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Twisted bilayer graphene (tBLG) has recently emerged as a new platform for studying electron
correlations, the strength of which can be controlled via the twist angle. Here, we study the effect
of internal screening on electron-electron interactions in undoped tBLG. Using the random phase
approximation, we find that the dielectric response of tBLG drastically increases near the magic
angle and is highly twist-angle dependent. As a consequence of the abrupt change of the Fermi
velocity as a function of wave vector, the screened interaction in real space exhibits attractive
regions for certain twist angles near the magic angle. Attractive interactions can induce charge
density waves and superconductivity and therefore our findings could be relevant to understand the
microscopic origins of the recently observed strong correlation phenomena in undoped tBLG. The
resulting screened Hubbard parameters are strongly reduced and exhibit a non-linear dependence on
the twist angle. We also carry out calculations with the constrained random phase approximation
and parametrize a twist-angle dependent Keldysh model for the resulting effective interaction.

I. INTRODUCTION

Twistronics [1] is the burgeoning field of controlling the
electronic properties of van der Waals structures through
the relative twist angle [2] between the component 2D
materials [3–17], with twisted bilayer graphene (tBLG)
serving as the paradigmatic example [3, 4, 11–19]. When
the twist angle of tBLG is tuned to the magic angle (ap-
proximately 1.1◦), the electronic bands near the Fermi
level become extremely flat [3, 4, 20], which gives rise
to correlated insulating and superconducting states [13–
19]. The emergence of flat bands has recently also been
found in other systems, including twisted double bilayer
graphene [21–24] and twisted transition metal dichalco-
genides [25–27].

Many theoretical proposals have been put forward to
explain the microscopic origin of the observed strong cor-
relation phenomena in tBLG [28–36] but, at the present
time, no consensus has been achieved [6, 35, 37–56]. Sev-
eral works [16, 44] have used Hartree-Fock theory based
on a continuum model to analyze the phase diagram
of tBLG. It is well known, however, that Hartree-Fock
can lead to unphysical results, such as a diverging Fermi
velocity in metals, because the Coulomb interaction in
the exchange term is not screened. Electronic screening
is also important for the construction of effective low-
energy Hamiltonians as transitions between high-energy
bands renormalize the interaction between flat band elec-
trons.

The random phase approximation (RPA) is often used
to describe the screened interaction between electrons. In
this approach, one first determines the polarizability of
non-interacting (or independent) electrons and then self-
consistently computes their response to the total field
consisting of the external perturbation and the induced
Hartree potential of the electrons. For the construc-

tion of low-energy Hamiltonians, the constrained random
phase approximation (cRPA) is used, in which transitions
among low-energy bands are excluded in the polarizabil-
ity. In the context of tBLG, Stauber and Kohler [5] have
calculated its RPA dielectric function from a continuum
model, and used it to study plasmons and collective exci-
ton modes. More recently, Pizarro et al. [57], also using
a continuum model, calculated the static RPA and cRPA
polarizability of undoped tBLG, but only at a single twist
angle of 1.05◦.

Here we study the cRPA and RPA screened interaction
in tBLG as function of twist angle using an atomistic
tight-binding model. Excluding transitions between the
flat bands, we find that the cRPA screened interaction
depends strongly on the twist angle and is accurately de-
scribed by a Keldysh model with a twist-angle-dependent
screening parameter. Inclusion of transitions between the
flat bands drastically increases internal screening near
the magic angle as a consequence of the emergence of
flat bands. For certain twist angles near the magic an-
gle, we find that the RPA screened interaction has at-
tractive regions in real space. The combination of en-
hanced screening and attractive regions leads to a signif-
icant reduction of the on-site Hubbard parameter, which
exhibits a non-linear behaviour as function of twist an-
gle. Finally, we discuss the implications of our findings
for the phase diagram of tBLG. In particular, previous
theoretical work has established that real space attractive
electron-electron interactions can give rise to charge den-
sity waves and superconductivity. In this context, our
discovery of attractive effective interactions in tBLG is
an interesting finding that may have relevance in explain-
ing the microscopic origin of the experimentally observed
correlated insulator states and superconducting phases in
tBLG.
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FIG. 1: (a) Band structure of tBLG for a twist angle of 1.05◦. The black arrow indicates the width of the flat
bands, and the red arrow denotes the energy gap between non-flat bands at Γ. (b) Band widths of flat bands [black
arrow in (a)] and band gaps at Γ between non-flat bands [red arrow in (a)] as function of twist angle. Dotted lines

are linear fits (see Appendix A for details). Figure adapted with permission from Ref. 34. Copyrighted by the
American Physical Society.

II. METHODS

A. Atomistic Tight-Binding

We use the atomistic tight-binding model of Ref. 34
to calculate the band structure of tBLG near the magic
angle taking into account atomic corrugation (see Ap-
pendix A for details [58]). Fig. 1 shows the band struc-
ture at a twist angle of 1.05◦, which exhibits four flat
bands near the Fermi level that are separated from all
other bands by energy gaps. The undoped system is a
semimetal with the flat valence and conduction bands
touching at the K and K′ points of the first Brillouin
zone. As the twist angle approaches the magic angle
(θ∗ = 1.18◦ in our calculations), the width of the flat
bands decreases, see black circles in Fig. 1(b). Also,
the energy gaps that separate the non-flat bands de-
crease as the twist angle is reduced, see red circles in
Fig. 1(b). Note that in a narrow twist-angle window
(1.12-1.20◦), we find qualitatively different band struc-
tures with a metallic character for undoped tBLG (sim-
ilar band structures are shown in Refs. 36 and 35). In
the rest of the paper, we only study twist angles with a
semimetallic band structure (see Fig. A1 of Appendix A
for band structures).

B. Dielectric Response

To calculate the static dielectric function of undoped
tBLG, we employ the RPA. In agreement with previous
work [5, 57], we find that off-diagonal elements of the
dielectric matrix are small and, therefore, we focus our
attention on the diagonal elements. Within these approx-

imations [59–61], the dielectric function is given by

ε(q) = εenv + v(q)Π0(q), (1)

where εenv is the environmental dielectric constant, q is
a (two-dimensional) in-plane crystal momentum, v(q) =
e2/2ε0|q| is the bare Coulomb interaction in 2D and
Π0(q) is the independent-particle polarizability [59–61].
The polarizability is obtained by evaluating the Adler-
Wiser formula [59–61] in the limit of zero temperature

Π0(q) =
4

Ω

∑

k

∑

cv

| 〈ψvk|e−iq·r|ψck+q〉 |2
εck+q − εvk

, (2)

where Ω is the area of the tBLG crystal, which is pro-
portional to the number of k-points in the first summa-
tion. The second summation in Eq. (2) is over transitions
from occupied valence bands (v) to unoccupied conduc-
tion bands (c), and εc/vk and ψc/vk denote, respectively,
the eigenvalues and Bloch states obtained from the tight-
binding calculation [59–61]. Details of the evaluation of
Eq. (2) can be found in Appendix B. In the RPA, all
transitions contribute to the summation, while in the
cRPA [62, 63], transitions between flat bands are ex-
cluded. The accuracy of the cRPA has recently been
studied in Hubbard models [64] and it was found that
the screening is overestimated compared to more accu-
rate approaches. Therefore, the cRPA Hubbard param-
eters should be considered as lower bounds.

To calculate the cRPA polarizability, we employ a 7×7
regular Monkhorst-Pack k-point grid to sample the Bril-
louin zone and sum over states that lie in an energy win-
dow ±4 eV around the Fermi energy. For the RPA, tran-
sitions between flat bands were calculated on a 35 × 35
regular Monkhorst-Pack k-point grid and added to the
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cRPA polarizability. We have found that these conver-
gence parameters yield accurate values for the polariz-
ability at wavevectors that do not exceed several multi-
ples of the moiré reciprocal lattice vector.

C. Screened Interaction and Hubbard Parameters

The screened interaction in real space is calculated via
a two-dimensional Fourier transform according to

W (r) =

∫
dq

(2π)2

v(q)

ε(q)
e−iq·r. (3)

As the polarizability is found to be approximately
isotropic, the angular part of the Fourier transform
can be carried out analytically and the remaining one-
dimensional radial integral is done numerically (see Ap-
pendix B for details).

To determine the effective Hamiltonian of the flat band
electrons, we calculate the interaction parameters of an
extended Hubbard Hamiltonian via

Vij =

∫∫
drdr′|wi(r′)|2W (r− r′)|wj(r)|2. (4)

The atomistic Wannier functions, wi(r), of the flat bands
were previously constructed [34, 65, 66] (details of which
are given in Appendix C). They are centered on the
AB and BA regions of the moiré unit cell, forming an
emergent hexagonal lattice [34, 65, 66]. They have three
lobes, each of which is centered on an AA region, where
the charge density of the flat bands are localized (see
Fig. C1 of Appendix C).

III. RESULTS AND DISCUSSION

A. Polarizability and Screened Interaction

Figure 2(a) shows the RPA polarizability of tBLG as
function of crystal momentum for several twist angles in
the vicinity of the magic angle. For these twist angles, we
find that ΠRPA

0 ∝ q/vF at small wavevectors as expected
from the linear dispersion of the flat bands near K and
K′. The slope of ΠRPA

0 at small q depends sensitively
on twist angle [5] because of the strong renormalization
of the Fermi velocity, vF(θ), which approaches zero at
the magic angle [4]. At wavevectors larger than the sec-
ond reciprocal lattice vector of the moiré lattice, ΠRPA

0

of tBLG is very similar to that of decoupled graphene
sheets [57]. In particular, it is linear in wave vector with
a slope that is determined by the unrenormalized Fermi
velocity of graphene [57].

Cutting out transitions between flat bands from the
RPA yields the cRPA polarizability, which is displayed
in Fig. 2(b). The cRPA polarizability is highly isotropic
and quadratic in |q| for small q. This is characteristic of
2D semiconductors, such as molybdenum disulfide, and a

consequence of the finite energy gap for transitions in the
cRPA. The polarizability at small wavevectors increases
with decreasing twist angle because the energy gap be-
tween the non-flat bands decreases, as seen in Fig. 1(b).

Table I shows the twist-angle dependent value of
the screening parameter α(θ), obtained from fitting the
quadratic polarizability at small q, that enters the widely
used Keldysh model for the dielectric function of 2D semi-
conductors, ε(q) = 1 +αq [67]. At small twist angles, we
find a dramatic increase of the screening parameter reach-
ing values of more than 1000 Å. This indicates that the
Coulomb interaction is screened already for very small
wavevectors (those larger than 1/α). At crystal momenta
larger than the first moiré reciprocal lattice vector, ΠcRPA

0

also becomes linear in |q| and very similar to the polar-
izability of uncoupled graphene bilayers [57].

θ / degree ε (RPA) α / Å (cRPA)

2.13 18.1 155.4

1.70 30.6 255.2

1.54 44.1 327.8

1.41 71.4 430.4

1.25 237.5 889.3

1.05 256.3 1292.0

TABLE I: Long wavelength dielectric constants of
tBLG from linear fits to Fig. 2(a) (with εenv is taken to

be 1) and Keldysh parameters from quadratic fits to
Fig. 2(b) as a function of twist angle.

The RPA dielectric functions are displayed in Fig. 2(c).
For angles close to the magic angle, the large linear slope
of the polarizability at small wave vectors gives rise to
a large dielectric constant. At larger wave vectors, the
reduced slope of ΠRPA

0 results in a significantly smaller
dielectric constant. The crossover between these two
regimes of approximately constant dielectric functions
occurs on the scale of the first two reciprocal moiré lat-
tice vectors. Table I shows the resulting long-wavelength
dielectric constants ε(θ) of tBLG in air (εenv = 1). All
angles exhibit enhanced dielectric constants relative to
decoupled graphene bilayers (εni = 8.86 [5, 68]). Near
the magic angle, the dielectric constant of tBLG increases
dramatically and reaches values larger than 250 - a factor
of 20 larger than decoupled graphene bilayers.

The RPA screened interaction in momentum space of
tBLG encapsulated by a dielectric substrate (εenv = 5)
is shown in Fig. 2(d). The effective interaction crosses
over from a strongly screened small wave vector regime
to a less strongly screened large wave vector regime. As
a consequence of this crossover, the interaction exhibits
a well-like feature for twist angles near the magic an-
gle. Fig. 2(e) shows the interaction after Fourier trans-
formation to real space. At several twist angles near the
magic angle, the screened interaction in real space ex-
hibits an attractive region. Specifically, the minimum of
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Å
−

2
)

(b) - cRPA Polarizability

θ (degree)
2.13

1.70

1.54

1.41

1.25

1.05

θ (degree)
2.13

1.70

1.54

1.41

1.25

1.05

0.00 0.02 0.04 0.06 0.08 0.10

|q| / Å
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FIG. 2: (a) and (b): RPA and cRPA polarizability of tBLG as a function of momentum transfer for several twist
angles near the magic angle. Vertical stubs indicate the magnitude of first moiré reciprocal lattice vectors for each

twist angle. (c) - RPA dielectric function of tBLG encapsulated in hBN as a function of wavevector. (d) - RPA
screened interaction of tBLG encapsulated in hBN in momentum space (solid lines). Dash-dotted lines denote the

long wavelength limit and the dotted line denotes the screened interaction divided by a dielectric constant with
contributions from non-interacting graphene bilayers and hBN. (e) and (f): RPA and cRPA screened interaction in

real space for tBLG encapsulated by hBN (solid lines). The red dash-dotted line indicates bare the Coulomb
interaction. Vertical stubs denote moiré lattice constant for each twist angle.

the screened interaction occurs near 40 Å with a well
depth of up to ∼ 10 meV. The origin and consequences
of this attractive region are discussed below (see also Ap-
pendix B). At larger separations, the screened interac-
tion decays as 1/(ε(θ)|r|), i.e., it is repulsive and signifi-
cantly weaker than the screened interaction of uncoupled
graphene bilayers. At small separations, the screened in-

teraction of tBLG is similar to that of uncoupled bilayers.

Fig. 2(f) shows the real-space cRPA screened interac-
tion. At small distances, the interaction is similar to that
of uncoupled graphene bilayers, while at large distances
it proportional to 1/(εenv|r|), i.e., the bare interaction
screened by the dielectric constant of the environment
(red dotted line). The distance at which the crossover
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FIG. 3: (a) and (b): RPA and cRPA screened on-site Hubbard parameters (symbols) as a function of twist angle for
several environmental dielectric constants. Solid lines denote fits to bare on-site Hubbard parameters from Ref. 34
divided by a dielectric constant with contributions from environmental screening plus decoupled graphene bilayers.
(c) and (d): RPA and cRPA screened extended Hubbard parameters (symbols) as a function of Wannier function
separation for several twist angles. Dash-dotted lines denote generalized Ohno potential fits; the dotted red line

denotes the hBN screened Coulomb potential and vertical stubs denote the size of the moiré lattice vector.

between these two regimes occurs is determined by the
twist-angle dependent Keldysh parameter α(θ), see dis-
cussion above.

Upon doping tBLG, intra-band transitions will occur
(in addition to the inter-band transition studied in the
current manuscript) in the RPA. These transitions will
give rise to metallic screening similar to the case of
graphene where an analytical expression of the RPA di-
electric function can be obtained [69]. Naively, one could
simply adapt this expression to the case of twisted bilayer
graphene by modifying the degeneracy factor (to take
into account that there are two layers) and the renormal-
ization of the Fermi velocity. Such a treatment, however,
would not capture the attractive regions in the screened
interaction which arise from rapid changes in the Fermi
velocity. To understand what happens to these regions
when the system is doped, we have analysed a model
dielectric function in Appendix B. We found that the at-
tractive regions should persist when electrons or holes are
added suggesting that they could indeed play an impor-
tant role for the correlated insulator states or supercon-
ductivity. For the cRPA screened interaction, we do not

expect significant changes upon doping since the doping
only affects the flat bands and there is a significant gap
between those and all other bands.

B. Hubbard Parameters

The increased internal screening combined with the
emergence of attractive regions in the RPA interaction
leads to a significant reduction of the on-site and ex-
tended interaction parameters [34]. Fig. 3(a) shows the
screened on-site Hubbard parameters, V00, as function of
twist angle for different values of the environmental di-
electric constant εenv, and compares them to the linear
fits to the on-site Hubbard parameters calculated with a
Coulomb potential screened by a dielectric constant with
contributions from the environment and uncoupled bi-
layers (solid lines). In contrast to the case of uncoupled
bilayers, the RPA on-site Hubbard parameters are rela-
tively small near the magic angle (only a few meV instead
of tens of meV), and they are a non-linear functions of
twist angle [34].
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Similarly, the extended Hubbard parameters for tBLG,
shown in Fig. 3(c), are strongly reduced near the
magic angle compared to uncoupled graphene bilay-
ers [34]. The calculated Hubbard parameters are well
described by an analytical Ohno-like expression V (r) =

V00/
4
√

1 + (V00/WRPA(r))4, where WRPA(r) denotes the
screened RPA interaction in the long wavelength limit
and r is the separation between Wannier function cen-
ters.

The Hubbard parameters obtained from the cRPA in-
teraction are shown in Figs. 3(b) and (d). The on-
site Hubbard parameters from the cRPA interaction,
as displayed in Fig. 3(b), are approximately one or-
der of magnitude larger than the RPA values and dis-
play a non-linear dependence on twist angle. In con-
trast, the simplified screening model exhibits a linear
dependence [34]. The extended cRPA Hubbard param-
eters, shown in Fig. 3(d), approach the bare Coulomb
interaction divided by the environmental dielectric con-
stant (red dotted line) at large Wannier function separa-
tions, and are well-described by the analytical Ohno-like
model V (r) = V00/

n
√

1 + (V00/Wenv(r))n, where the ex-
ponent n is fitted for each twist angle separately and
Wenv(r) ∝ 1/(εenvr) (see Appendix C for details).

1.0 1.2 1.4 1.6 1.8 2.0 2.2
θ (degree)

0
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4
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8

U
/t

FIG. 4: U/t of tBLG as function of twist angle (open
symbols) with U being the cRPA on-site Hubbard
parameter and t denoting the hopping parameter.

Closed symbols indicate U∗/t (with U∗ denoting the
difference between the on-site and the

nearest-neighbour cRPA Hubbard parameters) which is
a better measure of electron correlations in systems

with long-range interactions.

C. Discussion

In this section, we discuss the origin of the attractive
regions in the RPA screened interaction and the conse-
quences for the phase diagram of tBLG.

Attractive regions in the screened interaction are also
found in the two-dimensional and three-dimensional elec-
tron gas where they are a consequence of Friedel os-

cillations [69]. These real-space oscillations of the in-
duced charge density are caused by the discontinuity of
the Bloch state occupancy at the Fermi level in k-space.
Importantly, undoped graphene and undoped tBLG (at
the twist angles we study) do not exhibit Friedel oscil-
lations because the density of states at the Fermi level
vanishes (recall, however, that we do find metallic band
structures of undoped tBLG for certain twist angles, and
tBLG away from charge neutrality might be expected
to exhibit such oscillations). Instead, the attractive re-
gions in tBLG have a different origin: they are caused
by the abrupt change of the band velocity as a function
of the band energy which gives rise to the peaks in the
RPA polarizability, see Fig. 2(a). At small wave vectors,
the RPA polarizability exhibits a large slope as a con-
sequence of the strongly renormalized Fermi velocity of
the flat bands [5]. At larger wave vectors, the slope of
ΠRPA

0 reflects the unrenormalized Fermi velocity of un-
coupled graphene sheets [57]. Fourier transformation of
the resulting screened interaction to real space then re-
sults in oscillatory behaviour and attractive regions (see
Appendix B for further details).

The screened interaction influences many properties
of tBLG. For example, it determines the interaction of
charged defects with the electrons in tBLG which can be
studied with transport measurements and scanning tun-
nelling spectroscopy and microscopy techniques [58, 70].
Moreover, photo-excited electron-hole pairs interact via
the screened interaction giving rise to excitonic effects in
the optical properties of tBLG [71]. Attractive regions in
the screened interaction can also induce electronic phase
transitions. It is well known that Friedel oscillations in
2D and 3D electron gases can give rise to Cooper pair-
ing and superconductivity via the Kohn-Luttinger mech-
anism [42, 72, 73]. Similarly, superconductivity due to
polarization induced electron pairing has been suggested
to occur in long organic molecules with polarizable side
chains [74–76]. Finally, electrons can reduce their poten-
tial energy by localizing in the attractive regions of the
screened interaction leading to the formation of charge
density waves. The resulting energy gaps could explain
the recently observed correlated insulator behaviour in
undoped tBLG [16]. Our calculations demonstrate that
internal screening strongly reduces the on-site Hubbard
parameter, see Fig. 3(c). For graphene, Jung and Mac-
Donald have shown that this favors the formation of
charge density waves [77].

Spin density waves have also been suggested as candi-
dates for the correlated insulator states [6, 38–41, 49, 78].
These phases are expected to occur when the ratio of the
on-site Hubbard parameter V00 (commonly denoted as
U) and the hopping integral t is large. Based on Quan-
tum Monte calculations, Scalettar et al. [43] suggested
that undoped tBLG undergoes a transition to a spin den-
sity wave at a U/t value of about two. This agrees well
with the critical value of U/t = 2.2 obtained for Bernal
stacked bilayers [79]. Here, we use a critical value of
U/t = 2.2, but stress that our qualitative conclusions
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do not depend on the precise choice for this value. As
discussed above, the on-site Hubbard parameter that en-
ters a downfolded Hamiltonian for the flat-band electrons
should be screened by all transitions except those be-
tween flat bands. Fig. 4 shows the ratio of U calculated
within the cRPA and the hopping parameter (approxi-
mated as ∆/6[34]) as function of the twist angle. U/t
exceeds the critical value of 2.2 in a significant twist-
angle range (θ = 1.02◦ to θ = 1.52◦ corresponding to the
light shaded region in the figure). It is well known, how-
ever, that long-ranged interactions reduce electron cor-
relations. This effect can be approximately incorporated
by replacing V cRPA

00 by U∗ = V cRPA
00 −V cRPA

01 , i.e., the dif-
ference between the on-site and nearest neighbour Hub-
bard parameters [34, 80]. The resulting measure for the
strength of electron correlations U∗/t exceeds the critical
value only in a very narrow range of twist angles (dark
shaded region in the figure) indicating that spin density
wave states can only be found in a narrow twist-angle
window [34].

IV. CONCLUSIONS

We have calculated the screened interaction and ex-
tended Hubbard parameters in undoped tBLG for several
twist angles in the vicinity of the magic angle using the
random phase approximation (RPA) and also the con-
straint random phase approximation (cRPA). Near the
magic angle, the flattening of the bands drastically in-
creases the RPA dielectric constant of tBLG and also the
cRPA Keldysh screening parameter. As a consequence,
the extended Hubbard parameters depend sensitively on
the twist angle and the on-site Hubbard is no longer a
linear function of the twist angle. The abrupt change in
the band velocity as function of the band energy gives
rise to attractive regions in the RPA screened interac-
tion in real space which could induce novel effects in the
optical and transport properties of tBLG. Moreover, the
effective attraction between electrons can give rise to the
formation of charge density waves and Cooper pairs, and
thus be intimately connected to the correlated insulator
states and superconducting phases that have been ob-
served experimentally. These effects are not captured by
Hartree-Fock calculations which employ a constant twist-
angle independent dielectric function.
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Appendix A: Tight-Binding

1. Moiré Structure

We utilise an atomistic tight-binding model to calcu-
late the electronic structure of twisted bilayer graphene
(tBLG). This method requires finite unit cells associated
with commensurate twist angles [10, 20]. Here we gen-
erate moiré unit cells by rotating the top graphene sheet
of an AA stacked bilayer graphene around an axis per-
pendicular to the sheets that intersects a carbon atom
in each layer. The resulting structure has D3 symmetry.
To generate a twist angle with a commensurate unit cell,
an atom in the top, rotated graphene layer must reside
exactly above another atom in the bottom, unrotated
graphene sheet. The resulting commensurate lattice vec-
tors of the moiré unit cell are given by R1 = na1 +ma2

and R2 = −ma1 + (n + m)a2, where n and m are inte-

gers and a1 = (
√

3/2,−1/2)a0 and a2 = (
√

3/2, 1/2)a0

denote the lattice vectors of graphene (with a0 = 2.46
Å) [10, 20]. The corresponding twist angle, θ, is given by

cos θ =
n2 + 4nm+m2

2(n2 + nm+m2)
. (A1)

Significant out-of-plane lattice relaxations occur in
tBLG at small twist angles [7, 31, 35, 48, 65, 81–85]; in-
plane relaxations also occur, but the magnitude of the re-
laxation is smaller. Here, we only take out-of-plane relax-
ations into account. Specifically, we employ the following
expression from Ref. 65 for the out-of-plane atomic cor-
rugation of carbon atoms at position r,

z(r) = d0 + 2d1

∑

i=1,2,3

cos(bi · r). (A2)

Here, b1 and b2 denote the primitive moiré reciprocal
lattice vectors of tBLG, and b3 = b1 + b2. Also d0 =
(dAA+2dAB)/3 and d1 = (dAA−dAB)/9 with dAB = 3.35
Å and dAA = 3.60 Å, respectively, being the interlayer
separations of AB and AA stacked bilayer graphene [65].

2. Hamiltonian and Band Structure

For this atomic structure of tBLG, we solve the atom-
istic tight-binding Hamiltonian [34, 58]

Ĥ0 =
∑

i

εiĉ
†
i ĉi +

∑

i,j

(t(ri − rj)ĉ
†
j ĉi + H.c.), (A3)

where εi is the on-site energy of the pz-orbital on atom

i (which is set to zero in our calculations), and ĉ†i and
ĉi denote creation and annihilation operators of elec-
trons in the pz-orbital on atom i, respectively. Also,
t(ri− rj) denotes the hopping parameter between atoms
i and j [10, 20]. To calculate the hopping parameters, we
employ the Slater-Koster rules [20, 86], i.e.,

t(r) = Vppσ(r)n2 + Vppπ(r)(1− n2), (A4)
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where n = r ·ez/|r|. The intra-layer hopping is described
by the π-bonding character of pz-orbitals

Vppπ = V 0
ppπe

qπ(1−|r|/a), (A5)

where V 0
ppπ = −2.7 eV is the nearest-neighbour hopping

parameter in graphene (for an equilibrium bond length
of a = 1.42 Å [68]) and qπ = 3.14 describes the decay
of the hopping as function of distance [10, 20]. After
third-nearest neighbours, we set the hopping to zero. The
inter-layer coupling has contributions from both π and σ
interactions of pz-orbitals, with the latter given by

Vppσ = V 0
ppσe

qσ(1−|r|/dAB), (A6)

where V 0
ppσ = 0.48 eV is the magnitude of the hopping in

the AB/BA regions and qσ = 7.43 is the corresponding
decay length of this hopping [10, 20]. After an in-plane
distance corresponding to third-nearest neighbours, we
set all inter-layer hopping parameters to zero.

The Bloch eigenstates of the tight-binding Hamiltonian
are

ψnk(r) =
1√
N

∑

jR

cjnke
ik·Rφz(r− tj −R), (A7)

where φz denotes the pseudo-hydrogenic wavefunction of
the pz-orbital, tj is the position of carbon atom j in the
unit cell, N denotes the number of moiré unit cells in
the crystal and cjnk are coefficients obtained from the
diagonalization of the Hamiltonian.

In Fig. A1 the resulting band structures are shown
for the twist angles under consideration (see main text).
These band structures are in good agreement with others
in the literature.

3. Band Width and Band Gap Fitting

Figure 4 of the main text shows the ratio of on-site
Hubbard parameters and the hopping parameter (given
by the band width divided by six) to identify the twist
angle ranges where spin density waves at charge neutral-
ity should emerge. To obtain the continuous line, we fit
the band width near the magic angle, θ∗ = 1.18◦ [34],
with the following equation

∆ = δ|θ − θ∗|. (A8)

We find δ = 0.27 eV/degree. The band gap between
non-flat bands at Γ was fitted to a straight line.

Appendix B: Internal Screening

1. Polarizability Calculation

To calculate the polarizability, as shown by Eq. (2) of
the main text, a sum over all k-points in the first Brillouin

zone and all transitions from occupied valence bands to
unoccupied conduction bands must be performed. For
this, the matrix elements, 〈ψn′k+q|eiq·r|ψnk〉, must be
determined. Inserting the tight-binding expression for
the Bloch states and neglecting contributions from pairs
of orbitals that do not sit on the same atom, we find

〈ψn′k+q|eiq·r|ψnk〉 =
∑

i

c∗n′k+qicnkie
iq·ti I(q), (B1)

where the integral I(q) is given by

I(q) =

∫
drφ∗z(r)eiqrφz(r) =

[
1

1 + (|q|a0/Z)2

]3

. (B2)

Here, a0 is the Bohr radius and Z is the effective charge
of the carbon atom, taken to be 3.18 [59]. Note that for
the crystal momenta studied in this work, this integral
can be safely set to 1.

2. Long-wavelength limit

To parameterise the Keldysh model we used three dif-
ferent 7×7 grids: one of these which contained the Γ
point, and two that were shifted by 0.05(b1 + b2) and
0.01(b1 + b2). By calculating transitions between these
grids were we able to fit a quadratic curve in the long
wavelength limit.

3. Non-interaction dielectric constant

The polarizability of non-interacting graphene bilayer
is given by

Π0(q) =
gsgvgl|q|

16γ
, (B3)

where gs, gv and gl are the spin, valley and layer degen-
eracy, respectively, all of which are equal to 2, and γ is
the band parameter [5, 61], where γ is related to the hop-
ping parameter of graphene, tG = 2.7 eV, and the bond
length, a = 1.42 Å, through γ = 3tGa/2. Inserting these
values into the equation for dielectric function yields

εni = 1 +
e

6ε0tGa
≈ 8.86. (B4)

Note that the hopping parameter of graphene can vary,
and this can yield different results for the dielectric con-
stant [61, 68].

4. Real-Space Screened Interaction

Since the polarizability was found to be approximately
isotropic, Eq. (3) of the main text can be transformed to

W (r) =
e2

4πε0

∫ ∞

0

dq
J0(qr)

ε(q)
, (B5)
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FIG. A1: Band structures of twisted bilayer graphene for the twist angles studied in the main text. Subfigure for the
twist angle 1.05◦ adapted with permission from Ref. 34. Copyrighted by the American Physical Society.

where q and r denote the magnitudes of the in-plane
momentum and the in-plane distance, respectively, and
J0 is a Bessel function of the first kind with zeroth order.

The calculated polarizabilities exhibit two regimes as
function of crystal momentum: at large momenta (i.e.
those larger than twice the length of the primitive recip-
rocal lattice vectors), tBLG responds similar to decou-
pled bilayer graphene; at small momenta, a significant
enhancement in the response as a function of twist angle
is observed. Therefore, the integral of Eq. (B5) can be
separated into two parts,

W (r) =
e2

4πε0

[∫ 2|b|

0

dq
J0(qr)

ε(q)
+

∫ ∞

2|b|
dq
J0(qr)

ε(q)

]

= Ws(r) +Wl(r),

(B6)

where |b| denotes the length of the primitive reciprocal
lattice vectors. The first contribution, Ws, stems from
the response at small wavevectors, which can be numeri-
cally integrated and readily converged. The second con-
tribution, Wl, is the contribution from large momenta,
which is essentially that of decoupled bilayer graphene.
Since the dielectric function is a constant in the latter
regime, ε(q ≥ 2|b|) ≈ εni, the integral can be transformed
to

Wl =
e2

4πε0εnir

[
1−

∫ 2|b|r

0

dyJ0(y)

]
, (B7)

which can also be readily evaluated. Larger cut-off values
for separating the small and large momentum regimes
were also used and found to not alter the result.
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Note that because of the highly oscillatory Bessel func-
tion, both Ws and Wl can potentially be negative. The
RPA dielectric function, as displayed in Fig. 2(c) of the
main text, goes from being a large constant to a relatively
small constant within two moiré reciprocal lattice vec-
tors. This dielectric function suppress the contributions
of the Bessel function where it is most positive (i.e., at
small values of y), which can give rise to negative values
of the Fourier transform. This analysis is shown graphi-
cally in Fig. B1(a).

To understand the origin of the attractive interaction
further, we study a model dielectric function, ε′(q), with
a number of free parameters. This model dielectric func-
tion must cross over from a large constant value at small
wavevectors, which is determined by the Fermi velocity
of the flat bands, to a smaller constant at larger momenta
which is determined by the Fermi velocity of graphene.
One function that meets these criteria is

ε′(q) = εni +
εf − εni

1 + el(q−q0)
, (B8)

where εf , l and q0 are, respectively, the dielectric con-
stant in the long wavelength limit, the decay length of
the dielectric function and the location of the transition
between these two regimes. These parameters can be
varied to understand what characteristics of the dielec-
tric function are important in giving rise to attractive
regions in the effective interaction.

As can be seen in Fig. 2(c), not all twist angles ex-
hibit attractive regions. This observation is reproduced
by the model when εf is varied, see Fig. B1(b). For large
enough values of εf , attractive regions in the effective
interaction are obtained. Another important parameter
is the decay length, l. If the decay length is too small,
the dielectric function is a slowly varying function and
does not give rise to attractive regions, see Fig. B1(c).
In the limit of the decay length tending towards zero,
a constant dielectric factor is obtained, which gives rise
to a Coulomb potential divided by a constant, i.e., there
are no attractive parts of the interaction. Attractive re-
gions are only observed for large enough values of the
decay length which cause the dielectric function to vary
significantly on a similar length scale of the moiré recip-
rocal lattice vector. For values of εf and l that give rise
to attractive regions in the potential, the parameter q0

determines the period of the oscillations in the effective
interaction, see Fig. B1(d).

What happens to the attractive regions when tBLG
is doped by additional electrons or holes? To model
metallic systems (including tBLG at the special twist an-
gles where the undoped system is not a semimetal, but
a metal), we construct a model dielectric function that
diverges at small wave vectors. This can be achieved
by multiplying the second term of ε′(q) by a/q, where
a is some constant factor. Introducing this divergent
part causes the magnitude of the oscillations to increase.
Therefore, it is likely that attractive regions in the effec-
tive interaction can also be found in metallic tBLG.

Appendix C: Wannier Functions of Flat Bands

Wannier functions for isolated band manifolds can be
generated from the Bloch states via [87, 88]

wnR(r) =
1√
N

∑

mk

e−ik·RUnmkψmk(r). (C1)

Here, the band index m is over the flat bands only, since
they are separated by energy gaps from all other bands in
the whole Brillouin zone, and N = 30×30 is the number
of k-points utilised in the discrete Fourier transform. The
unitary matrix, Unmk, which mixes bands, represents the
gauge freedom of the Bloch states and is determined by
the Wannier90 code [89] such that the resulting Wannier
functions are maximally localized [87, 88].

To obtain a Wannier-transformed Hamiltonian that re-
produces the correct degeneracies of the band structure
of tBLG, the Wannier functions must be centered ei-
ther at the AB or the BA positions of the moiré unit
cell [46, 53, 65, 66] (denoted by diamonds and circles in
Fig. C1). To achieve this, we use the approach of Ref. 90,
where a procedure to calculate a sub-set of maximally lo-
calized Wannier functions with constrained centres was
outlined. This approach was chosen because it has been
empirically found to produce the correct symmetries of
Wannier functions, provided the center of the Wannier
function is enforced at the correct position [90]. Here, we
constrain the centers of two Wannier functions, one on
the AB and one on the BA positions, and minimize the
cost function

Ω =

J′∑

n=1

[
〈r2〉n − r̄2

n + λ(r̄n − r0n)2
]
. (C2)

In this equation, the first two terms describe the
quadratic spread of the Wannier functions, with 〈r2〉n =
〈wnR|r2|wnR〉 and r̄n = 〈wnR|r|wnR〉 [87, 88]. The third
term introduces a penalty if the center of the n-th Wan-
nier function deviates from r0n. In our calculations, we
use a value of λ = 200 for the cost parameter.

This selective localization procedure is implemented
in the Wannier90 code (version 3.0) [89], which requires
Mk,q
mn = 〈umk|unk+q〉 and Ak

mn = 〈ψmk|gn〉 to maximally
localize the initial guess, gn. Here unk is the unit cell
periodic part of the Bloch state, ψnk = eik·runk(r). In-
serting the expression for the tight-binding Bloch states
and retaining only contributions from pairs of pz-orbitals
on the same atom yields

Mk,q
mn =

∑

j

c∗mkicnk+qie
iqtjI(q). (C3)

Here, we utilise the initial guess for the Wannier states
from Ref. 66. Specifically, the initial guess is obtained
by constructing a linear combination of the degenerate
Bloch eigenstates at Γ to create a new set of smooth
Bloch states. These Bloch functions were then mixed
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Å
−1)

0

25

50

75

100

125

ε′

0 50 100 150 200 250

|r|
(
Å
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FIG. B1: (a): Suppression of the small wave vector contributions of the Bessel function to the Fourier transform of
the screened interaction giving rise to attractive regions in real space. (b): Screened interaction as a function of
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l = 200 Å, εf = 45, and εni = 10.

such that the electron density in the vicinity of a specific
AB or BA position (corresponding to the center r0n) is
maximized. Applying a Gaussian cut-off to this super-
position, f(r− r0n), yields a localized initial guess given
by

|gn〉 =
∑

n′

ψvn′Γ(r)f(r− r0n), (C4)

where v denotes the layer and sub-lattice degrees of free-
dom. The decay length of the Gaussian was chosen to be
0.7 times the moiré lattice constant.

Inserting this initial guess, we find

Ak
mn =

1

N

∑

n′

∑

RR′

∑

jvi

c∗mkjcn′Γvie
−ik·R×

∫
drφ∗(r− tj −R)f(r− r0n)φ(r− tvi −R′). (C5)

Note that vi only runs over the atoms located on the
layer and sub-lattice corresponding to v. Retaining con-
tributions from pairs of pz-orbitals on the same atom

and using the fact that the Gaussian is a slowly varying
function and be taken outside the integral, we arrive at

Ak
mn =

1

N

∑

n′

∑

R

∑

vi

c∗mkvicn′Γvie
−ik·Rf(tvi +R− r0n).

(C6)

The R summation is performed over the entire crystal.

In agreement with the empirical observation that se-
lectively localized Wannier functions exhibit the correct
symmetry [90], we found that the Wannier functions of
the flat bands exhibit of three lobes located on the AA
regions [65, 66]. In Fig. C1, the calculated Wannier or-
bitals for the twist angles studied in the main text are
displayed.
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FIG. C1: Flat-band Wannier functions of tBLG for the studied twist angles. Subfigures for the twist angles of 2.13◦

and 1.05◦ adapted with permission from Ref. 34. Copyrighted by the American Physical Society.

Appendix D: Coulomb Matrix Elements

In a Wannier basis, the interacting contribution to the
Hamiltonian is given by

Ĥint =
1

2

∑

{niRi}

V{niRi}ĉ
†
n4R4

ĉ†n3R3
ĉn2R2

ĉn1R1
, (D1)

where the creation (annihilation) operator ĉ†nR (ĉnR) cre-
ates (destroys) an electron in the Wannier state |wnR〉,
and V{niRi} denotes the matrix element of the screened
interaction. Here, we focus on the calculations of the
Hubbard parameters, i.e. the special case of R4 = R1,
R3 = R2, n4 = n1 and n3 = n2.

To evaluate Eq. (4) for the screened interaction
and calculated Wannier functions, the integral was re-
expressed as a sum of interacting pz-orbitals. To ob-

tain this, the Bloch states were inserted into the Wannier
functions, such that the Wannier functions are a linear
combination of pz-orbitals according to

wnR(r) =
∑

jR′

cnRR′jφz(r− tj −R′), (D2)

where

cnRR′j =
1

N

∑

mk

U (k)
nme

ik(R′−R)cmkj . (D3)

Inserting Eq. (D2) into Eq. (4) yields

Vn1R1n2R2 =
∑

R′R′′

∑

lj

|cn1R1lR′ |2|cn2R2jR′′ |2vlR′jR′′ .

(D4)
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Here vlR′jR′′ denotes the atomic Hubbard parameter
of pz-orbitals located on the carbon atoms with labels
lR′ and jR′′ in tBLG. When the pz-orbitals are suffi-
ciently separated (i.e., when they are not located on the
same carbon atom), a point-like interaction was assumed.
When the two pz-orbitals are on the same atom, we uti-
lize an atomic on-site Hubbard parameter from DFT [91].
As seen in Fig. C1, the Wannier orbitals are not located
in a single unit cell, so it is essential that the summation
is performed over a large enough supercell. We find that
a 5× 5 supercell yields converged results.

1. cRPA Ohno Potential Fits

Table D1shows the exponents, n, of the generalised
Ohno potential [92]

V (r) =
V00

n
√

1 + (V00/Wenv(r))n
, (D5)

which describes the extended cRPA Hubbard parame-
ters. As the twist angle decreases, the extended Hub-
bard parameters reduce to the bare Coulomb interaction
between centres at larger separations. Therefore, the ex-
ponent of the generalised Ohno potential is smaller for
smaller twist angles.

θ / degree n

2.13 2.5

1.70 2.4

1.54 2.2

1.41 2.0

1.25 1.3

1.05 1.1

TABLE D1: Generalised Ohno potential exponents for
extended cRPA Hubbard parameters.
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[80] M. Schüler, M. Rösner, T. O. Wehling, A. I. Licht-
enstein, and M. I. Katsnelson, Phys. Rev. Lett. 111,
036601 (2013).

[81] K. Uchida, S. Furuya, J.-I. Iwata, and A. Oshiyama,
Phys. Rev. B 90, 155451 (2014).

[82] A. Oshiyama, J.-I. Iwata, K. Uchida, and Y.-I. Mat-
sushita, J. Appl. Phys. 117, 112811 (2015).

[83] F. Gargiulo and O. V. Yazyev, 2D Mater. 5, 015019
(2018).
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