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Abstract

It is often the case that high energy density systems can be well described and simulated in the 3T approximation,
where electrons, ions and the radiation field are defined at unique temperatures given by Te, Ti, Tr. The difference in
temperature between the electrons and radiation field is important when calculating weighted opacities and electron-
radiation energy exchange rates. Often, it is assumed that Tr ≈ Te, meaning the quantities can be calculated as
functions of Te only. This paper explores the consequences that arise when one uses this assumption in regions where
Tr , Te. Mutliplicative correction factors are derived for the Rosseland and Planckian mean opacities (κR and κP)
and for the electron-radiation energy exchange rate. We find that there exists a very small region of parameter space
where the corrections are negligible. However, for the majority of parameter space explored, numerical corrections
vary from factors of 2 to multiple orders of magnitude.
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1. Introduction

Three-temperature (3T) models of plasmas in which
the electrons, ions and radiation are treated locally and
described by separate temperatures (Te, Ti and Tr, re-
spectively) have been used in plasma modelling for
many years [1], [2], [3], [4]. For ease of computation
the approximation is often made in the evaluation that
the opacities and electron-radiation exchange rate are
functions of electron temperature only, whereas in re-
ality both factors depend on the electron and radiation
temperatures. In this paper, we derive and evaluate mul-
tiplicative correction factors to the Planckian and Rosse-
land mean opacities and the electron-photon energy ex-
change rates to correct for this. Results for each cor-
rection factor are given for Iron (Z=26) and Aluminium
(Z=13).

2. Theory

The equation of radiative transfer describes how en-
ergy contained within a propagating beam of light
changes along its trajectory due to interactions with sur-
rounding material and is given by

1
c
∂Iν
∂t

+ n · ∇Iν = ρκν[Bν(Te) − Iν(Tr)] (1)

where Iν is the specific intensity, ρ is the mass density,
κν is the opacity and Bν denotes the blackbody func-
tion. The unit vector n is directed along the ray-path
The derivation of equation 1 is given in many different
forms across the literature, such as in [5], [6] and [7].
Note that any opacities used in this work are assumed to
be already corrected for stimulated emission. Scattering
effects are also ignored.

Consecutive multiplication of equation 1 by n and in-
tegration over solid angle, dΩ, allows the derivation of a
set of moment equations. The zeroth moment describes
how the energy contained within the beam changes as
the radiation is absorbed and emitted. This is given by

∂Eν

∂t
+ ∇ · Fν = ρκν[4πBν(Te) − Eνc] (2)

Where Eν is the energy density and Fν is the radia-
tive flux, which are both frequency dependent quanti-
ties. The first order moment defines the radiation mo-
mentum equation as

1
c
∂Fν
∂t

+ c∇ · Pν = −ρκFν (3)

Where P is the pressure tensor. To close this set of
equations, and solve for Eν, it is necessary to add an-
other, artificial, constraint to the system. The most com-
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mon solution is to assume that the system is in the radia-
tive diffusive regime, where the material is sufficiently
optically thick that radiation diffuses down the radiative
temperature gradient through repeated absorption and
emission. In this regime the photon mean free path, λ,
satisfies

λ = [ρκ]−1 � L (4)

Where L is the characteristic length-scale over which
the macroscopic properties of the plasma change. Also,
we assume that the specific intensity Iν is close to
isotropic and can be expressed as

Iν ≈ I0 + µI1 (5)

Where µ � 1 and and I0 is isotropic. Describing the
radiation field in this way implies that the pressure ten-
sor can be expressed explicitly in terms of the energy
density

P→ P =
E
3

(6)

This, along with equations 4 and 3, can be used to derive
a form of Fick’s law [8] which relates the radiative flux
to energy density, given by

c
3
∇Eν = −ρκνFν (7)

Substituting into 2 gives the radiation energy equation
in the diffusive regime as

∂Eν

∂t
= ∇ · Dν∇Eν + 4πρκν

[
Bν(Te) − Bν(Tr)

]
(8)

Where the energy density is related to the blackbody
function by

Eν(T ) =
4π
c

Bν(T ) (9)

and the diffusion coefficient is given by

Dν =
c

3ρκν
(10)

To solve for total energy density, E, equation 8 is in-
tegrated across the entire frequency spectrum. In doing
this, one obtains

∂E
∂t

= ∇·
c

3ρκR
∇E+ρac[κP(Te)T 4

e −κP(Te,Tr)T 4
r ] (11)

Where the Rosseland mean, κR, and Planckian mean,
κP, are defined as follows

κ−1
R (ρ,Te,Tr) =

∫
κ−1(ρ, ν,Te) ∂B(ν,Tr)

∂Tr
dν∫

∂B(ν,Tr)
∂Tr

dν
(12)

κP(ρ,Te,Tr) =

∫ ∞
0 κ(ρ, ν,Te)B(ν,Tr) dν∫ ∞

0 B(ν,Tr) dν
... (13)

Note that both these functions are dependent on two
temperatures, with κP(Te) denoting the specific case of
the weighting function and the opacity being dependent
on the same temperature, Te.

The Rosseland and Planckian mean are often referred
to as the transport and absorption-emission opacities re-
spectively. This is due to their role in the equation of
radiation transport; κR appears in the term accounting
for the diffusion of radiation down a temperature gradi-
ent, whereas κP appears in the term accounting for the
enhancement and degredation of the radiation intensity
due to interactions with matter. One further quantity ex-
plored in this paper is the energy exchange rate between
electrons and photons, denoted by ωer. The exchange
rate describes how much energy is given to the material
via absorption, minus how much is removed via emis-
sion and is given by the right hand side of equation 11.

ωer = ρac[κP(Te)T 4
e − κP(Te,Tr)T 4

r ] (14)

It may be the case that only single temperature
weighted opacities are available to use in rad-hydro
codes - particularly in those which use table-fed opac-
ities. The following sections will investigate the con-
sequences of these assumptions through derivation and
evaluation of a multiplicative correction factor for κP, κR

and ωer. The form of each correction factor is identical;
the ratio of the correct, two temperature, result to that
obtained where one assumes Tr = Te.

3. Free-free Opacities

In the case where opacity is dominated by free-
free contributions (such as in a fully ionised plasma),
Kramers’s approximation ([6], [9]) is often used:

ρκ
f f
ν =

4e6

3mhc

(
2π

3km

) 1
2

T−
1
2

e Z2nenig f f ν
−3

(
1−e−

hν
kTe

)
(15)

which makes it possible to analytically integrate both 12
and 13. In cases for which this does not apply and where
bound-free and bound-bound processes are important
we use opacities calculated from the Ionised Material
Package (IMP) code [10].

2



Figure 1: Correction factor for Rosseland mean opacity assuming the
opacity is dominated by purely free-free interactions. The correction
factor is shown with a solid black line, with the red dashed line rep-
resenting a β−3 decline which Q f f

κR tends to as β increases. Above
β = 0.5 both forms are almost identical.

3.1. Rosseland Mean Opacity

The correction factor for the Rosseland mean opacity,
denoted by QκR , is given by

QκR =
κR(Te,TR)
κR(Te)

(16)

This can be expressed analytically when the opacity
is given by 15, where QκR is given by

Q f f
κR = β−3 ·

I1

I2
(17)

where

I1 =

∫
x7ex

(ex − 1)2

dx
(1 − e−βx)

I2 =

∫
x7e2xdx
(ex − 1)3

β =
TR

Te

x =
hν

kBTR

As β increases, I1 → I2 and the correction factor takes
on the form of an inverse cubic function of the temper-
ature ratio. This is shown in figure 1.

3.2. Planckian Opacity and Energy Exchange Rate

Results are presented for the correction factors to
the Planckian opacity and the energy exchange rate ob-
tained for κP and how they affect ωer. It is necessary to
explain how the two correction factors are related. QκP ,
is given by

QκP =
κP(Te,Tr)
κP(Te)

(18)

The correction factor to the energy exchange rate is
subtly different, it corrects the value of ωer where one
has assumed that κP(Te,Tr) ≈ κP(Te). Using this as-
sumption, the correction factor to the exchange rate,
Qωer , is

Qωer =
1 − QκPβ

4

1 − β4 (19)

where β has the same definition as in 17.
For the case where the opacity is given by 15,QκP is

very similar to that given in 17. Q f f
ωer is given by

Q f f
ωer = β ·

(−ψ(β) − γ)
1 − β4 (20)

where ψ is the digamma function and γ is the Euler
constant [11] defined by∫ ∞

0

(e−t − e−βt

1 − e−t

)
dt = ψ(β) + γ (21)

The digamma function is plotted in figure 2.

Figure 2: Form of digamma function, ψ, for 0 < β < 5. The immediate
neighbourhood around β ≈ 1 is magnified to demonstrate the accuracy
of the further assumption given in equation 22.

Around β ≈ 1, the digamma function can be further
expanded

ψ(β) + γ ≈
π2

6
(β − 1) (22)

This is shown as the region bounded by the dashed
rectangle in figure 2, which is also shown magnified to
show the exact range of β values across which this ap-
proximation is reasonable. In this region, the electron-
radiation exchange rate can be approximated as:
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ωer = Λ
Tr

Te
(Te − Tr) (23)

where

Λ =
16e6

9mhc3

(
2π7k
3m

) 1
2

T−
1
2

e Z2nenig f f (24)

The general form of Q f f
ωer , analytically solved using

properties of ψ is shown in figure 3. At β = 1, equa-
tion 20 becomes undefined as ψ(1) = −γ. To solve at
this point L’Hôpital’s rule was used and yielded a value
of Q f f

ωer (β = 1) ≈ 0.411. The same problem arises in the
numerical case and manifests itself as sudden breaks in
the line plots obtained for Qωer in section 3.

Figure 3: Analytical correction factor of electron-radiation energy ex-
change rate, Q f f

ωer , calculated using properties of the digamma func-
tion, ψ.

4. General Opacities

When bb and bf components of opacity are included,
equations 16, 18 and 19 must be solved numerically
using opacity profiles provided by IMP [10], which cal-
culates radiative opacity profiles in plasmas including
contributions from bound-bound and bound-free inter-
actions. Results are simulated for the same conditions
as those in section 3 and are listed in figures 4 through 6.

Figure 4: Values of the Rosseland mean opacity correction factor,
QκR , shown for Iron (top) and Aluminium (bottom). From left to right
the results are given at 1

10ρs, ρs and 10 ρs where ρs is solid density;
7.87gcc for Iron and 2.7gcc for Aluminium.

Figure 5: Values of the Planckian mean opacity correction factor, QκP ,
shown for Iron (top) and Aluminium (bottom). From left to right
the results are given at 1

10ρs, ρs and 10 ρs where ρs is solid density;
7.87gcc for Iron and 2.7gcc for Aluminium.
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Figure 6: Values of the electron-radiation energy exchange correction
factor, Qωer , shown for Iron (top) and Aluminium (bottom). From left
to right the results are given at 1

10ρs, ρs and 10 ρs where ρs is solid
density; 7.87gcc for Iron and 2.7gcc for Aluminium.

5. Discussion

The results presented show that in regimes where
Tr , Te, the correction factors deviate significantly
from unity and depend on material, radiation temper-
ature, Tr, electron temperature, Te, and mass density, ρ.

5.1. Rosseland Mean

The results obtained clearly indicate the two temper-
ature dependence of κR. There are particular regions
where the correction factor becomes several orders of
magnitude. In 3-T documentation [1], the user is ad-
vised that, in the case that opacities are given for one
temperature only, the following approximation is should
be used

κR(Tr,Te) ≈ κR(Te) (25)

It is clear from figure 4 that this approximation holds
only in a small neighbourhood around the point of
Tr ≈ Te. However, corrections are necessary for even
small deviations from this. In some cases, particularly
for Iron, a peak is present. The position of this peak
depends on the frequency at which the opacity profile
exhibits absorption lines and edges, which is why they
are not present in the purely free-free analytical case. To
explain this, consider the case that a region containing
absorption lines or an ionisation edge overlaps with the
peak of ∂B

∂T . In this scenario, the integral of
∫
κ−1
ν

∂B
∂T dν

becomes large and in turn causes QκP to increase ac-
cordingly, as is demonstrated in figure 7. At high tem-
peratures and densities, the numerical and analytical so-
lutions tend common values. This is expected in these
conditions due to the almost complete ionisation leading
to a free-free dominated opacity.

Figure 7: Plot of Iron opacity profile at 0.787gcc and Te = 1keV (top).
Normalised blackbody functions at temperatures of 1keV (blue) and
2keV (red) (bottom). The correction factor QκR for the iron conditions
stated is maximised at β ≈ 2 due to the frequency of absorption lines
matching up with the peak of dB

dT .

5.2. Planckian Mean and Energy-Exchange Rate

The results obtained for κP and Qωer follow many sim-
ilar trends to those discussed above. The same peak for-
mation appears in the form of QκP , again due to the over-
lapping of the opacity profile with the relevant weight-
ing function. The only difference in this case is that
the weighting function is the blackbody function itself
rather than the temperature derivative. Again, the peak
occurs at around β = 2; the frequency difference be-
tween the peaks of dB(T )

dT and B(T ) is very small at these
temperatures.

The plots of Qωer show that the corrections neces-
sary for the exchange rate are less severe than the other
two quantities. For the majority of conditions explored,
not accounting for radiation-electron temperature differ-
ences causes an over-evaluation of ωer; Qωer < 1. How-
ever under-evaluation occurs within regions in parame-
ter space where the blackbody fuction peak, now eval-
uated at the radiation temperature, overlaps lines and
edges in the opacity profile. The region where Qωer ≈ 1
corresponds to Tr → 0, which agrees with the first order
approximation advised in 3-T documentation [1]

ωer(Te,Tr, ρ) ≈ ωer(Te, 0, ρ) (26)
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Figure 8: Identical plots to those given in figure 6 magnified in the
region 0 < β < 1, corresponding to 0 < Tr < Te.

A magnified plot of the exchange rate between the
points of Tr = 0 and Tr = Te is given in figure 8.

The approximation given in equation 26 becomes in-
accurate around β ≈ 0.5 and, outside this region, leads
to corrections which can be up to a factor 2.

At high temperatures and densities, the numerical
values of both QκP and Qωer tend to the analytical cases
highlighting that in particular regimes, the digamma
function is all that needs to be evaluated to correct these
parameters.

6. Conclusions and Future Work

The work presented highlights the derivation and
evaluation of correction factors aimed to account for
differences in electron temperature, Te, and radiation
temperature, Tr, when calculating the Rosseland mean
opacity, Planckian mean opacity and electron-radiation
energy exchange rate. The results indicate that there are
very small regions of parameter space where the dif-
ference in temperature results in a negligible correction
and in many cases, corrections are necessary. The ex-
tent of these corrections depends on the plasma density,
ρ, material Z as well as electron and radiation temper-
atures. The purpose of this study was not to provide
multiplicative corrections for all cases but to provide in-
dicative values for specific materials.

The factors derived in this study could be imple-
mented as a full revision of existing table fed opaci-
ties, which is a common method of feeding opacity val-
ues into radiation-hydrodynamics simulations. Alter-
natively, separate tables of correction factors could be
stored for each value of β and used to modify any exist-
ing opacity tables where necessary. The f-f dominated

regime would be the most simple to implement, due to
the correction factors taking analytical form. However,
one should take care in using this approximation as it
will only be valid when the system is clearly dominated
by f-f interactions (very close to completely ionised). In
all other cases, where b-f and b-b interactions are im-
portant, there will be no scaling laws and the correction
will have to be solved numerically for each specific set
of conditions.

Although this work has focused primarily on 3-T ra-
diation algorithms, the same problem would arise in
under-resolved multigroup radiation solvers. If any
weighted opacity is used with the incorrect weighting
function, then inaccuracies will arise. If the frequency
space is resolved sufficiently, then κP ≈ κR → κ, and
the weighting function becomes irrelevant; it is under
these circumstances that the correction factors become
obsolete.
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