
FastLAS: Scalable Inductive Logic Programming incorporating Domain-specific
Optimisation Criteria

Abstract

Inductive Logic Programming (ILP) systems aim to find a set
of logical rules, called a hypothesis, that explain a set of ex-
amples. In cases where many such hypotheses exist, ILP sys-
tems often bias towards shorter solutions, leading to highly
general rules being learned. In some application domains like
security and access control policies, this bias may not be de-
sirable, as when data is sparse more specific rules that guaran-
tee tighter security should be preferred. This paper presents a
new general notion of a scoring function over hypotheses that
allows a user to express domain-specific optimisation criteria.
This is incorporated into a new ILP system, called FastLAS,
that takes as input a learning task and a customised scoring
function, and computes an optimal solution with respect to
the given scoring function. We evaluate the accuracy of Fast-
LAS over real-world datasets for access control policies and
show that varying the scoring function allows a user to tar-
get domain-specific performance metrics. We also compare
FastLAS to state-of-the-art ILP systems, using the standard
ILP bias for shorter solutions, and demonstrate that FastLAS
is significantly faster and more scalable.

Introduction
Inductive Logic Programming (ILP) (Muggleton 1991) sys-
tems aim to find a set of logical rules, called a hypothesis,
that, together with some existing background knowledge,
explain a set of examples. Often, many alternative hypothe-
ses can explain the examples, and most systems employ a
bias towards shorter solutions, based on Occam’s razor (the
solution with the fewest assumptions is the most likely).

Choosing the shortest hypothesis often leads to very gen-
eral hypotheses being learned from relatively few examples.
While this can be a huge advantage of ILP over other ma-
chine learning approaches that need larger quantities of data,
learning such general rules without large quantities of data
to justify them may not be desirable in every application do-
main. For example, in access control, wrongly allowing ac-
cess to a resource may be far more dangerous than wrongly
denying access. So, learning a more general hypothesis, rep-
resenting a more permissive policy, would be more danger-
ous than a specific hypothesis, representing a more conser-
vative policy. Equally, for access control where the need

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for resources is time critical, wrongly denying access could
be more dangerous than wrongly allowing access. When
learning such policies, and choosing between alternative hy-
potheses, it would be useful to specify whether the search
should be biased towards more or less general hypotheses.

In this paper, we introduce a new ILP system, called Fast-
LAS, for learning Answer Set Programs (ASP) (Gelfond and
Lifschitz 1988; Brewka, Eiter, and Truszczyński 2011), tar-
geted at solving a restricted version of the context-dependent
learning from answer sets tasks defined in (Law, Russo, and
Broda 2016), in which tasks require only observation pred-
icate learning. The FastLAS system has two main advan-
tages. Firstly, it takes as input a learning task and a (domain-
specific) scoring function for hypotheses. The idea is that if
there are alternative hypotheses that explain the examples,
the hypothesis with the lowest score is preferred. This gen-
eralises the standard ILP approach, where hypothesis with
the lowest number of literals are normally assumed to be
preferred. Secondly, it is specifically designed to be scal-
able with respect to the hypothesis space – the set of all rules
which can appear in a hypothesis. The FastLAS algorithm
uses the novel approach of computing a smaller subset of
the hypothesis space, called an OPT-sufficient subset, that
is guaranteed to contain at least one optimal solution with
respect to the given scoring function. This smaller search
space can be orders of magnitude smaller than the full hy-
pothesis space of a given learning task.

We evaluated the effect of domain-specific scoring func-
tions by applying FastLAS to real-world datasets for access
control policies. Results show that domain-specific scoring
functions lead to a higher accuracy than the standard ILP
bias. We evaluated the scalability of FastLAS against ex-
isting state-of-the-art ASP-based ILP systems on real-world
datasets, showing that FastLAS is significantly faster than
these systems. FastLAS also guarantees optimality of the
solutions, and achieves the same if not higher levels of ac-
curacy by exploring, for the same dataset, a much larger hy-
pothesis space.

The next section reviews the necessary background and
notation for the paper. In the next sections, (domain-
specific) scoring functions and the FastLAS algorithm are
presented, followed by an evaluation of the approach. The
paper concludes with discussions of related and future work.

Background
This section introduces basic notions used throughout the
paper. Given any atoms h, b1, . . . , bn, c1, . . . , cm, a nor-
mal rule is h : - b1, . . . , bn, not c1, . . . , not cm, where h is
the head, b1, . . . , bn, not c1, . . . , not cm (collectively) is
the body of the rule, and “not” represents negation as fail-
ure. Rules of the form : - b1, . . . , bn, not c1, . . . , not cm
are called constraints. The head (resp. body) of a rule R
is denoted head(R) (resp. body(R)) and body+(R) and
body−(R) denote the positive and negative body literals in
R, respectively. A rule R is said to be a subrule of a rule R′

iff head(R) = head(R′) and body(R) ⊆ body(R′) (we call
R a strict-subrule if R 6= R′). In this paper, unless stated
otherwise, we assume an ASP program to be a set of nor-
mal rules and constraints. The Herbrand Base of a program
P , denoted HBP , is the set of variable free (ground) atoms
that can be formed from predicates and constants in P . The
subsets of HBP are called the (Herbrand) interpretations of
P . Given a program P and an interpretation I ⊆ HBP , the
reduct P I is constructed from the grounding of P in 3 steps:
firstly, remove rules whose bodies contain the negation of an
atom in I; secondly, remove all negative literals from the re-
maining rules; and finally, replace the head of any constraint
with ⊥ (where ⊥ /∈ HBP). Any I ⊆ HBP is an answer
set of P if it is the minimal model of the reduct P I . AS(P)
denotes the set of answer sets of a program P . ASP is the set
of all ASP programs and Rules is the set of all ASP rules.

We now present the form of examples used in this pa-
per, which were first formalised in (Law, Russo, and Broda
2018). A partial interpretation e is a pair of sets of atoms
〈einc, eexc〉, we refer to einc and eexc as the inclusions and
exclusions respectively. An interpretation I is said to extend
e if and only if einc ⊆ I and eexc ∩ I = ∅. A weighted
context-dependent partial interpretation (WCDPI) is a tuple
e = 〈eid, epen, epi, ectx〉, where eid is an identifier for e,
epen is either a positive integer or∞, called a penalty, epi is
a partial interpretation and ectx is an ASP program called a
context. A WCDPI e is accepted by a program P iff there is
an answer set of P ∪ ectx that extends epi.

Hypothesis Spaces
Many ILP systems (e.g. (Muggleton 1995; Ray 2009; Srini-
vasan 2001; Kazmi, Schüller, and Saygın 2017)) use mode
declarations as a form of language bias to specify hypothe-
sis spaces. In this paper, we follow a similar approach. A
mode bias is defined as a pair of sets of mode declarations
〈Mh,Mb〉, where Mh (resp. Mb) are called the head (resp.
body) mode declarations. Each mode declaration is a literal
whose abstracted arguments are either var(t) or const(t),
for some constant t (called a type). Informally, a literal is
compatible with a mode declaration m if every instance of
var(t) in m has been replaced with a variable, and every
const(t) with a constant of type t1.
Definition 1. Given a mode bias M = 〈Mh,Mb〉, a normal
rule R is in the search space SM if and only if (i) the head

1The set of constants of each type is assumed to be given with
a task, together with the maximum number of variables in a rule,
giving a set of variables V1, . . . , Vmax that can occur in a hypothesis.

of R is compatible with a mode declaration in Mh; (ii) each
body literal of R is compatible with a mode declaration in
Mb; and (iii) no variable occurs with two different types.

Scoring Functions
This section presents the new notion of a scoring func-
tion and formalises the learning task targeted by FastLAS.
Specifically, Definition 2 defines a restriction of the context-
dependent learning from answer sets task used by ILASP.
The restriction allows only observational predicate learn-
ing (where the predicates in the examples coincide with
the predicates defined by the hypothesis), non-recursive hy-
potheses, and programs with exactly one answer set.
Definition 2. An Observational Predicate Learning from
Answer Sets (ILPOPL

LAS) task is a tuple T = 〈B,M,E+〉
where B is an ASP program called background knowledge,
M is a mode bias, and E+ is a set of WCDPIs such that
∀e ∈ E+, |AS(B ∪ ectx)| = 1, and no predicate in Mh

occurs in Mb or in the body of any rule in T . A hypothesis
H ⊆ SM covers an example e ∈ E+ iff B ∪ H accepts e.
H is an inductive solution of T (written H ∈ ILPOPL

LAS (T))
iff ∀e ∈ E+ st epen = ∞, H covers e. T is satisfiable iff
ILPOPL

LAS (T) 6= ∅. TOPL is the set of all ILPOPL
LAS tasks.

Given any task T , we say that an example in E+ is un-
covered by a hypothesis H iff it is not covered, and use
UNCOV (H,T) to denote the set of all such examples.
Definition 3. A scoring function is a function S : ASP ×
TOPL → R>0. A hypothesis H ∈ ASP is said to be an
optimal solution of a task T ∈ TOPL w.r.t. a scoring function
S iff H ∈ ILPOPL

LAS (T) and there is no H ′ ∈ ILPOPL
LAS (T)

such that S(H ′, T) < S(H,T).
The addition of two scoring functions S1 and S2 is denoted
(S1 + S2), i.e. (S1 + S2)(H,T) = S1(H,T) + S2(H,T).
Definition 4. Let S be a scoring function. A function Srule :
Rules × TOPL → R>0 is a decomposition of S iff for each
P ∈ ASP and T ∈ TOPL, S(P, T) =

∑
r∈P
Srule(r, T).

Example 1. Not all scoring functions have decomposi-
tions. For instance, consider the scoring function Snoise =
Slen + Spen, where Slen(H,T) = |H| and Spen(H,T) =∑
e∈UNCOV (H,T)

epen. There is clearly a decomposition of

Slen, Srulelen (h, T) = |h|; however, Spen is not decompos-
able. To see this, consider the ILPOPL

LAS task with an empty
background knowledge, the hypothesis space {p., q.} and a
single example 〈eg1, 1, 〈{p, q}, ∅〉, ∅〉. Assume there is such
a decomposition Srulepen . Srulepen (p., T) must be Spen({p.}, T)
which is 1. Similarly, Srulepen (q., T) must also be 1. This
would imply that Spen({p, q}, T) should be 2, but it is 0.
Hence Spen, and similarly Snoise, are not decomposable.

The FastLAS algorithm presented in the next section sup-
ports scoring functions that are either decomposable, or of
the form (S + Spen) where S is decomposable.

Algorithm
This section presents the FastLAS algorithm, which is guar-
anteed to return an optimal solution of any ILPOPL

LAS task

with respect to any scoring function decomposition. Fast-
LAS consists of four main steps: (1) initial construction; (2)
generalisation; (3) optimisation; and (4) solving. During the
initial construction phase, a subset S1

M of the given hypoth-
esis space is constructed, which is guaranteed to contain at
least one solution of the task if the task is satisfiable. S1

M
is likely to contain very specific rules, each of which has
been computed to cover only a single example. The gener-
alisation phase searches for rules that are subrules of one or
more rules in S1

M , which can cover multiple examples lead-
ing to a larger hypothesis space S2

M . The optimisation phase
takes each rule R in S2

M and computes an optimal subrule
R′, with respect to the scoring function, that is consistent
with the exclusions in all examples. The resulting hypothe-
sis space S3

M is guaranteed to contain an optimal inductive
solution of the task (if the task is satisfiable). In the final
solving phase, the FastLAS algorithm searches for a subset
of S3

M that covers all the examples and which is guaranteed
to be an optimal solution of the full task. For the remainder
of this section, let T be the ILPOPL

LAS task 〈B,M,E+〉. The
proofs of the theorems and propositions in this section can
be found in the supplementary material.

Initial Construction
We say that a subset of the hypothesis space of a task is
SAT-sufficient iff it either contains at least one solution of
the task or the original task is unsatisfiable. This section
presents a method for computing a SAT-sufficient subset of
a hypothesis space.

Definition 5. Let e ∈ E+ and a be a ground atom. A rule
R is in the characteristic ruleset of T w.r.t. a and e (written
C(T, a, e)) iff: (i) R ∈ SM ; (ii) there is at least one ground
instance Rg of R st a = head(Rg) and body(Rg) is satisfied
by the unique answer set of B ∪ ectx; and (iii) there is no
rule R′ that satisfies (i) and (ii) st R is a strict subrule of R′.

Example 2. Consider a (propositional) task T with an
empty background knowledge, mode declarations M =
〈{p, q}, {r, not r, s, not s}〉 and two examples e1 =
〈1,∞, 〈{p}, {q}〉, {r.}〉 and e2 = 〈2,∞, 〈{q}, {p}〉, ∅〉.
• C(T, p, e1) = {p : - r, not s.}.
• C(T, q, e1) = {q : - r, not s.}.
• C(T, p, e2) = {p : - not r, not s.}.
• C(T, q, e2) = {q : - not r, not s.}.
Proposition 1. Let e be an example in E+ and H ⊆ SM .
B ∪H accepts e if and only if (1) for each a ∈ einc there is
at least one rule in H that is a subrule of a rule in C(T, a, e);
and (2) for each a ∈ eexc, no rule in H is a subrule of any
rule in C(T, a, e).

Proposition 1 shows that the characteristic rulesets can
be used to check whether a hypothesis (combined with the
background knowledge) accepts an example. This leads to
the definition of the characterisation of an example.

Definition 6. The characterisation of an example e ∈
E+ (written C(T, e)) is the pair 〈eI , eV 〉, where eI =⋃
a∈einc

C(T, a, e) and eV =
⋃

a∈eexc

C(T, a, e).

Theorem 1 shows that the characterisations of examples in T
can be used to construct a SAT-sufficient subset of a hypoth-
esis space called the characterisation of T (written C(T)).
Theorem 1. Let C(T) = {R | e ∈ E+, R ∈ eI}. T is
satisfiable iff C(T) contains an inductive solution of T .
Note that the eV sets are not used when constructing C(T).
The intuition is that the union of all eI sets contains any
maximal rule that proves at least one inclusion, and therefore
any maximal rule that could possibly be useful for covering
an example. The eV sets, on the other hand, are the sets of
all maximal rules that prove at least one exclusion, and so
these are the rules that can not be in any inductive solution.
The eV sets are therefore not important when constructing
a SAT-sufficient subset of the hypothesis space. They are,
however, crucial in the optimisation phase of the algorithm,
when the maximal rules in C(T) are optimised according to
the scoring function. The eV sets give a boundary to this
optimisation to prevent exclusions from being proved.
Example 3. Reconsider the task T from Example 2.

• C(T, e1) = 〈{p : - r, not s.}, {q : - r, not s.}〉.
• C(T, e2) = 〈{q : - not r, not s.}, {p : - not r, not s.}〉.
• C(T) = {p : - r, not s. q : - not r, not s.}
C(T) is SAT-sufficient, as C(T) itself is a solution. The

rules in the eV sets give a boundary for optimising the rules
in C(T). In this case, they show that neither rule can have
their first body literal removed without causing one of the
exclusions to be proved.

The characterisation of an example can be computed
using ASP. FastLAS uses a meta-level ASP encoding
M(T, a, e) for which there is a one-to-one mapping between
the subset-maximal2 answer sets ofM(T, a, e) and the rules
in C(T, a, e). The Clingo5 (Gebser et al. 2018) ASP solver
can be used to efficiently compute the subset-maximal an-
swer sets of a program. The first step of the FastLAS algo-
rithm is to compute the characterisations of each example.
As characterisations of examples are independent from each
other, they can be computed in parallel.

Generalisation
Characterisations of examples contain extremely specific
rules. It is necessary to consider rules that are subrules of
multiple rules in the characterisations. Definition 7 gener-
alises the characteristic hypothesis space.
Definition 7. For any rule R ∈ SM , let cR be the set of all
rules R′ in C(T) st R is a subrule of R′. The generalised
characteristic hypothesis space of T , written G(T), is the set
containing every rule R for which cR 6= ∅ and there is no
rule R′ ∈ SM st R is a strict subrule of R′ and cR = cR′ .
Example 4. Let T be a task such that C(T) = {R1, R2},
where R1 = p : - q, r and R2 = p : - q, s.
• R1, R2 ∈ G(T).

2Given a program P . A is a subset-maximal answer set of P
iff A ∈ AS(P) and A is not a subset of any other answer set in P .
Note that as the meta-level encoding contains choice rules, it does
have some non-subset-maximal answer sets.

• R3 = p : - q ∈ G(T) as cR3 = {R1, R2} (and clearly any
rule for which R3 is a strict subrule could not be a subrule
of both R1 and R2).

• No other rule is in G(T).
The second step of FastLAS is to compute G(T) from

C(T). This is done by taking each rule R in C(T) (in paral-
lel) and searching for subrules which are in G(T).

Optimisation
We say that a subset of the hypothesis space of a task is
OPT-sufficient (w.r.t. a scoring function) iff it either contains
at least one optimal solution of the task or the original task
is unsatisfiable. The generalised characteristic hypothesis
space contains rules that have been generalised, but only for
cases where it is possible to combine multiple rules. In many
cases, it is also necessary to generalise rules in order to opti-
mise with respect to the scoring function. As we only focus
on decomposable scoring functions in this paper, this com-
putation can be done independently for each rule in G(T).
Definition 8 formalises the notion of an optimised charac-
teristic hypothesis space.
Definition 8. Let R ∈ SM and S be a decomposable scor-
ing function. R′ is an optimisation of R iff: (1) R′ is a
subrule of R; (2) @e ∈ E+ st epen =∞ and R′ is a subrule
of a rule in eV ; and (3) there is no R′′ satisfying (1)-(2) st
Srule(R′′, T) < Srule(R′, T). R is optimisable iff it has at
least one optimisation. An optimised characteristic hypoth-
esis space of T w.r.t. S is a set of rules containing at least
one optimisation of each optimisable rule in G(T).
Example 5. Reconsider the task T from Example 2, for
which C(T) is given in Example 3, and the scoring func-
tion Slen. First note that G(T) = C(T). The subrules of the
rule p : - r, not s are itself, p : - r, p : - not s and p. The
last two rules are subrules of p : - not r, not s, which is
in (e2)V . Clearly the score of the first rule is higher than
the second; hence, the only optimisation of the original rule
is p : - r. A similar argument shows that q : - not r is the
only optimisation of q : - not r, not s. So the only op-
timised characteristic hypothesis space of T w.r.t. Slen is
{p : - r. q : - not r.}.

Theorem 2 shows that optimised characteristic hypothesis
spaces are guaranteed to be OPT-sufficient.
Theorem 2. Let O be an optimised characteristic hypothe-
sis space of T w.r.t. to a decomposable scoring function S.
If T is satisfiable, then O contains at least one optimal in-
ductive solution of T w.r.t. S.

Computing Optimised Characteristic Hypothesis Spaces
Given a rule R ∈ G(T) it is possible to compute an
optimisation of R using ASP, provided that the decom-
position of the scoring function is expressed in ASP, us-
ing a predicate penalty/2. Our ASP representation re-
lies on the following notation. Given an atom a, rv(a)
denotes the atom constructed by replacing each variable
V in a with the ground term var(“V”). For any rule
R, M(R) is the set of facts {head(rv(a)). | a =
head(R)} ∪ {in body(pos(rv(a))). | a = body+(R)} ∪
{in body(neg(rv(a))). | a = body−(R)}.

Definition 9. Let P be an ASP program. The scoring
function S[P] is defined in terms of its decomposition,
S[P]rule(h, T) = min

A∈AS(M(h)∪P)

∑
penalty(x, y)∈A x.

Example 6. To express the Slen scoring function in Fast-
LAS, we can use the ASP program Plen. Slen = S[Plen].

Plen =

{
penalty(1, head) : - head().
penalty(1, body(X)) : - in body(X).

}
Note that the second rule has a variable X in the head so

a penalty of 1 is paid per body literal. Without this variable
the penalty paid for the body of a rule could only be 0 or 1.
For any ASP-based decomposition, we compute the optimi-
sation of a rule R using the ASP encoding in Definition 103.
Definition 10. Let S[P] be a scoring function and R be a
rule.Mopt(P,R, T) is the program containing:

1. P .
2. M(R), where all in body facts “a.” have been replaced

with choices “0{a}1.”.
3. The weak constraint :∼ penalty(X, Y).[X@1, Y].
4. For each e ∈ E+ and R′ ∈ eV st head(R) =

head(R′), the rule v(eid) : - not in body(a1), . . . ,
not in body(an). where {a1, . . . , an} are the literals4 in
the body of R that do not occur in the body of R′.

5. For each e ∈ E+ st epen =∞, the constraint : - v(eid).
Any answer set A ofMopt(P,R, T) can be mapped back

into an ASP rule, by interpreting the head and in body

atoms in A.M−1rule(A) denotes the rule extracted from A.
Theorem 3. Let S[P] be a scoring function and R be a
rule. Let AS be the optimal answer sets ofMopt(P,R, T).
{M−1rule(A) | A ∈ AS} is the set of all optimisations of R.

FastLAS computes an optimisation of each optimisable
rule in G(T) using the Mopt encoding, the correctness of
which is proved by Theorem 3. By Theorem 2, this set of
optimisations is guaranteed to be OPT-sufficient.

Noise. The definition of an optimisation of a rule has a
strict constraint that says that no optimisation can be a sub-
rule of any rule which proves an exclusion of an example
with an infinite penalty. This is because no such rule could
ever appear in an inductive solution of the task. However,
for examples with finite penalties which can be left uncov-
ered, we must consider such rules. In this setting we use an
iterative method, formalised by Algorithm 1. opt(P,R, T)
iteratively constructs a set of rules RS such that in each iter-
ation, the new rule Rnew added to RS satisfies the following
properties: (1) Rnew is a subrule of R; (2) R is not a sub-
rule of R′ ∈ eV for any e ∈ E+ such that epen = ∞; (3)
for each R′ ∈ RS there is at least one example e ∈ E+ for

3This uses a wider subset of ASP than other programs in this
paper. Roughly speaking, a choice rule “0{a}1.” is equivalent
to “a : - not â. â : - not a.” and generates two answer sets, with
and without a. The weak constraint :∼ penalty(X, Y).[X@1, Y]
creates a preference ordering over answer sets, st optimal answer
sets A minimise

∑
penalty(x, y)∈A

x.
4Positive literals a are replaced with pos(rv(a)) and negative

literals not a are replaced with neg(rv(a)).

which R′ is a subrule of at least one rule in eV and Rnew is
not a subrule of any rule in eV ; and (4) is optimal w.r.t. S[P].
Conditions (1), (2) and (4) are enforced byMopt. Condition
(3) is enforced by the constraints in CS. Theorem 4 shows
that Algorithm 1 can be used to compute an OPT-sufficient
subset of the hypothesis space.

Algorithm 1 opt(P,R, T)

procedure OPT(P,R, T)
CS = ∅; RS = ∅;
while AS(Mopt(P,R, T) ∪ CS) 6= ∅ do

Fix A to be an optimal answer set of the program
Rnew =M−1rule(A);
RS = RS ∪ {Rnew};

CS = CS ∪

{
: -

∧
v(idi)∈A

v(idi).

}
;

end while
returnRS;

end procedure

Theorem 4. Let S[P] be a scoring function.⋃
R∈G(T)

opt(P,R, T) is OPT-sufficient w.r.t. (S[P] + Spen).

Solving
Once an OPT-sufficient subset of the hypothesis space has
been computed it is possible to pass the task, along with
this hypothesis space to an off-the-shelf ILP system, such
as ILASP (Law, Russo, and Broda 2015), which can find an
optimal solution of the task. In fact, as the learning tasks that
FastLAS solves are a simplification of the full ILP context

LAS
tasks solved by ILASP, it is more efficient to use a spe-
cialised ASP encoding to find the optimal inductive solution.
This ASP encoding is given in the supplementary material
together with a proof of its correctness.

FastLAS is sound and complete w.r.t. the optimal induc-
tive solutions of any ILPOPL

LAS task w.r.t. any decompos-
able scoring function (or any decomposable scoring function
added to Spen), meaning that if FastLAS is used to solve
an ILPOPL

LAS task with the scoring function (Slen + Spen),
then it has exactly the same guarantees as the state-of-the-art
ILASP systems. However, we show in our evaluation that
FastLAS is significantly faster than ILASP on these tasks.

Evaluation
This section contains an evaluation of the FastLAS ap-
proach. The aim of the evaluation is to answer two ques-
tions: firstly, if we use standard scoring functions, is the
FastLAS algorithm faster than state-of-the-art approaches
that use the same standard scoring function; and secondly,
in cases where we have a domain-specific notion of perfor-
mance can we use domain-specific scoring functions to im-
prove performance w.r.t. this measure.

Comparison of FastLAS with the state-of-the-art
FastLAS was evaluated on two datasets that have previ-
ously been used to evaluate the state-of-the-art ASP-based

ILP systems: OLED (Katzouris, Artikis, and Paliouras
2016), INSPIRE (Kazmi, Schüller, and Saygın 2017) and
ILASP3 (Law, Russo, and Broda 2018).

INSPIRE (Kazmi, Schüller, and Saygın 2017) has been
evaluated using a sentence chunking (Tjong Kim Sang and
Buchholz 2000) dataset (Agirre et al. 2016), where the
goal is to learn to split a sentence into short phrases called
chunks. (Kazmi, Schüller, and Saygın 2017) describes how
to transform each sentence into a set of facts consisting of
part of speech (POS) tags, forming a pre-processing step.
We ran FastLAS on the processed version of the dataset
using each of these sets of facts as an example, and learn-
ing rules for whether to split the sentence between each
pair of tags. ILASP3 has previously been shown to out-
perform INSPIRE in terms of the average F1 score: 0.756
and 0.776 for tasks with 100 and 500 examples respectively,
compared with INSPIRE’s average of 0.733 and 0.712 (Law,
Russo, and Broda 2018). FastLAS achieves similar scores
of 0.750 and 0.7695. INSPIRE is an approximate system
that, although using the same scoring function as FastLAS
and ILASP3, does not guarantee optimality. This explains
the significantly better F1 scores of FastLAS and ILASP3.
One might expect that this would mean that INSPIRE would
be faster than FastLAS and ILASP3. This does not seem
to be the case – running times are not reported in (Kazmi,
Schüller, and Saygın 2017), but a timeout of 30 minutes is
used, after which the best solution computed so far was re-
turned, which would indicate that at least some of the ex-
periments did not complete in 30 minutes. On the other
hand, every experiment for FastLAS and ILASP3 completed
inside 30 minutes. Furthermore, FastLAS is significantly
faster than ILASP3, with average running times of 6.9s and
302.6s compared to ILASP3’s 209.4s and 1014.6s.

We compared FastLAS to OLED (Katzouris, Artikis, and
Paliouras 2016) and ILASP3 on a dataset containing data
gathered from a video stream (Fisher, Santos-Victor, and
Crowley 2004). Information such as the positions of peo-
ple has been extracted from the stream, and humans have
annotated the data to specify when any two people are inter-
acting. Specifically, we consider a task from (Katzouris, Ar-
tikis, and Paliouras 2016), in which the aim is to learn rules
to define initiating and terminating conditions for two peo-
ple meeting. As ILASP3 enumerates the hypothesis space
in full, it is not able to use large hypothesis spaces. A
small subset of the hypothesis space used by OLED was
used in the ILASP3 experiments, restricting the number of
literals in the body, employing several “common sense” con-
straints, such as a person cannot be walking and running at
the same time, and forbidding multiple uses of the same
predicate in the body of a single rule. As this is real data,
not constructed with a target hypothesis in mind, there may
be better hypotheses outside this restricted subset. In the
FastLAS experiments, we allowed a much larger hypothesis
space without these restrictions, containing over 244 non-
isomorphic rules, compared with the hypothesis space used
in the ILASP3 experiment, which had only 3370. Even so,

5The small differences between these scores is due to FastLAS
finding a different optimal solution to the one found by ILASP3.

Scoring function Recall Precision F1

Slen 0.78 / 0.98 0.96 / 0.95 0.86 / 0.96
Scov 0.82 / 0.98 0.95 / 0.95 0.88 / 0.96
Suni 0.84 / 0.98 0.95 / 0.95 0.89 / 0.96

Table 1: Results for the Amazon dataset, both for learning
accept and reject rules. Each entry in the table is of
the form (accept / reject).

the average running time for FastLAS is slightly faster, at
476.9s compared with ILASP3’s 576.3s. The average F1

is significantly higher, at 0.923, compared with ILASP3’s
0.842. The hypotheses learned by FastLAS are outside the
restricted space used by ILASP3, indicating that the larger
hypothesis space contains better quality solutions. OLED is
significantly faster than both ILASP3 and FastLAS on this
dataset, with an average running time of 107s; however, as
it is an approximate system that does not guarantee optimal-
ity, this is unsurprising. OLED’s average F1 score of 0.792
is much lower than both ILASP3’s and FastLAS’s.

Domain-specific scoring functions
We experimented with three scoring functions (each added
to Spen to account for noise), aimed at encouraging
progressively more generalisation. Their decompositions
were Srulelen , Srulecov (h, T) = 1000/(COV (h, T), where
COV (h, T) is the number of inclusions of examples in T
which are covered by h, and Sruleuni (h, T) = −16. We con-
sidered two datasets: Amazon (Amazon 2013) and Project
Management (Xu and Stoller 2014). Both datasets are based
on access logs, where many requests are made by various
users to access various resources, based on the attibutes of
the requester and the resource. The only attributes of re-
sources in the Amazon dataset is the resource id, whereas
the Project Management dataset also includes attributes such
as the resource type. The goal of this task was to learn
rules for each resource to determine whether a user should
be allowed access to different resources. We performed
10-fold cross fold validation, experimenting with learning
accept and assuming that a request should be rejected if
our learned rules do not say it should be accepted, and learn-
ing reject, assuming a default of accept.

The results show that for both datasets there is an order-
ing Slen, Scov , Suni, in terms of the recall when learning
accept rules. This indicates that Suni encourages learn-
ing more general hypotheses, which allow more requests.
There is a corresponding reverse ordering for the preci-
sion. Interestingly, the orderings in both cases are reversed
when learning reject rules, as a more general hypothesis
for reject denies more requests and therefore accepts fewer.

6Note that the last scoring function is technically not a valid
scoring function, as it returns a negative integer. This means that
FastLAS is not guaranteed to return the optimal solution in this
case. In fact, rather than returning the hypothesis with the most
rules, FastLAS returns the hypothesis with the most rules which
prove at least one inclusion of an example (the rules which do not
satisfy this criterion are not considered by FastLAS).

Scoring function Recall Precision F1

Slen 0.89 / 0.98 0.96 / 0.95 0.92 / 0.96
Scov 0.92 / 0.98 0.95 / 0.96 0.93 / 0.97
Suni 0.99 / 0.93 0.91 / 0.96 0.95 / 0.95

Table 2: Results for the Project Management dataset, both
for learning accept and reject rules. Each entry in the
table is of the form (accept / reject).

The ability of these scoring functions to encourage or dis-
courage generalisation has the potential to make a signifi-
cant impact. In security domains, where false positives are
potentially more dangerous than false negatives, a scoring
function which optimises the precision should be preferred,
whereas in healthcare, where false negatives may be more
dangerous, the reverse is true.

Universal F1 In (Cotrini, Weghorn, and Basin 2018) it
was argued that standard evaluation measures such as ac-
curacy and the F1 score may be misleading when evaluating
a learner in an access control setting. This is because cer-
tain types of request may not be likely to appear in the train-
ing/test data, meaning that, although they should be rejected,
there are no negative instances in the data. The standard
quality measures would not penalise overly permissive rules
that accept these missing requests. A new method of uni-
versal cross validation was proposed in (Cotrini, Weghorn,
and Basin 2018), which is based on a modification of the F1

score. We refer to it as the universal F1 or UF1 score.
When using an access control log for learning a policy for

accepting a particular resource r, we construct the examples
as follows. The positive and negative examples are as nor-
mal (the accepted and rejected requests, respectively). Ad-
ditionally, there is a third set of examples of “unlabeled” re-
quests, which consists of every person that occurs in the log,
but does not request access to r (they have requested access
to other resources). The implicit assumption behind univer-
sal F1 is that it is safer to treat these as negative instances,
and therefore when measuring the quality of a hypothesis, it
should be penalised for any of the unlabeled examples that it
says should be accepted. The definition of precision is there-
fore altered to universal precision: UP = tp

tp+fn+u , where
tp and fn is the number of true positives and false nega-
tive, as usual, and u is the number of unlabeled examples
predicted by the hypothesis. UF1 is then defined similarly
to F1, but using UP rather than standard precision. As the
number of unlabeled examples tends to be much higher than
the number of examples in the logs, and some of the unla-
beled examples are likely to be requests that should be ac-
cepted, even the best algorithms in (Cotrini, Weghorn, and
Basin 2018) had relatively low UF1 scores.

We compared FastLAS against the two best performing
methods from (Cotrini, Weghorn, and Basin 2018) using the
UF1 score, learning rules for accept on the same four re-
sources. The three scoring functions used earlier in this sec-
tion perform poorer than the two previous methods, because
they each encourage generalisation. In (Cotrini, Weghorn,
and Basin 2018), the full set of users in the log is assumed

Method Resource 25993 Resource 4675 Resource 75078 Resource 79092
Rhapsody 0.04 0.10 0.10 0.04
CTA 0.04 0.12 0.10 0.04
FastLAS: Slen 0.02 0.04 0.02 0.02
FastLAS: Scov 0.02 0.04 0.02 0.02
FastLAS: Suni 0.01 0.04 0.02 0.02
FastLAS: SUF1 0.08 0.10 0.11 0.04

Table 3: Universal F1 scores for the four resources in the Amazon dataset, learning accept rules.

to be given to the algorithms, and is used when selecting
rules. We took a similar approach, defining a new scoring
function to penalise overly general rules: SruleUF1

(h, T) =

1+ 1000×|Predicted(h)|√
|PosUsers∩Predicted(h)|

, where PosUsers is the set of users

who appear as an accept request in the training data and
Predicted(h) is the set of users who are predicted as accept
by h. The intuition of this scoring function is as follows: the
1 term is to make this a valid scoring function, which always
returns a positive integer; we multiply by the total number
of predicted users to penalise for generality; the number of
predicted positive instances is in the denominator to encour-
age these cases. There may be scoring functions with better
performance; however, on this dataset, compared with the
two previous methods, FastLAS with SruleUF1

(h, T) performs
as well as the two previous methods.

We make no claims about the legitimacy of universal F1

as a statistical measure, although we agree with its motiva-
tion. The experiments in this section were designed to show
that, if the goal of a learner is to maximise UF1, standard
scoring functions in ILP perform poorly, as they encourage
generalisation. If we instead use a specialised scoring func-
tion that discourages over generalisation, we can increase
the UF1 score. This demonstrates that we can inject domain-
specific preferences over the properties of hypotheses in or-
der to maximise a domain-specific notion of performance.

Related Work
The construction phase of the FastLAS algorithm is very
similar to early bottom clause ILP approaches used by Pro-
gol (Muggleton 1995), Aleph (Srinivasan 2001) and later
generalised by HAIL (Ray, Broda, and Russo 2003). A key
difference is that these early systems all used iterative cover
loop approaches to construct a hypothesis. A single positive
example (corresponding to a single inclusion in this paper) is
considered in each iteration. The systems compute the best
rule (or rules in the case of HAIL) that covers the example,
and add it to the hypothesis. This means that none of these
cover loop systems guarantee finding an optimal solution, as
although each iteration might find an optimal rule to add to
the hypothesis, the final hypothesis may still be sub-optimal.

The idea of allowing customised scoring functions has
been considered before. Aleph has nine built-in evaluation
functions, which are evaluated over single rules and mostly
defined over the coverage of the examples, but with some
also involving the length of the rule. Aleph also allows a
user defined evaluation function to be given, but the Aleph

manual (Srinivasan 2001) notes that it is usually not pos-
sible to define admissible pruning strategies for an arbitrary
evaluation function, so when using this feature the user must
also give an admisable pruning strategy. On the other hand,
FastLAS can solve a task with any ASP-decomposition of a
scoring function. A key difference between the approaches
is that Aleph’s evaluation function gives a measure of the
utility of a rule, whereas FastLAS’s scoring functions define
the cost of a rule. As noted above Aleph is not guaranteed
to find an optimal solution w.r.t. a given scoring function.

The variation of the INSPIRE system in (Schüller and
Benz 2018) used a scoring function with many parame-
ters, such as a cost for each variable, a cost for each posi-
tive/negative body literal, a cost for each variable that occurs
only in the head of the rule (and many others). The total cost
of a rule is the sum of its values for these costs. Each of the
cost parameters used by INSPIRE could by implemented in
FastLAS scoring functions. The flexibility of INSPIRE is
that a user can set the values for these costs, whereas the
flexibility in FastLAS is that a user can write a completely
new scoring function, defining their own parameters.

Conclusion and Future Work
The FastLAS algorithm presented in this paper solves a re-
stricted form of ILP context

LAS task with either a purely decom-
posable scoring function or the combination of a decompos-
able scoring function with the Spen function to allow for
noisy examples. The evaluation showed that even with these
restrictions, FastLAS shows significant improvements over
the state-of-the-art, both by improving scalability w.r.t. the
size of the hypothesis space and by allowing domain-specific
bias to be incorporated into the learning process.

The first step of future work is to lift the restrictions to
allow full ILP context

LAS tasks to be solved, allowing general
ASP programs, with multiple answer sets, to be learned.
This would immediately widen the scope of scoring func-
tions that could be defined; for example, cycles in the de-
pendency graph of the program impact the number of an-
swer sets of a program, and scoring functions could be de-
signed to minimise/maximise the number of cycles, or other
similar properties. Such scoring functions will necessitate
a generalisation of FastLAS for non-decomposable scoring
functions, which is being developed in current work.

In future work, it would also be interesting to further
investigate scoring functions whose decompositions return
negative integers, such as Sunirule. These scoring functions
can represent the utility, rather than the cost, of rules.

References
Agirre, E.; Gonzalez Agirre, A.; Lopez-Gazpio, I.; Maritx-
alar, M.; Rigau Claramunt, G.; and Uria, L. 2016. Semeval-
2016 task 2: Interpretable semantic textual similarity. In
SemEval-2016. 10th International Workshop on Semantic
Evaluation. ACL.
Amazon. 2013. Amazon.com employee access chal-
lenge. http://www.kaggle.com/c/amazon-employee-access-
challenge.
Brewka, G.; Eiter, T.; and Truszczyński, M. 2011. Answer
set programming at a glance. Communications of the ACM
54(12):92–103.
Cotrini, C.; Weghorn, T.; and Basin, D. 2018. Mining abac
rules from sparse logs. In 2018 IEEE European Symposium
on Security and Privacy (EuroS&P), 31–46. IEEE.
Fisher, R.; Santos-Victor, J.; and Crowley, J. 2004.
CAVIAR: Context aware vision using image-based active
recognition. http://homepages.inf.ed.ac.uk/
rbf/CAVIARDATA1/. Accessed: 2019-08-28.
Gebser, M.; Kaminski, R.; Kaufmann, B.; Lühne, P.; Ober-
meier, P.; Ostrowski, M.; Romero, J.; Schaub, T.; Schell-
horn, S.; and Wanko, P. 2018. The potsdam answer set solv-
ing collection 5.0. KI-Künstliche Intelligenz 32(2-3):181–
182.
Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In ICLP/SLP, volume 88,
1070–1080.
Katzouris, N.; Artikis, A.; and Paliouras, G. 2016. Online
learning of event definitions. Theory and Practice of Logic
Programming 16(5-6):817–833.
Kazmi, M.; Schüller, P.; and Saygın, Y. 2017. Improving
scalability of inductive logic programming via pruning and
best-effort optimisation. Expert Systems with Applications
87:291–303.
Law, M.; Russo, A.; and Broda, K. 2015. The ILASP system
for learning answer set programs. https://www.doc.
ic.ac.uk/˜ml1909/ILASP.
Law, M.; Russo, A.; and Broda, K. 2016. Iterative learning
of answer set programs from context dependent examples.
Theory and Practice of Logic Programming 16(5-6):834–
848.
Law, M.; Russo, A.; and Broda, K. 2018. Inductive learning
of answer set programs from noisy examples. Advances in
Cognitive Systems.
Muggleton, S. 1991. Inductive logic programming. New
Generation Computing 8(4):295–318.
Muggleton, S. 1995. Inverse entailment and Progol. New
Generation Computing 13(3-4):245–286.
Ray, O.; Broda, K.; and Russo, A. 2003. Hybrid abductive
inductive learning: A generalisation of progol. In Inductive
Logic Programming. Springer. 311–328.
Ray, O. 2009. Nonmonotonic abductive inductive learning.
Journal of Applied Logic 7(3):329–340.
Schüller, P., and Benz, M. 2018. Best-effort inductive logic

programming via fine-grained cost-based hypothesis gener-
ation. Machine Learning 107(7):1141–1169.
Srinivasan, A. 2001. The aleph manual. Machine Learning
at the Computing Laboratory, Oxford University.
Tjong Kim Sang, E. F., and Buchholz, S. 2000. Introduction
to the conll-2000 shared task: Chunking. In Proceedings of
the 2nd workshop on Learning language in logic and the 4th
conference on Computational natural language learning-
Volume 7, 127–132. Association for Computational Linguis-
tics.
Xu, Z., and Stoller, S. D. 2014. Mining attribute-based ac-
cess control policies from logs. In IFIP Annual Conference
on Data and Applications Security and Privacy, 276–291.
Springer.

