Λm

f in the same locations
as the base points of Λ. Finally, we assign orientation signs as follows. Any even-degree crossing of
Λm
xz corresponds to an even-degree crossing of Λ (the crossings that appear near cusps all have odd

degree): we assign orientation signs to agree with the orientation signs of Λ. A similar assignment
of orientation signs to Λm

f is made, with the following addition for the crossings of πxy(Λm
f ) that

are created near critical points of f during the perturbation process, which do not correspond to
any crossing of πxy(Λ): only the crossings near local maxima of f have even degree, and they are
assigned orientation signs as pictured in Figure 4.2.

Proposition 4.2. Given a Legendrian Λ ⊂ J1(R), the following collections of DGAs underlie con-
sistent sequences:

• The “front projection m-copy” algebras (A(Λm
xz), ∂).

• The “Lagrangian projection m-copy” algebras (A(Λm
f ), ∂), for a fixed Morse function f .

Proof. The data of a consistent sequence is an m-component link grading on the m-th algebra, plus
the structure of a co-∆+ set on the generators. Writing Sm for the generators, i.e. Reeb chords and
base points, of Λm, the data of the link grading is associated to the decomposition Λm = Λ1t· · ·tΛm

as discussed in Section 2.2.3. That is, the map r× c : Sm → {1, . . . ,m} × {1, . . . ,m} sends a base
point on the i-th copy to (i, i), and a Reeb chord that ends on the i-th copy and begins on the j-th
copy to (i, j). In both of the m-copy constructions above, the Lagrangian projection of the link
resulting from removing any n − m pieces of Λn looks identical to Λm; this gives the co-∆+ set
structure, and makes the desired isomorphisms obviously hold. �

Definition 4.3. We write Aug+(Λf ,k) for the A∞-category that is associated by Definition 3.16
to the sequence of m-copy DGAs (A(Λ•f ), ∂). Likewise we write Aug+(Λxz,k) for the category
associated to (A(Λ•xz), ∂).

Remark 4.4 (grading). If r(Λ) denotes the gcd of the rotation numbers of the components of Λ,
then recall from Section 2.2 that the DGA for Λ is graded over Z/2r. Later in this paper, when
we prove the equivalence of augmentation and sheaf categories, we will assume that r(Λ) = 0
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and thus that the DGA is Z-graded. For the purposes of constructing the augmentation category,
however, r(Λ) can be arbitrary; note then that augmentations ε must satisfy the condition ε(ai) = 0
for ai 6≡ 0 mod 2r. Indeed, we can further relax the grading on the DGA and on augmentations to a
Z/m grading where m | 2r, as long as either m is even or we work over a ring with −1 = 1, cf. the
first paragraph of Section 3.1.

In Proposition 4.14, we will show the sequence (A(Λm
f ), ∂) arises by applying the construction of

Proposition 3.25 to A(Λf ), and deduce that Aug+(Λf ,k) is unital. In Theorem 4.20, we will show
that, up to A∞ equivalence, the category Aug+(Λf ,k) does not depend on the choice of f , and
moreover is invariant under Legendrian isotopy. In addition, if Λ is assumed to be in plat position,
Aug+(Λf ,k) and Aug+(Λxz,k) are shown to be equivalent. Thus we will usually suppress the
perturbation method from notation and denote any of these categories simply byAug+(Λ,k), which
we call the positive augmentation category of Λ (with coefficients in k).

The category Aug+(Λ,k) is summarized in the following:
• The objects are augmentations ε : A(Λ)→ k.
• The morphisms are

Hom+(ε1, ε2) := C∨12,

the k-module generated by Reeb chords that end on Λ1 and begin on Λ2 in the 2-copy Λ2.
• For k ≥ 1, the composition map

mk : Hom+(εk, εk+1)⊗ · · · ⊗ Hom+(ε1, ε2)→ Hom+(ε1, εk+1)

is defined to be the map mk : C∨k,k+1 ⊗ · · · ⊗ C∨12 → C∨1,k+1 given by the diagonal augmen-
tation ε = (ε1, . . . , εk+1) on the (k + 1)-copy Λk+1. (Note that in the Legendrian literature,
diagonal augmentations are often called “pure.”)

Here, one of the allowed perturbation methods, as in Sections 4.2.1 and 4.2.2, must be used when
producing the DGAs of the m-copies Λm.

Remark 4.5. It should be possible to define the augmentation category in an analogous manner for
any Legendrian submanifold Λ of a 1-jet space J1(M). Some key technical points that would need
to be addressed to rigorously establish the augmentation category in higher dimensions include:
producing a consistent sequence of DGAs via appropriate perturbations of the m-copies of Λ (or
showing how to work around this point); proving independence of choices made to produce such
perturbations; and establishing Legendrian isotopy invariance. The construction of augmentation
categories for Legendrians in J1(R) given in this article is also valid for Legendrians in J1(S1).
When dim(M) ≥ 2, we leave the rigorous construction of the positive augmentation category as an
open problem.

Before turning to a more concrete description of them-copy algebras (A(Λm
xz), ∂) and (A(Λm

f ), ∂)
underlying the definition of Aug+(Λxz,k) and Aug+(Λf ,k), we consider the corresponding nega-
tive augmentation category.

Definition 4.6. Given a Legendrian submanifold Λ ⊂ J1(M) and a coefficient ring k, we define
the negative augmentation category to be the A∞ category Aug−(Λ,k) obtained by applying Defi-
nition 3.21 to any of the consistent sequences of DGAs introduced in Proposition 4.2.

The category Aug−(Λ,k) is summarized as follows:
• The objects are augmentations ε : A(Λ)→ k.
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• The morphisms are
Hom−(ε2, ε1) := C∨21,

the vector space generated by Reeb chords that end on Λ2 and begin on Λ1 in the 2-copy Λ2.
• For k ≥ 1, the composition map

mk : Hom−(ε2, ε1)⊗ Hom−(ε3, ε2)⊗ · · · ⊗ Hom−(εk+1, εk)→ Hom−(εk+1, ε1)

is defined to be the map mk : C∨21⊗ · · · ⊗ C∨k+1,k → C∨k+1,1 given by the pure augmentation
ε = (ε1, . . . , εk+1) on the (k + 1)-copy Λk+1.

The key distinction between augmentation categories Aug+ and Aug− is that Aug− does not
depend on the choice of perturbation. This is because the short Reeb chords introduced in the
perturbation belong to C∨ij for i < j but not for i > j. Note that C∨ij is always a space of homs from
εi to εj , but is Hom+ if i < j and Hom− if i > j. One might ask about C∨ii ; one can show this to be
the same as Hom−(εi, εi).

The negative augmentation category Aug−(Λ,k) is not new: it was defined by Bourgeois and
Chantraine [BC14], and was the principal inspiration and motivation for our definition ofAug+(Λ,k).

Proposition 4.7. The categoryAug−(Λ,k) is the augmentation category of Bourgeois and Chantraine
[BC14].

Proof. This is proven in Theorem 3.2 of [BC14] and the discussion surrounding it. There it is shown
that the DGA for the n-copy of Λ, quotiented out by short Reeb chords corresponding to critical
points of the perturbing Morse function, produces the A∞ operation mn−1 on their augmentation
category. In our formulation for the Lagrangian projection m-copy in Section 4.2.2, the critical
points of the perturbing Morse function are of the form xijk , y

ij
k with i < j. It follows the short Reeb

chords do not contribute in our definition of Aug−(Λ,k), and thence that our definition agrees with
Bourgeois–Chantraine’s. �

Remark 4.8. Our sign conventions forAug− differ from the conventions of Bourgeois and Chantraine,
because of differing sign conventions for A∞ operations. See the discussion at the beginning of Sec-
tion 2.3.

Remark 4.9. To follow up on the previous discussion of short chords, the absence of short chords
in Rij when i > j allows one to describe Aug−(Λ) algebraically from (A(Λ), ∂) in a manner that
is more direct than forAug+(Λ), as the extra data of a perturbing function f is unnecessary. In fact,
Bourgeois–Chantraine’s original definition of Aug− is purely algebraic.

Remark 4.10. Our choice of symbols + and − has to do with the interpretation that, for augmenta-
tions which come from fillings, the first corresponds to computing positively infinitesimally wrapped
Floer homology, and the second to computing negatively infinitesimally wrapped Floer homology.
See Section 8.

Remark 4.11. Bourgeois and Chantraine prove invariance of Aug− in [BC14]. One can give an
alternate proof using the techniques of the present paper, using the invariance of Aug+ (Theo-
rem 4.20), the existence of a morphism fromAug− toAug+ (Proposition 5.1) and the exact sequence
relating the two (Proposition 5.2), and the fact that isomorphism in Aug+ implies isomorphism in
Aug− (Proposition 5.13). We omit the details here.
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4.2. DGAs for the perturbations and unitality of Aug+.

We now turn to an explicit description of the DGAs for the m-copy of Λ, in terms of the two
perturbations introduced in Section 4.1. The front projection m-copy Λm

xz is useful for computations
(cf. Section 4.4.3), while the Lagrangian projection m-copy Λm

f leads immediately to a proof that
Aug+(Λf ,k) is unital.

4.2.1. Front projection m-copy.

For the front projection m-copy, we adopt matching notation for the Reeb chords of Λ and Λm
xz.

Label the crossings of Λ by a1, . . . , ap and the right cusps of Λ by c1, . . . , cq, and choose a pairing
of right cusps of Λ with left cusps of Λ. See the left side of Figure 4.1 for an illustration. Then
each crossing ak in the front for Λ gives rise to m2 crossings aijk in Λm

xz, where aijk ∈ Rij; note that
the overstrand (more negatively sloped strand) at aijk belongs to component i, while the understrand
(more positively sloped strand) belongs to component j. Each right cusp ck for Λ similarly gives
rise to m2 crossings and right cusps cijk in Λm

xz, where cijk ∈ Rij:
• ciik is the cusp ck in copy Λi;
• for i > j, cijk is the crossing between components Λi and Λj by the right cusp ck;
• for i < j, cijk is the crossing between components Λi and Λj by the left cusp paired with the

right cusp ck.
See Figure 4.3.

4.2.2. Lagrangian projection m-copy.

Label the crossings in the xy projection of Λ by a1, . . . , ar, and suppose that f : Λ→ R is a Morse
function with M local maxima and M local minima, enumerated so that the k-th local minimum
follows the k-th maximum of f with respect to the orientation of Λ. Then the xy projection of Λm

f

has m2r +Mm(m− 1) crossings, which we can label as follows:

• aijk , 1 ≤ i, j ≤ m, between components Λi and Λj by crossing ak;
• xijk , 1 ≤ i < j ≤ m, between components Λi and Λj by the kth maximum of f ;
• yijk , 1 ≤ i < j ≤ m, between components Λi and Λj by the kth minimum of f .

Here the superscripts are chosen so that aijk , x
ij
k , y

ij
k ∈ Rij , i.e. upper strand belongs to Λi and the

lower strand belongs to Λj . Since the m-copies are separated by a very small distance in the z
direction, the length of the Reeb chords xijk , y

ij
k is much smaller than the length of the Reeb chords

aijk , and as a consequence we call the former chords “short chords” and the latter chords “long
chords.”

Both maxima and minima of f give rise to Reeb chords of Λm
f , but it will turn out that in fact

moving the local minima while leaving the locations of local maxima fixed does not change the dif-
ferential of A(Λm

f ). For this reason, we place base points ∗1, . . . , ∗M on Λ at the local maxima of f ,
and denote the resulting base-pointed Legendrian as Λf so that the DGA A(Λf ) has invertible gen-
erators t±1

1 , . . . , t±1
M . For each one of these base points, we place base points on all of the m-copies

of Λm
f preceding the corresponding half twist as pictured in Figure 4.2. We label the corresponding



42 LENHARD NG, DAN RUTHERFORD, VIVEK SHENDE, STEVEN SIVEK, AND ERIC ZASLOW

Λ1

Λ2

c12
1 c21

1

c12
2 c21

2

c11
1

c22
1

c11
2

c22
2

a11
1

a12
1a21

1

a22
1

a11
2

a12
2a21

2

a22
2

a11
3

a12
3a21

3

a22
3

FIGURE 4.3. Reeb chords for the double of the Legendrian trefoil, in the front projection.

invertible generators of A(Λm
f ) as (tik)

±1 for 1 ≤ k ≤ M and 1 ≤ i ≤ m, with k specifying by the
corresponding base point of Λf and i specifying the copy of Λ where the base point appears.

Note that the generators ofA(Λm
f ) are related to the generators ofA(Λf ) as in the construction of

Proposition 3.25. In fact, with respect to a suitable weak link grading, the differentials will coincide
as well.

Definition 4.12. Removing all base points of Λf leaves a union of open intervals Λ\{∗1, . . . , ∗M} =
tmi=1Ui where we index the Ui so that the initial endpoint of Ui (with respect to the orientation of Λ)
is at ∗i. Define (r × c) : S → {1, . . . ,m} so that (r × c)(al) = (i, j) for a Reeb chord whose upper
endpoint is on Ui and whose lower endpoint is on Uj , and (r × c)(tl) = (i, j) if the component of
Λ \ {∗1, . . . , ∗M} preceding (resp. following) ∗l is Ui (resp. Uj). We call r × c the internal grading
of Λf .

Proposition 4.13. The internal grading is a weak link grading for A(Λf ).

Proof. We need to check that if (r×c)(al) = (i, j), then ∂al is a Z-linear combination of composable
words in A(Λf ) from i to j. This is verified by following along the boundaries of the disks used to
define ∂al. �

We now give a purely algebraic description of the DGA of the m-copy Λm
f in terms of the DGA

A(Λf ) of a single copy of f , as presaged by Proposition 3.25. We note that the algebraic content
given here is probably well-known to experts, and is in particular strongly reminiscent of construc-
tions in [BEE12] (see e.g. [BEE12, Section 7.2]).
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FIGURE 4.4. The 3-copy of the Legendrian trefoil, in the xy projection. Insets, with
crossings labeled and positive quadrants marked with dots: a neighborhood of the
crossing labeled a5 in Figure 4.1, and the dip. The x crossings in the dip correspond
to the maximum of the Morse function on S1, and the y crossings to the minimum.

Proposition 4.14. The DGA A(Λm
f ) arises by applying the construction of Proposition 3.25 to

A(Λf ) equipped with its initial grading. More explicitly, A(Λm
f ) is generated by:

• invertible generators (tik)
±1, 1 ≤ i ≤ m, 1 ≤ k ≤M ;

• aijk , 1 ≤ i, j ≤ m, 1 ≤ k ≤ r, with |aijk | = |ak|;
• xijk , 1 ≤ i < j ≤ m, 1 ≤ k ≤M , with |xijk | = 0;
• yijk , 1 ≤ i < j ≤ m, 1 ≤ k ≤M , with |yijk | = −1.
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The differential ∂m of A(Λm
f ) can be described as follows. Assemble the generators of A(Λm

f ) into
m×m matrices A1, . . . , Ar, X1, . . . , XM , Y1, . . . YM ,∆1, . . . ,∆M , with Ak = (aijk ),

Xk =


1 x12

k · · · x1m
k

0 1 · · · x2m
k

...
... . . . ...

0 0 · · · 1

 , Yk =


0 y12

k · · · y1m
k

0 0 · · · y2m
k

...
... . . . ...

0 0 · · · 0

 ,
and ∆k = Diag(t1k, . . . , t

m
k ).

Then, applying ∂m to matrices entry-by-entry, we have

∂m(Ak) = Φ(∂(ak)) + Yr(ak)Ak − (−1)|ak|AkYc(ak)

∂m(Xk) = ∆−1
k Yr(tk)∆kXk −XkYc(tk)

∂m(Yk) = Y 2
k ,

where Φ : A(Λ) → Mat(m,A(Λm
f )) is the ring homomorphism determined by Φ(ak) = Ak,

Φ(tk) = ∆kXk, and Φ(t−1
k ) = X−1

k ∆−1
k .

Remark 4.15. Note that by this result (or by geometric considerations), short Reeb chords form a
sub-DGA of A(Λm).

Proof. The Reeb chords of Λm
f are aijk , x

ij
k , y

ij
k as described previously. (See Figure 4.4 for an illus-

tration for the trefoil from Figure 4.1, where there is a single base point in the loop to the right of a4

and the knot is oriented clockwise around this loop.) It is straightforward to calculate their gradings
as explained in Section 2.2.

To associate signs to disks that determine the differential of A(Λm
f ), we use the choice of orien-

tation signs given above Proposition 4.2. The sign of a disk is then determined by the number of its
corners that occupy quadrants with negative orientation signs. At each even-degree generator, two
quadrants, as in Figure 2.1, are assumed to have been chosen for Λ to calculate the differential on
A(Λ). For even-degree generators of Λm

f , we have assigned the location of quadrants with negative
orientation signs as follows: for aijk , we take the quadrants that correspond to the quadrants cho-
sen for ak; for xij , we take the quadrants to the right of Λj as we follow the orientation of Λj (in
Figure 4.2, these are the bottom two quadrants at each xij).

We next identify disks that contribute to the differential on A(Λm
f ). These disks consist of two

types, “thick” and “thin”: viewed in the Lagrangian projection of Λm
f , thin disks are those disks

whose images are entirely in the neighborhood of Λ that contains the m-copies of Λm
f , and all other

disks are thick, cf. [Mis03, NR13]. It is not hard to see from the combinatorics of Λm
f that thick

disks limit to disks for A(Λ) in the limit that the m copies of Λm approach each other, while thin
disks limit to curves along Λ following the negative gradient flow for the Morse function f .

Since the height of Reeb chords induces a filtration onA(Λm), the xijk , y
ij
k form a differential sub-

algebra and the differentials of these generators only involve thin disks. An inspection of Figure 4.2
shows that the only disks contributing to ∂(yijk ) (i.e., with positive quadrant at yijk and negative quad-
rants at all other corners) are triangles that remain within the half twist, with two negative corners
at yi`k , y

`j
k for some i < ` < j. (See also the right-hand inset in Figure 4.4 where positive quadrants

at crossings are decorated with dots.) The disks contributing to ∂(xijk ), which have a positive corner
at xijk , are of four types, as follows. There are bigons with negative corner at yijk , and triangles with
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negative corners at xi`k , y
`j
k ; both of these types of disks follow Λ from ∗k to the local minimum of f

that follows ∗k. In addition, there are bigons and triangles that follow the Λ from ∗k to the preceding
local minimum (which has the same enumeration as ∗c(tk)); the bigons have negative corner at yijc(tk),
and the triangles have negative corners at yi`c(tk), x

`j
k . It follows that the differentials for Xk, Yk are as

in the statement of the proposition.
The disks for ∂m(aijk ) can be either thick or thin. The thick disks are in many-to-one correspon-

dence to the disks for ∂(ak). The negative corners of a disk for ∂m(aijk ) correspond to the negative
corners of a disk for ∂(ak), with one exception: where the boundary of the disk passes through
a maximum of the Morse function, there can be one negative corner at an x (if the boundary of
the disk agrees with the orientation of Λ there) or some number of negative corners at x’s (if it
disagrees). More precisely, if the boundary of a disk for Λm

f lies on Λi before passing the loca-
tion of ∗k and lies on Λj afterwards, then the possible products arising from negative corners and
base points encountered when passing through the half twist are tikx

i,j
k if the orientations agree and

(−xi,i1k )(−xi1,i2k ) · · · (−xil,jk )(tjk)
−1 for i < i1 < · · · < il < j when the orientations disagree. The

(i, j) entries of Φ(tk) = ∆kXk and Φ(t−1
k ) = X−1

k ∆−1
k are respectively

tikx
i,j
k and

∑
i<i1<···<il<j

(−xi,i1)(−xi1,i2) · · · (−xil,j)(tjk)
−1,

so we see that the contribution of thick disks to ∂m(Ak) is precisely the term Φ(∂(ak)). (An alternate
discussion of thick disks in a related setting may be found in Theorem 4.16 of [NR13], where the
presence of the matrices Φ(tk) and Φ(t−1

k ) is established in a slightly more systematic manner using
properties of the “path matrix” proved in [Kál06].)

The thin disks contributing to ∂aijk have a positive corner at aijk and two negative corners, one at
a y and the other in the same ak region; in the limit as the copies approach each other, these disks
limit to paths from the ak to a local minimum of f that avoid local maxima. When following Λ
along the upper strand (resp. lower strand) of ak in this manner, we reach the local minimum that
follows ∗r(ak) (resp. ∗c(ak)). The two corresponding disks have their negative corners at yi`r(ak), a

`j
k

and ai`k , y
`j
c(ak). This leads to the remaining Yr(ak)Ak and AkYc(ak) terms in ∂Ak. It is straightforward

to verify that the signs are as given in the statement of the proposition. �

Corollary 4.16. The augmentation category Aug+(Λf ,k) is strictly unital.

Proof. Follows from Propositions 4.14 and 3.28. �

Corollary 4.17. The (usual) category H∗Aug+(Λ,k) is unital. In particular, H∗Hom+(ε, ε) is a
unital ring for any augmentation ε.

Remark 4.18. We will show in Proposition 4.23 that Aug+(Λxz,k) ' Aug+(Λf ,k), whence
Aug+(Λxz,k) has unital cohomology category. In fact, Aug+(Λxz,k) is also strictly unital: it is
straightforward to calculate directly that there is a unit in the category Aug+(Λxz,k), given by
−
∑

k(c
12
k )∨ where the sum is over all Reeb chords in R12(Λ2

xz) located near left cusps of Λ. See
also the proof of Proposition 4.23 and the example in 4.4.3.

Remark 4.19. We expect that Corollary 4.16 holds in arbitrary 1-jet spaces J1(M) as well, provided
one has a suitable construction of Aug+, with the unit given by ±y∨ where y is the local minimum
of a Morse function used to perturb the 2-copy of Λ. We note by contrast that Proposition 4.14 does
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not hold in higher dimensions. In general, holomorphic disks ∆ for Λm are in correspondence with
holomorphic disks ∆ for Λ together with gradient flow trees attached along the boundary of ∆; see
[EL17, Theorem 3.8] for a general statement, and [EES09, EENS13] for special cases worked out
in more detail in the settings of Sabloff duality and knot contact homology, respectively. Some of
the rigid holomorphic disks ∆ contributing to the differential in A(Λm) come from rigid disks ∆,
but others come from disks ∆ in some positive-dimensional moduli space and are rigidified by the
flow trees. The disks in this latter case (which do not appear nontrivially when dim Λ = 1) are not
counted by the differential in A(Λ).

4.3. Invariance.

We now show that up to A∞ equivalence, our various constructions of Aug+, Aug+(Λf ,k) and
Aug+(Λxz,k), are independent of choices and Legendrian isotopy. We will suppress the coefficient
ring k from the notation.

Theorem 4.20. Up to A∞ equivalence, Aug+(Λf ) does not depend on the choice of f . Moreover, if
Λ and Λ′ are Legendrian isotopic, then Aug+(Λf ) and Aug+(Λ′f ′) are A∞ equivalent. In addition,
if Λ is in plat position, then Aug+(Λf ) and Aug+(Λxz) are A∞ equivalent.

The proof of Theorem 4.20 is carried out in the following steps. First, we show in Proposition 4.21
that the categories defined using f : Λ → R with a single local maximum on each component are
invariant (up to A∞ equivalence) under Legendrian isotopy. In Propositions 4.22 and 4.23 we show
that for fixed Λ the categoriesAug+(Λf ) are independent of f and, assuming Λ is in plat position, are
A∞ equivalent to Aug+(Λxz). In proving Propositions 4.21-4.23, we continue to assume that base
points are placed on the Λm

f near local maxima of f as indicated in Section 4.2.2. This assumption is
removed in Proposition 4.24 where we show that both of the categories Aug+(Λf ) and Aug+(Λxz)
are independent of the choice of base points on Λ.

Proposition 4.21. Let Λ0,Λ1 ⊂ J1(R) be Legendrian isotopic, and for i = 1, 2 let fi : Λi → R be a
Morse function with a single local maximum on each component. Then the augmentation categories
Aug+((Λ0)f0) and Aug+((Λ1)f1) are A∞ equivalent.

Proof. Suppose that the links Λi have components Λi = tcj=1Λi,j and that there is a Legendrian
isotopy from Λ0 to Λ1 that takes Λ0,j to Λ1,j for all 1 ≤ j ≤ c. Then each DGA (A(Λi), ∂)
fits into the setting of Proposition 3.25 with weak link grading given by the internal grading on
Λi. (The generator tj corresponds to the unique base point on the jth component.) Moreover, by
Proposition 4.14 the augmentation category Aug+((Λi)fi) agrees with the category Aug+(A(Λi))
that is constructed as a consequence of Proposition 3.25.

According to Proposition 2.6, after stabilizing both A(Λ0) and A(Λ1) some (possibly different)
number of times, they become isomorphic by a DGA map that takes tj to tj and generators to linear
combinations of composable words, i.e. it satisfies the hypothesis of the map f from Proposition
3.29. The construction from Proposition 3.29 then shows that the A∞ categories associated to these
stabilized DGAs are isomorphic. Thus it suffices to show that if (S(A), ∂′) is an algebraic stabiliza-
tion of (A, ∂), then Aug+(S(A)) and Aug+(A) are A∞ equivalent.

Recall that S(A) has the same generators as A but with two additional generators ar+1, ar+2, and
∂′ is defined so that (A, ∂) is a sub-DGA and ∂′(ar+1) = ar+2, ∂′(ar+2) = 0. The A∞-functor
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FIGURE 4.5. Locations of the local maxima of f0 (left) and f1 (right).

Aug+(S(A)) → Aug+(A) induced by the inclusion i : A ↪→ S(A) is surjective on objects. (Any
augmentation of A extends to an augmentation of S(A) by sending the two new generators to 0.)
Moreover, for any ε1, ε2 ∈ Aug+(S(A)) the map

Hom+(i∗ε1, i
∗ε2)→ Hom+(ε1, ε2)

is simply the projection with kernel spanned by {(a12
r+1)∨, (a12

r+2)∨}. This is a quasi-isomorphism
since, independent of ε1 and ε2, m1(a12

r+2)∨ = (a12
r+1)∨. Thus the corresponding cohomology functor

is indeed an equivalence. �

Proposition 4.22. For fixed Λ ∈ J1(R), the A∞ categoryAug+(Λf ) is independent of the choice of
f .

Proof. In Proposition 4.14 the DGAs A(Λm
f ) are computed based on the location of base points

placed at local maxima of f . To simplify notation, we suppose that Λ has a single component; a
similar argument applies in the multi-component case.

Fix a Morse function f0 with a single local maximum at ∗, and begin by considering the case of
a second Morse function f1 that has local maxima located at base points ∗1 . . . , ∗M that appear, in
this order, on a small arc that contains ∗ and is disjoint from all crossings of πxy(Λ). See Figure 4.5.
Then there is a consistent sequence of DGA morphisms

f (m) : (A(Λm
f0

), ∂)→ (A(Λm
f0

), ∂)

determined uniquely on generators by the matrix formulas

f (m)(Y ) = YM

f (m)(∆X) = (∆1X1)(∆2X2) · · · (∆MXM)

f (m)(Ak) = Ak, 1 ≤ k ≤ r.

Note that considering the diagonal entries of f (m) shows that f (m)(∆) = ∆1∆2 · · ·∆M . In particu-
lar, f (1)(t) = t1 · · · tM . The consistency of the sequence follows as usual from the uniformity of the
matrix formulas.

We check that the extension of f (m) as an algebra homomorphism is a DGA map. Note that for
a Reeb chord ai of Λ, the only difference between the differential ∂ai in A(Λf0) and A(Λf1) is
that words associated to holomorphic disks have all occurrences of t replaced with t1 · · · tm. When
comparing ∂Ak in Mat(m,A(Λm

f0
)) and Mat(m,A(Λm

f1
)), this results in all occurrences of ∆X

being replaced with (∆1X1)(∆2X2) · · · (∆MXM). Moreover, the Y Ak−(−1)|ak|AkY term becomes
YMAk − (−1)|ak|AkYM since when approaching the arc containing the base points ∗1, . . . , ∗M in a
manner that is opposite to the orientation of Λ, it is always ∗M that is reached first. Together, these
observations show that

∂f (m)(Ak) = f (m)∂(Ak).
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That ∂f (m)(Y ) = f (m)∂(Y ) is a immediate direct calculation. Finally, note that using the Leibniz
rule

∂f (m)(∆X) = ∂[(∆1X1)(∆2X2) · · · (∆MXM)]

= [∂(∆1X1)](∆2X2) · · · (∆MXM) + (∆1X1)[∂(∆2X2)] · · · (∆MXM)

+ . . .+ (∆1X1)(∆2X2) · · · [∂(∆MXM)]

and the sum telescopes to leave

YM(∆1X1)(∆2X2) · · · (∆MXM)− (∆1X1)(∆2X2) · · · (∆MXM)YM

= f (m)(Y∆X −∆XY ) = f (m)∂(∆X).

We check that the induced A∞ functor F , as in Proposition 3.20, is an A∞ equivalence. The
correspondence ε → (f (1))∗ε is surjective on objects: Given ε′ : (A(Λf0), ∂) → (k, 0), we can
define ε(t1) = ε′(t) and ε(tk) = 1 for 2 ≤ k ≤ M and ε(ak) = ε′(ak) for 1 ≤ k ≤ r. The resulting
augmentation of A(Λf1) satisfies f ∗ε = ε′.

Next, we verify that for ε1, ε2 ∈ Aug+(Λf1), F gives a quasi-isomorphism F1 : Hom+(ε1, ε2) →
Hom+(f ∗ε1, f

∗ε2). We compute from the definitions:

F1((x12
1 )∨) = ε1(t2 · · · tM)−1ε2(t2 . . . tM)(x12)∨

F1((x12
2 )∨) = ε1(t3 · · · tM)−1ε2(t3 . . . tM)(x12)∨

...

F1((x12
M)∨) = (x12)∨

F1((y12
k )∨) = 0, 1 ≤ k ≤M − 1

F1((y12
M)∨) = (y12)∨

F1((aijk )∨) = (aijk )∨ 1 ≤ i, j ≤ 2, 1 ≤ k ≤ r,

so F1 is clearly surjective. In addition, the differential m1 : Hom+(ε1, ε2)→ Hom+(ε1, ε2) satisfies

m1((y12
k )∨) = ε1(tk+1)−1ε2(tk+1)(x12

k+1)∨ − (x12
k )∨

for 1 ≤ k ≤M − 1, and it follows that ker(F1) is free with basis

{(y12
1 )∨, . . . , (y12

M−1)∨,m1((y12
1 )∨), . . . ,m1((y12

M−1)∨)}.
Thus ker(F1) is clearly acyclic, and the induced map on cohomology F1 : H∗Hom+(ε1, ε2) →
H∗Hom+(f ∗ε1, f

∗ε2) is an isomorphism since it fits into an exact triangle with third termH∗ ker(F1) ∼=
0.

To complete the proof, we now show that the A∞-category is unchanged up to isomorphism when
the location of the base points is changed. Let Λ0 and Λ1 denote the same Legendrian but with two
different collections of base points (∗1, . . . , ∗M) and (∗′1, . . . , ∗′M) which appear cyclically ordered.
It suffices to consider the case where the locations of the base points agree except that ∗′i is obtained
by pushing ∗i in the direction of the orientation of Λ so that it passes through a crossing al.

In the case that ∗i and ∗′i lie on the overstrand of al, we have a DGA isomorphism

f : (A(Λ0), ∂)→ (A(Λ1), ∂)

given by
f(al) = (ti)

−1al
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and f (m)(x) = x for any generator other than al, as in [NR13]. To see that the f (m) are chain maps,
note that the holomorphic disks for Λ0 and Λ1 are identical, and the words associated to disks change
only for disks with corners at al. Note also that this isomorphism is compatible with the internal
gradings on Λ0 and Λ1 which differ only on al. Therefore, Proposition 3.29 shows that Aug+(Λ0)
and Aug+(Λ1) are isomorphic.

When ∗i and ∗′i sit on the understrand of al, similar considerations show that a DGA isomorphism
with

f(al) = alti

leads to an isomorphism of A∞-categories. �

Proposition 4.23. Suppose that Λ ⊂ J1(R) has its front projection in preferred plat position. Then
the category Aug+(Λxz) is A∞ equivalent to Aug+(Λf ) for any Morse function f .

Proof. Again, we suppose that Λ has a single component, as a similar argument applies in the multi-
component case.

We compare Aug+(Λxz) with Aug+(Λf ) for the function f(x, y, z) = x whose local minima are
at left cusps and local maxima are at right cusps. Label crossings of πxz(Λ) as a1, . . . , ar. Label
left and right cusps of Λ as b1, . . . , bq and c1, . . . , cq so that, when the front projection is traced
according to its orientation, the cusps appear in order, with br immediately following cr for all
1 ≤ r ≤ q. Assuming the resolution procedure has been applied, we label the crossings of the
xy-projection, πxy(Λ), as a1, . . . , ar, ar+1, . . . , ar+q so that the crossings ar+1, . . . , ar+q correspond
to the right cusps c1, . . . , cq. We assume that the base points ∗1, . . . , ∗q, which are located at the far
right of the loops that appear on πxy(L) in place of right cusps, are labeled in the same manner as
the c1, . . . , cq.

Collect generators ofA(Λm
f ) as usual into matricesAk, Xk, Yk,∆k, and form matricesAk, Bk, Ck,∆k

out of the generators ofA(Λm
xz). Note thatBk is strictly upper triangular, whileCk is lower triangular

with diagonal entries given by the generators ciik that correspond to the right cusps of Λm.
There is a consistent sequence of DGA inclusions

f (m) : (A(Λm
xz), ∂)→ (A(Λm

f ), ∂)

obtained by identifying generators so that we have

f (m)(Ak) = Ak f (m)(Bk) = Yk

f (m)(Ck) = πlow(Ar+k) f (m)(∆k) = ∆k,

where πlow(Ar+k) isAr+k with all entries above the main diagonal replaced by 0. To verify that these
identifications provide a chain map, note that the xy-projections of Λm

xz and Λm
f are identical to the

left of the location of the crossings associated with right cusps. Moreover, for crossings that appear
in this portion of the diagram, all disks involved in the computation of differentials are entirely to
the left of the crossings from right cusps as well. Thus ∂f (m) = f (m)∂ follows when applied to any
of the matrices Ak or Bk. As in the proof of Proposition 4.14, examining thin and thick disks that
begin at generators cijk leads to the matrix formula

∂Ck = πlow

(
Φ̃(∂(ck)) +Bk−1Ck + CkBk

)
where Φ̃ : A(Λ) → Mat(m,A(Λm

xz)) denotes the ring homomorphism with Φ̃(ak) = Ak for
1 ≤ k ≤ r and Φ̃(t±1

k ) = ∆±1
k . (None of the ck appear in differentials of generators of A(Λ)
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due to the plat position assumption.) Notice that, for 1 ≤ k ≤ q, πlow

(
Φ̃(∂(ck))

)
agrees with

πlow (Φ(∂(ar+k))) (here Φ is from Proposition 4.14) because the only appearance of any of the ti
in ∂ck = ∂ar+k is as a single t±1

k term coming from the disk without negative punctures whose
boundary maps to the loop to the right of cr+k. Moreover,

πlow(Φ̃(t±1
k )) = πlow(∆±1

k ) = πlow((∆kXk)
±1) = πlow(Φ(t±1

k )),

and Φ̃ and Φ agree on all other generators that appear in ∂ck. Finally, we note that

f (m) (πlow(Bk−1Ck + CkBk)) = πlow(Yk−1Ar+k + Ar+kYk)

because none of the entries aijr+k with i < j can appear below the diagonal in Yk−1Ar+k + Ar+kYk.
Combined with the previous observation, this implies that ∂f (m)(Ck) = f (m)∂(Ck).

We claim that the A∞ functor F : Aug+(Λf ) → Aug+(Λxz) arising from Proposition 3.20 is
an A∞ equivalence. Indeed, since f (1) is an isomorphism, F is bijective on objects. The maps
F1 : Hom+(ε1, ε2)→ Hom+(f ∗ε1, f

∗ε) are surjections with ker(F1) = Span
k
{(x12

k )∨, (a12
r+k)

∨ | 1 ≤
k ≤ q}. Moreover, we have m1(x12

k )∨ = ε1(tk)(a
12
r+k)

∨ (resp. −ε2(tk)
−1(a12

r+k)
∨) when the upper

strand at ck points into (resp. away from) the cusp point. It is therefore clear that ker(F1) is acyclic,
so that F1 is a quasi-isomorphism. �

Proposition 4.24. The categoriesAug+(Λf ) andAug+(Λxz) are independent of the number of base
points chosen on Λ as well as their location, provided each component of Λ has at least one base
point.

Proof. For simplicity, we assume Λ is connected. Let Λ0 and Λ1 denote Λ equipped with two
different collections (∗1, . . . , ∗M) and (∗′1, . . . , ∗′M ′) of base points. First, we suppose that these
base points have the same number and appear in the same cyclic order along Λ. We claim that the
categories of Λ0 and Λ1 are isomorphic. To show this, it suffices to consider the case where ∗k = ∗′k
for k ≥ 2 and ∗′1 is obtained by pushing ∗1 in the direction of the orientation of Λ either through a
crossing, past a local maximum or local minimum of f (in the case of the xy-perturbed category),
or past a cusp of Λ (in the case of the xz category). The proof is uniform for all of these cases.

For eachm ≥ 1, we always have some (possibly upper triangular) matrix (wij) of Reeb chords on
Λm from the j-th copy of Λ to the i-th copy, and the movement of ∗1 to ∗′1 results in sliding m base
points t11, . . . , t

m
1 through this collection of Reeb chords. As discussed in the proof of Proposition

4.22, we then have isomorphisms f (m) : A(Λm)→ A(Λm) satisfying

f (m)(wij) = (ti1)−1wij for all i, j and m, or

f (m)(wij) = wijtj1 for all i, j and m,

and fixing all other generators. Clearly, the f (m) form a consistent sequence of DGA isomorphisms,
and the isomorphism of the augmentation categories follows from Proposition 3.20.

Finally, to make the number of base points the same, it suffices to consider the case where Λ0 has
a single base point, ∗1, and Λ1 has base points ∗1, . . . , ∗M located in a small interval around ∗1 as in
Figure 4.5. Then, for m ≥ 1, we have DGA morphisms f (m) : A(Λm) → A(Λm) fixing all Reeb
chords and with

f (m)(ti1) = ti1t
i
2 . . . t

i
M , for all 1 ≤ i ≤ m.
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The f (m) clearly form a consistent sequence, so there is anA∞ functor F : Aug+(Λ1)→ Aug+(Λ0)
induced by Proposition 3.20. As in the proof of Proposition 4.22, F is surjective on objects. More-
over, F induces an isomorphism on all hom spaces (before taking cohomology), and is thus an
equivalence. �

4.4. Examples.

Here we present computations of the augmentation category7 for the Legendrian unknot and the
Legendrian trefoil, as well as an application of the augmentation category to the Legendrian mirror
problem.

These calculations require computing the DGA for the m-copy of the knot. For this purpose,
each of the m-copy perturbations described in Section 4.1, front projection m-copy and Lagrangian
projection m-copy, has its advantages and disadvantages. The advantage of the Lagrangian m-copy
is that its DGA can be computed directly from the DGA of the original knot by Proposition 4.14;
for reference, we summarize this computation and the resulting definition of Aug+(Λ) in Section
4.4.1, assuming Λ is a knot with a single base point. The advantage of the front m-copy is that it has
fewer Reeb chords and thus simplifies computations somewhat: that is, if we begin with the front
projection of the knot, resolving and then taking the Lagrangian m-copy results in more crossings
(because of the x, y crossings) than taking the front m-copy and the resolving. We compute for the
unknot using the Lagrangian m-copy and for the trefoil using the front m-copy, to illustrate both.

Convention 4.25. We recall Hom+(ε1, ε2) = C∨12 and Hom−(ε2, ε1) = C∨21. Often our notational
convention would require elements of C∨12 to be written in the form (a12)∨, but when viewing them
as elements of Hom+(ε1, ε2), we denote them simply as a+. Likewise, an element of C∨21, which
would otherwise be denoted as (a21)∨, we will instead write as a− ∈ Hom−(ε2, ε1).

This convention is made both to decrease indices, and to decrease cognitive dissonance associated
with the relabeling of strands required by the definition of composition, as in (3.2).

4.4.1. The augmentation category in terms of Lagrangian m-copies.

Since the construction and proof of invariance of the augmentation category involved a large
amount of technical details, we record here a complete description of it in the simplest case, namely
a Legendrian knot with a single base point, in terms of the DGA associated to its Lagrangian pro-
jection. This is an application of Definition 3.16 to the corresponding consistent sequence of DGAs
from Proposition 4.14.

Proposition 4.26. Let Λ be a Legendrian knot with a single base point, and let (A(Λ), ∂) be its C–E
DGA, constructed from a Lagrangian projection of Λ, which is generated by S = R t T where
R = {a1, . . . , ar} and T = {t, t−1}, with only the relation t · t−1 = t−1 · t = 1. Then the objects
of Aug+(Λ,k) are exactly the augmentations of A(Λ), i.e. the DGA morphisms ε : A(Λ) → k.
Each Hom+(ε1, ε2) is freely generated over k by elements a+

k (1 ≤ k ≤ r), x+, and y+, with
|a+
k | = |ak|+ 1, |x+| = 1, and |y+| = 0.

7For some computations of the sheaf category of a similar spirit, see [STZ17, section 7.2].
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We describe the composition maps in terms of the corresponding DGAs (Am, ∂m) of them-copies
of Λ, which are defined as follows. The generators of Am are

(1) (ti)±1 for 1 ≤ i ≤ m, with |ti| = 0;
(2) aijk for 1 ≤ i, j ≤ m and 1 ≤ k ≤ r, with |aijk | = |ak|;
(3) xij for 1 ≤ i < j ≤ m, with |xij| = 0;
(4) yij for 1 ≤ i < j ≤ m, with |yij| = −1,

and the only relations among them are ti ·(ti)−1 = (ti)−1 ·ti = 1 for each i. If we assemble these into
m×m matrices Ak, X , Y , and ∆ = Diag(t1, . . . , tm) as before, where X is upper triangular with
all diagonal entries equal to 1 and Y is strictly upper triangular, then the differential ∂m satisfies

∂m(Ak) = Φ(∂ak) + Y Ak − (−1)|ak|AkY

∂m(X) = ∆−1Y∆X −XY
∂m(Y ) = Y 2

where Φ is the graded algebra homomorphism defined by Φ(ak) = Ak and Φ(t) = ∆X .
To determine the composition maps

mk : Hom+(εk, εk+1)⊗ · · · ⊗ Hom+(ε2, ε3)⊗ Hom+(ε1, ε2)→ Hom+(ε1, εk+1),

recall that a tuple of augmentations (ε1, . . . , εk+1) ofA(Λ) produces an augmentation ε : Ak+1 → k

by setting ε(aiij ) = εi(aj), ε((ti)±1) = εi(t
±1), and ε = 0 for all other generators. We define a

twisted DGA ((Ak+1)ε, ∂k+1
ε ) by noting that ∂k+1 descends to (Ak+1)ε := (Ak+1 ⊗ k)/(ti = ε(ti))

and letting ∂k+1
ε = φε ◦ ∂k+1 ◦ φ−1

ε , where φε(a) = a+ ε(a). Then

mk(α
+
k , . . . , α

+
2 , α

+
1 ) = (−1)σ

∑
a∈R∪{x,y}

a+ · Coeffα12
1 α23

2 ...αk,k+1
k

(∂k+1
ε a1,k+1),

where αi ∈ {a1, a2, . . . , ar, x, y} for each i, and σ = k(k − 1)/2 +
∑

p<q |α+
p ||α+

q | + |α+
k−1| +

|α+
k−3|+ · · · .

Remark 4.27. The construction of each (Am, ∂m) can be expressed more concisely as follows.
Having defined the graded algebra homomorphism Φ : A(Λ) → Am ⊗ End(Zm) and the elements
Ak, X, Y,∆, the differential ∂m is equivalent to a differential onAm⊗End(Zm) once we know that
End(Zm) has the trivial differential. It is characterized by the facts that ∂m∆ = 0; that −Y is a
Maurer-Cartan element, i.e. that

∂m(−Y ) +
1

2
[−Y,−Y ] = 0;

and that if we define a map DΦ : A(Λ)→ Am ⊗ End(Zm) by DΦ = ∂mΦ− Φ∂, then

DΦ + ad(−Y ) ◦ Φ = 0.

Here DΦ is a (Φ,Φ)-derivation, meaning that DΦ(ab) = DΦ(a) ·Φ(b) + (−1)|a|Φ(a) ·DΦ(b), and
[·, ·] denotes the graded commutator [A,B] = AB − (−1)|A||B|BA.
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a21

a12

a11 a22

x12 y12

Λ1

Λ2

FIGURE 4.6. The Legendrian unknot Λ (left) and its 2-copy Λ2 (right), in the xy
projection, with base points and Reeb chords labeled.

4.4.2. Unknot.

We first compute the augmentation categories Aug±(Λ,k) for the standard Legendrian unknot
Λ shown in Figure 4.6, and any coefficients k, using the Lagrangian projection m-copy and via
Proposition 4.26. Then the DGA for Λ is generated by t±1 and a single Reeb chord a, with |t| = 0,
|a| = 1, and

∂(a) = 1 + t−1.

This has a unique augmentation ε to k, with ε(a) = 0 and ε(t) = −1.
We can read the DGA for the m-copy of Λ from Proposition 4.26. For m = 2, there are 6 Reeb

chords a11, a12, a21, a22, x12, y12 with |aij| = 1, |x12| = 0, |y12| = −1, and the differential is

∂(a11) = 1 + (t1)−1 + y12a21 ∂(x12) = (t1)−1y12t2 − y12

∂(a12) = −x12(t2)−1 + y12a22 + a11y12 ∂(y12) = 0

∂(a21) = 0

∂(a22) = 1 + (t2)−1 + a21y12.

Note that the differential on Λ2 can also be read by inspection from Figure 4.6.
We have

Hom0
+(ε, ε) = 〈y+〉 Hom1

+(ε, ε) = 〈x+〉 Hom2
+(ε, ε) = 〈a+〉

Hom2
−(ε, ε) = 〈a−〉

and all other Hom∗±(ε, ε) are 0. The linear part ∂lin
(ε,ε) of the differential ∂(ε,ε) on C12 = 〈a12, x12, y12〉

is given by ∂lin
(ε,ε)(a

12) = x12, ∂lin
(ε,ε)(x

12) = ∂lin
(ε,ε)(y

12) = 0, while on C21 = 〈a21〉 it is identically zero.
Dualizing gives differentials m1 on Hom∗± with m1(x+) = a+ in Hom+ and m1 = 0 otherwise, and
m1 = 0 on Hom−; thus

H0Hom+(ε, ε) ∼= 〈y+〉 H2Hom−(ε, ε) ∼= 〈a−〉

andH∗Hom±(ε, ε) = 0 otherwise. (Recall from Convention 4.25 that a+, a− represent (a12)∨, (a21)∨

in Hom+,Hom−, respectively.)
It is evident that the augmentation category Aug−(Λ,k) is non-unital – there are no degree zero

morphisms at all. Indeed, all higher compositions mk, k ≥ 2, on Hom−(ε, ε) must vanish for degree
reasons. To calculate the composition maps on Aug+(Λ,k), we need the differential for the 3-copy
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Λ3. Again from Proposition 4.26, the relevant part of the differential for Λ3 is

∂(a13) = −x13(t3)−1 + x12x23(t3)−1 + y12a23 + y13a33 + a11y13 + a12y23

∂(x13) = (t1)−1y13t3 + (t1)−1y12t2x23 − y13 − x12y23

∂(y13) = y12y23.

Augmenting each copy by ε sends each ti to −1, which by (3.1) leads to

m2(x+, x+) = a+

m2(y+, a+) = m2(a+, y+) = −a+

m2(y+, x+) = m2(x+, y+) = −x+

m2(y+, y+) = −y+.

Note in particular that in Aug+(Λ,k), −y+ is the unit, in agreement with Theorem 3.28.
One can check from Proposition 4.26 that

mk(x
+, x+, . . . , x+) = (−1)b(k−1)/2ca+

and all other higher products mk vanish for k ≥ 3: the only contributions to mk come from entries
of (∆X)−1.

Remark 4.28. If we instead choose the opposite orientation for Λ (which does not change Λ up to
Legendrian isotopy), then the differential for Λ contains no negative powers of t, and no words of
length ≥ 2; it follows that in the resulting A∞ category Aug+, mk vanishes identically for k ≥ 3.

4.4.3. Trefoil.

Here we compute the augmentation categories to Z/2 for the right-handed trefoil Λ shown in
Figure 4.1, using the front projection m-copy, cf. Section 4.2.1. Place a single base point at the right
cusp c1 (i.e., along the loop at c1 in the xy resolution of the front), and set t = −1 to reduce to
coefficient ring Z (we will keep the signs for reference, although for our calculation it suffices to
reduce mod 2 everywhere). Then the DGA for Λ is generated by c1, c2, a1, a2, a3, with |c1| = |c2| =
1 and |a1| = |a2| = |a3| = 0, with differential

∂(c1) = −1 + a1 + a3 + a1a2a3

∂(c2) = 1− a1 − a3 − a3a2a1

∂(a1) = ∂(a2) = ∂(a3) = 0.

There are five augmentations ε1, ε2, ε3, ε4, ε5 from this DGA to Z/2: εi(cj) = 0 for all i, j, and
the augmentations are determined by where they send (a1, a2, a3): ε1 = (1, 0, 0), ε2 = (1, 1, 0),
ε3 = (0, 0, 1), ε4 = (0, 1, 1), ε5 = (1, 1, 1).
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Next consider the double Λ2 of the trefoil as shown in Figure 4.3. For completeness, we give here
the full differential on mixed Reeb chords of Λ2 (over Z, with base points at c11

1 and c22
1 ):

∂(c12
1 ) = 0 ∂(c21

1 ) = a21
1 (1 + a11

2 a
11
3 + a12

2 a
21
3 ) + a22

1 (a21
2 a

11
3 + a22

2 a
21
3 ) + a21

3

∂(c12
2 ) = 0 ∂(c21

2 ) = −a21
3 (1 + a12

2 a
21
1 + a11

2 a
11
1 )− a22

3 (a21
2 a

11
1 + a22

2 a
21
1 )− a21

1

∂(a12
1 ) = c12

1 a
22
1 − a11

1 c
12
2 ∂(a21

1 ) = 0

∂(a12
2 ) = c12

2 a
22
2 − a11

2 c
12
1 ∂(a21

2 ) = 0

∂(a12
3 ) = c12

1 a
22
3 − a11

3 c
12
2 ∂(a21

3 ) = 0.

For any augmentations εi, εj , we have

Hom0
+(εi, εj) ∼= (Z/2)〈c+

1 , c
+
2 〉 Hom1

−(εi, εj) ∼= (Z/2)〈a−1 , a−2 , a−3 〉
Hom1

+(εi, εj) ∼= (Z/2)〈a+
1 , a

+
2 , a

+
3 〉 Hom2

−(εi, εj) ∼= (Z/2)〈c−1 , c−2 〉

and Hom∗±(εi, εj) = 0 otherwise. The linear part ∂lin
(ε1,ε1) of the differential ∂(ε1,ε1) on C12 sends a12

1

to c12
1 + c12

2 and the other four generators c12
1 , c

12
2 , a

12
2 , a

12
3 to 0, while ∂(ε1,ε1) on C21 sends c21

1 to
a21

1 + a21
3 , c21

2 to a21
1 + a21

3 , and a21
1 , a

21
2 , a

21
3 to 0. Dualizing gives

H0Hom+(ε1, ε1) ∼= (Z/2)〈[c+
1 + c+

2 ]〉 H1Hom−(ε1, ε1) ∼= (Z/2)〈[a−1 + a−3 ], [a−2 ]〉
H1Hom+(ε1, ε1) ∼= (Z/2)〈[a+

2 ], [a+
3 ]〉 H2Hom−(ε1, ε1) ∼= (Z/2)〈[c−1 ]〉

and H∗Hom±(ε1, ε1) = 0 otherwise. As in the previous example, note that H∗Hom+(ε1, ε1) has
support in degree 0, while H∗Hom−(ε1, ε1) does not.

A similar computation with the pair of augmentations (ε1, ε2) gives, on C12, ∂lin
(ε1,ε2)(a

12
1 ) = c12

1 +

c12
2 , ∂lin

(ε1,ε2)(a
12
2 ) = c12

2 , and ∂lin
ε1,ε2

= 0 on other generators. On C21, we have ∂lin
(ε2,ε1)(c

21
1 ) = a21

1 + a21
3 ,

∂lin
(ε2,ε1)(c

21
2 ) = a21

1 , and ∂lin
(ε2,ε1) = 0 on other generators. Thus we have:

H1Hom+(ε1, ε2) ∼= (Z/2)〈[a+
3 ]〉 H1Hom−(ε1, ε2) ∼= (Z/2)〈[a−2 ]〉

and H∗Hom±(ε1, ε2) = 0 otherwise.

Remark 4.29. Note that either of H∗Hom+(ε1, ε1) 6∼= H∗Hom+(ε1, ε2) or H∗Hom−(ε1, ε1) 6∼=
H∗Hom−(ε1, ε2) implies that ε1 6∼= ε2 in Aug+: see Section 5.3 below for a discussion of isomor-
phism inAug+. Indeed, an analogous computation shows that all five augmentations ε1, ε2, ε3, ε4, ε5
are nonisomorphic. (The analogous statement in Aug− was established in [BC14, §5].) As shown
in [EHK16], these five augmentations correspond to five Lagrangian fillings of the trefoil, and these
fillings are all distinct; compare the discussion in [BC14, §5] as well as Corollary 5.20 below.

We now compute m2 as a product on Hom±(ε1, ε1). For this we use the front projection 3-copy
Λ3 of Λ, as shown in Figure 4.7. The relevant portion of the differential for Λ3 (with irrelevant signs)
is:

∂(c13
1 ) = c12

1 c
23
1 ∂(c31

1 ) = a33
1 a

32
2 a

21
3 + a32

1 a
22
2 a

21
3 + a32

1 a
21
2 a

11
3

∂(c13
2 ) = c12

2 c
23
2 ∂(c31

2 ) = −a33
3 a

32
2 a

21
1 − a32

3 a
22
2 a

21
1 − a32

3 a
21
2 a

11
1

∂(a13
1 ) = c12

1 a
23
1 − a12

1 c
23
2

∂(a13
2 ) = c12

2 a
23
2 − a12

2 c
23
1

∂(a13
3 ) = c12

1 a
23
3 − a12

3 c
23
2 .
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Λ1

Λ2

Λ3

c131

c121

c231

c132

c122

c232

a131 a132 a133

c311

c312

FIGURE 4.7. The 3-copy of the Legendrian trefoil, in the front projection, with
some Reeb chords labeled.

Linearizing with respect to the augmentation (ε1, ε1, ε1) on Λ3, we find that the nonzero parts of
m2 : Hom+(ε1, ε1) ⊗ Hom+(ε1, ε1) → Hom+(ε1, ε1) are m2(c+

1 , c
+
1 ) = c+

1 , m2(c+
2 , c

+
2 ) = c+

2 ,
m2(c+

2 , a
+
1 ) = m2(a+

1 , c
+
1 ) = a+

1 ,m2(c+
1 , a

+
2 ) = m2(a+

2 , c
+
2 ) = a+

2 , andm2(c+
2 , a

+
3 ) = m2(a+

3 , c
+
1 ) =

a+
3 . This gives the following multiplication m2 on H∗Hom+(ε1, ε1):

m2 [c+
1 + c+

2 ] [a+
2 ] [a+

3 ]
[c+

1 + c+
2 ] [c+

1 + c+
2 ] [a+

2 ] [a+
3 ]

[a+
2 ] [a+

2 ] 0 0
[a+

3 ] [a+
3 ] 0 0

Thus [c+
1 + c+

2 ] acts as the identity in H∗Hom+(ε1, ε1), exactly as predicted in Remark 4.18.
For composition inAug−, the nonzero parts ofm2 : Hom−(ε1, ε1)⊗Hom−(ε1, ε1)→ Hom−(ε1, ε1)

arem2(a−3 , a
−
2 ) = c−1 andm2(a−2 , a

−
3 ) = c−2 . This gives the following multiplication onH∗Hom−(ε1, ε1):

m2 [a−1 + a−3 ] [a−2 ] [c−1 ]
[a−1 + a−3 ] 0 [c−1 ] 0

[a−2 ] [c−1 ] 0 0
[c−1 ] 0 0 0

This last multiplication table illustrates Sabloff duality [Sab06]: cohomology classes pair together,
off of the fundamental class [c−1 ].
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FIGURE 4.8. The knot m(945), with one particular disk shaded.

4.4.4. m(945).

Let Λ be the Legendrian knot in Figure 4.8. This is of topological typem(945), and has previously
appeared in work of Melvin and Shrestha [MS05], as the mirror diagram for 945, as well as in the
Legendrian knot atlas [CN13], where it appears as the second diagram for m(945). In particular,
Melvin and Shrestha note that Λ has two different linearized contact homologies (see the discussion
following [MS05, Theorem 4.2]).

We can use the multiplicative structure onAug+ to prove the following, which was unknown until
now according to the tabulation in [CN13]:

Proposition 4.30. Λ is not isotopic to its Legendrian mirror.

Here the Legendrian mirror of a Legendrian knot in R3 is its image under the diffeomorphism
(x, y, z) 7→ (x,−y,−z). The problem of distinguishing Legendrian knots from their mirrors is
known to be quite subtle; see, e.g., [Ng03] and [CKE+11]. It was already noted in [CKE+11] that
the ring structure on Aug− for Λ is noncommutative, and we will use this noncommutativity here.

Proof of Proposition 4.30. We use the calculation of the augmentation category from Proposition 4.26,
where we resolve Λ to produce a Lagrangian projection, and choose any orientation and base point.
We claim that: (1) there is an augmentation ε from A(Λ) to Z/2 for which

m2 : H−1Hom+(ε, ε)⊗H2Hom+(ε, ε)→ H1Hom+(ε, ε)

is nonzero; and (2) there is no such augmentation for the Legendrian mirror of Λ. Since Λ and
its Legendrian mirror have the same DGA over Z/2 but with the order of multiplication reversed,
(2) is equivalent to m2 : H2Hom+(ε, ε) ⊗ H−1Hom+(ε, ε) → H1Hom+(ε, ε) being zero for all
augmentations ε for Λ.

To establish (2), note that the only Reeb chord of Λ of degree −2 is a10, while the Reeb chords of
degree 1 are a1, a2, a3, a4, a13. By inspection, for i ∈ {1, 2, 3, 4, 13}, there is no disk whose negative
corners include a10 and ai, with a10 appearing first, and so m2(a+

i , a
+
10) = 0. Since [a+

10] generates
Hom−1

+ and [a+
i ] generate Hom2

+ for i ∈ {1, 2, 3, 4, 13}, (2) follows.
It remains to prove (1). There are five augmentations from A(Λ) to Z/2. Two of these are given

(on the degree 0 generators) by ε(a5) = ε(a6) = ε(a7) = 1, ε(a12) = 0, and ε(a8) = 0 or 1. (The
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other three have H2Hom+(ε, ε) = 0.) Let ε be either of these two augmentations; then

H2Hom+(ε, ε) ∼= (Z/2)〈[a+
13]〉

H1Hom+(ε, ε) ∼= (Z/2)〈[a+
8 ], [a+

12 + (1 + ε(a8))a+
7 ]〉

H−1Hom+(ε, ε) ∼= (Z/2)〈[a+
10]〉.

Now the fact that ∂(a8) = a13a10 (the relevant disk is shaded in Figure 4.8) leads to m2(a+
10, a

+
13) =

a+
8 , and thus m2 : H−1Hom+ ⊗H2Hom+ → H1Hom+ is nonzero. �

Remark 4.31. It turns out that for either of the two augmentations specified in the proof of Propo-
sition 4.30, m2 : H iHom+ ⊗HjHom+ → H i+jHom+ is nonzero for (i, j) = (−1, 2), (1,−1), and
(2, 1), but zero for (i, j) = (2,−1), (−1, 1), and (1, 2); any of these can be used to prove the result.
In addition, we note that the same proof also works if we use Aug− instead of Aug+.
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5. PROPERTIES OF THE AUGMENTATION CATEGORY

This section explores certain properties of the augmentation categoryAug+(Λ,k) defined in Sec-
tion 4. In Section 5.1, we give categorical formulations of Sabloff duality and the duality exact
sequence, and also explain the relation of the cohomology and compactly supported cohomology of
a Lagrangian filling to the +/− endomorphism spaces of the corresponding augmentation. Some of
the results from Section 5.1 are very similar if not essentially identical to previously known results
in the literature, and in Section 5.2, we provide a dictionary that allows comparison. Finally, in Sec-
tion 5.3, we discuss relations between different notions of equivalence of augmentations, showing
in particular that being isomorphic in Aug+ is the same as being DGA homotopic.

5.1. Duality and long exact sequences.

Let Λ ⊂ J1(R) be a Legendrian link. Here we examine the relationship between the positive and
negative augmentation categories Aug±(Λ,k); recall from Proposition 4.7 that Aug−(Λ,k) is the
Bourgeois–Chantraine augmentation category. We note that many of the results in this subsection
are inspired by, and sometimes essentially identical to, previously known results, and we will attempt
to include citations wherever appropriate.

5.1.1. Exact sequence relating the hom spaces.

Proposition 5.1. There is a morphism of non-unital A∞ categoriesAug−(Λ)→ Aug+(Λ) carrying
the augmentations to themselves.

Proof. In Proposition 3.23, we observed that from the 3-copy, we obtained a map

m2 : Hom+(ε1, ε3)⊗ Hom−(ε2, ε1) = C∨13 ⊗ C∨21 → C∨23 = Hom+(ε2, ε3).

Taking ε1 = ε3 and specializing to id ∈ Hom+(ε1, ε3 = ε1), we get a map

Hom−(ε2, ε1)→ Hom+(ε2, ε3 = ε1).

The higher data characterizing an A∞ functor and related compatibilities comes from similar com-
positions obtained from higher numbers of copies. �

Proposition 5.2. Let Λ ⊂ J1(R) be a Legendrian link, and letAug+(Λf ) andAug−(Λ) be the pos-
itive augmentation category as constructed in Definition 4.3 (with some Morse function f chosen on
Λ), and the negative augmentation category as constructed in Definition 4.6. Let ε1, ε2 be augmen-
tations of Λ, and suppose that ε1, ε2 agree on T (that is, on the tk’s). Then the map determined by
the functor from Proposition 5.1 fits into a short exact sequence of chain complexes

0→ Hom−(ε1, ε2)→ Hom+(ε1, ε2)→ C∗(Λ)→ 0,

where C∗(Λ) is a chain complex computing the ordinary cohomology of Λ. It follows there is a long
exact sequence

· · · → H i−1(Λ)→ H iHom−(ε1, ε2)→ H iHom+(ε1, ε2)→ H i(Λ)→ · · · .
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Proof. The proof consists of explicitly writing the complex Hom∗+(ε1, ε2) as a mapping cone:

Hom∗+(ε1, ε2) = Cone
(
C∗+1(Λ)→ Hom∗−(ε1, ε2)

)
.

For simplicity, we assume that Λ is a single-component knot; the multi-component case is a straight-
forward generalization. Let Λ2 be the Lagrangian projection 2-copy of Λ. In the notation of
Proposition 4.26, Hom+(ε1, ε2) = C

(ε1,ε2)
12 is generated by the a+

k ’s as well as x+ and y+, while
Hom−(ε1, ε2) = C

(ε2,ε1)
21 is generated by just the a−k ’s: that is, if we identify a+

k = a−k = a∨k , then

Hom+(ε1, ε2) = Hom−(ε1, ε2)⊕ 〈x+, y+〉.
The differentialm+

1 on Hom+(ε1, ε2) is given by dualizing the linear part of the twisted differential
∂2

(ε1,ε2) on C12
(ε1,ε2), while the differential m−1 on Hom−(ε1, ε2) is given by dualizing the linear part of

∂2
(ε2,ε1) on C21

(ε2,ε1). Inspecting Proposition 4.14 gives that m+
1 and m−1 coincide on the a∨k ’s, while

m+
1 (y+) = 0 and m+

1 (x+) ∈ 〈a+
1 , . . . , a

+
r 〉 as in the proof of Proposition 3.28. (Note that for

m+
1 (y+) = 0, we need the fact that ε1(t) = ε2(t), which is true by assumption.) The quotient

complex 〈x+, y+〉 of Hom+(ε1, ε2) is then the usual Morse complex C∗(S1) = C∗(Λ), and the
statement about the mapping cone follows. �

Remark 5.3. The condition in Proposition 5.2 that ε1 and ε2 agree on T is automatically satisfied
for any single-component knot with a Morse function with a unique minimum and maximum: in
this case, there is only one t, and ε1(t) = ε2(t) = −1 by a result of Leverson [Lev16]. Here we
implicitly assume that the augmentation categories are of Z-graded augmentations, although the
same is true for (Z/m)-graded augmentations if m is even. However, Proposition 5.2 fails to hold
for multi-component links if we remove the assumption that ε1, ε2 must agree on T .

5.1.2. Sabloff duality.

Here we present a repackaging of Sabloff duality [Sab06, EES09] in our language. Roughly
speaking, Sabloff duality states that linearized contact homology and linearized contact cohomol-
ogy fit into a long exact sequence with the homology of the Legendrian. In our notation, linearized
contact cohomology is the cohomology of Hom−, while linearized contact homology is the homol-
ogy of the dual to Hom−; see Section 5.2.

For a cochain complex K, we write K† to denote the cochain complex obtained by dualizing the
underlying vector space and differential and negating all the gradings. By comparison, if K were a
chain complex, we would write K∗ to denote the cochain complex obtained by dualizing the under-
lying vector space and differential, but leaving all the gradings alone. We now have the following
result, which can roughly be summarized as “homology in Aug− is cohomology in Aug+.”

Proposition 5.4. There is a quasi-isomorphism Hom−(ε2, ε1)†[−2]
∼−→ Hom+(ε1, ε2).

Proof. This proof is given in [EES09] (though not in the language stated here); we include the proof
in our language for the convenience of the reader. Let Λ(2) be an (appropriately perturbed) 2-copy
of Λ. Let Λ

(2)
the link with the same xy projection as Λ(2), but with Λ1 lying very far above Λ2 in

the z direction.
We write C for the space spanned by the Reeb chords of Λ

(2)
. Note that, since these are in

correspondence with self intersections in the xy projection, which is the same for Λ(2) and Λ
(2)

, the
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Reeb chords of these links are in bijection. However, in Λ(2), all Reeb chords go from Λ2 to Λ1, so
C

21
= 0. Note that if r ∈ R21 corresponds to a chord r ∈ R12

, then µ(r) = −µ(r)− 1 because the
Reeb chord is now oppositely oriented between Maslov potentials, and moreover is a minimizer of
front projection distance if it was previously a maximizer, and vice versa. We will write C21

−∗−1 to
indicate the graded module with this corrected grading. We have explained that, as a graded module,

C
12

= C12 ⊕ C21
−∗−1.

Let ε1, ε2 be augmentations of A(Λ). We write ε = (ε1, ε2) for the corresponding augmentation
of Λ(2) and ε = (ε1, ε2) for the corresponding augmentation of Λ

(2)
. If we pass from Λ(2) to Λ

(2)
by

moving the components further apart by some large distance Z in the z direction, then every Reeb
chord of Λ

(2)
corresponding to a generator of C12 has length larger than Z, and every Reeb chord

corresponding to a generator of C∗21 has length smaller than Z. Because the differential is filtered by
chord length, it follows that we have an exact sequence of dg modules

0→ (C21
−∗−1, ∂ε|C21

−∗−1
)→ (C

12
, ∂ε)→ (C12, ∂ε)→ 0.

Here (C12, ∂ε) means the dg module which is C12 equipped with the quotient differential coming
from the exact sequence.

Now geometric considerations imply that

(C12, ∂ε) = (C12, ∂ε|C12) :

if r ∈ R12 ⊂ R12
, then ∂ε(r) in C

12
counts disks with a negative corner at some r′ ∈ R12

, which
is either in R12 (in which case it contributes equally to ∂ε and the quotient differential ∂ε) or in R21

(in which it does not contribute to either, since in Λ(2) it corresponds to a disk with two positive
punctures). Additionally, we have

(C21
−∗−1, ∂ε|C21

−∗−1
)∗ = ((C∗21, ∂

∗
ε |C∗21)[−1])† :

this is a manifestation of the fact that when we push the two copies past each other, a disk with a
positive and a negative corner at chords inR21 becomes a disk with a positive and a negative corner
at chords inR12

, but with the positive and negative corners switched.
Dualizing and shifting, we have

0→ Hom+(ε1, ε2)→ (C
12
, ∂ε)

∗[−1]→ Hom−(ε2, ε1)†[−1]→ 0.

View the central term as a mapping cone to obtain a morphism Hom−(ε2, ε1)†[−2]→ Hom+(ε1, ε2).
Since Λ

2
can be isotoped so that there are no Reeb chords between the two components, the central

term is acyclic, so this morphism is a quasi-isomorphism. �

Remark 5.5. Proposition 5.4 holds for n-dimensional Legendrians as well, with n+ 1 replacing 2.

Corollary 5.6. We haveH∗Hom+(ε1, ε2) ∼= H∗−2Hom−(ε2, ε1)†: the cohomology of the hom spaces
in Aug+ is isomorphic to (bi)linearized Legendrian contact homology.

Here bilinearized Legendrian contact homology, as constructed in [BC14], is the cohomology of
Hom†−; see Section 5.2 below for the precise equality, and for further discussion of the relation of
Proposition 5.4 to Sabloff duality.



62 LENHARD NG, DAN RUTHERFORD, VIVEK SHENDE, STEVEN SIVEK, AND ERIC ZASLOW

5.1.3. Fillings.

As described in the Introduction, an important source of augmentations is exact Lagrangian fill-
ings, whose definition we recall here. For a contact manifold (V, α), the cylinder R × V is a sym-
plectic manifold with symplectic form ω = d(etα), where t is the R coordinate. Let Λ ⊂ V
be Legendrian. A Lagrangian filling of Λ is a compact L ⊂ (−∞, 0] × V such that ω|L = 0,
L ∩ {t = 0} = {0} × Λ, and L ∪ ([0,∞) × Λ) is smooth. The filling is exact if etα|L is an exact
1-form and its primitive is constant for t� 0 and for t� 0, cf. [Cha15]. As part of the functoriality
of Symplectic Field Theory, any exact Lagrangian filling of a Legendrian Λ induces an augmentation
of the DGA for Λ; see e.g. [Ekh12], and [EHK16] for the special case V = J1(R).

We now restrict as usual to this special case. For an augmentation obtained from an exact La-
grangian filling, Hom± is determined by the topology of the filling. This is essentially a result of
[Ekh12] (see also [BC14, §4.1]); translated into our language, it becomes the following:

Proposition 5.7. Suppose thatL is an exact Lagrangian filling of Λ in (−∞, 0]×J1(R), with Maslov
number 0, and let εL be the augmentation of Λ corresponding to the filling. Then

HkHom+(εL, εL) ∼= Hk(L), HkHom−(εL, εL) ∼= Hk(L,Λ),

and the long exact sequence

· · · → Hk−1(Λ)→ HkHom−(εL, εL)→ HkHom+(εL, εL)→ Hk(Λ)→ · · ·
is the standard long exact sequence in relative cohomology.

Proof. This result has appeared in various guises and degrees of completeness in [BC14, DR16,
EHK16, Ekh12] (in [Ekh12] as a conjecture); the basic result that linearized contact homology for
εL is the homology of L is often attributed to Seidel. For completeness, we indicate how to obtain
the precise statement of Proposition 5.7 via wrapped Floer homology, using the terminology and
results from [DR16].

Theorem 6.2 in [DR16] expresses a wrapped Floer complex (CF•(L,L
η,ε
+ ), ∂) as a direct sum

CF•(L,L
η,ε
+ ) ∼= C•Morse(F+)⊕ C•−1

Morse(f)⊕ CL•−2(Λ),

where the differential ∂ is block upper triangular with respect to this decomposition, so that ∂ maps
each summand to itself and to the summands to the right. In this decomposition, C•Morse(F+),
C•Morse(f), and Cone(C•Morse(F+) → C•Morse(f)) are Morse complexes for C•(L), C•(Λ), and
C•(L,Λ), respectively. Furthermore, inspecting the definitions of [DR16, §6.1.2] (and recalling
we shift degree by 1) gives CL•−2(Λ) = Hom•−1

− (εL, εL) and Cone(C•Morse(f) → CL•(Λ)) =
Hom•+1

+ (εL, εL).
Now the wrapped Floer homology for the exact Lagrangian fillings L,Lη,ε+ vanishes (see e.g.

[DR16, Proposition 5.12]), and so the complexCF•(L,L
η,ε
+ ) is acyclic. It follows fromCF•(L,L

η,ε
+ ) ∼=

C•(L) ⊕ Hom•−1
+ (εL, εL) that HkHom+(εL, εL) ∼= Hk(L), and from CF•(L,L

η,ε
+ ) ∼= C•(L,Λ) ⊕

Hom•−1
− (εL) that HkHom−(εL, εL) ∼= Hk(L,Λ). The statement about the long exact sequence sim-

ilarly follows. �

Remark 5.8. Proposition 5.7 relies on the Lagrangian filling L having Maslov number 0, where the
Maslov number of L is the gcd of the Maslov numbers of all closed loops in L; see [Ekh12, EHK16].
However, a version of Proposition 5.7 holds for exact Lagrangian fillings of arbitrary Maslov number
m. In this case, εL is not graded but m-graded: that is, ε(a) = 0 if m - |a|, but ε(a) can be nonzero
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if |a| is a multiple of m. The isomorphisms and long exact sequence in Proposition 5.7 continue to
hold when all gradings are taken mod m.

Remark 5.9. Here we make an extended comment on signs as they relate to augmentations coming
from fillings. For simplicity we restrict our discussion to a Legendrian knot Λ ⊂ R3 with DGA
(A, ∂), which we recall for emphasis is generated by Reeb chords of Λ along with t±1. Given an
exact Lagrangian filling L of Λ, the augmentation εL as constructed in [EHK16] (cf. [Ekh12]) is a
map to k = Z/2. This is lifted to an augmentation A → Z by Karlsson [Kar17] by a choice of
coherent orientations of various moduli spaces.

More precisely, what is constructed in [Kar17] is an augmentation of the Chekanov–Eliashberg
DGA of Λ, but taken with Z coefficients. A natural way to define such a DGA is to ‘forget’ the
homology coefficients t±1 in (A, ∂), which is to say, set t = 1 in (A, ∂) to yield a DGA (A1, ∂1)
where A1 is the tensor algebra over Z generated by Reeb chords. However, one could also set
t = −1 in (A, ∂) to yield another DGA (A−1, ∂−1) with the same underlying algebra A−1 = A1

but distinct differentials. For example, for the standard unknot, A1 = A−1 is generated by a single
Reeb chord a with differential ∂1(a) = 2 and ∂−1(a) = 0.

To expand on this a bit further, signs in the differential in (A, ∂) are determined geometrically by
a choice of spin structure on the Legendrian Λ [EES05b]. When Λ is topologically S1, there are two
spin structures, one (called the “Lie group spin structure” in [EES05b]) coming from the canonical
trivialization of TS1, and the other (the “null-cobordant spin structure”) from the unique spin struc-
ture on D2 by viewing S1 as its boundary. As shown in [EES05b, Theorem 4.29], the differentials
resulting from the two spin structures are not independent, but are related by the automorphism of
A which sends t to −t and sends each Reeb chord to itself.

The standard combinatorial sign conventions for the Chekanov–Eliashberg DGA, as originally
defined in [ENS02] and presented here in Section 2.2, correspond to the Lie group spin structure;
see [EES05b, Theorem 4.32] and [Ng10, Appendix A]. In the context of fillings, however, it is more
natural to choose the null-cobordant spin structure. What Karlsson shows in [Kar17] is that a filling
induces an augmentation of the DGA over Z obtained from forgetting the homology coefficients
(setting t = 1) in the DGA (A, ∂) for the null-cobordant spin structure. In light of the preceding
discussion about how changing spin structure negates t, this is the DGA (A−1, ∂−1). In other words:

Proposition 5.10 ([Kar17]). An exact Lagrangian filling L of a Legendrian knot Λ ⊂ R3 induces an
augmentation of the DGA (A, ∂) of Λ, εL : A → Z, satisfying εL(t) = −1.

Note that this augmentation induces an augmentation to any field k, also sending t to −1; this is in
line with the result of Leverson [Lev16] that any augmentation to k must send t to −1.

We conclude this remark by comparing with the sheaf picture. As defined in [STZ17], microlocal
monodromy does not explicitly depend on the choice of a spin structure on Λ. However, from a
more abstract point of view, microlocal monodromy is naturally valued in a category of (in general
twisted) local systems on Λ, but the isomorphism with the category of local systems is not entirely
canonical. (The autoequivalences of the identity functor of the category of chain complexes over
a ring k is naturally identified with k∗. This leads to H1(X, k∗) acting by autoequivalences on the
category of local systems on X . When k = Z, this means that isomorphisms with the category of
local systems of X are a torsor over H1(X,±1), just like spin structures.) The work [STZ17] made
a choice at the cusps which in effect fixes this isomorphism. A more abstract discussion of how such
‘brane structure’ choices enter into microlocal sheaf theory can be found in [JT17], which in turn
was partially inspired by an account [Lur15] explaining among other things a homotopical setup
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well suited to understanding certain orientation choices in Floer theory. See also the discussion of
obstruction classes in [Gui, Part 10].

In any case, under the correspondence we will set up, the filling L of Λ yields a sheaf in C1(Λ;k)
microsupported along Λ. Moreover, the microlocal monodromy of the corresponding sheaf will
be the restriction of the rank one local system on L to the boundary Λ, hence trivial because this
boundary circle is a commutator in π1(L). The correspondence between sheaves and augmentations
sends this sheaf to εL, and the triviality of the monodromy to the condition εL(t) = 1. This indicates
that the choices made in [STZ17] to define microlocal monodromy correspond to the choice of the
null-cobordant spin structure on Λ.

5.2. Dictionary and comparison to previously known results.

Here we compare our notions and notations with pre-existing ones, especially from [BC14].
We have considered a number of constructions derived from the Bourgeois–Chantraine category
Aug−(Λ,k) that previously appeared in [BC14] or elsewhere in the literature. For convenience,
we present here a table translating between our notation and notation from other sources, primarily
[BC14].

Notation here Notation in other sources

Aug−(Λ,k) Bourgeois–Chantraine augmentation category [BC14]
Hom∗−(ε1, ε2) Hom∗−1(ε2, ε1) = C∗−1

ε1,ε2
[BC14]

H∗Hom−(ε1, ε2) bilinearized Legendrian contact cohomology LCH∗−1
ε1,ε2

(Λ) [BC14]
H∗Hom−(ε, ε) linearized Legendrian contact cohomology LCH∗−1

ε (Λ) [Sab06, EES09]
Hom∗−(ε1, ε2)† Cε1,ε2

−∗−1 [BC14]
H∗Hom−(ε1, ε2)† bilinearized Legendrian contact homology LCHε1,ε2

−∗−1(Λ) [BC14]
H∗Hom−(ε, ε)† linearized Legendrian contact homology LCHε

−∗−1(Λ) [Che02]

Using this dictionary, we can interpret various results from the literature in our language. For
instance, Sabloff duality, or more precisely the Ekholm–Etnyre–Sabloff duality exact sequence
[EES09, Theorem 1.1] relating linearized Legendrian contact homology and cohomology, is:

· · · → Hk+1(Λ)→ LCH−kε (Λ)→ LCHk
ε (Λ)→ Hk(Λ)→ · · · .

This was generalized in [BC14, Theorem 1.5] to bilinearized contact homology and cohomology:

· · · → Hk+1(Λ)→ LCH−kε2,ε1(Λ)→ LCHε1,ε2
k (Λ)→ Hk(Λ)→ · · · .

Since this long exact sequence is derived from a chain-level argument using mapping cones, we can
dualize to give:

· · · → Hk(Λ)→ LCHk
ε1,ε2

(Λ)→ LCHε2,ε1
−k → Hk+1(Λ)→ · · · .

But we have LCHk
ε1,ε2

(Λ) = Hk+1Hom−(ε1, ε2), while by Corollary 5.6,

LCHε2,ε1
−k (Λ) = Hk−1Hom−(ε2, ε1)† ∼= Hk+1Hom+(ε1, ε2),

and so the last exact sequence now becomes the exact sequence in Proposition 5.2.
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In the case when Λ has an exact Lagrangian filling L with corresponding augmentation εL, the
fundamental result that the linearized contact cohomology is the homology of the filling is written
in the literature as:

(5.1) LCH1−k
εL

(Λ) ∼= Hk(L).

As discussed in the proof of Proposition 5.7, this was first stated in [Ekh12] and also appears
in [BC14, DR16, EHK16]. Now we have LCH1−k

εL
(Λ) = H2−kHom−(εL, εL), while Hk(L) ∼=

H2−k(L,Λ) by Poincaré duality; thus (5.1) agrees with our Proposition 5.7 (which, after all, was
essentially proven using (5.1)).

To summarize the relations between the various constructions in the presence of a filling:

LCHεL
1−k(Λ) ∼= HkHom+(εL, εL) ∼= Hk(L) ∼= H2−k(L,Λ)

LCHk−1
εL

(Λ) ∼= HkHom−(εL, εL) ∼= Hk(L,Λ) ∼= H2−k(L).

Remark 5.11. With the benefit of hindsight, the terminology “linearized contact cohomology” ap-
plied to H∗Hom−(ε, ε) is perhaps less than optimal on general philosophical grounds: cohomology
should contain a unit, and H∗Hom−(ε, ε) does not. Moreover, in the case when ε = εL is given by
a filling and so H∗Hom−(ε, ε) has a geometric meaning, it is compactly supported cohomology (or,
by Poincaré duality, regular homology):

H∗Hom−(εL, εL) ∼= H∗(L,Λ) ∼= H2−∗(L).

By contrast, we have
H∗Hom+(εL, εL) ∼= H∗(L),

and so it may be more suggestive to refer to H∗Hom+(εL, εL) rather than H∗Hom−(εL, εL) as lin-
earized contact cohomology.

To push this slightly further, “linearized contact homology” LCHε
∗(Λ) is H−∗−1Hom−(ε, ε)†,

which by Proposition 5.4 is isomorphic to H−∗+1Hom+(ε, ε). Thus linearized contact homology,
confusingly enough, is a unital ring, and indeed for ε = εL it is the cohomology ring of L!

5.3. Equivalence of augmentations.

Having formed a unital category Aug+ from the set of augmentations, we have a natural notion
of when two augmentations are isomorphic. Note that the following are equivalent by definition:
isomorphism inAug+, isomorphism in the cohomology category H∗Aug+, and isomorphism in the
degree zero part H0Aug+.

This notion implies in particular that the corresponding linearized contact homologies are isomor-
phic:

Proposition 5.12 (cf. [BC14, Theorem 1.4]). If ε1, ε2 are isomorphic in Aug+, then

H∗Hom+(ε1, ε3) ∼= H∗Hom+(ε2, ε3) and H∗Hom+(ε3, ε1) ∼= H∗Hom+(ε3, ε2)

for any augmentation ε3. In particular,

H∗Hom+(ε1, ε1) ∼= H∗Hom+(ε1, ε2) ∼= H∗Hom+(ε2, ε2).

Proof. Obvious. �
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We now investigate the relation of this notion to other notions of equivalence of augmentations
which have been introduced in the literature. We will consider three notions of equivalence, of which
(2) and (3) will be defined below:

(1) isomorphism in Aug+;
(2) isomorphism in YAug−;
(3) DGA homotopy.

We will see that (1) implies (2), and that (1) and (3) are equivalent if Λ is connected with a single
base point; we do not know if (2) implies (1). A fourth notion of equivalence, involving exponentials
and necessitating that we work over a field of characteristic 0, usually R (see [Bou09, BC14]), is not
addressed here.

Note that (3) has been shown to be closely related to isotopy of Lagrangians in the case where the
augmentations come from exact Lagrangian fillings: see [EHK16] and Corollary 5.20 below.

5.3.1. Isomorphism in YAug−.

In [BC14], equivalence was defined using Aug− as follows. While Aug− is not unital, the
category of Aug−-modules (functors to chain complexes) is, and the Yoneda construction ε 7→
Hom−( · , ε) gives a morphism Y : Aug− → Aug−-modules. This morphism is cohomologically
faithful but not cohomologically full since Aug− is non-unital. We write YAug− for the full sub-
category on the image objects. In any case, [BC14] defined two augmentations to be equivalent if
their images in YAug− are isomorphic. As noted in [BC14, Theorem 1.4], essentially by definition,
if Yε1 ∼= Yε2 in YAug−, then

H∗Hom−(ε1, ε3) ∼= H∗Hom−(ε2, ε3) and H∗Hom−(ε3, ε1) ∼= H∗Hom−(ε3, ε2)

for any augmentation ε3.

Proposition 5.13. If ε1 ∼= ε2 in Aug+, then Yε1 ∼= Yε2 in YAug−.

Proof. According to Proposition 3.23, we have a map

Y− : Aug+ → YAug−
ε 7→ Hom−( · , ε).

The fact that the identity in Hom+ acts trivially on the space Hom− under the morphisms in Propo-
sition 3.23 implies that this is a unital morphism of categories. It follows that the image of an
isomorphism in Aug+ is an isomorphism in YAug−. �

Corollary 5.14. If ε1 ∼= ε2 in Aug+, then

H∗Hom−(ε1, ε3) ∼= H∗Hom−(ε2, ε3) and H∗Hom−(ε3, ε1) ∼= H∗Hom−(ε3, ε2)

for any augmentation ε3.
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5.3.2. DGA homotopy.

Another notion of equivalence that has appeared in the literature is DGA homotopy [Kál05,
Hen11, EHK16, HR14]. This arises from viewing augmentations as DGA maps from (A, ∂) to
(k, 0) and considering an appropriate version of chain homotopy for DGA maps.

Definition 5.15. Two DGA maps f1, f2 : (A1, ∂1)→ (A2, ∂2) are DGA homotopic if they are chain
homotopic via a chain homotopy operatorK : A1 → A2 which is an (f1, f2)-derivation. This means
that

• K has degree +1,
• f1 − f2 = ∂2K +K∂1, and
• K(x · y) = K(x) · f2(y) + (−1)|x|f1(x) ·K(y) for all x, y ∈ A1.

Note that if K is an (f1, f2)-derivation and f1 and f2 are DGA maps, then it suffices to check the
second condition on a generating set for A1. In addition, if A1 is freely generated by a1, . . . , ak,
then, once f1 and f2 are fixed, any choice of values K(ai) ∈ A2 extends uniquely to an (f1, f2)-
derivation. Although it is not immediate, DGA homotopy is an equivalence relation on the set of
DGA morphisms from (A1, ∂1) to (A2, ∂2) (see e.g. [FHT01, Chapter 26]).

We will show that if Λ is a Legendrian knot with a single base point, then two augmentations of
A(Λ) are isomorphic inAug+(Λ,k) if and only if they are DGA homotopic as DGA maps to (k, 0).
To do this, we compute with m-copies constructed from the Lagrangian projection as described
in Section 4.4.1. For any ε1, ε2 ∈ Aug+, Hom+(ε1, ε2) is spanned as an k-module by elements
a+
i , x

+, y+. The a+
i are dual to the crossings a12

i of the 2-copy, which are in bijection with the
generators a1, . . . , ar of A(Λ), while x+ and y+ are dual to the crossings x12 and y12 that arise from
the perturbation process.

The definition of Aug+ together with the description of the differential in Am = A(Λm
f ) from

Proposition 4.26 lead to the following formulas.

Lemma 5.16. In Hom+(ε1, ε2), we have

m1(a+
i ) =

∑
aj ,b1,...,bn

∑
u∈∆(aj ;b1,...,bn)

∑
1≤l≤n

δbl,aiσuε1(b1 · · · bl−1)ε2(bl+1 · · · bn)a+
j ;

m1(y+) = (ε1(t)−1ε2(t)− 1)x+ +
∑
i

(
ε2(ai)− (−1)|ai|ε1(ai)

)
a+
i ;

m1(x+) ∈ Span
k
{a+

1 , . . . , a
+
r }.

Here we abuse notation slightly to allow the bi to include the base point on Λ as well as the corre-
sponding generators t±1. The factor σu ∈ {±1} denotes the product of all orientation signs at the
corners of the disk u, i.e. the coefficient of the monomial w(u) (see Section 2.2).

We remark that if ε1 and ε2 are homotopic via the operator K, then we have ε1(t) − ε2(t) =
∂kK(t) +K(∂t) = 0 and so ε1(t) = ε2(t).

We will also need the following properties of composition in Aug+.

Lemma 5.17. Assume that the crossings a1, . . . , ar of the xy-projection of Λ are labeled with in-
creasing height, h(a1) ≤ h(a2) ≤ . . . ≤ h(ar).

For any ε1, ε2, ε3, the composition m2 : Hom+(ε2, ε3) ⊗ Hom+(ε1, ε2) → Hom+(ε1, ε3) satisfies
the following properties.
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• m2(a+
i , a

+
j ) ∈ Span

k

{
a+
l | l ≥ max(i, j)

}
for all i and j, 1 ≤ i, j ≤ r.

• Each of m2(x+, a+
i ), m2(a+

i , x
+), and m2(x+, x+) belongs to Span

k
{a+

l | 1 ≤ l ≤ r} for
1 ≤ i ≤ r.
• For any α ∈ Span

k
{a+

1 , . . . , a
+
r , x

+, y+}, we have

m2(y+, α) = m2(α, y+) = −α.

Proposition 5.18. Consider an element α ∈ Hom0
+(ε1, ε2) of the form

α = −y+ −
∑
i

K(ai)a
+
i .

Then m1(α) = 0 if and only if the extension of K to an (ε1, ε2)-derivation, K̃ : A → k, is a DGA
homotopy from ε1 to ε2.

Proof. We note that ε1(ai) = (−1)|ai|ε1(ai) for all i, since ε1 is supported in grading 0. Using
Lemma 5.16, we compute

−m1(α) = m1(y+) +
∑
i

K(ai)m1(a+
i )

=
∑
j

[ε2(aj)− ε1(aj)] a
+
j

+
∑
i

K(ai)

 ∑
aj ,b1,...,bn

∑
u∈∆(aj ;b1,...,bn)

∑
1≤l≤n
bl=ai

σuε1(b1 · · · bl−1)ε2(bl+1 · · · bn)a+
j


=
∑
j

[ε2(aj)− ε1(aj)] a
+
j

+
∑
j

 ∑
b1,...,bn

u∈∆(aj ;b1,...,bn)

∑
1≤l≤n
bl 6=t±1

(−1)|b1···bl−1|σuε1(b1 · · · bl−1)K(bl)ε2(bl+1 · · · bn)

 a+
j

=
∑
j

[
ε2(aj)− ε1(aj) + K̃ ◦ ∂(aj)

]
a+
j

where K̃ denotes the unique (ε1, ε2)-derivation with K̃(aj) = K(aj). (The innermost sum above is
equal to K̃(∂aj) only once we also include the terms where bl = t±1, but K(t±1) = 0 since it must
be an element of k with grading 1, so this does not change anything.) Therefore, m1(α) = 0 if and
only if the equation

ε1 − ε2 = K̃ ◦ ∂
holds when applied to generators, and the proposition follows. �

We can now state our result relating notions of equivalence.

Proposition 5.19. If Λ is a knot with a single base point, then two augmentations ε1, ε2 : A(Λ)→ k

are homotopic as DGA maps if and only if they are isomorphic in Aug+(Λ).
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Proof. First, suppose that ε1 and ε2 are isomorphic in H∗Aug+. In particular, there exist cocycles
α ∈ Hom0

+(ε1, ε2) and β ∈ Hom0
+(ε2, ε1) with [m2(α, β)] = −[y+] in H0Hom+(ε2, ε2). That is,

m2(α, β)+y+ = m1(γ) for some γ ∈ Hom+(ε2, ε2). Using Lemma 5.16, we see that 〈m1(γ), y+〉 =
〈m1(γ), x+〉 = 0, where 〈m1(γ), y+〉 denotes the coefficient of y+ in m1(γ) and so forth. Thus we
can write

m2(α, β) = −y+ +
∑
i

K(ai)a
+
i

for some K(ai) ∈ k. (To see that 〈m1(γ), x+〉 = 0, we used the fact that we are working in
Hom+(ε2, ε2), hence 〈m1(y+), x+〉 = 0.) Moreover, Lemma 5.17 shows that both α and β must
also have this same form, except that the y+ coefficients need not be −1: we have 〈α, y+〉 = cα and
〈α, y+〉 = cβ for some cα, cβ ∈ k

× with cαcβ = 1. (Note that 〈α, x+〉 = 〈β, x+〉 = 0 because α
and β are both elements of Hom0

+, whereas |x+| = 1.) Replacing α and β with −c−1
α α and −c−1

β β
respectively preserves m2(α, β) and m1(α) = m1(β) = 0, so we can assume that both α and β have
y+-coefficient equal to −1 after all. Now, since m1(α) = 0, Proposition 5.18 applies to show that ε1
and ε2 are homotopic.

Conversely, suppose that ε1 and ε2 are homotopic, with K : A → k an (ε1, ε2)-derivation with
ε1 − ε2 = K ◦ ∂. Note that since k sits in grading 0 when viewing (k, 0) as a DGA, we have
K(ai) = 0 unless |ai| = −1 in A. As |a+

i | = |ai|+ 1, it follows that

α = −y+ −
∑
i

K(ai)a
+
i

defines a cocycle in Hom0
+(ε1, ε2) by Proposition 5.18. We show that [α] ∈ H0Hom+(ε1, ε2) has a

multiplicative inverse in H0Hom+(ε2, ε1). In fact, we prove a stronger statement by showing that
there are elements β, γ ∈ Hom0

+(ε2, ε1) satisfying

(5.2) m1(β) = m1(γ) = 0

and

(5.3) m2(β, α) = m2(α, γ) = −y+.

It will then follow that [β] = [γ] ∈ H0Hom+(ε2, ε1) is the desired multiplicative inverse. (It is not
clear whether β = γ as cochains, since the m2 operations may not be associative ifm3 is nontrivial.)
We will construct β of the form

β = −y+ +
∑
i

Bia
+
i ,

and omit the construction of γ which is similar.
Writing α = −y+ − A and β = −y+ + B with A,B ∈ Span

k
{a+

1 , . . . , a
+
r }, we note, using

Lemma 5.17, that m2(β, α) = −y+ is equivalent to

B = A+m2(B,A).

The coefficients Bi can then be defined inductively to satisfy this property. Indeed, assuming
a1, . . . , ar are labeled according to height, Lemma 5.17 shows that the coefficient of a+

i inm2(B,A)
is determined by A and those Bj with j < i.

Now that we have found β = −y+ + B satisfying (5.3), we verify (5.2). The A∞ relations on
Aug+(Λ) imply that

m1(−y+) = m1(m2(β, α)) = m2(m1(β), α) +m2(β,m1(α)),



70 LENHARD NG, DAN RUTHERFORD, VIVEK SHENDE, STEVEN SIVEK, AND ERIC ZASLOW

and the left side is zero since we evaluate m1(−y+) in Hom+(ε1, ε1), while the term m2(β,m1(α))
on the right side is zero since m1(α) = 0; hence

m2(m1(β), α) = 0.

We claim that m2(X,α) = 0 implies that X = 0 for any X ∈ Span
k
{y+, x+, a+

1 , . . . , a
+
r }; in the

case X = m1(β), it will immediately follow that m1(β) = 0 as desired. Using Lemma 5.17, we
have that m2(X,A) ∈ Span

k
{a+

1 , . . . , a
+
r }, so

0 = m2(X,α) = m2(X,−y+ − A) = X −m2(X,A),

which implies that X = m2(X,A) ∈ Span
k
{a+

1 , . . . , a
+
n } as well. That 〈X, a+

i 〉 = 0 is then verified
from the same equation using Lemma 5.17 and induction on height. �

Corollary 5.20. Let L1, L2 be exact Lagrangian fillings of a Legendrian knot Λ with trivial Maslov
number, and let εL1 , εL2 be the corresponding augmentations of the DGA of Λ. If L1, L2 are isotopic
through exact Lagrangian fillings, then εL1

∼= εL2 in Aug+(Λ).

Proof. From [EHK16], given these hypotheses, εL1 , εL2 are DGA homotopic. �

Remark 5.21. As before, we can generalize Corollary 5.20 to exact fillings of Maslov number m as
long as we consider Aug+ to be (Z/m)-graded rather than Z-graded.
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6. LOCALIZATION OF THE AUGMENTATION CATEGORY

A preferred plat diagram of a Legendrian knot in R3 can be split along vertical lines which avoid
the crossings, cusps, and base points into a sequence of “bordered” plats. Each of these bordered
plats was assigned a DGA in [Siv11], generalizing the Chekanov–Eliashberg construction.8 Here
we generalize the ideas of [Siv11] to yield the following result.

Theorem 6.1. Let Λ ⊂ J1(R) be in preferred plat position. Then there is a constructible co-sheaf
of dg algebras A(Λ) over R with global sections A(Λ).

The sectionsA(Λ)(U) are all semi-free, and we have a co-sheaf in the strict sense that the under-
lying graded algebras already form a co-sheaf.

We will prove this result over the course of this section, but first we interpret it and draw several
corollaries.

The statement means the following. For each open set U ⊂ R, there is a DGA A(Λ)(U). When
V ⊂ U , there is a map (defined by counting disks) ιV U : A(Λ)(V )→ A(Λ)(U). For W ⊂ V ⊂ U ,
one has ιV U ιWV = ιWU . Finally, when U = L ∪V R, one has a pushout in the category of DGA

A(Λ)(U) = A(Λ)(L) ?A(Λ)(V ) A(Λ)(R).

Cosheaves are determined by their behavior on any base of the topology; to prove the theorem
it suffices to give the sections and corestrictions for open intervals to open intervals and prove the
cosheaf axiom for overlaps of intervals. We give a new construction of these sections, which is
equivalent to that of [Siv11] if we restrict to mod 2 coefficients.

Corollary 6.2. Augmentations form a sheaf of sets over Rx. That is, U 7→ HomDGA(A(Λ)(U),k)
determines a sheaf.

Proof. GivenU = L∪VR, suppose we have augmentations εL : A(Λ)(L)→ k and εR : A(Λ)(R)→
k such that εL|V = εL ◦ ιV L equals εR|V = εR ◦ ιV R as augmentations of A(Λ)(V ). By the pushout
axiom above, there is a unique ε : A(Λ)(U)→ k such that εL = ε◦ιLU = ε|L and εR = ε◦ιRU = ε|R,
verifying the gluing axiom. �

Corollary 6.3. Fix a global augmentation ε : A(Λ) → k. This induces local augmentations
ε|U : A(Λ)(U) → k, which determine A∞ algebras Cε(U). The co-restriction maps of the DGA
determine restriction maps of theCε(U), and the association U → Cε(U) is a sheaf ofA∞ algebras.

8 In [Siv11], mod 2 coefficients were used, and the language of co-sheaves was avoided. There the vertical lines
bounding a bordered plat diagram T on the left and right are assigned “line algebras” ILn and IRn , and a “type DA” algebra
A(T ) was associated to the oriented tangle T along with natural DGA morphisms ILn → A(T ) and IRn → A(T ). If T
decomposes into two smaller bordered plats as T = T1 ∪ T2, with the two diagrams intersecting along a single vertical
line with n points whose algebra is denoted IMn , then these morphisms fit into a pushout square

(6.1) IMn //

��

A(T2)

��
A(T1) // A(T )

and the corresponding morphisms ILn → A(T ) and IRn → A(T ) corresponding to the left and right boundary lines of T
factor through the morphisms ILn → A(T1) and IRn → A(T2) respectively.

In the present treatment, the line algebras are the co-sections over a neighborhood of a boundary of the interval in
question, the DGA morphisms above are co-restrictions, and the pushout square reflects the cosheaf axiom.
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Proof. This follows formally from Theorem 6.1 and Proposition 2.7. Note the statement is asserting
the existence of A∞ restriction morphisms and A∞ pushouts. �

One of our definitions of the augmentation category of Λ proceeded by first forming a front
projection m-copy Λm and then using the corresponding Cε to define and compose homs. Exactly
the same construction can be made for a restriction Λ|J1(U) for U ⊂ R. We note that since we
work with the front projection rather than the Lagrangian projection, we do not have to choose
perturbations of Λ|J1(U). We also do not require Λ|J1(U) to contain any base points.

Corollary 6.4. There exists a presheaf ofA∞ categoriesAug+(Λ,k) with global sectionsAug+(Λ,k),
given by sending U to the augmentation category of Λ|J1(U). Denoting by Aug+(Λ,k)∼ its sheafifi-
cation, the map Aug+(Λ,k)(U)→ Aug+(Λ,k)∼(U) is fully faithful for all U .

Proof. This follows formally from Corollary 6.2 and from applying Corollary 6.3 to the front pro-
jection m-copy for each m. �

Remark 6.5. The presheaf of categories Aug+(Λ,k) need not be a sheaf of categories. That is,
the map Aug+(Λ,k)(U) → Aug+(Λ,k)∼(U) need not be essentially surjective. In fact, it never
will be unless Λ carries enough base points. This may seem strange given Corollary 6.2, but the
point is that objects of a fibre product of categories B ×C D are not the fibre product of the sets of
objects, i.e. not pairs (b, d) such that b|C = d|C , but instead triples (b, d, φ) where φ : b|C ∼= d|C is
an isomorphism in C. The objects of the more naive product, where φ is required to be the identity,
will suffice under the condition that the map B → C has the “isomorphism lifting property,” i.e., that
any isomorphism φ(b) ∼ c′ in C lifts to an isomorphism b ∼ b′ in B. We will ultimately show that
this holds for restriction to the left when Λ has base points at all the right cusps, and conclude in this
case that Aug+(Λ,k) is a sheaf.

We now turn to proving Theorem 6.1. Let U ⊂ R be an open interval, and T ⊂ J1(U) be a
Legendrian tangle transverse to ∂J1(U). We will assume that T is oriented, that its front projection
is generic and equipped with a Maslov potential µ such that two strands are oriented in the same
direction as they cross ∂J1(U) if and only if their Maslov potentials agree mod 2. Suppose that T
also has k ≥ 0 base points, labeled ∗α1 , ∗α2 , . . . , ∗αk for distinct positive integers αj .

We require that any right cusps in T abut the unbounded region of T containing all points with
z � 0, which can be arranged by Reidemeister 2 moves, but which will certainly be the case if T
comes from a preferred plat. We will let nL and nR denote the number of endpoints on the left and
right sides of T , respectively.

Definition 6.6. The graded algebra A(T ) is freely generated over Z by the following elements:

• Pairs of left endpoints, denoted aij for 1 ≤ i < j ≤ nL.
• Crossings and right cusps of T .
• A pair of elements t±1

αj
for each j, with tαj · t−1

αj
= t−1

αj
· tαj = 1.

These have gradings |c| = µ(sover) − µ(sunder) for crossings, 1 for right cusps, and 0 for t±1
αj

, and
|aij| = µ(i)−µ(j)−1. We take the Maslov potential µ to be Z/2r-valued for some integer r, which
may be zero; if T comes from a Legendrian link Λ, as in Theorem 6.1, then we will generally take
r to be the gcd of the rotation numbers of the components of Λ.
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The differential ∂ is given on the tαj by ∂(t±1
αj

) = 0 and on the aij by

∂aij =
∑
i<k<j

(−1)|aik|+1aikakj.

For crossings and right cusps, we define ∂c in terms of the set ∆(c; b1, . . . , bl), which consists of
embeddings

u : (D2
l , ∂D

2
l )→ (R2, πxz(T ))

of a boundary-punctured disk D2
l = D2 r {p, q1, . . . , ql} up to reparametrization. These maps must

satisfy u(p) = c; u(qi) is a crossing for each i, except that we can also allow the image u(D2
l ) to

limit to the segment [i, j] of the left boundary of T between points i < j at a single puncture qk; and
the x-coordinate on u(D2

l ) has a unique local maximum at c and local minima precisely along [i, j]
if it occurs in the image, or at a single left cusp otherwise. For each such embedding we define w(u)

to be the product, in counterclockwise order from c along the boundary of u(D2
l ), of the following

terms:
• cj or (−1)|cj |+1cj at a corner cj , depending on whether the disk occupies the top or bottom

quadrant near cj;
• tj or t−1

j at a base point ∗j , depending on whether the orientation of u(∂D2
l ) agrees or

disagrees with that of T near ∗j;
• aij at the segment [i, j] of the left boundary of T .

We then define ∂c =
∑

uw(u), and note that if c is a right cusp then this also includes an “invisible”
disk u with w(u) = 1 or t±1

j depending on whether there is a base point ∗j at the cusp.

We remark that the differential ∂ on A(T ) is defined exactly as in the usual link DGA from
Section 2.2, except that we enlarge the collection ∆(c; b1, . . . , bl) of disks by also allowing the x-
coordinate of a disk to have local minima along some segment [i, j] of the left boundary of T , in
which case it contributes a factor of aij , rather than at a left cusp.

1

2

3

4

5

1

2

3x

y

z

∗
∗

1

2

FIGURE 6.1. An example of a bordered front T .

Example 6.7. The oriented front T in Figure 6.1 has differential

∂x = a34 ∂a13 = a12a24 ∂a14 = a12a24 − a13a34

∂y = t2a24 + t2a23x ∂a24 = −a23a34 ∂a25 = −a23a35 − a24a45

∂z = 1 + a35 − xa45 ∂a35 = a34a45 ∂a15 = a12a25 − a13a35 − a14a45

and ∂ai,i+1 = 0 for 1 ≤ i ≤ 4. Note that the orientation suffices to determine the signs, since
(−1)|c|+1 = −1 (resp. (−1)|aij |+1 = 1) if and only if both strands through c (resp. through points i
and j on the left boundary of T ) have the same orientation from left to right or vice versa.
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Proposition 6.8. The differential ∂ on A(T ) has degree −1 and satisfies ∂2 = 0.

Proof. The claim that deg(∂) = −1 is proved exactly as in [Siv11]. In order to prove ∂2 = 0, we will
embed T in a simple (in the sense of [Ng03]) front diagram for some closed, oriented Legendrian
link L so that (A(T ), ∂) is a sub-DGA of (A(L), ∂), and then observe that we already know that
∂2 = 0 in A(L).

1

2

3

4

5

1

2

3x

y

z

∗
∗

α12

α23

α34

α45

α15

β1
β2
β31

2

FIGURE 6.2. Embedding the bordered front T in a simple front diagram of a closed link.

Figure 6.2 illustrates the construction of L. We glue the nL-copy of a left cusp to the left edge
of T , attaching the top nL endpoints to T , and similarly we glue the nR-copy of a right cusp to the
right edge of T along the bottom nR endpoints. We then attach the nR-copy of a left cusp, placed
to the left of this diagram, by gluing its top nR endpoints to those of the nR-copy of the right cusp,
as shown in the figure; the resulting tangle diagram has nL + nR points on its boundary, which
is represented as the dotted line at the bottom, and it is an easy exercise to check that the tangle
is oriented to the left at as many endpoints as to the right. Thus we can add some crossings and
right cusps to the tangle in any way at all, as long as they intersect the tangle diagram exactly at its
endpoints and the resulting link diagram is simple, to produce the desired front for the link L. Since
T embeds in L as an oriented tangle, its Maslov potential µ mod 2 extends to a potential µ̃ on the
front diagram for L.

The nL-copy of the left cusp which was glued to the left end of T has
(
nL
2

)
crossings; we will let

αij denote the crossing between the strands connected to points i and j on the left boundary of T .
Then |αij| = µ̃(i) − µ̃(j) − 1 since the overcrossing strand has potential µ̃(i) − 1, so |αij| ≡ |aij|
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(mod 2) and thus we verify that

∂αij =
∑
i<k<j

(−1)|aik|+1αikαkj.

Moreover, given a right cusp or crossing c of T , any u ∈ ∆(c; b1, . . . , bl) which intersected this left
boundary between points i and j now extends in L to a unique disk with the same corners as before,
except that the puncture along the dividing line is replaced by a corner filling the top quadrant at αij .
Thus the differentials ∂A(L)αij and ∂A(L)c are identical to ∂A(T )(aij) and ∂A(T )(c), except that we
have replaced each aij with αij , and this identifies A(T ) as a sub-DGA of A(L) (after potentially
reducing the gradings mod 2) as desired. �

Remark 6.9. A particularly important special case occurs when T contains no crossings, cusps, or
base points at all; i.e., T consists merely of n horizontal strands. The resulting algebra is termed the
line algebra, and denoted In or In(µ) to emphasize the dependence of the grading on the Maslov
potential. It is generated freely over Z by

(
n
2

)
elements aij , 1 ≤ i < j ≤ n, with grading |aij| =

µ(i)− µ(j)− 1 and differential

∂aij =
∑
i<k<j

(−1)|aik|+1aikakj =
∑
i<k<j

(−1)µ(i)−µ(k)aikakj.

If V ⊂ U is an open interval, T |V := T |J1(V ) retains the properties assumed above of T , and
moreover inherits a Maslov potential. Thus there is an algebra A(T |V ). It admits maps to A(T ), as
we explain:

Lemma 6.10. Let V ⊂ U be an open interval extending to the left boundary of U . Then A(T |V ) is
naturally a sub-DGA of A(T ).

Proof. The generators of A(T |V ) are a subset of the generators of A(T ), and the differential only
counts disks extending to the left, so the differential of any generator of A(T |V ) will be the same
whether computed in V or in U . �

In fact, there is a similar map for any subinterval. It is defined as follows. Let V ⊂ U be a
subinterval. Then the map ιV U : A(T |V )→ A(T ) takes the generators inA(T |V ) naming crossings,
cusps, and base points in T |V to the corresponding generators of A(T ). The action on the pair-of-
left-endpoint generators ofA(T |V ) – denoted bij to avoid confusion – is however nontrivial: ιV U(bij)
counts disks extending from the left boundary of V to the left boundary of U , meeting the boundary
of V exactly along the interval named by bij .

More precisely, we define a set of disks ∆(bij; c1, . . . , cl) to consist of embeddings

u : (D2
l , ∂D

2
l )→ (R2, πxz(T ))

which limit at the puncture p ∈ ∂D2 to the segment of the left boundary of V between points i and
j, and which otherwise satisfy the same conditions as the embeddings of disks used to define the
differential on A(T ) for crossings. We then define ιV U for the generator bij by

ιV U(bij) =
∑

u∈∆(bij ;c1,...,cl)

w(u).
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Example 6.11. For the front in Figure 6.1, let V ⊂ U denote a small open interval of the right
endpoint of U , so that T |V has no crossings, cusps, or base points and A(T |V ) = I3. Then the
morphism ιV U : I3 → A(T ) satisfies

ιV U(b12) = t1a14 + t1a13x+ t1a12t
−1
2 y

ιV U(b13) = t1a12t
−1
2

ιV U(b23) = 0.

Proposition 6.12. The above map ιV U : A(T |V )→ A(T ) is a morphism of DGAs.

Proof. It is straightforward to check that ιV U(bij) has grading |bij|, exactly as in [Siv11]. In order
to prove that ∂ ◦ ιV U = ιV U ◦ ∂ for each of the generators bij , we embed the leftmost region TL of
T |UrV (i.e. everything to the left of V ) in the closed link L shown in Figure 6.2, realizingA(TL) as a
sub-DGA ofA(L) just as in the proof of Proposition 6.8. Let nR denote the number of endpoints on
the right side of TL, or equivalently the number of left endpoints of T |V . We identify the generator
βi of A(L), 1 ≤ i ≤ nR, as the crossing or right cusp of L immediately to the right of TL on the
strand through point i. We note for the sake of determining signs that

|βi| = (µ̃(nR) + 1)− µ̃(i) ≡ µ(i)− µ(nR)− 1 (mod 2),

hence (−1)|βi|−|βk| = (−1)µ(i)−µ(k) = (−1)|bik|+1.
We will now show that ∂(ιV U(bij)) = ιV U(∂bij) follows from ∂2βj = 0 for each i < j. We first

compute

∂βj = δj,nR +

j−1∑
k=1

(−1)|βk|+1βkιV U(bkj),

and then applying ∂ again yields

∂2βj =

j−1∑
k=1

(−1)|βk|+1

[(
k−1∑
i=1

(−1)|βi|+1βiιV U(bik)

)
ιV U(bkj) + (−1)|βk|βk∂(ιV U(bkj))

]

=

j−2∑
i=1

βi

(∑
i<k<j

(−1)|βi|−|βk|ιV U(bik)ιV U(bkj)

)
−

j−1∑
i=1

βi∂(ιV U(bij)).

Since this sum vanishes, so does the coefficient of βi, which is equal to ιV U(∂bij)−∂(ιV U(bij)). We
conclude that ιV U ◦ ∂ = ∂ ◦ ιV U on the subalgebra generated by the bij .

It remains to be seen that ιV U(∂c) = ∂(ιV U(c)), where c ∈ A(T |V ) is a generator corresponding to
a crossing or right cusp of T |V . But we compute ιV U(∂c) by taking all of the appropriate embedded
disks in T |V , some of which may limit at punctures to the segment of the left boundary of T |V
between strands i and j, and replacing the corresponding bij with the expression ιV U(bij). The
resulting expressions coming from all terms of ∂c with a bij factor count all of the embedded disks
u ∈ ∆(c; b1, . . . , bl) in T which cross the left end of T |V along the interval between strands i and
j. Summing over all i and j, as well as the terms with no bij factor corresponding to disks in T |V
which never reach the left end of T |V , we see that ιV U(∂c) counts exactly the same embedded disks
in T as the expression ∂(ιV U(c)), hence the two are equal. �

Finally, we check that the co-restriction maps ιV U satisfy the co-sheaf axiom.
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Theorem 6.13. Let U = L ∪V R, where L,R are connected open subsets of R with nonempty
intersection V . Then the diagram

A(T |V )
ιV R //

ιV L
��

A(T |R)

ιRU
��

A(T |L)
ιLU // A(T )

commutes and is a pushout square in the category of DGAs.

Proof. The proof is exactly as in [Siv11]. If c ∈ A(T |V ) is the generator corresponding to a crossing,
cusp, or base point of T |V , then both ιLU(ιV L(c)) and ιRU(ιV R(c)) equal the analogous generator of
A(T ). Otherwise, if bij ∈ A(T |V ) is a pair-of-left-endpoints generator, then ιV R(bij) is the corre-
sponding generator of A(T |R), and if we view A(T |L) as a subalgebra of A(T ) as in Lemma 6.10
then ιV L(bij) and ιRU(ιV R(bij)) are defined identically. Thus the diagram commutes.

Now suppose we have a commutative diagram of DGAs of the form

A(T |V )
ιV R //

ιV L
��

A(T |R)

fR
��

A(T |L)
fL // A

where A is some DGA. If f : A(T ) → A is a DGA morphism such that fL = f ◦ ιLU and
fR = f ◦ ιRU , then f is uniquely determined by fL on the subalgebra A(T |L) ⊂ A(T ), and since
fL is a DGA morphism, so is f |A(T |L). Any generator c ∈ A(T ) which does not belong to A(T |L)
corresponds to a crossing, cusp, or base point of T |R, meaning that c = ιRU(c′) for some generator
c′ ∈ A(T |R), so we must have f(c) = fR(c′) and

∂(f(c)) = ∂(fR(c′)) = fR(∂c′) = f(ιRU(∂c′)) = f(∂(ιRU(c′))) = f(∂c)

since fR and ιRU are both chain maps. It is easy to check that this specifies f as a well-defined DGA
morphism, and since it is unique we conclude that the diagram in the statement of this theorem is a
pushout square. �

This completes the proof of Theorem 6.1.



78 LENHARD NG, DAN RUTHERFORD, VIVEK SHENDE, STEVEN SIVEK, AND ERIC ZASLOW

7. AUGMENTATIONS ARE SHEAVES

It is known that some augmentations arise from geometry: given an exact symplectic filling
(W,L) of (V,Λ), we get an augmentation φ(W,L) by sending each Reeb chord to the count of disks
in (W,L) ending on that Reeb chord. But not all augmentations can arise in this way; see the In-
troduction. It is natural to hope that more augmentations can be constructed by “filling Λ with an
element of the derived category of the Fukaya category,” but making direct sense of this notion is
difficult. Instead we will pass from the Fukaya category to an equivalent category Sh(Λ, µ;k) intro-
duced in [STZ17]: constructible sheaves on R2 whose singular support meets T∞R2 in some subset
of Λ ⊂ R3 = T∞,−R2 ⊂ T∞R2, with coefficients in k.

In this section we realize this hope, by identifying the subcategory C1(Λ, µ;k) ⊂ Sh(Λ, µ;k)
of “microlocal rank-one sheaves” having acyclic stalk when z � 0 — i.e., those corresponding to
Lagrangian branes with rank-one bundles — with the category of augmentations.

Theorem 7.1. Let Λ be a Legendrian knot or link whose front diagram is equipped with a Z-graded
Maslov potential µ. Let k be a field. Then there is an A∞ equivalence of categories

Aug+(Λ, µ;k)→ C1(Λ, µ;k).

Remark 7.2. As defined in Section 4, the augmentation category Aug+(Λ;k) depends on a choice
of Maslov potential µ on Λ, but we have suppressed µ in the notation up to now. If Λ is a single-
component knot, then both categories in Theorem 7.1 are independent of the choice of µ.

Remark 7.3. More generally, one can consider Λ equipped with a (Z/m)-graded Maslov potential
wherem | 2r(Λ), and define the category of (Z/m)-graded augmentations; see Remark 4.4. There is
a corresponding category of sheaves for m-periodic complexes, and we expect that the equivalence
in Theorem 7.1 would continue to hold in this more general setting, with proof along similar lines.
However, in this paper, we restrict ourselves to the case of Z-graded Maslov potential; in particular,
Λ must have rotation number 0.

Sketch of proof of Theorem 7.1. (A detailed version comprises this entire section.) As both the aug-
mentation category and the sheaf category are known to transform by equivalences when the knot
is altered by Hamiltonian isotopy (from Theorem 4.20 and [STZ17], respectively), we may put the
knot in any desired form. Thus we take Λ to be given by a front diagram in plat position, say with n
left cusps and n right cusps. We stratify the x line so that above each open interval, the front diagram
above them contains only one interesting feature of the knot. That is, the picture above this interval
must be one of the four possibilities shown in Figure 7.1.

To facilitate the proof we introduce in Section 7.1 yet a third category, MC. It is a categorical
formulation of the Morse complex sequences of Henry [Hen11]. We define it locally, so it is by
construction a sheaf on the x-line. It is a dg category, and significantly simpler than either the
augmentation category or the sheaf category.

In Section 7.2 we calculate the local augmentation categories, and then define locally equivalences
of A∞ categories h : Aug+ → MC. Then in Section 7.3 we calculate the sheaf categories, and
produce equivalences of sheaves of dg categories r : MC → C1.

Composing these functors and taking global sections, we learn that there is an equivalenceAug∼+ →
C1, whereAug∼+ is the global sections of the sheafification of the augmentation category. This has, a
priori, more objects than Aug+. In fact this is already true for the unknot without base points—the
sheaf category, hence Aug∼+ , has an object, whereas Aug+ does not unless k has characteristic 2
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FIGURE 7.1. Front diagrams for an n-strand knot, n = 6. Clockwise from the upper
left: n-lines ≡n, crossing k−×− (with k = 3), right cusps �, left cusps ≺. The numbers
represent strand labels, not Maslov potential values.

(see Remark 5.9, where removing base points corresponds to setting t = 1). However, by checking
the criterion of Lemma 2.18 (by computing all local categories and restriction functors), we learn
that when Λ has a base point at each right cusp, the augmentation category indeed forms a sheaf,
giving the desired result.

A more explicit way to describe what is going on is the following. We split the front diagram of
the knot into a union of pieces TL ∪ Tk1 ∪ · · · ∪ Tkm ∪ TR, where

• TL consists of all n left cusps,
• each Tki contains n strands, with a single crossing between the ki-th and (ki + 1)-st strands,

and
• TR consists of all n right cusps.
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In each case we will determine the augmentation category of that piece, together with the relevant
functors from it to the augmentation categories of the associated line algebras. These augmentation
categories will form pullback squares dual to the diagram (6.1), so that the augmentation category of
K can be recovered up to equivalence from this information. We do the same for the sheaf category,
and match local pieces.

More precisely, we must prove a compatibility among the equivalences and restrictions. It suffices
to establish for each triple of Maslov-graded bordered plats (T, µL) → (≡, µ) ← (T ′, µR) the
following diagram, commuting up to homotopies indicated by dotted lines:

(7.1) Aug+(T, µL) //

h

�� ((

Aug+(≡, µ)

h

��

Aug+(T ′, µR)oo

h

��vv
MC(T, µL) // MC(≡, µ) MC(T ′, µR)oo

C1(T, µL) //

r

OO 66

C1(≡, µ)

r

OO

C1(T ′, µR)oo

r

OOhh

(Note the homotopy may be the zero map.) Here T will be either TL or one of the Tki , while T ′ is
either a Tki or TR. Remember that each vertical line is an isomorphism. �

7.1. The Morse complex category.

We define a constructible sheaf of dg categories on the x-line, denoted MC, by sheafifying the
following local descriptions. In this section “µ” should be viewed as providing fictional Morse
indices. Throughout we work with a fixed ring k.

7.1.1. Lines.

Definition 7.4. For µ : {1 . . . n} → Z, we write lµ.. for the free graded k-module with basis
|1〉, . . . , |n〉 where deg |i〉 = −µ(i), and decreasing filtration k

lµ.. := Span(|n〉, . . . , |k+ 1〉). That is,
0
lµ.. = V, 1

lµ.. = Span(|n〉, . . . , |2〉), · · · n−1
lµ.. = Span|n〉, n

lµ.. = 0.

Remark 7.5. (To be read only when referring back to this section from the sheaf category section.)
The correspondence to sheaves takes klµ.. to the stalk on the k-th line.

Definition 7.6. Fix an integer n (the number of lines) and a function µ : {1, . . . , n} → Z. We define
MC(≡;µ) to be the dg category with:

• Objects: square-zero operators d on lµ.. , which preserve the filtration on lµ.. and are degree 1
with respect to the grading on lµ.. .
• Morphisms: HomMC(≡;µ)(d, d

′) is Homfilt(lµ.. , lµ.. ) as a graded vector space; i.e., it consists
of the linear, filtration preserving maps lµ.. → lµ.. and carries the usual grading of a Hom of
graded vector spaces. Only its differential depends on d, d′, and is

Dφ = d′ ◦ φ− (−1)|φ|φ ◦ d.
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• Composition: usual composition of maps.
That is, we allow maps |j〉〈i| for i ≤ j, i.e. lower triangular matrices, and

deg |j〉〈i| = deg |j〉 − deg |i〉 = µ(i)− µ(j)

and the differential is D(|i〉〈j|) = d′|i〉〈j| − (−1)µ(i)−µ(j)|i〉〈j|d.

Lemma 7.7. Assume d ∼= d′ ∈MC(≡;µ). Then, for any k,
• 〈k + 1|d|k〉 = 0 if and only if 〈k + 1|d′|k〉 = 0
• 〈k + 1|d|k〉 ∈ k∗ if and only if 〈k + 1|d′|k〉 ∈ k∗

Proof. By assumption, we have d = s−1d′s for some lower triangular matrix s. As d, d′ are strictly
lower triangular, we have

〈k + 1|d|k〉 = 〈k + 1|s−1d′s|k〉 = 〈k + 1|s−1|k + 1〉 · 〈k + 1|d′|k〉 · 〈k|s|k〉
and 〈k + 1|s−1|k + 1〉, 〈k|s|k〉 ∈ k∗ since s is invertible. �

Remark 7.8. Over a field, Barannikov has classified the isomorphism classes of Morse complexes:
each has a unique representative whose matrix in the basis |i〉 at most one nonzero entry in each row
and column, and moreover these are all 1s.

7.1.2. Crossings.

We now describe the Morse complex categoryMC(k−×−;µ) associated to a crossing between the k-
th and (k+1)-st strands. It will be built fromMC(≡;µ). To define it we first note some equivalences
between conditions.

Lemma 7.9. Let d ∈ MC(≡, µ), and z ∈ k. We write µR := µ ◦ (k, k + 1) : {1, . . . , n} → Z. We
use |i〉 for the basis of lµ.. , and |iR〉 for the basis of lµ.. R. We identify these vector spaces by

|iR〉 = |i〉 i 6= k, k + 1

|kR〉 = |k + 1〉
|k + 1R〉 = |k〉+ z|k + 1〉.

Then the following are equivalent.
• Under this identification, d ∈MC(≡, µR).
• We have z = 0 unless µ(k) = µ(k + 1), and we have 〈k + 1|d|k〉 = 0.

Proof. The condition d ∈ MC(≡, µR) means that deg |jR〉 = −µR(j) and that d preserves the
decreasing filtration i

lµ.. R = Span(|nR〉, . . . , |i + 1R〉). The first condition amounts to z = 0 unless
µ(k) = µ(k + 1). As i

lµ.. R = Span(|n〉, . . . , |i + 1〉) = i
lµ.. for i 6= k but klµ.. R 6= k

lµ.. , the second
condition is equivalent to 〈kR|d|k + 1R〉 = 0. Changing basis and recalling that d has square zero,
hence 〈k + 1|d|k + 1〉 = 0, this is equivalent to 〈k + 1|d|k〉 = 0. �

Lemma 7.10. Let d, z and d′, z′ satisfy the conditions of Lemma 7.9, and let ξ ∈ HomMC(≡;µ)(d, d
′),

i.e., it is a filtration preserving linear map ξ : lµ.. → lµ.. . Then the following are equivalent:
• The map ξ preserves the filtration on lµ.. R.
• ξ|k + 1R〉 ∈ Span(|n′R〉, . . . , |k + 1′R〉).
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• 〈k + 1|ξ|k〉 = z′〈k|ξ|k〉 − z〈k + 1|ξ|k + 1〉.

Proof. The first and second are equivalent since by assumption ξ already preserves the filtration
on lµ.. , hence all but possibly one of the steps of the filtration of lµ.. R. To check whether this step
is preserved, we need to check (z′〈k| − 〈k + 1|) ξ (|k〉+ z|k + 1〉) = 0; the fact that 〈k|ξ|k + 1〉
vanishes shows the equivalence of the second and third conditions. �

Definition 7.11. Fix an integer n (the number of lines), and a function µ : {1, . . . , n} → Z as
before. We write MC(k−×−;µ) for the dg category whose objects are pairs (d, z) for d ∈ MC(≡, µ)

and z ∈ k, satisfying the equivalent conditions of Lemma 7.9, and whose morphisms are those
morphisms in MC(≡, µ) which satisfy the equivalent conditions of Lemma 7.10. The composition
and differential are the restrictions of those of MC(≡, µ).

Definition 7.12. There is an evident forgetful dg functor

ρL : MC(k−×−;µ) → MC(≡;µ)

(d, z) 7→ d.

We define this to be the restriction map to the left.
Recall µR := µ ◦ (k, k + 1), and the element z gives an identification θz : lµ.. → lµ.. R. Essentially

by definition, we also have a dg functor which on objects is

ρR : MC(k−×−;µ) → MC(≡;µR)

(d, z) 7→ θz ◦ d ◦ θ−1
z

and on morphisms is given by

ρR : Hom
MC(k
−×−;µ)

((d, z), (d′, z′)) → HomMC(≡;µ)(θz ◦ d ◦ θ−1
z , θz′ ◦ d′ ◦ θ−1

z′ )

ξ 7→ θz′ ◦ ξ ◦ θ−1
z .

We define this to be the restriction map to the right.

Remark 7.13. Both restrictions are injective on homs at the chain level, but of course need not be
injective on homs after passing to cohomology.

Proposition 7.14. Every object in MC(≡;µ) isomorphic to an object in the image of ρL is already
in the image of ρL. Similarly, every object in MC(≡;µR) isomorphic to an object in the image of
ρR is already in the image of ρR.

Proof. Objects in the image are characterized by 〈k + 1|d|k〉 = 0; by Lemma 7.7 this is a union of
isomorphism classes. �

7.1.3. Cusps.

Let “�” denote a front diagram with n right cusps. Near the left, it is 2n horizontal lines, which
we number 1, 2, . . . , 2n from top to bottom, and each pair 2k − 1, 2k is connected by a right cusp.
We fix a function µ : {1, . . . , 2n} → Z, such that µ(2k) + 1 = µ(2k − 1).
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Definition 7.15. The category MC(�, µ) is the full subcategory of MC(≡, µ) on objects d such
that 〈2k − 1|d|2k〉 ∈ k∗ for all 1 ≤ k ≤ n. The left restriction map ρL : MC(�, µ) → MC(≡, µ)
is just the inclusion.

Proposition 7.16. All objects in MC(�;µ) are isomorphic.

Proof. Let d ∈ MC(�;µ), we will show it is isomorphic to d0 =
∑
|2k〉〈2k − 1|. Note that to do

so means to given an invertible degree zero lower triangular matrix u, such that d0u = ud. We take
u := d0d

T
0 + dT0 d, so that since d2 = d2

0 = 0, we have

d0u = d0(d0d
T
0 + dT0 d) = d0d

T
0 d = (d0d

T
0 + dT0 d)d = ud.

Moreover, u has degree zero since deg xT = − deg x, and also u is lower triangular since d, d0

are strictly lower triangular and dT0 has entries only on the first diagonal above the main diagonal.
Finally, u is invertible since its diagonal entries are either 1s or the 〈2k−1|d|2k〉, which are invertible
by definition. �

Similarly, for a diagram of left cusps, we define

Definition 7.17. The category MC(≺, µ) is the full subcategory of MC(≡, µ) on objects d such
that 〈2k − 1|d|2k〉 ∈ k∗ for all 1 ≤ k ≤ n. The right restriction map ρR : MC(≺, µ)→MC(≡, µ)
is just the inclusion.

Proposition 7.18. All objects in MC(≺, µ) are isomorphic.

7.1.4. Sheafifying the Morse complex category.

We observe that, comparing Lemma 7.7 to the characterizations of the image maps on the crossing
and cusp categories, the condition of Lemma 2.18 is satisfied. Thus, we can discuss sections of the
sheaf of Morse complex categories naively.

7.2. Local calculations in the augmentation category.

In this section, we determine the local augmentation categories for the line, crossing, left cusp,
and right cusp diagrams. We define the isomorphisms h to the corresponding local categories of
MC and study the compatibility with left and right restriction functors to≡, as in the diagram (7.1).
We conclude by proving that the presheaf of Aug+(Λ) is a sheaf when Λ is a front diagram with
base points at all right cusps.

Notation 7.19. Recall that if A(T ) is the Chekanov–Eliashberg algebra of a tangle T , and ε1, ε2 :
A(T )→ k are two augmentations, then HomAug+(ε1, ε2) is generated by symbols dual to the names
of certain Reeb chords in the 2-copy; specifically those chords from T (viewed as carrying ε2) to its
pushoff in the positive Reeb direction (viewed as carrying ε1).

Thus if x is a Reeb chord of T itself, it gives rise to a “long” chord x12 in the 2-copy, and a
corresponding generator x12 ∈ A(T 2). There will however be additional “short” chords y12 in the
2-copy, and corresponding generators y12 ∈ A(T 2). Recall from Convention 4.25 that we write their
duals in HomAug+(ε1, ε2) as x+ := (x12)∨ and y+ := (y12)∨ with |x+| = |x|+ 1 and |y+| = |y|+ 1.
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Remark 7.20. We will find that applying the differential to any generator of any of the local DGAs
gives a sum of monomials of word length at most 2. It follows that all higher compositions mk

in the respective augmentation categories will vanish for k ≥ 3 — that is, all the categories will
in fact be dg categories. The A∞ behavior, from this point of view, comes entirely from the right
restriction map on the crossing category, ρR : Aug+(k−×−, µ) → Aug+(≡, µ), which is an A∞ but
not a dg morphism, i.e. it does not respect composition on the nose, but only up to homotopy — see
Theorem 7.27.

7.2.1. Lines.

We write ≡n or just ≡ for the front diagram consisting of n horizontal lines, numbered 1 . . . n
from top to bottom. (See Figure 7.1, upper left.) Fix a Maslov potential µ : {1, . . . , n} → Z.
The algebra A(≡, µ) of this tangle is freely generated by

(
n
2

)
elements aij , 1 ≤ i < j ≤ n, with

|aij| = µ(i)− µ(j)− 1, and

∂aij =
∑
i<k<j

(−1)µ(i)−µ(k)aikakj =
∑
i<k<j

(−1)µ(i)aik · (−1)µ(k)akj.

Throughout this section we will let (−1)µ denote the matrix diag((−1)µ(1), (−1)µ(2), . . . , (−1)µ(n)).
Package the generators into a strictly upper triangular matrix

A :=


0 a12 a13 . . . a1n

0 0 a23 . . . a2n
...

...
... . . . ...

0 0 0 . . . an−1,n

0 0 0 . . . 0

 =
∑
i<j

aij|i〉〈j|.

Then
∂A = (−1)µA(−1)µA.

Theorem 7.21. There is a (strict) isomorphism of dg categories

h : Aug+(≡, µ)→MC(≡, µ).

It is given on objects by:

[ε : A(≡, µ)→ k] 7→ [d = (−1)µε(A)T : lµ.. → lµ.. ]

and on morphisms HomAug+(ε1, ε2)→ HomMC(d1, d2) by

a+
ij 7→ (−1)(µ(i)+1)µ(j)+1|j〉〈i|.

In other words:
• ε is an augmentation if and only if (−1)µε(A)T is a degree one, square zero, filtration pre-

serving operator on lµ.. .
• For the i, j for which there’s an element a+

ij ∈ Hom+(ε1, ε2), the operator |j〉〈i| preserves
the filtration on lµ.. , and this induces an isomorphism on underlying spaces of morphisms.
• Degrees are preserved:

deg a+
ij = µ(i)− µ(j) = deg(|j〉〈i|).
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• The differential is preserved: h ◦ µ1 = d ◦ h, where

d(|j〉〈i|) = ((−1)µε2(A)T )|j〉〈i| − (−1)µ(i)−µ(j)|j〉〈i|((−1)µε1(A)T ).

• The composition is preserved: i.e., the only nonvanishing compositions are

m2(a+
kj, a

+
ik) = (−1)|a

+
kj ||a

+
ik|+1a+

ij

compatibly with

|j〉〈k| ◦ |k〉〈i| = |j〉〈i|.

Proof. First we show that the map makes sense on objects, ie. a map ε : A(≡, µ) → k is an
augmentation if and only if (−1)µε(A)T is a filtered degree 1 derivation on lµ.. . As ε(A) is up-
per triangular, its transpose is lower triangular, hence preserves the filtration on lµ.. . The term
(−1)µ(j)aij|j〉〈i| contributes to (−1)µε(A)T only if |aij| = µ(i) − µ(j) − 1 = 0, i.e. only if
deg |j〉〈i| = µ(i)− µ(j) = 1, so (−1)µε(A)T is degree 1. Finally, the condition ε ◦ ∂ = 0 translates
directly into ε((−1)µA(−1)µA) = ((−1)µε(A))2 = 0, hence

(
(−1)µε(A)T

)2
= 0.

Given two augmentations ε1, ε2 : A(≡, µ) → k, we compute Hom+(ε1, ε2) by first building the
two-copy, whose algebra we denote A2(≡, µ). Its generator arsij represents a segment to the r-th
copy of point i from the s-th copy of point j (1 ≤ r, s ≤ 2); here we must have either i < j or i = j
and r < s. There are

(
2n
2

)
such generators.

The Hom space is free on the generators a+
ij , dual to the a12

ij and of degree

|a+
ij| = |a12

ij |+ 1 = µ(i)− µ(j).

Since i ≤ j, the image |j〉〈i| of a+
ij is lower triangular and hence preserves the filtration on lµ.. , so Φ

is well defined and an isomorphism of underlying spaces. The grading of |j〉〈i| as an endomorphism
of lµ.. is deg |j〉 − deg |i〉 = µ(i)− µ(j) = deg a+

ij , so Φ is a graded map.
The differential on the Hom space is given, according to (3.1), by the formula

m1(a+
ij) =

∑
α∈R

α+ · Coeffa12ij (∂εα).

Here, ε = (ε1, ε2) is the pure augmentation of A2(≡, µ) defined by ε(a11
ij ) = ε1(aij) and ε(a22

ij ) =
ε2(aij) for i < j, and ε(arsij ) = 0 otherwise.

For any generator a12
ij of I2

n, i ≤ j, we have

∂a12
ij =

∑
i<k≤j

(−1)|a
11
ik |+1a11

ika
12
kj +

∑
i≤k<j

(−1)|a
12
ik |+1a12

ika
22
kj

and since ε(a12
kj) = ε(a12

ik ) = 0, keeping only linear terms in the twisted differential, we have

[linear part]∂ε(a12
ij ) =

∑
i<k≤j

(−1)|a
11
ik |+1ε1(aik)a

12
kj +

∑
i≤k<j

(−1)|a
12
ik |+1a12

ik ε2(akj)

=
∑
i<k≤j

(−1)µ(i)ε1(aik)(−1)µ(k) · a12
kj +

∑
i≤k<j

(−1)µ(i)a12
ik (−1)µ(k) · ε2(akj).
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Packaging these generators into

A[12] =


a12

11 a12
12 a12

13 . . . a12
1n

0 a12
22 a12

23 . . . a12
2n

...
...

... . . . ...
0 0 0 . . . a12

n−1,n

0 0 0 . . . a12
nn


this equation reads simply

[linear part]∂εA[12] = (−1)µε1(A)(−1)µA[12] + (−1)µA[12](−1)µε2(A).

We however want to compute m1. This is given by

m1(a+
rs) =

∑
i<r

(−1)µ(i)ε1(air)(−1)µ(r)a+
is +

∑
s<j

ε2(asj)(−1)µ(r)+µ(s)a+
rj

= −
∑
i<r

ε1(air)a
+
is + (−1)µ(r)+µ(s)

∑
s<j

ε2(asj)a
+
rj.(7.2)

By comparison, we have

d(|s〉〈r|) =
(
(−1)µε2(A)T

)
|s〉〈r| − (−1)µ(r)−µ(s)|s〉〈r|

(
(−1)µε1(A)T

)
=

(∑
i<j

(−1)µ(j)ε2(aij)|j〉〈i|

)
|s〉〈r| − (−1)µ(r)−µ(s)|s〉〈r|

(∑
i<j

(−1)µ(j)ε1(aij)|j〉〈i|

)
=
∑
s<j

(−1)µ(j)ε2(asj)|j〉〈r| − (−1)µ(s)
∑
i<r

ε1(air)|s〉〈i|

= (−1)µ(s)+1

(∑
i<r

ε1(air)|s〉〈i|+
∑
j>s

ε2(asj)|j〉〈r|

)
since (−1)µ(j)ε2(asj) = 0 unless µ(s)− µ(j) = 1. Multiplying both sides by (−1)(µ(r)+1)µ(s)+1 and
recalling that ε1(air) = 0 (resp. ε2(asj) = 0) unless µ(i) = µ(r) + 1 (resp. µ(s) = µ(j) + 1), we
have

d
(
(−1)(µ(r)+1)µ(s)+1|s〉〈r|

)
= (−1)µ(r)µ(s)

(∑
i<r

ε1(air)|s〉〈i|+
∑
s<j

ε2(asj)|j〉〈r|

)
=
∑
i<r

ε1(air)
(
(−1)(µ(i)+1)µ(s)|s〉〈i|

)
+
∑
s<j

ε2(asj)
(
(−1)(µ(j)+1)µ(r)|j〉〈r|

)
= −

∑
i<r

ε1(air)
(
(−1)(µ(i)+1)µ(s)+1|s〉〈i|

)
+ (−1)µ(r)+µ(s)

∑
s<j

ε2(asj)
(
(−1)(µ(r)+1)µ(j)+1|j〉〈r|

)
.

So h commutes with the differential on Hom spaces. It remains to show that h commutes with the
composition.
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We consider the algebra A3(≡, µ) associated to the 3-copy. This is generated by elements arsij as
before, but now we have 1 ≤ r, s ≤ 3; in particular, we compute

∂a13
ij =

∑
i<k≤j

(−1)|a
11
ik |+1a11

ika
13
kj +

∑
i≤k≤j

(−1)|a
12
ik |+1a12

ika
23
kj +

∑
i≤k<j

(−1)|a
13
ik |+1a13

ika
33
kj.

Since the differential contains only quadratic terms, the quadratic term of its linearization is the same
as the original quadratic term. Only terms of the form (−1)|a

12
ik |+1a12

ika
23
kj contribute to m2. Each of

these terms can only appear in the differential of a single generator of the form a13
ij .

By (3.1),

m2(a+
kj, a

+
ik) = (−1)|a

+
kj ||a

+
ik|+|a

+
ik|+1 · (−1)µ(i)−µ(k)a+

ij = (−1)|a
+
kj ||a

+
ik|+1a+

ij.

If k 6= k′, the term a23
k′ja

12
ik does not appear in the differential of any generator ofA3(≡, µ). It follows

that then m2(a+
k′j, a

+
ik) = 0. That is,

m2 : Hom+(ε2, ε3)⊗ Hom+(ε1, ε2)→ Hom+(ε1, ε3)

is given by the formula
a+
kj ⊗ a

+
ik 7→ (−1)|a

+
kj ||a

+
ik|+1a+

ij.

This is compatible with composition in MC(≡, µ) once one checks that the signs are correct, which
amounts to verifying the identity

[(µ(k) + 1)µ(j) + 1] + [(µ(i) + 1)µ(k) + 1]

≡ [(µ(k)− µ(j))(µ(i)− µ(k)) + 1] + [(µ(i) + 1)µ(j) + 1]

modulo 2. Finally, as the differentials of all m-copy algebras have no cubic or higher terms, all
higher compositions vanish. �

7.2.2. Crossings.

Let the symbol k−×− denote a bordered plat consisting of n strands, numbered from 1 at the top to
n at the bottom along the left, with a single crossing between strands k and k + 1. (See Figure 7.1,
upper right.) Fix a Maslov potential µ. We write A(k−×−, µ) for the Chekanov–Eliashberg DGA of
this tangle with Maslov potential µ.

We will write µL and µR for the induced Maslov potentials along the left and right of the diagram,
respectively. Note that if sk = (k, k+ 1) ∈ Sn, then µR = µL ◦ sk. We write the co-restriction maps
from the left and right line algebras as

ιL : A(≡, µL) → A(k−×−, µ)

ιR : A(≡, µR) → A(k−×−, µ)

We view this as identifying A(≡, µL) and the subalgebra of A(k−×−, µ) generated by elements aij
indexed by pairs of left endpoints of lines. The algebra A(k−×−, µ) has one more generator, c, naming
the crossing, with ∂c = ak,k+1.
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Lemma 7.22. The map

[ε : A(k−×−, µ)→ k] 7→ [(εL : A(≡, µL)→ k, ε(c))]

is a bijection between augmentations of A(k−×−, µ) and pairs of an augmentation of A(≡, µL) car-
rying ak,k+1 → 0 and an element ε(c) ∈ k, where ε(c) vanishes unless |c| = 0, i.e., unless
µ(k) = µ(k + 1).

Proof. An augmentation of A(k−×−, µ) is determined by its restriction εL : A(≡, µL) → k and its
value on c. The augmentation must annihilate c unless |c| = 0. Finally, the only condition imposed
on the restriction εL is ε(ak,k+1) = ε(∂c) = ∂ε(c) = 0. �

Lemma 7.23. Consider augmentations ε1, ε2 : A(k−×−, µ) → k. The space Hom+(ε1, ε2) has as a
basis a+

ij and c+. The differential is given explicitly by

m1(a+
rs) = −

∑
i<r

ε1(air) · a+
is + (−1)µ(r)+µ(s)

∑
s<j

ε2(asj) · a+
rj {r, s} 6⊂ {k, k + 1}

m1(a+
k,k) = ε2(c) · c+ −

∑
i<k

ε1(aik) · a+
ik +

∑
k<j

ε2(akj) · a+
kj

m1(a+
k,k+1) = c+ −

∑
i<k

ε1(aik) · a+
i,k+1 + (−1)µ(k)+µ(k+1)

∑
k+1<j

ε2(ak+1,j) · a+
kj

m1(a+
k+1,k+1) = −ε1(c) · c+ −

∑
i<k+1

ε1(ai,k+1) · a+
i,k+1 +

∑
k+1<j

ε2(ak+1,j) · a+
k+1,j

m1(c+) = 0.

Proof. To compute the Hom spaces, we study the 2-copy, whose algebra we denoteA2(k−×−, µ). This
has underlying algebra

A2(k−×−, µ) = A2(≡, µL)〈c11, c12, c21, c22〉.
The differential restricted to A2(≡, µL) is just the differential there, and

∂c12 = a12
k,k+1 + a12

kkc
22 − (−1)|c|c11a12

k+1,k+1.

Taking ε = (ε1, ε2) : A2(k−×−, µ) → k we find the twisted differentials of the a12
ij are as in the line

algebra, and:

∂εc
12 = a12

k,k+1 + a12
kk(c

22 + ε2(c))− (−1)|c|(c11 + ε1(c))a12
k+1,k+1

of which the linear part is

∂ε,1c
12 = a12

k,k+1 + a12
kkε2(c)− ε1(c)a12

k+1,k+1

where we have observed that ε(c) = 0 unless |c| = 0. Dualizing gives the stated formulas. �

Proposition 7.24. The only nonzero compositions in the category Aug+(k−×−, µ) are:

m2(a+
kj, a

+
ik) = (−1)|a

+
kj ||a

+
ik|+1a+

ij

m2(c+, a+
kk) = −c+ = m2(a+

k+1,k+1, c
+).
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Proof. In the algebra of the 3-copy, the “a” generators have differentials as in the line algebra, and
we have

∂c13 = a13
k,k+1 + a12

kkc
23 + a13

kkc
33 − (−1)|c|c11a13

k+1,k+1 − (−1)|c|c12a23
k+1,k+1.

Since there are no terms higher than quadratic, the quadratic terms are not affected by twisting by
the pure augmentation ε = (ε1, ε2, ε3). Recalling that |c+| = |c| + 1 and that |a+

kk| = |a
+
k+1,k+1| = 0

gives the desired formulas. �

We now study the restriction morphisms. First, on objects:

Proposition 7.25. Let ε : A(k−×−, µ) → k be an augmentation. Let εL, εR be its restrictions to the
line algebras on the left and the right. Take A =

∑
aij|i〉〈j| and B =

∑
bij|i〉〈j| to be strictly

upper triangular n × n matrices with entries aij and bij in position (i, j), collecting the respective
generators of the left and right line algebras as in Section 7.2.1. Let

φ := 1 + ε(c)|k + 1〉〈k| =


Ik−1 0 0 0

0 1 0 0
0 ε(c) 1 0
0 0 0 In−(k+1)


and let sk = (k, k + 1) ∈ Sn. Then

εR(B) = sk · (φT )−1 · εL(A) · (φT ) · sk.

Proof. Denote the generators of the right line algebra A(≡, µR) by bij . The right co-restriction
morphism is given by:

ιR : A(≡, µR) → A(k−×−, µ)

bij 7→ aij

bik 7→ ai,k+1 + aikc

bkj 7→ ak+1,j

bi,k+1 7→ aik

bk+1,j 7→ akj − (−1)|c|cak+1,j

bk,k+1 7→ 0.

The sign comes because each downward corner vertex with even grading contributes a factor of −1
to the sign of a disk, so a downward corner at c contributes (−1)|c|+1. We rewrite the above formula
in matrix form as:

B 7→


Ik−1 0 0 0

0 0 1 0
0 1 −(−1)|c|c 0
0 0 0 In−(k+1)

 · A ·

Ik−1 0 0 0

0 c 1 0
0 1 0 0
0 0 0 In−(k+1)

− ak,k+1|k + 1〉〈k|.

We now apply the augmentation and observe ε(ak,k+1) = ε(∂c) = 0, and ε(c) = (−1)|c|ε(c) because
ε(c) = 0 unless |c| = 0. �

Proposition 7.26. Suppose we are given an element ξ ∈ Hom
Aug+(k

−×−,µ)
(ε, ε′). We can restrict to

the left or right, obtaining ξL ∈ HomAug+(≡,µL)(εL, ε
′
L) and ξR ∈ HomAug+(≡,µR)(εR, ε

′
R). We use
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a+
ij to denote the generators of Hom

Aug+(k
−×−,µ)

(ε, ε′) or HomAug+(≡,µL)(εL, ε
′
L), and b+

ij to denote the

generators of HomAug+(≡,µR)(εR, ε
′
R).

Then the left restriction is just given by a+
ij 7→ a+

ij; it is a map of dg categories.
On the other hand, the right restriction, despite being between dg categories, has nontrival A∞

structure. (See Section 2.3.) The first order term Hom
Aug+(k

−×−,µ)
(ε, ε′) → HomAug+(≡,µR)(εR, ε

′
R) is

given by:

a+
ik 7→ b+

i,k+1 + ε′(c)b+
ik

a+
kk 7→ b+

k+1,k+1

a+
kj 7→ b+

k+1,j

a+
i,k+1 7→ b+

ik

a+
k+1,k+1 7→ b+

kk

a+
k+1,j 7→ b+

kj − ε(c) · b
+
k+1,j

a+
k,k+1 7→ 0

c+ 7→

(∑
i<k

ε(aik) · b+
ik

)
− (−1)|c|

( ∑
k+1<j

ε′(ak+1,j) · b+
k+1,j

)
for i < k and j > k + 1, and a+

ij 7→ b+
ij for i, j /∈ {k, k + 1}.

The second order term Hom
Aug+(k

−×−,µ)
(ε′, ε′′) ⊗ Hom

Aug+(k
−×−,µ)

(ε, ε′) → HomAug+(≡,µR)(εR, ε
′′
R)

is defined by

c+ ⊗ a+
ik 7→ (−1)|c

+||a+ik|+|a
+
ik|+1 b+

ik, i < k

a+
k+1,j ⊗ c

+ 7→ (−1)|a
+
k+1,j ||c

+|+1 b+
k+1,j, j > k + 1

with all other tensor products of generators mapped to zero. There are no higher order terms.

Proof. The statement about restriction to the left is obvious.
Examining the 2-copy of k−×−, we can write the map ρ2

R : A2(≡, µR)→ A2(k−×−, µ) as

b12
ik 7→ a11

ik c
12 + a12

ik c
22 + a12

i,k+1

b12
kk 7→ a12

k+1,k+1

b12
kj 7→ a12

k+1,j

b12
i,k+1 7→ a12

ik

b12
k+1,k+1 7→ a12

kk

b12
k+1,j 7→ a12

kj − (−1)|c|
(
c11a12

k+1,j + c12a22
k+1,j

)
b12
k,k+1 7→ 0

for all i < k and j > k + 1, and b12
ij 7→ a12

ij when i, j /∈ {k, k + 1}.
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Twisting the differential by ε = (ε, ε′) and taking the linear part gives

b12
ik 7→ ε(aik)c

12 + a12
ik ε
′(c) + a12

i,k+1

b12
kk 7→ a12

k+1,k+1

b12
kj 7→ a12

k+1,j

b12
i,k+1 7→ a12

ik

b12
k+1,k+1 7→ a12

kk

b12
k+1,j 7→ a12

kj − (−1)|c|
(
ε(c)a12

k+1,j + c12ε′(ak+1,j)
)

b12
k,k+1 7→ 0

again with i < k and j > k + 1, and b12
ij 7→ a12

ij otherwise.
We now recall that (−1)|c|ε(c) = ε(c) and take duals to conclude.
The higher order term in the restriction functor comes from writing the inclusion of the three-copy

of the line algebra into the crossing algebra, then taking linear duals. Explicitly, this inclusion is

b13
ij 7→ a13

ij (i, j 6∈ {k, k + 1})
b13
ik 7→ a13

i,k+1 + a11
ik c

13 + a12
ik c

23 + a13
ik c

33 (i < k)

b13
i,k+1 7→ a13

ik (i < k)

b13
kj 7→ a13

k+1,j (j > k + 1)

b13
k+1,j 7→ a13

kj − (−1)|c|
(
c11a13

k+1,j + c12a23
k+1,j + c13a33

k+1,j

)
(j > k + 1)

b13
kk 7→ a13

k+1,k+1

b13
k+1,k+1 7→ a13

kk

b13
k,k+1 7→ 0.

Selecting the terms of the form ∗12∗23 and dualizing, we conclude that the only higher parts of the
restriction functor are the terms stated. �

Consider the general element ξ = γ ·c+ +
∑

i≤j αji ·a
+
ij ∈ Hom

Aug+(k
−×−,µ)

(ε, ε′). We want to com-

pare more explicitly ξL and ξR. To do this, we move to the Morse complex category, and consider
h(ξL) and h(ξR). Note that these come to us as matrices. Below we often adopt the convention for
indices that i < k < k + 1 < j, and for convenience we define σpq = (−1)(µ(p)+1)µ(q)+1, so that in
Aug+(≡, µ) we have h(apq) = σpq|q〉〈p|.

We have:

h(ξL) =


σi2i1αi1i2 0 0 0
σikαki σkkαkk 0 0

σi,k+1αk+1,i σk,k+1αk+1,k σk+1,k+1αk+1,k+1 0
σijαji σkjαjk σk+1,jαj,k+1 σj2j1αj1j2

 ,
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where the signs are defined using the Maslov potential µ = µL on the left. On the other hand, by the
above proposition we have

h(ξR) =
∑

i≤j /∈{k,k+1}

σijαji|j〉〈i|

+
∑
i<k

σi,k+1αk+1,i|k〉〈i|+ αki (σik|k + 1〉〈i|+ σi,k+1ε
′(c)|k〉〈i|)

+
∑
k+1<j

σkjαjk|j〉〈k + 1|+ αj,k+1 (σk+1,j|j〉〈k| − σkjε(c)|j〉〈k + 1|)

+ σkkαkk|k + 1〉〈k + 1|+ σk+1,k+1αk+1,k+1|k〉〈k|

+ γ

(∑
i<k

σi,k+1ε(aik)|k〉〈i| − (−1)|c|
∑
k+1<j

σkjε
′(ak+1,j)|j〉〈k + 1|

)
,

where the signs σpq are defined again in terms of µL for consistency; recall that µR = µL ◦ sk. In
matrix form, we have

h(ξR) =


σi2i1αi1i2 0 0 0
σi,k+1x σk+1,k+1αk+1,k+1 0 0
σikαki 0 σkkαkk 0
σijαji σk+1,jαj,k+1 σkjy σj2j1αj1j2


where x = αk+1,i + ε′(c)αki + ε(aik)γ and y = αjk − ε(c)αj,k+1 − (−1)|c|ε′(ak+1,j)γ. So

(φ′)−1skh(ξR)skφ =
σi2i1αi1i2 0 0 0
σikαki σkkαkk 0 0

σi,k+1(αk+1,i + ε(aik)γ) σk+1,k+1ε(c)αk+1,k+1 − σkkε′(c)αkk σk+1,k+1αk+1,k+1 0
σijαji σkj(αjk − (−1)|c|ε′(ak+1,j)γ) σk+1,jαj,k+1 σj2j1αj1j2

 ,

(7.3)

where again the Maslov potentials are for the left and not for the right.

Theorem 7.27. We define a morphism of A∞ categories

h : Aug+(k−×−, µ)→MC(k−×−, µ)

on objects by
ε 7→ (h(εL),−ε(c))

and on morphisms ξ ∈ Hom(ε, ε′) by

ξ 7→ (φ′)−1skh(ξR)skφ,

where φ = 1 + ε(c)|k + 1〉〈k| and φ′ = 1 + ε′(c)|k + 1〉〈k|. This morphism is a bijection on objects
and an equivalence of categories. It commutes with restriction in the following sense:

• At the level of objects, h commutes with restriction: h(ε)L = h(εL) and h(ε)R = h(εR).
• At the level of morphisms, it commutes with restriction to the right: h(ξR) = h(ξ)R.
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• At the level of morphisms, it commutes up to homotopy with restriction on the left:

h(ξL)− h(ξ)L = (dH +Hm1)ξ,

where H is the homotopy given by sending c+ 7→ σk,k+1|k〉〈k + 1| and all other generators
to zero, i.e.,

H : Hom
Aug+(k

−×−,µ)
(ε, ε′)→ HomMC(≡,µ)(h(εL), h(ε′L))

η 7→ (−1)(µL(k)+1)µL(k+1)+1(Coeffc+η)|k + 1〉〈k|.

Higher order terms are determined by noting that the functor is just the right restriction map of
the augmentation category — which has higher terms (see Proposition 7.26) — followed by the
isomorphism of augmentation and Morse complex line categories.

Proof. Lemma 7.22 implies that, on objects, the map is well defined and a bijection. Comparison
of (7.3) and Lemma 7.10 reveals that (φ′)−1skh(ξR)skφ is in fact a morphism in MC(k−×−, µ). The
map was built from the A-infinity ε 7→ εR by composing with isomorphisms, so is an A-infinity
morphism. Comparison of Lemma 7.23 with Proposition 7.26 shows that the kernel of the map
ξ 7→ ξR is exactly the two-dimensional space spanned by a+

k,k+1 and m1(a+
k,k+1); the same is true for

ξ 7→ (φ′)−1skh(ξR)skφ. Counting dimensions, this is surjective to homs in MC(k−×−, µ). Thus we
have a map surjective on the chain level which kills an acyclic piece; it is thus an equivalence.

We next check that h commutes with restriction on the right. At the level of objects, by Proposi-
tion 7.25, we have εR = sk(φ

T )−1εL(A)φT sk, whence by Theorem 7.21,

h(εR) = (−1)µRskφεL(A)Tφ−1sk.

On the other hand, since h(ε) = ((−1)µLε(A)T ,−ε(c)), we compute from Definition 7.12 that

h(ε)R = θ−ε(c)(−1)µLεL(A)T θ−1
−ε(c),

where θz is the identity matrix except for the 2× 2 block determined by rows k, k + 1 and columns
k, k+1, which is [ −z 1

1 0 ]. Matrix calculations show that skφ = θ−ε(c) and (−1)µRθ−ε(c) = θ−ε(c)(−1)µL

(for the latter, note that µL(k) = µR(k + 1) and µL(k + 1) = µR(k) must be equal if ε(c) 6= 0),
and so h(εR) = h(ε)R. At the level of morphisms, h commutes with right restriction essentially by
definition:

h(ξ)R = ((φ′)−1skh(ξR)skφ)R = θ−ε′(c)(φ
′)−1skh(ξR)skφθ

−1
−ε(c) = h(ξR).

For restriction on the left, note that h(εL) = h(ε)L by definition. It remains to show that h
commutes up to homotopy with left restriction on morphisms. From (7.3), we find that

h(ξL)− h(ξ)L =


0 0 0 0
0 0 0 0

−σi,k+1ε(aik)γ σk,k+1αk+1,k + σkkε
′(c)αk,k − σk+1,k+1ε(c)αk+1,k+1 0 0

0 σkj(−1)|c|ε′(ak+1,j)γ 0 0

 .
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On the other hand we calculate

dH(ξ) = σk,k+1γ · d|k + 1〉〈k|

= σk,k+1γ(−1)µ(k+1)+1

(∑
i<k

ε(aik)|k + 1〉〈i|+
∑
j>k+1

ε′(ak+1,j)|j〉〈k|

)
=
∑
i<k

(−σi,k+1ε(aik)γ)|k + 1〉〈i|+
∑
j>k+1

σkj(−1)|c|ε′(ak+1,j)γ|j〉〈k|

=


0 0 0 0
0 0 0 0

−σi,k+1ε(aik)γ 0 0 0
0 σkj(−1)|c|ε′(ak+1,j)γ 0 0

 ,
where we use the fact that ε(aik) = 0 unless µ(i)− µ(k) = 1 and ε′(ak+1,j) = 0 unless µ(k + 1)−
µ(j) = 1; and

Coeffc+m1(ξ) = αk+1,k − αk+1,k+1ε(c) + αkkε
′(c).

We note that if ε(c) 6= 0 or ε′(c) 6= 0 then µ(k) = µ(k + 1), so σk,k+1ε(c) = σk+1,k+1ε(c) and
σk,k+1ε

′(c) = σkkε
′(c); thus multiplying this last equation by σk,k+1|k + 1〉〈k| yields

H(m1(ξ)) = (σk,k+1αk+1,k − σk+1,k+1αk+1,k+1ε(c) + σkkαkkε
′(c)) |k + 1〉〈k|.

Thus we conclude that h(ξL)− h(ξ)L = (dH +Hm1)ξ. �

7.2.3. Right cusps.

We now consider a bordered plat “�” which is the front projection of a set of n right cusps. Near
the left, it is 2n horizontal lines, which we number 1, 2, . . . , 2n from top to bottom, and each pair
2k − 1, 2k is connected by a right cusp; we place a base point ∗k at this cusp and let σk = 1 if the
plat is oriented downward at this cusp or σk = −1 if it is oriented upward. We fix a Maslov potential
µ, which is determined by its restriction to the left µL : {1, . . . , 2n} → Z. The right cusps enforce
that µL(2k) + 1 = µL(2k − 1).

The left co-restriction
ιL : A(≡, µL)→ A(�, µ)

identifies A(≡, µL) with a subalgebra of A(�, µ) with
(

2n
2

)
generators aij . The algebra A(�, µ)

has n additional generators x1, . . . , xn naming the cusps, as well as generators t1, t−1
1 , . . . , tn, t

−1
n

corresponding to the base points. That is, the generator xk corresponds to the right cusp connecting
points 2k− 1 and 2k, and has grading |xk| = 1 and satisfies ∂xk = tσkk + a2k−1,2k. This ensures that
if ε is an augmentation of A(�, µ), then ε(xk) = 0 and ε(a2k−1,2k) = −ε(tk)σk for all k; since tk is
invertible, so is ε(a2k−1,2k).

Proposition 7.28. The restriction ρL : Aug+(�, µ) → Aug+(≡, µL) is strictly fully faithful and
an injection on objects. Its image consists of all ε : A(≡, µL) → k such that ε(a2k−1,2k) ∈ k× for
1 ≤ k ≤ n.
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Proof. Injectivity on objects follows from the fact that ε(xk) = 0; the characterization of the image
follows from the discussion immediately above the proposition.

To see full faithfulness, note that the 2-copy of the plat � contains no crossings where the
overcrossing is on copy 1 (the upper copy) and the undercrossing is on copy 2 (the lower copy).
Thus if ε1, ε2 are augmentations of �, then Hom(ε1, ε2) in Aug+(�, µ) and Hom(ρL(ε1), ρL(ε2)) in
Aug+(≡, µL) are both generated by the same generators a+

ij where 1 ≤ i ≤ j ≤ 2n, and ρL is an
isomorphism on Hom spaces. �

Corollary 7.29. The isomorphism h : Aug+(≡, µL) → MC(≡, µL) identifies Aug+(�, µ) with
MC(�, µ).

Proof. Compare the definition of MC(�, µ) to the above proposition. �

We define h : Aug+(�, µ)→MC(�, µ) to be this restriction.

Corollary 7.30. All objects in Aug+(�, µ) are isomorphic.

Proof. We saw this for the Morse complex category in Proposition 7.16. �

7.2.4. Left cusps.

Let “≺” denote the front projection of a set of n left cusps. Near the right, it is 2n horizontal
lines, which we number 1, 2, . . . , 2n from top to bottom, and each pair 2k − 1, 2k is connected
by a left cusp. We fix a Maslov potential µ, which is determined by its restriction to the right
µR : {1, . . . , 2n} → Z. The left cusps enforce that µR(2k) + 1 = µR(2k − 1).

The algebra A(≺, µ) is simply the ground ring k; and hence there is a unique augmentation
ε : A(≺, µ) = k

id−→ k.
The right co-restriction ιR : A(≡, µR)→ A(≺, µ) is given by the formula

aij 7→

{
1 (i, j) = (2k − 1, 2k)

0 otherwise.

The restriction εR of the augmentation ε is given by the same formula.
To determine the A∞ structure

mp : Hom+(ε, ε)⊗ · · · ⊗ Hom+(ε, ε)→ Hom+(ε, ε)

onAug+(≺, µ), we consider the (p+1)-copy of TL. Here the k-th left cusp (i.e. the one connecting
points 2k − 1 and 2k on the line R) gives rise to

(
p+1

2

)
generators yijk , each corresponding to a

crossing of the i-th copy over the j-th copy for i < j.

Proposition 7.31. The chain complex Hom≺(ε, ε) is freely generated by the degree zero elements
y+

1 , . . . , y
+
n , and has vanishing differential. The only nonvanishing composition is m2(y+

k , y
+
k ) =

−y+
k .

Proof. In the case p = 1 above, corresponding to the 2-copy of ≺, it is clear that ∂y12
k = 0 for all k;

it follows that the dualized linearized differential also vanishes. We have |y+
k | = |y12

k |+ 1 = 0.
For the composition mp, we study the differential on Ap+1(≺, µ), which is

∂yijk =
∑
i<l<j

yilk y
lj
k ,
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the dualization of which gives the stated product (note the sign from (3.1)) and no more. �

Proposition 7.32. The restriction map is

ρL : Hom≺(ε, ε) → Hom≡(εL, εL)

y+
k 7→ a+

2k−1,2k−1 + a+
2k,2k.

Proof. The co-restriction map on the two-copies is

ιL : A2(≡, µL) → A2(≺, µ)

a12
2k−1,2k−1 7→ y12

k

a12
2k,2k 7→ y12

k

a12
i 6=j 7→ 0.

Dualizing gives the stated restriction map. �

7.2.5. The augmentation category is a sheaf.

Theorem 7.33. Let Λ be a front diagram with base points at all right cusps. Then the presheaf of
categories Aug+(Λ) is a sheaf.

Proof. Given Corollary 6.4, it remains to check that sections have sufficiently many objects, which
can be checked using the condition of Lemma 2.18. On objects, the local morphisms to the Morse
complex category were literally isomorphisms, so we may check in the Morse complex category. In
Section 7.1.4, we noted that the hypothesis of 2.18 holds for the Morse complex category. �

7.3. Local calculations in the sheaf category.

In this section, we determine the local sheaf categories for the line, crossing, left cusp, and right
cusp diagrams. We define the isomorphisms r to the corresponding local categories of MC and
study the compatibility with left and right restriction functors to ≡, as in the diagram (7.1).

In fact, for convenience we use a slight variant MC ′ on MC. The difference is only at the cusps,
and is that MC ′(≺) is the full subcategory on the object called d0 in Proposition 7.16, and similarly
for MC ′(�). By the same proposition, the inclusion of this subcategory is a quasi-equivalence.
Correspondingly the global sections of the sheafifications of MC,MC ′ agree. We only distinguish
between MC and MC ′ in the discussion of cusps.

Remark 7.34. The diagram of categories MC ′ does not satisfy Lemma 2.18; however this is irrel-
evant here because we will not be interested in directly computing global sections of the associated
sheaf of categories. It is possible to avoid the use of MC ′, but the construction of sheaves associated
to the other objects of MC(�) which strictly respect the restriction map is somewhat more involved
(one adds some auxiliary vertical strata to allow ‘handle slides’, which however are invisible from
the point of view of the microsupport).
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In this section, it is essential for the arguments we give that the coefficients k form a field; this
is because we borrow from the theory of quiver representations. It is however conceivable that
Theorem 7.1 may hold for more general coefficient rings.

7.3.1. Lines.

Let I = (0, 1) be the unit open interval and define
⊔d

:= I × R. Let ≡n be the Legendrian
associated to the front diagram consisting of n horizontal lines — see Figure 7.1 (upper left).

Recall that Sh≡n(
⊔d

) denotes the category of sheaves on
⊔d

= I × R with singular support meet-
ing infinity in a subset of ≡n. Objects of Sh≡n can be constructed from representations (in chain
complexes) of the An+1 quiver, with nodes indexed and arrows oriented as follows:

n n− 1 0
• → • → · · · → •

To a representation R of this quiver, i.e., a collection of chain complexes Ri and morphisms

Rn → Rn−1 → · · · → R0,

we write Sh≡n(R) for the sheaf which has R0 as its stalk in the upper region, Ri as its stalk along
the i’th line and in the region below it; downward generization maps identities, and upward gener-
ization maps given by the quiver representation. In fact this construction is an equivalence from the
derived category of representations of the An+1 quiver to Sh≡n(

⊔d
). (See [STZ17, Sec. 3]; essential

surjectivity is a special case of [STZ17, Prop. 3.22].)
Here we will prefer An+1 representations of a certain canonical form. We recall that quiver

representations admit two-term projective resolutions. Explicitly, the irreducible projectives of the
An+1 quiver are:

Pi := 0→ · · · → 0→ k→ k→ · · · → k→ k,

i.e. a copy of k at all nodes k ≥ i. We have Hom(Pi, Pj) = 0 for i < j and k otherwise, and
Ext≥1(Pi, Pj) = 0.

On the other hand, the indecomposables of Rep(An) are [Gab72]:

Sij := Pi/Pj+1 = 0→ ...→ 0→ k→ k→ ...→ k→ k→ 0→ ...→ 0,

i.e., a copy of k at all nodes k with i ≤ k ≤ j and all maps identities — and zero elsewhere. These
are of course quasi-isomorphic to

S ′ij :=

 Pj+1

↓
Pi

 =

 0 → · · · → 0 → 0 → · · · → 0 → k → · · · → k

↓ ↓ ↓ ↓ ↓ ↓
0 → · · · → 0 → k → · · · → k → k → · · · → k

 ,

i.e. zero for nodes k < i, k for nodes i ≤ k ≤ j and the acyclic complex [k→ k] for k > j.
Since Rep(An+1) has cohomological dimension one, objects in its derived category split, hence

any representation in chain complexes is quasi-isomorphic to one of the form
⊕

Sij[s], hence quasi-
isomorphic to one of the form

⊕
S ′ij[s]. (This latter object is just the minimal projective resolution

of the original object.) We summarize properties of these as follows:
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Lemma 7.35. Over a field, every representation R in chain complexes of the An+1 quiver is quasi-
isomorphic to a representation

R′n → · · · → R′i+1 → R′i → · · · → R′0

such that:
• The (vector space) quiver representation R′ in each cohomological degree is projective.
• The maps R′i+1 → R′i are injections on the graded vector spaces underlying the complexes.
• The differential on R′i/R

′
i+1 is zero.

Above we employ the convention R′n+1 = 0. Note in particular that there is an isomorphism of
underlying graded vector spaces

R′j
∼=
⊕
i≥j

R′i/R
′
i+1
∼=
⊕
i≥j

H∗(Cone(R′i+1 → R′i)).

Proof. The above construction shows every object is quasi-isomorphic to some
⊕

S ′ij[s] where i >
j. The result follows from its validity for each S ′ij , which holds by inspection. �

We now relate this to the category MC(≡;µ).

Corollary 7.36. There is a morphism MC(≡n;µ)→ Repch(An+1), given on objects by sending the
object (lµ.. ; d) to the An quiver representation which has the dg vector space i

lµ.. at the node i. The
maps are just inclusion of filtration steps. Homs of the quiver representations are literally equal to
homs of the Morse complexes.

This map is fully faithful, and surjective onto the objects of Repch(An+1,k) which (1) satisfy the
conditions of Lemma 7.35 and (2) satisfy Ri−1/Ri = k[−µ(i)]. It is essentially surjective onto the
portion of Repch(An+1,k) in which Cone(Ri → Ri−1) = k[−µ(i)].

Proof. Essential surjectivity follows from Lemma 7.35. �

We write C1(≡n;µ) ⊂ Sh≡n for the full subcategory whose objects have microlocal monodromy
dictated by the Maslov potential µ — see Section 2.4.4, or recall briefly in this case that microlocal
rank one means that the cone of the upward generization map from the i-th line has rank one in
degree −µ(i).

Corollary 7.37. The functor r : MC(µ) → C1(≡;µ) given by composing the functor of Corollary
7.36 with the equivalence of [STZ17, Prop. 3.22] is an equivalence.

7.3.2. Crossings.

Fix n ≥ 2 and let k−×− be a bordered plat consisting of n strands with a single crossing between
strands k and k + 1 in the infinite vertical strip

⊔d
= I × R. Fix a Maslov potential µ. We write

C1(k−×−, µ) ⊂ Sh
k−×−

(
⊔d

) for the category of microlocal rank 1 sheaves with vanishing stalks for z � 0.

By restriction to the first and second halves of the interval I , a sheaf F ∈ C1(k−×−, µ) restricts to
a pair of objects FL and FR of the corresponding n-line sheaf categories, each microlocal rank one
with respect to the induced Maslov potentials µL and µR. These are related by µR = µL ◦ sk, where
sk is the transposition of strands k and k + 1.
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It is possible to build a sheaf in Sh
k−×−

(
⊔d

) out of the following data:

Definition 7.38. A k−×− triple on n strands is a diagram L ← M → R of representations of An+1 in
chain complexes as below:

...
...

...

Lk−2

OO

Mk−2

OO

Rk−2

OO

Lk−1

OO

Mk−1

OO

Rk−1

OO

Lk

OO

Mk
oo

OO

// Rk

OO

Lk+1

OO

Mk+1 Rk+1

OO

Lk+2

OO

Mk+2

OO

Rk+2

OO

...

OO

...

OO

...

OO

such that Tot = [Mk+1 → Lk ⊕Rk →Mk−1] is acyclic.

A k−×− triple determines an element of Sh
k−×−

(
⊔d

). To build the corresponding sheaf, the stalk along

the i’th line and in the region below is Li on the left, Mi in the middle, and Ri on the right; for i 6= k
these are all just equal. The downward generization map is the identity, and the upward generization
map is the one pictured. Finally, Mk is the stalk at the crossing and in the region below. We will
write Sh

k−×−
(L ← M → R) for the corresponding sheaf. As a special case of of [STZ17, Prop.

3.22], every object of Sh
k−×−

(
⊔d

) is quasi-isomorphic to some Sh
k−×−

(L←M → R). We sharpen this

result as follows:

Lemma 7.39. Every object of Sh
k−×−

(
⊔d

) is quasi-isomorphic to some Sh
k−×−

(L←M → R), in which

L,M,R satisfy the conclusion of Lemma 7.35.

Proof. Begin with an object F ∈ Sh
k−×−

(
⊔d

); pass to the quasi-isomorphic Sh(L ← M → R)

provided by [STZ17, Prop. 3.22]. We may replace with quasi-isomorphic choices L′,M ′, R′ by
Lemma 7.35; then there exist corresponding maps in the derived category L′ ← M ′ → R′. Since
L′,M ′, R′ are projective resolutions, the maps L′ ← M ′ → R′ can be chosen to be maps of chain
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complexes so that we have a diagram

L′

∼=αL
��

M ′ gR //gLoo

∼=β
��

R′

∼=αR
��

L M
fR //fLoo R

commutative up to homotopy. Next, choose homotopy operators KL : M ′ → L and KR : M ′ → R
with

fL ◦ β − αL ◦ gL = ∂LKL +KL∂M ′ and fR ◦ β − αR ◦ gR = ∂RKR +KR∂M ′ ,

and consider the mapping cylinder Map(β) = M ′⊕M ′[−1]⊕M which has differentialD(a, b, c) =

(∂M ′a − b,−∂M ′b, ∂Mc + β(b)) and inclusions i1 : M ′ ∼=→ Map(β) and i2 : M
∼=→ Map(β) which

are quasi-isomorphisms (since β is a quasi-isomorphism). We then arrive at a fully commutative
diagram:

L′

∼=αL
��

M ′gLoo gR //

∼=i1
��

R′

∼=αR
��

L Map(β)
(αL◦gL)⊕KL⊕fLoo

(αR◦gR)⊕KR⊕fR // R

L

∼=id

OO

M
fLoo fR //

∼=i2

OO

R

∼=id

OO

It remains to show that the maps L′i ← M ′
i → R′i are (not just quasi-)isomorphisms for i 6= k.

For i 6= k, k − 1, we have the following maps of exact sequences of complexes:

0 0 0

L′i/L
′
i+1

OO

M ′
i/M

′
i+1

OO

∼oo ∼ // R′i/R
′
i+1

OO

L′i

OO

M ′
i

OO

//oo R′i

OO

L′i+1

OO

M ′
i+1

OO

//oo R′i+1

OO

0

OO

0

OO

0

OO

All horizontal maps are quasi-isomorphisms because this was true for the original L,M,R, but
now by construction the L′i/L

′
i+1,M

′
i/M

′
i+1, R

′
i/R

′
i+1 are isomorphic to their cohomologies, hence

the maps in the top row are isomorphisms. Thus if the arrows L′i+1 ← M ′
i+1 → R′i+1 are isomor-

phisms, so are the L′i ←M ′
i → R′i.

We also have
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0 0 0

L′k−1/L
′
k+1

OO

M ′
k−1/M

′
k+1

OO

∼oo ∼ // R′k−1/R
′
k+1

OO

L′k−1

OO

M ′
k−1

OO

//oo R′k−1

OO

L′k+1

OO

M ′
k+1

OO

//oo R′k+1

OO

0

OO

0

OO

0

OO

All horizontal maps are quasi-isomorphisms because the same was true for L,M,R. By construc-
tion, M ′

k−1/M
′
k+1 = M ′

k−1/M
′
k is isomorphic to its cohomology. The only way that L′k−1/L

′
k+1 or

R′k−1/R
′
k+1 could fail to have the same property is if they contained a summand which were equal

to a shift of the object [Pk+1 → Pk−1]. However the sheaf corresponding to this summand – namely
the constant sheaf stretching between the k-th and (k + 1)-st strands – violates the singular support
condition at the crossing, so it cannot appear. We conclude that L′k−1/L

′
k+1 and R′k−1/R

′
k+1 are

isomorphic to their cohomologies, hence that the maps in the top row are isomorphisms. Thus, if
the maps L′k+1 ←M ′

k+1 → R′k+1 are isomorphisms, then so too are L′k−1 ←M ′
k−1 → R′k−1.

By induction, we conclude that L′i ←M ′
i → R′i are isomorphisms for all i 6= k. �

We now relate this to the category MC(k−×−, µ). An element of this category is a differential
d : lµ.. L → lµ.. L and an element z ∈ k, from which we built an identification θz : lµ.. L → lµ.. R such that
θz ◦ d ◦ (θz)

−1 ∈MC(≡, µR). We build a L←M → R triple by setting Lk = k
lµ.. L and Rk = k

lµ.. R;

the Hom spaces in MC(k−×−, µ) can be evidently interpreted as maps between these diagrams of

quiver representations. As in Corollary 7.37, we can define a functor r : MC(k−×−, µ) → C1(k−×−, µ)

by composing this with the equivalence of [STZ17, Prop. 3.22].

Proposition 7.40. The functor r : MC(k−×−, µ)→ C1(k−×−, µ) is an equivalence which commutes with
the restriction maps.

Proof. Essential surjectivity follows from Lemma 7.39. The equivalence commutes with restrictions
by construction. �

7.3.3. Cusps.

Let “�” be the right-cusp diagram on 2n strands, carrying a Maslov potential µ. Let sh�(R2,k)0 ⊂
sh�(R2,k) be the full subcategory of sheaves with acyclic stalk to the far right.

Let Vi be the locally closed subsets comprised of the upper stratum and interior region of the i’th
cusp (numbered increasing from top to bottom, so that the i’th cusp connects the 2i− 1, 2i strands.
Let v :

∐
Vi → R2 be the inclusion.
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Lemma 7.41. Every object of sh�(R2,k)0 is quasi-isomorphic to the extension by zero of a locally
constant sheaf on V .

Proof. The microsupport condition translates directly into the constraint that the sheaf is locally
constant on V .

We recall in general that for the inclusion of a locally closed subset s : S → T , there is the
extension by zero functor s! : Sh(S)→ Sh(T ) with the property that

s!F(U) =

{
F(U) U ⊂ S

0 otherwise

The properties of this functor can be found in any standard reference, e.g. [KS94, Chap. 2], and it
is always true that sheaves which have zero stalks in the complement of a locally closed subset are
extensions by zero under the inclusion. �

Corollary 7.42. Choose one point in each component of V , and consider the corresponding map
sh�(R2,k) ∼= (k−mod)n given by taking stalks. It is a quasi-equivalence.

Proof. The extension by zero is fully faithful, so it suffices to restrict attention to the locally constant
sheaves on V itself. Since V is a union of contractible components, taking one stalk at each defines
an quasi-equivalence of categories. �

Corollary 7.43. Consider the map left : sh�(R2,k) → sh≡(R2,k) given by restriction to a neigh-
borhood of the left edge. It is fully faithful, and has essential image the category S of sheaves with
acyclic stalks except between lines 2i− 1, 2i.

Proof. By the same reason as the previous corollary, the map S → (k − mod)n given by taking
one stalk in each component is an equivalence. We can factor the map of the previous corollary as
sh�(R2,k) → S ⊂ sh≡(R2,k) → (k −mod)n by choosing points for stalks near the left edge; it
follows that the map sh�(R2,k)→ S is an equivalence. �

Corollary 7.44. The category C1(�, µ;k) is empty unless µ2k = µ2k−1− 1. In this case C1(�, µ;k)
contains up to isomorphism a unique object, whose stalks in the cusp regions are k[−µ2],k[−µ4], . . . ,k[−µ2n].

Proof. We calculate the microstalks along the top strand of each cusp. The sheaf on V is locally
constant; let the stalks in the n cusp regions be V1, . . . , Vn. Recalling the correspondence between
Maslov potential and degree of microstalk, we should have Vi[1] = Cone(Vi → 0) = k[µ2i−1] and
Vi = Cone(0→ Vi) = k[µ2i]. �

Note that when nonempty, C1(�, µ) contains a canonical object, namely the sheaf which is the
constant sheaf on each component on V , with an appropriate shift. As follows from the above, its
endomorphisms are canonically the ring kn.

Recall that we write MC ′(�, µ) for the full subcategory of MC(�, µ) containing only the object
d0.

Proposition 7.45. There is a commutative diagram with vertical diagrams equivalences

(7.4) MC(≡, µL)

��

MC ′(�, µ)ρL
oo

��
C1(≡, µL) C1(�, µ)

ρCL

oo
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The left vertical arrow is that constructed in Corollary 7.36. If the right categories are nonempty, the
right vertical arrow sends the unique object d0 of MC ′(�, µ) to the canonical element of C1(�, µ).

Proof. We have already seen that the horizontal arrows are fully faithful, and the left vertical arrow
is an equivalence. We define the right vertical arrow through the corresponding fully faithful em-
beddings. (There is in any case no mystery about this arrow, both d0 and the canonical element of
C1(�, µ) have endomorphisms kn, where the i’th component is canonically associated to the i’th
cusp.) �

Remark 7.46. We note that in the proposition we did not say whether we ask for homotopy com-
mutativity or strict commutativity. In fact it is irrelevant for our purposes: as we only ever consider
maps of linear diagrams of categories, and only check that these determine quasi-isomorphisms
by checking termwise (as opposed e.g. to trying to compose morphisms of diagrams), no higher
homotopical questions ever arise, so knowing the above square commutes up to some unspecified
homotopy suffices. On the other hand, by tracing through exactly how we associate a sheaf to an
object of C1(≡, µL), it is not difficult to describe the homotopy explicitly.

The analogous statement holds for left cusps.

7.4. Augmentations are sheaves.

Recall we assume that the right cusps are all equipped with base points. We showed in in Theorem
7.33 that under this hypothesis, the presheaf Aug+ is in fact a sheaf. We did this by verifying the
hypothesis of Lemma 2.18 by explicitly computing the restriction maps, and then applying Proposi-
tion 2.19. (The necessity of doing this was explained in Remark 6.5.)

A morphism of sheaves can be given by giving morphisms on all sufficiently small open sets,
compatibly with restriction. The morphism may be checked to be an equivalence also on these
sets. We thusly defined morphisms h : Aug+ → MC and r : MC → C1, and showed each was
an equivalence. In particular, we obtain an isomorphism of global sections RΓ(rh) : Aug+(Λ) ∼=
C1(Λ). This completes the proof of Theorem 7.1.
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8. SOME EXACT SEQUENCES

This paper has established a host of relations among categories of sheaves, Lagrangians and aug-
mentations. Here we briefly discuss the Fukaya-theoretic viewpoint and gather the relationships in
the unifying Theorem 8.4 below.

Let X be a compact real analytic manifold. Equip T ∗X with its canonical exact structure ω =
−dθ. Recall the infinitesimally wrapped Fukaya category Fukε(T

∗X) from [NZ09]. Its objects
are exact Lagrangian submanifolds equipped with local systems, brane structures, and perturbation
data. Morphisms of Fukε(T ∗X), including higher morphisms, involving objects L1, . . . , Ld are
constructed by perturbing the Lagrangians, using a contractible fringed set Rd ⊂ Rd

>0 to organize
the perturbations. A fringed set Rd of dimension d is a subset of Rd

>0 satisfying conditions defined
inductively: if d = 1, R1 = (0, r); if d > 1, then the projection of Rd to the first d − 1 coordi-
nates is a fringed set, and (r1, . . . , rd) ∈ Rd ⇒ (r1, . . . , r

′
d) ∈ Rd for all 0 < r′d < rd. Loosely,

to compute HomFukε(L1, L2) we must perturb L2 more than L1; to compute compositions from
HomFukε(Ld−1, Ld)⊗ HomFukε(Ld−2, Ld−1)⊗ · · · ⊗ HomFukε(L1, L2) and others, we perturb by

(8.1) εd > εd−1 > · · · > ε1 > 0.

The d-tuple of successive differences δ = (ε1, ε2 − ε1, . . . , εd − εd−1) lies in the fringed set, Rd.9

The purpose of introducing this set Rd is two-fold: first, the perturbations bring intersections from
infinity to finite space, so that the moduli spaces defining compositions are compact; second, by
perturbing in the Reeb direction at infinity, morphisms compose as required for the isomorphism
with the category of constructible sheaves. So for the purposes of simply defining a category, we can
ignore the second of these purposes. This leaves us with another choice of contractible set organizing
the compositions. We simply reverse all the inequalities in (8.1) and negate the definition of δ — it
will then lie in a fringed set. We call the category defined in this way the negatively wrapped Fukaya
category, Fuk−ε(T ∗X).

Let us be a bit more specific and compare the two possibilities. Recall from [NZ09] that we call
a function H : T ∗X → R a controlled Hamiltonian if H(x, ξ) = |ξ| outside a compact set; now let
ϕH,t denote Hamiltonian flow by H for time t. To compute the hom complex HomFukε(L,L

′), first
choose controlled Hamiltonians H,H ′ and a fringed set R2 such that for all δ = (ε, ε′ − ε) ∈ R2

we have ϕH,ε(L) ∩ ϕH′,ε′ is transverse and contained in a compact subset of T ∗X. Now put L+ =
ϕH,ε(L), L′+ = ϕH′,ε′(L

′) (we suppress the dependence on ε, ε′. Then HomFukε(L,L
′) is defined

by computing the Fukaya-Floer complex of the pair (L+, L
′
+), counting holomorphic strips in the

usual way. Alternatively, to study HomFuk−ε(L,L
′) we choose controlled Hamiltonians (H,H ′) and

a fringed set R2 and require that for all δ = (ε, ε′ − ε) in R2, ϕH,−ε(L) ∩ ϕH′,−ε′ is transverse and
contained in a compact subset of T ∗X. Then put L− = ϕH,−ε(L), L′− = ϕH′,−ε′(L

′) and define
HomFuk−ε(L,L

′) by the usual count of holomorphic strips. Higher-order compositions in UF− are
defined exactly analogously to those in Fukε.

Remark 8.1. Fuk−ε is not simply the opposite category of Fukε, as no change has been made
regarding the intersections between Lagrangians which appear in compact space. In particular,
reversing the order of the Lagrangians would have changed the degrees of those intersections.

9In fact the condition ε1 > 0 is not necessary. Only the relative positions of the perturbations is essential.
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When X is not compact, we require that Lagrangian branes have compact image in X or are the
zero section outside a compact set. With this set-up, the following lemma is then true by definition.
Let L,L+, L− be as above.

Lemma 8.2. We have

HomFukε(L,L+) ∼= HomFukε(L,L) ∼= HomFukε(L−, L).

Note the symplectomorphism ϕH,ε gives an identification HomFukε(L−, L) ∼= HomFukε(L,L+).
Further, each of these spaces contains an element isomorphic to the identity of the middle term, and
we denote them respectively by id+, id, id−.

Lemma 8.3. Let M be a real analytic manifold and let k be a field; let X = M × Rz, let
F ∈ Shc(X;k) correspond to L above under the microlocalization equivalence [Nad09, NZ09],
and let F+, F− correspond to L+, L−. Then the following quasi-isomorphisms also hold due to
microlocalization:

HomSh(F, F+) ∼= HomSh(F, F ) ∼= HomSh(F−, F ).

Let Λ ∈ J1(Rx) ⊂ T∞,−(Rx×Rz) be a Legendrian knot (or link) with front diagram basepointed
at all right cusps and with Maslov potential µ. First recall that from [STZ17] and Theorem 7.1 of
the present paper we have the following triangle of equivalences:

Fukε(T
∗R2,Λ, µ;k) Aug+(Λ, µ;k)oo

∼=
ψvv

C1(Λ, µ;k)

∼=
µ

ii

The arrow across the top is defined to be the composition, and as usual C1(Λ, µ;k) ⊂ Sh(R2,Λ, µ;k)
denotes the full subcategory of microlocal rank-one objects, as determined by µ.

Now let Λ ⊂ J1(R) ⊂ T∞,−R2 be a Legendrian knot and let µ be a Maslov potential. Let
ε ∈ Aug+(Λ, µ;k) be an augmentation. Let F ∈ C1(Λ, µ;k) correspond to ε under Theorem 7.1
and let L ∈ Fukε(T ∗R2,Λ;k) be a geometric Lagrangian object corresponding to F . (Not all such
L will be geometric.) Write L = µmonF for the microlocal monodromy local system, defined
from the Maslov potential µ (though note End(L)Loc(Λ) is canonical). Let us denote for the moment
(A,B)C := HomC(A,B). Then we have the following.

Theorem 8.4.

(L,L−)Fukε
◦ id− // (L,L)Fukε // Cone(◦ id−)

(F, F−)Sh
◦ id− //

∼=µ

OO

(F, F )Sh //

∼=µ

OO

Cone(◦ id−)

∼=µ

OO

∼= (L,L)Loc(Λ)
MM

∼=

tt

(ε, ε)Aug−
can //

∼=ρ

��

∼=ψ

OO

(ε, ε)Aug+

∼=ψ

OO

//

∼=ρ

��

Cone(can)

∼=ρ

��

∼=ψ

OO

C∗c (L)
↪→ // C∗(L) // C∗(Λ)
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Here µ is short for the microlocalization theorem, which is a triangulated equivalence, ensuring
the isomorphism of cones. Further, ψ is the isomorphism Aug+(Λ, µ;k) → C1(Λ, µ;k) proved
in Theorem 7.1, and ρ in the bottom row of vertical arrows indicates the isomorphism proved in
Proposition 5.7. The map “can” is the inclusion of DGAs and the map ↪→ is inclusion of com-
pactly supported forms. Taking cohomology relates the rows to the long exact sequence H∗c (L) →
H∗(L)→ H∗(Λ)→.

Proof. The top line of vertical arrows is microlocalization [NZ09, Nad09]. The middle line is The-
orem 7.1. The bottom line is proven in Proposition 5.7. �
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