
A Probabilistic Approach to Floating Point
Arithmetic

Fredrik Dahlqvist
Department of Electrical and

Electronic Engineering
Imperial College London

f.dahlqvist09@imperial.ac.uk

Rocco Salvia
School of Computing

University of Utah
rocco@cs.utah.edu

George A. Constantinides
Department of Electrical and

Electronic Engineering
Imperial College London

g.constantinides@imperial.ac.uk

Abstract—Finite-precision floating point arithmetic unavoid-
ably introduces rounding errors which are traditionally bounded
using a worst-case analysis. However, worst-case analysis might
be overly conservative because worst-case errors can be extremely
rare events in practice. Here we develop a probabilistic model
of rounding errors with which it becomes possible to estimate
the likelihood that the rounding error of an algorithm lies
within a given interval. Given an input distribution, we show
how to compute the distribution of rounding errors. We do
this exactly for low precision arithmetic, for high precision
arithmetic we derive a simple approximation. The model is then
entirely compositional: given a numerical program written in
a simple imperative programming language we can recursively
compute the distribution of rounding errors at each step of the
computation and propagate it through each program instruction.
This is done by applying a formalism originally developed by
Kozen to formalize the semantics of probabilistic programs. We
then discuss an implementation of the model and use it to perform
probabilistic range analyses on some benchmarks.

I. INTRODUCTION

IEEE arithmetic [13] is traditionally modelled mathemat-
ically as follows [5]: if x, y are two normal floating-point
numbers and op ∈ {+,−,×,÷} is an infinite-precision
arithmetic operation, then the floating-point precision imple-
mentation opm of op must satisfy:

x opm y = (x op y)(1 + δ), |δ| ≤ u (1)

where u is the unit roundoff for the given precision. Eq. (1)
says that the machine implementation of an arithmetic opera-
tion can induce a relative error of size δ for some δ ∈ [−u, u].
The ‘for some’ is essential: this is a non-deterministic model,
we have no control whatsoever over which δ appears in Eq. (1).
This means that numerical analysis based on this model must
consider all possible values δ, i.e. numerical analysis based
on Eq. (1) is fundamentally a worst-case analysis.

It also follows from the perspective of Eq. (1) that any pro-
gram doing arithmetic is, under this model, a non-deterministic
program. Moreover, since the output of such a program might
very well turn out to be the input of another program doing
arithmetic, one should also consider non-deterministic inputs.
This is precisely what happens in practice with tools for
numerical analysis like the recent [12], Daisy [4] or FPTaylor
[15] which require for each variable of the program a range
of possible values in order to perform a worst-case analysis.

However, for a wide variety of programs it makes sense
to assume that the inputs are probabilistic rather than non-
deterministic; that is to say we have some statistical model of
the inputs of the program. This situation is in fact incredibly
common. The inputs of one numerical routine are frequently
generated randomly by another numerical routine, for example
in a gradient descent optimization, a Bayesian inference algo-
rithm, or a stochastic ray tracing algorithm. Similarly, sensors
on a cyber-physical system can feed analog signals which
are very well modelled statistically, to a numerical program
processing these signals.

If the inputs of a program have a known distribution, then
it becomes possible, at least in principle, to ask the question:
How likely are the inputs generating the worst-case rounding
errors obtained from the non-deterministic model of Eq. (1)?
Typically, these inputs will occur very infrequently, and in this
respect the non-deterministic model can be overly pessimistic
since worst-case behaviours might be such rare events that
they are never encountered in practice.

In this paper we will explore a quantitative model which
formally looks very similar to Eq. (1), namely

x opm y = (x op y)(1 + δ), δ ∼ dist (2)

but now δ is sampled from dist, a probability distribution
whose support is [−u, u]. In other words we move from a non-
deterministic model of rounding errors to a probabilistic model
of rounding errors. This model will allow us to formalise
and answer questions like: What is the distribution of outputs
when rounding errors are taken into account? What is the
average rounding error? What is the worst-case error with
99.9% probability?

As was mentioned above, model (1) amounts to saying
that any numerical program is a non-deterministic program.
Completely analogously, in the perspective of Eq. (2) every
numerical program is a probabilistic program, that is to say
a program which admits sampling as a native instruction.
The study of probabilistic programs goes back to Kozen
[10] which modelled simple while programs containing an
explicit sampling instruction random(). In our setting any
numerical program becomes a probabilistic program via an
implicit sampling operation which takes place whenever an
arithmetic operation is performed. This implicit sampling is

the only difference with the standard setting of [10], and we
will otherwise understand how programs process randomness
by following the framework laid out in [10]. The study of
probabilistic programs has recently witnessed a resurgence of
interest driven by new applications in machine learning and
statistical analysis of large datasets.

Related works: The probabilistic model of Eq. (2) is not
new, it can be traced back to von Neumann and Golds-
tine [17] and is very similar to the so-called Monte-Carlo
arithmetic of [14]. Within the signal processing community,
simple probabilistic models of roundoff error are common-
place. Constantinides et al. [2] study the propagation of fixed-
point roundoff error through linear time-invariant computation,
resulting in propagation of the first and second statistical
moments of the distributions. More recently, the model of
Eq. (2) has been investigated by Higham [6] and Ipsen [7].
Interestingly, because [6] and [7] are interested in large-
dimensional problems, neither work needs to explicitly specify
the distribution dist in Eq. (2). Instead, [6] requires that each
sample from dist be independent and that E [δ] = 0, whilst [7]
just requires that E [δ] = 0. By using concentration of measure
inequalities the authors then obtain probabilistic bounds which
are independent of any particular choice of distribution. These
bounds however are only applicable to a small class of problem
(inner product, matrix multiplication and matrix factorisation
algorithms) with very large inputs. Here we will derive a
principled distribution dist for the relative error δ and build a
tool implementing the probabilistic model Eq. (2) to any small
to medium-sized programs in a systematic way.

In [11] the authors propose a hybrid approach: first, they
discretize input distributions and represent them as a dictionary
which map each sub-interval to the corresponding proba-
bility (focal elements). On each sub-interval they combine
probabilistic affine arithmetic, to propagate the error terms
through the AST of the program, together with worst-case
static analysis to bound the imprecision error term separately
for each focal element. Their methodology results in a sound
probabilistic error analysis, since the (unknown) error distri-
bution is always bounded between proper upper and lower
bounds by the analysis, but they inherit limitations of worst-
case analysis in case of overflow and division by zero.
Our approach does not rely on worst-case error estimation, so
it is a pure probabilistic model for the floating-point error of
an expression.

II. TWO PROBABILISTIC MODELS OF ROUNDING ERRORS

In order to use the probabilistic model given by Eq. (2) we
must specify the distribution dist of the random variable δ.
In this section we will show how to derive the distribution
of rounding errors from first principles. This will yield a
distribution which is computable for low precisions (e.g. half-
precision and lower) but becomes prohibitively expensive
computationally for single- and double-precision. We will
then show that very often the rounding error distribution can
be approximated remarkably well by a simple distribution
which we shall call the typical distribution. The quality of

this approximation increases with the working precision and
we thus derive both an exact, computable model of rounding
errors for low-precisions, and a simple but good approximating
model of rounding errors for high-precisions.

A. The exact rounding error distribution
Conceptually, the key to our approach is to model the

rounding operation probabilistically, i.e. as an operation which
adds a probabilistic relative error via

x −→ x(1 + δ) δ ∼ dist. (3)

Since each IEEE arithmetic operation can be understood as im-
plicitly performing a rounding operation on the corresponding
infinite-precision operation, the probabilistic rounding above
naturally yields Eq. (2). The key is thus to find a good
candidate for the distribution dist governing probabilistic
rounding.

As discussed in the introduction, we consider numerical
programs as probabilistic programs. In particular, all inputs
come with probability distributions, and we should consider
the variable x in Eq. (3) as a sample from a real random
variable X with known probability distribution P. It is then
completely natural to require that:

X − Round(X)

X
∼ dist

i.e. dist describes the distribution of the actual, deterministic
rounding error of samples drawn from X . We will now
explicitly compute dist. First we introduce some convenient
notation. We define

dxe 4= sup{z ∈ R | Round(z) = Round(x)}

bxc 4= inf{z ∈ R | Round(z) = Round(x)}.
Whether dxe is the maximal real which rounds to the same
value as x, or just the supremum of this set, will in general
depend both on x and on the rounding convention, and
similarly for bxc. We also define the sets

bx, xe 4= {z ∈ R | Round(z) = Round(x)}
In particular if z is a floating-point representable number –
notation z ∈ F – then bz, ze is the collection of all reals
rounding to z.

We choose to express the distribution dist of relative errors
in multiples of the unit roundoff u. This choice is arbitrary,
but it allows us to normalize the distribution since the absolute
value of the relative error is strictly bounded by u. In other
words, we express the relative error as a distribution on [−1, 1]
rather than [−u, u]. In order to compute the density function
of dist we proceed in the standard way by first computing
the cumulative distribution function c(t) and then taking its
derivative. We therefore start by computing

c(t)
4
= P

[
X − X̂
X

≤ tu

]

= P

[∨
z∈F

(
X − z
X

≤ tu ∧X ∈ bz, ze
)]

We now need to consider three special cases:

1) If X ∈ b0, 0e then X−X̂
X = 1 and thus (since tu < 1):

P
[
X − 0

X
≤ tu ∧X ∈ b0, 0e

]
= 0 (4)

2) If X ∈ b −∞,−∞e then X−X̂
X =∞ and thus

P
[
X +∞
X

≤ tu ∧X ∈ b−∞,−∞e
]
= 0 (5)

3) Finally, if X ∈ b∞,∞e then X−X̂
X = −∞ and thus

P
[
X −∞
X

≤ tu ∧X ∈ b∞,∞e
]
= P

[
X ∈ b∞,∞e] (6)

Using the fact that (4)-(6) yield expressions which are inde-
pendent of t we get the density

d(t) =
∂

∂t
c(t)

=
∂

∂t

∑
z∈F\{−∞,0,∞}

P
[
X − z
X

≤ tu ∧X ∈ bz, ze
]

=
∑

z∈F−\{−∞,0}

∂

∂t
P
[

z

1− tu
≥ X ∧X ∈ bz, ze

]
+

∑
z∈F+\{0,∞}

∂

∂t
P
[

z

1− tu
≤ X ∧X ∈ bz, ze

]

where F+ and F− denote the positive (resp. negative) floating-
point representable numbers. Suppose now that X is described
by a probability density function f : R→ R, we then get:

d(t) =
∑

z∈F−\{−∞,0}

∂

∂t
1bz,ze

(
z

1− tu

)∫ z
1−tu

bzc
f(s) ds+

∑
z∈F+\{0,∞}

∂

∂t
1bz,ze

(
z

1− tu

)∫ dze
z

1−tu

f(s) ds

=
∑

z∈F−\{−∞,0}

1bz,ze

(
z

1− tu

)
f

(
z

1− tu

)
−uz

(1− tu)2

+
∑

z∈F+\{0.∞}

1bz,ze

(
z

1− tu

)
f

(
z

1− tu

)
uz

(1− tu)2

=
∑

z∈F\{−∞,0,∞}

1bz,ze

(
z

1− tu

)
f

(
z

1− tu

)
u|z|

(1− tu)2
(7)

where 1A(x) is the usual indicator function which returns 1 if
x ∈ A and 0 otherwise. For low precisions, that is to say up to
half-precision (5 bits exponent, 10 bits mantissa), it is perfectly
possible to explicitly go through all floating point numbers and
compute the density of the rounding error distribution dist by
using Eq. (7). However this rapidly becomes too computa-
tionally expensive for higher-precision (since the number of
floating-point representable numbers grows exponentially).

B. The typical rounding error distribution

Interestingly, when computing the error density Eq. (7) for a
wide variety of well-known input distribution, one very often
obtains more or less the same curve. This phenomenon is
illustrated in Fig. 1 where the half-precision error density
computed via Eq. (7) is displayed for uniform distributions
over [−10, 10] and [0, 1] and for normal distributions with
parameters µ = 0, σ = 2 and µ = 2, σ = 10 respectively.
The reader will notice immediately that all the curves are
nearly identical. In this section we will sketch how, under

Fig. 1. Half-precision relative error distribution for four typical input
distributions

some regularity assumptions about the input distribution, the
error density of Eq. (7) can be approximated by a simple,
piecewise polynomial curve which we shall call the typical
error distribution. The precise mathematical derivation of this
curve being relatively long, we refer the reader to XXX for
the full details. Here we will simply specify conditions under
which the error distribution given by Eq. (7) is close to the
typical distribution. The key observations which we shall make
are that (a) the quality of the approximation increases with the
working precision (henceforth p), and (b) the likelihood of the
assumptions being satisfied also increases with p.

Let z(e, s, k) denote the floating-point representable real
with exponent e, sign (−1)s and mantissa k, and let emin and
emax denote the smallest and largest exponents respectively.
Given a t ∈ [−1, 1], one can show that the mantissas such that

1bz(e,s,k),z(e,s,k)e

(
z(e, s, k)

1− tu

)
= 1 (8)

are given by

k ≤ 2p
(

1

|t|
− 1

)
− 1

2
(9)

Note that for t ∈
[
− 1

2 ,
1
2

]
Eq. (9) always holds, i.e. all

mantissa are compatible with Eq. (8). We can now specify
our assumptions.
Assumption 0. The probability density function is constant at
the scale of the intervals between floating point numbers, i.e.

P [Round(x) = z] =

∫ dze
bzc

f(x) dx

≈ f
(

z

1− tu

)
(dze − bzc)

for all values of t such that Eq. (8) holds.
Assumption 1. Writing z(s, k) for z(emin, s, k) assume that:∑
0≤k<2p

s∈{0,1}

1bz,ze

(
z(s, k)

1− tu

)
f

(
z(s, k)

1− tu

)
(dz(s, k)e−bz(s, k)c) ≈ 0

and similarly for z(s, k) = z(emax, s, k). Under Assumption
0, this condition says that the probability under f of sampling
a number whose rounding has exponent emin or emax is close
to zero. This condition is certainly met for the distributions of
Fig. 1 and half-precision.
Assumption 2. Given t ∈ [−1, 1], for every k satisfying
Eq. (9) we assume∑
emin<e<emax

s∈{0,1}

f

(
z(e, s, k)

1− tu

)
(dz(e, s, k)e − bz(e, s, k)c) ≈ 1

2p

Under assumption 0, this condition means that when rounding
a sample drawn from the distribution f , all mantissas are
equally likely.

Under assumptions 0-2 one can show that for t ∈
[
− 1

2 ,
1
2

]
d(t) ≈ 1

2p(1− tu)2

(
2

3
+

3(2p − 1)

4

)
(10)

Similarly, under assumptions 0-2 one has for |t| > 1
2 :

d(t) ≈ 1

2p(1− tu)2

(
2

3
+

1

2
b2p(1

t
− 1)− 1

2
c+

1

2p+2
(b2p(1

t
− 1) +

1

2
c)2
)

(11)

where b2p(1t − 1) + 1
2c here denotes the usual floor function.

Combining Eq. (10) and Eq. (11) we get under assumptions
0-2 that as p→∞ the error density d(t) is well approximated
by the typical density:

dtyp(t) =

{
3
4 |t| ≤ 1

2
1
2

(
1
t − 1

)
+ 1

4

(
1
t − 1

)2 |t| > 1
2

(12)

which is represented in Fig. 2 and is clearly a good approxi-
mation of the exact densities of Fig. 1.

Remark: A remark to the effect that assumptions 0-2 are
increasingly likely to be met as p→∞.

Fig. 2. Typical distribution of rounding errors (in unit roundoffs)

III. PROBABILISTIC INTERPRETATION OF SIMPLE
EXPRESSIONS

In this section we present a class of numerical programs for
which it is possible to formally compute an output distribution
given an input distribution, whilst implementing the probabilis-
tic model of IEEE arithmetic operations given by Eq. (2). In
§ IV we will present some initial steps towards numerically
implementing the model presented in this section.

A. A simple syntax

Our class of numerical program given by the following
simple grammar.

Terms:
t ::= r | xi | t opm t r ∈ F, i ∈ N, opm ∈ {+.−,×,÷}
Tests:
b ::= t < r | t > r | t == r r ∈ F
Programs:
p ::= skip | xi := t | p ; p | if b then p else p

For every expression p, we consider the list (x1, . . . , xn)
of variables appearing in p. We view all variables as public
variables and we associate with the list (x1, . . . , xn) a mul-
tivariate random variable (random vector) X modelling its
(probabilistic) state. We will call this data the probabilistic
context and denote it {(x1, . . . , xn) ∼ X}. We will denote by
Xi the ith marginal of X. The cumulative distribution function
of X will be given by

P [X1 ≤ x1, . . . , Xn ≤ xn] .

We assume a fixed exponent range emin, emax and precision
level p throughout.

B. Random variable arithmetic

Whilst the probabilistic interpretation of programs will be
defined in terms of an operator updating the probabilistic

context, i.e. an operator sending random vectors to random
vectors, the probabilistic interpretation of terms will be de-
fined in terms of arithmetic operation on (univariate) random
variables. We briefly review arithmetic operations on random
variables which posses a density function (w.r.t. the Lebesgue
measure) translate into operations on these densities [16]. In
particular the density of the sum of two independent random
variables is given by the convolution of the densities. In more
detail one has the following correspondence:

X + Y ∼ fX ⊕ fY (t) =
∫ ∞
−∞

fX(x)fY (t− x) dx (13)

X − Y ∼ fX 	 fY (t) =
∫ ∞
−∞

fX(x)fY (x− t) dx (14)

X × Y ∼ fX ⊗ fY (t) =
∫ ∞
−∞

1

|x|
fX(x)fY

(
t

x

)
dx (15)

X ÷ Y ∼ fX � fY (t) =
∫ ∞
−∞
|x|fX(x)fY (tx)dx (16)

Similarly, addition and multiplication by a scalar correspond
to

α+X ∼ (α⊕ fX)(t) = f(t+ α)

αX ∼ (α⊗ fX)(t) = αf(αt)

C. Probabilistic interpretation

For any univariate random variable X with density fX ,
we define the error of X – notation E(X) – as the random
variable X−X̂

X whose density is given by Eq. (7). For any n-
dimensional multivariate random variable X we write Xi, 1 ≤
i ≤ n for its ith marginal distribution. The probabilistic
interpretation developed below dates back to [10].

1) Input quantization: Given a probabilistic context, the
first question is to decide whether we need to model an initial
quantization. This would correspond for example to modelling
the quantization of an analog input (e.g. a sensor) or of an
input generated at a higher precision level (e.g. a routine at
half-precision level receiving input in double-precision). If we
choose to model this step, then we need to add a probabilistic
error term to each input, this is achieved by the probabilistic
quantization sending X to the multivariate distribution with
cumulative distribution function

P [X1(1 + E(X1)) ≤ x1 . . . ≤ Xn(1 + E(Xn))]

where the explicit computation of the random variables X1(1+
E(Xi)) can be performed using the densities derived in § II
and the operations on densities defined in § III-B.

2) Terms: will be modelled as (univariate) random variables
using the following inductive definition:

model(r) = r, the constant r.v.
model(xi) = Xi

model(t1 opm t2) = (model(t1) op model(t2)) ·
(1 + E(model(t1) op model(t2)))

(17)

Note how we model the arithmetic operations in accordance
with the fundamental model of Eq. (2): we first compute the
random variable model(t1) op model(t2) (typically using
the operations on densities defined in § III-B) which corre-
sponds to the infinite-precision operation, and we then add a
probabilistic error term whose distribution is computed from
the distribution of model(t1) op model(t2) itself using the
densities derived in § II.

3) Tests: correspond to the obvious subset of Rn generated
by the comparisons. Thus if t(x1, . . . , xn) is a term in n
variables

model(t < r) = {(x1, . . . , xn) ∈ Rn | t(x1, . . . , xn) < r}

and similarly for t > r and t == r.
4) Expressions: will be modelled as operations sending

multivariate random variables to multivariate random vari-
ables. In effect, updating the probabilistic context.

(i) skip:
model(skip)(X) = X

(ii) Assignments: model(xi := t)(X) is the multivariate
random variable whose cumulative distribution function
is given by

P[X1 ≤ x1, . . . , Xi−1 ≤ xi−1,model(t) ≤ xi,
Xi+1 ≤ xi+1, . . . , Xn ≤ xn]

(iii) Sequential composition:

model(p1 ; p2)(X) = model(p2)(model(p1)(X))

For if then else statements we need to introduce the
following notation: if B ⊆ Rn is a measurable subset of
Rn and X is a multivariate random variable in Rn, then XB

will denote the multivariate random variable with cumulative
distribution function

P [X1 ≤ x1, . . . , Xn ≤ xn ∧ (X1, . . . , Xn) ∈ B]

With this notation we can now define
(iv) Conditionals:

model(if b then p1 else p2)(X) =

model(p1)
(
Xmodel(b)

)
+model(p2)

(
Xmodel(b)c

)
where model(b)c is the complement of model(b)

The rules given above allows us (in principle) to compute
the output distribution of any expression given by the grammar
of § III-A. By construction this output will include the cu-
mulative and combined effect of every probabilistic rounding
occurring through arithmetic operations via the model (2).

IV. EXPERIMENTAL RESULTS

We have implemented the probabilistic interpretation of the
class of terms (defined in § III-A) whose syntax has the
structure of a tree, that is to say terms where variables are not
repeated (in which case the syntax would be a DAG). We can
thus compute the probabilistic interpretation of (x+y)/(z∗t)
but not of (x + y)/(x ∗ y). The reason for this current

limitation is that two occurrences of the same variable must be
interpreted as two perfectly correlated random variables, i.e.
a probability distribution whose support lies on the diagonal
of R2. Such a distribution cannot have a two-dimensional
density function, and this renders their representation highly-
non trivial. For the time being we leave this problem to future
work.

As shown in § III-C, the interpretation of terms is com-
puted by performing arithmetic operations on random vari-
ables. For random variables whose probability distribution
is representable by density functions, § III-B shows how
these arithmetic operations can be implemented in practice.
A sophisticated version of Eq. (13)-Eq. (16) is implemented
in the Python library PaCAL [8][9] on which we have based
the evaluation of the probabilistic interpretation of terms.

A. Rounding error distribution
Our implementation focuses on computations performed

in low precision, that is to say half-precision or lower. We
therefore compute the distribution of relative errors using the
exact analytic formula Eq. (7).

PaCAL concretely implements random variables as a den-
sity function represented by a piecewise Chebyshev interpo-
lation polynomial. We therefore use the same representation
and concretely represent the density Eq. (7) as a Chebyshev
interpolating polynomial. The polynomial interpolation is per-
formed using the library pychebfun, a Python implementa-
tion of the library chebfun [1] developed to perform accurate
and fast computations on functions represented as Chebyshev
polynomial interpolations.

Fig. 3 shows a plot of the half-precision error distribution
for a random variable distributed uniformly on [0, 1]. The red
line is the density represented as a Chebyshev interpolating
polynomial, the blue area is a histogram of the relative round-
ing error on one million samples. Note again the similarity
with the typical density function represented in Fig. 2.

Fig. 3. Implemented density function vs Monte-Carlo simulation.

B. Range analysis
With a concrete representation of the error distribution asso-

ciated with an input distribution we can recursively evaluate

the probabilistic interpretation of terms following (17). This
computes the final output distribution (including probabilistic
rounding errors) of a term, given input distributions for each
of its variables. A simple application of this output distribution
is range analysis.

We first consider a simple application of range analysis,
namely the detection of overflows. To illustrate our proba-
bilistic approach consider two variables x0, x1 with x0 dis-
tributed uniformly on [10, 15.5] and x1 distributed uniformly
on [0.97, 2]. Suppose that the working precision is 3 bits for the
exponent and 3 bits for the mantissa and that we are interested
in the term x0/x1. In infinite precision 15.5/0.97 < 16, the
largest representable number at the given precision level, and
there is no overflow. In reduced precision however overflow
can occur. In this case, an analyser like FPTaylor will correctly
detect the overflow and return an infinite range, but will not
be able to quantify the likelihood of overflow. Fig. 4 shows the
output distribution of the term x0/x1 (red line), the support
of the output distribution (‘PM’ in the legend), the output
range of FPTaylor (‘FPT’ in the legend), and a histogram of
the computation x0/x1 performed on one million samples in
reduced precision. Analytically, the probability of overflow is
0.0775%, and empirically 0.0642% of the samples overflow.

Fig. 4. Analytical and simulated output distribution for x0/x1.

Next, we consider two benchmarks from FPBench [3] which
our current setup can handle. In both cases we take half-
precision as the working precision. The first benchmark is
test02_sum8less which is given by the term:

((((((x0+ x1) + x2) + x3) + x4) + x5) + x6) + x7

with each xi assumed to be uniformly distributed on the
interval [1, 2]. The result of the range analysis are shown
in Fig. 5. The support of the output distribution provides
marginally worse error bounds than FPTaylor and is in good
agreement with one million Monte-Carlo simulations, that is to
say one million evaluations of the term test02_sum8less
in reduced precision where is input value is sampled uniformly
from [1, 2]. Crucially, we can probabilistically tighten these
bound: at 99.99% confidence we can say that the output range
lies in the interval [9.0, 15.0].

Fig. 5. Analytical and simulated output distribution for test02_sum8less.

The second benchmark provides an even stronger case for
considering probabilistic range analysis. Consider the multi-
plicative cousin of test02_sum8less given by the term
test02_mul8less:

((((((x0 ∗ x1) ∗ x2) ∗ x3) ∗ x4) ∗ x5) ∗ x6) ∗ x7

with each xi assumed to be uniformly distributed on the
interval [−3, 3]. The range analysis test02_mul8less is
displayed in Fig. 6. Again the support of the output distribution
is marginally wider that the one provided by FPTaylor, but
with 99.99% confidence we can tighten the output range by
about five orders of magnitude in base 2 to [−206, 206].

Fig. 6. Analytical and simulated output distribution for test02_mul8less

REFERENCES

[1] Zachary Battles and Lloyd N Trefethen. An extension of matlab
to continuous functions and operators. SIAM Journal on Scientific
Computing, 25(5):1743–1770, 2004.

[2] George Constantinides, Peter YK Cheung, and Wayne Luk. Synthesis
and optimization of DSP algorithms. Springer Verlag, 2004.

[3] Nasrine Damouche, Matthieu Martel, Pavel Panchekha, Jason Qiu, Alex
Sanchez-Stern, and Zachary Tatlock. Toward a standard benchmark
format and suite for floating-point analysis. 2016.

[4] Eva Darulova, Anastasiia Izycheva, Fariha Nasir, Fabian Ritter, Heiko
Becker, and Robert Bastian. Daisy-framework for analysis and optimiza-
tion of numerical programs (tool paper). In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
pages 270–287. Springer, 2018.

[5] Nicholas J Higham. Accuracy and stability of numerical algorithms,
volume 80. Siam, 2002.

[6] Nicholas J Higham and Theo Mary. A new approach to probabilis-
tic rounding error analysis. SIAM Journal on Scientific Computing,
41(5):A2815–A2835, 2019.

[7] Ilse CF Ipsen and Hua Zhou. Probabilistic error analysis for inner
products. arXiv preprint arXiv:1906.10465, 2019.

[8] Szymon Jaroszewicz and Marcin Korzeń. Arithmetic operations on
independent random variables: A numerical approach. SIAM Journal
on Scientific Computing, 34(3):A1241–A1265, 2012.

[9] Marcin Korzen and Szymon Jaroszewicz. PaCAL: A python package for
arithmetic computations with random variables. Journal of Statistical
Software, 57(10):5, 2014.

[10] Dexter Kozen. Semantics of probabilistic programs. J. Comput. Syst.
Sci., 22(3):328–350, June 1981.

[11] Debasmita Lohar, Milos Prokop, and Eva Darulova. Sound probabilistic
numerical error analysis. In International Conference on Integrated
Formal Methods, pages 322–340. Springer, 2019.

[12] Victor Magron, George Constantinides, and Alastair Donaldson. Cer-
tified roundoff error bounds using semidefinite programming. ACM
Transactions on Mathematical Software (TOMS), 43(4):34, 2017.

[13] Microprocessor Standards Committee of the IEEE Computer Society.
IEEE Standard for Floating-Point Arithmetic, June 2019.

[14] Douglass Stott Parker. Monte Carlo Arithmetic: exploiting randomness
in floating-point arithmetic. University of California (Los Angeles).
Computer Science Department, 1997.

[15] Alexey Solovyev, Marek S Baranowski, Ian Briggs, Charles Jacobsen,
Zvonimir Rakamarić, and Ganesh Gopalakrishnan. Rigorous estimation
of floating-point round-off errors with symbolic taylor expansions.
ACM Transactions on Programming Languages and Systems (TOPLAS),
41(1):20, 2018.

[16] M.D. Springer. The algebra of random variables. Probability and
Statistics Series. Wiley, 1979.

[17] John Von Neumann and Herman H Goldstine. Numerical inverting of
matrices of high order. Bulletin of the American Mathematical Society,
53(11):1021–1099, 1947.

