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Abstract

We demonstrate the capability of embedded mean field theory (EMFT) within

the linear-scaling density-functional theory code onetep, which enables DFT-in-DFT

quantum embedding calculations on systems containing thousands of atoms at a frac-

tion of the cost of a full calculation. We perform simulations on a wide range of systems

from molecules to complex nanostructures to demonstrate the performance of our im-

plementation with respect to accuracy and efficiency. This work paves the way for the

application of this class of quantum embedding method to large-scale systems that are

beyond the reach of existing implementations.

1 Introduction

The behaviour of complex and heterogeneous molecular and materials systems is often pre-

dominantly governed by physics and/or chemistry occurring within one or more smaller

‘active’ sub-regions of the system. This does not mean, however, that the rest of the sys-

tem is not relevant – indeed, it often interacts significantly with the region of interest, with

important consequences for the behaviour and properties of the system as a whole. Exam-

ples include host-guest systems (e.g., guest molecules within metal-organic frameworks1–3),
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molecules in solution,4–6 defects in crystalline materials,7–9 and active sites in enzymes.10–12

It is therefore important to include the effect of the ‘environment’, or at least large portions

of it, when modelling such systems computationally. This raises the challenge of simulating

a very large system, consisting of the active region together with its environment, at a level

of theory and accuracy that is sufficient to describe the active region correctly – a level likely

to be computationally unfeasible on the scale of the whole system.

One solution to this problem is to use an embedding scheme. In such schemes, the active

region is treated at a higher, more accurate level of theory, whilst the environment is treated

at a lower, less demanding level of theory. This aims to provide both high accuracy and

reduced cost when compared to a full system calculation at the higher level. A major issue

that must be considered carefully when designing such a scheme, however, is how to treat

the interactions between the two regions.

Some well-known embedding approaches, such as QM/MM13 and ONIOM,14 have been

used successfully for many years,15–19 but contain weaknesses that limit their applicability.

A significant amount of knowledge about the electronic structure of the system is required to

partition the system sensibly, and the number of electrons in each region must be fixed, which

limits use to systems where this assignment is physically meaningful and does not change.19

Both QM/MM and ONIOM require artificial termination of any bonds that traverse the

boundary between regions, and both typically treat the environment, and the interactions

with the environment, at a classical or empirical level of theory, neglecting the quantum

nature of these interactions.19,20

Quantum embedding schemes allow calculations to go beyond a classical treatment of the

environment, so that both the active region and the environment are treated using quantum

mechanics.21 Many quantum embedding schemes are based on density-functional theory

(DFT), at least in part, due to the fact that DFT is extremely widely used across many

fields, thanks to its combination of relatively low cost and high accuracy.22 One of the main

ways to improve the accuracy of a given DFT calculation is by using a different approximation
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to the exchange-correlation functional – hybrid functionals, for example, improve agreement

with experimental data significantly relative to local and semi-local functionals23,24 such

as the local density approximation (LDA)25,26 or the generalised gradient approximation

(GGA).27,28 They do this by including a fraction of exact exchange, which makes hybrid

functional calculations more accurate, but also more computationally expensive than semi-

local DFT calculations. The accuracy of a DFT calculation can also be improved by using a

larger or more appropriate set of basis functions, also at increased computational cost. This

hierarchy of both functionals and basis sets suggests that DFT-in-DFT embedding schemes,

where the high level of theory is hybrid DFT (possibly with a large basis set), and the low

level is semi-local DFT (possibly with a smaller basis set), could be powerful computational

tools.21 Schemes that embed extremely accurate wavefunction-based (WF) methods, such

as coupled cluster methods,29,30 within DFT (WF-in-DFT) also exist, and are potentially a

similarly powerful tool. However, the computational cost of WF methods is typically greater,

limiting their use to smaller active regions than those accessible with hybrid DFT. For this

reason, in this work we focus only on DFT-in-DFT embedding.

As mentioned above, one of the major difficulties when devising an embedding scheme

is dealing with the interactions between the regions. In particular, in quantum embedding

it is vital to ensure that the orbitals of the two systems remain orthogonal, to satisfy the

Pauli exclusion principle. This requirement is enforced in DFT-in-DFT embedding by the

appearance of a non-additive term in the kinetic energy, which is an unknown functional of

the density.21,31,32 This non-additive term has been treated in several different ways. One

option is to approximate it, either using an analytical31–33 or a numerically fitted34–36 form.

Another option is to enforce orthogonality manually to avoid the non-additive term ever

appearing: this can be done either by construction,37 or by projecting out the environment

orbitals.38–40 Each of these options has its own strengths and weaknesses, and some are more

suitable than others for a given situation.

Recently, another quantum embedding method that avoids these issues has been pro-
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posed, known as embedded mean-field theory (EMFT).20 This method endeavours to avoid

some of the complications of other quantum embedding methods by partitioning the atom-

centred basis set directly. This means that EMFT is able to remain a mean field theory, like

standard DFT, at all times, avoiding the issue of orthogonality altogether and providing a

conceptually simple framework for combining different levels of theory. This, together with

previous work demonstrating its utility,20,41–45 makes it a very appealing scheme to apply

for DFT-in-DFT embedding.

In this work, we present a novel implementation of EMFT in a linear-scaling DFT

code, onetep,46 which is distinct from previous codes where EMFT has been implemented.

onetep uses a minimal atom-centred basis set, where each basis function is optimised within

its own local environment. These functions are strictly localised within a given radius, mak-

ing the relevant matrices sparse and enabling linear scaling of computational cost with the

size of the system. This implementation therefore moves EMFT outside of the realm of Gaus-

sian basis sets, and demonstrates its utility for arbitrary localised basis functions and large

linear-scaling DFT calculations in general. We test our implementation of EMFT on several

example systems, which demonstrate that this formalism can be used on both molecular

and solid state systems. In particular, we are able to apply EMFT to a system contain-

ing nearly 3000 atoms, significantly larger than any such calculation attempted before, and

obtain accurate results at a significantly lower computational cost than the full high-level

calculation.

The work is organised as follows. In Section 2, we give an overview of the theory of

EMFT and the advances that have been made in previous work. In Section 3, we provide

details of the implementation of EMFT in onetep. In Section 4, we give the results of

testing our implementation on a variety of systems, including both molecular and periodic

systems. Finally, in Section 5, we summarise our work and form conclusions.
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2 Embedded mean field theory

EMFT rests on the idea of separating the basis set into two subsets, one associated with the

active region, A, and one with the environment, B.20 In an atom-centred basis set, such as

Gaussians or the more general basis set of onetep, this is quite simple, as an atom, and

thus their associated basis functions, can easily be assigned to a given region. Extending

the EMFT formalism to allow for multiple regions or for separating one of the regions into

a further set of subregions is straightforward in principle, but we do not consider it in this

work.

This partitioning of the basis set means that we can separate out the single-particle

density matrix (or kernel when written in terms of the basis functions) K 46 into blocks:

K =

KAA KAB

KBA KBB

 . (1)

We can partition the overlap matrix, which gives the overlaps between the various basis

functions, similarly:

S =

SAA SAB

SBA SBB

 . (2)

We now consider the two (mean-field) levels of theory we will be applying to the two regions,

where the energy is a function of K. At a general level, we can separate the energy out into

parts arising from one-electron and two-electron terms:

E[K] = tr[KH0] +G[K] . (3)

Here the first term contains the one-electron terms arising from the core Hamiltonian H0,

whilst the second contains all two-electron terms, such as Hartree and exchange-correlation

energy contributions. In this work, as we will be focusing on DFT-in-DFT embedding, we

will assume that the higher and lower levels of theory only differ in their treatment of the
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two-electron terms, giving Ghigh and Glow respectively. However, the formalism also applies

if there is also a difference in the one-electron terms. We can now write the EMFT energy

functional as

EEMFT[K] = tr[KH0] +Glow[K] +
(
Ghigh[KAA]−Glow[KAA]

)
. (4)

This means that we calculate the energy of the full system at the low level, before then

applying a high level correction based only on the density matrix in the active region. The

off-diagonal blocks of the density matrix are therefore treated at the lower level of theory. The

ground state energy is then obtained by minimising EEMFT with respect to K subject to the

constraints of normalisation and idempotency. The theory remains mean-field throughout,

and it is simple to calculate forces20 and to extend the theory to obtain excitations within a

time-dependent EMFT (TD-EMFT) framework.43

The most obvious way of gaining significant computational advantages from the EMFT

framework is by treating the environment with a semi-local functional, but the active region

with a hybrid functional – that is, a functional containing a fraction of exact exchange. To do

this, the exact exchange contribution to the energy of the active region must be calculated.

However, because we have partitioned the system, there are several different ways this could

be done, depending on whether exchange between regions is included or not. The simplest

and least expensive method is the EX0 method, which only includes exchange interactions

within the active region, giving an exchange energy of20,42

EEX0 = −1

4

∑
αβγδ∈A

KAA
αβ (φαφδ|φβφγ)KAA

δγ , (5)

where α, β, γ, δ run over the basis functions {φi} associated with region A. (φαφδ|φβφγ) rep-

resents an electron repulsion integral (ERI), whose implementation in onetep is described
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elsewhere:47

(φαφδ|φβφγ) =

∫∫
φ∗α(r)φδ(r)φβ (r′)φ∗γ (r′)

|r− r′|
d3r d3r′ . (6)

Alternatively, the inter-region exchange interaction can be included via the EX1 method,42

whereby the interaction is averaged symmetrically between the subsystems, giving an energy

of

EEX1 = EEX0 −
1

4

∑
αβ∈A;γδ/∈A

KAA
αβ (φαφδ|φβφγ)Kδγ . (7)

The cost of calculating the exact exchange energy is dominated by evaluating the ERIs, which

scales quartically with the number of basis functions. Thus the EX0 and EX1 methods scale

as O (N4
A) and O (N2

AN
2) respectively, where NA and N are the number of basis functions in

subsystem A and the full system, such that for NA � N EX0 is significantly more efficient

than EX1 and previous work has shown that it is of comparable accuracy to EX1.42 Including

the full inter-region exchange simply amounts to replacing the factor of 1
4
in Eq. (7) with 1

2
,

but this has the same cost as the EX1 scheme, and has been previously found to produce

less accurate results.42 For these reasons, we use the EX0 method throughout this work.

An issue that has previously been noted with EMFT calculations is that in some cases,

where the two levels of theory are significantly different (e.g., hybrid DFT in semi-local DFT

embedding), EMFT converges to an unphysical solution with much lower energy than that

produced by either level of theory.42 In these situations, the trace of the diagonal blocks

of the density matrix, tr
(
KAASAA

)
+ tr

(
KBBSBB

)
becomes extremely large and positive

– implying that, in order to lower the overall energy, more and more of the electron den-

sity localises in the two subsystems, even beyond the number of electrons actually present

in the system. Conservation of electron number Ne = tr (KS) is still mathematically en-

sured by this being balanced by large negative values arising from the off-diagonal blocks,

tr
(
KBASAB

)
+ tr

(
KABSBA

)
, but this behaviour is clearly unphysical. This phenomenon

was reported in previous work,42 and was also observed in our own preliminary calculations.

One way to fix this issue is to force the off-diagonal blocks of the overlap matrix to be zero,
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i.e., orthogonalising the basis functions of environment region with respect to those of the

active region. This block orthogonalisation procedure involves applying a transformation

matrix U to the basis functions, given by42

U =

IAA −PAB

0BA IBB

 . (8)

Here, we have partitioned the matrix in the same way as K and S, with IIJ and 0IJ repre-

senting identity and zero matrices of appropriate sizes for their blocks. PAB =
(
SAA

)−1
SAB

is the projection matrix that performs the orthogonalisation. Using this transformation

solves the problem of these unphysical solutions, at essentially no extra cost, and is included

in the implementation we detail here. Note that this block orthogonalisation procedure can

be considered as a pre-processing step in the construction of the local orbitals and does

not require reference to the molecular orbitals. This is distinct from other embedding tech-

niques that involve explicitly imposing orthogonality between the Kohn-Sham orbitals of the

subsystems.37–40

3 Implementation in onetep

We now give details of our implementation of EMFT in onetep. onetep, like Gaussian

basis set DFT codes, uses atom-centred functions as a basis in which to express the density

matrix; unlike most other DFT codes, however, onetep optimises these basis functions to

take into account the local environment of the atom they are centred on.46 This means that

the energy of the system is minimised not only with respect to the density kernel, but also

with respect to the form of the basis functions themselves. As these basis functions are not

required to be orthogonal to one another, and are strictly localised within a given radius

around their atom, they are referred to as non-orthogonal generalised Wannier functions

(NGWFs). Using an optimised basis set such as this allows fewer basis functions to be used
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for the same accuracy, reducing the size and therefore cost of the calculation. As the number

and radius of the NGWFs associated with a particular atom can be easily adjusted, differently

sized basis sets can be used for different regions, a form of embedding discussed in Sec. 1. In

this work, however, we focus on the effect of using different exchange-correlation functionals

for different regions, as the optimisation of the basis set means that only relatively modest

basis set sizes are necessary.

In order to describe the NGWFs, they must be expanded in a set of underlying basis

functions. In onetep, these are periodic cardinal sine (psinc) functions, centred on the

points of a grid.46 The size of this grid is controlled by a cutoff energy, which is related to

the quantity of the same name in the plane-wave pseudopotential method – the larger the

cutoff energy, the finer the grid. onetep also samples the Brillouin zone of the system at

the Γ-point only – an excellent approximation for the large systems onetep was designed

for.

Equations (1) and (2) show how the density kernel and overlap matrix can be partitioned.

In order to use the existing machinery for optimising the kernel and NGWFs within onetep,

a similar expression is required for the Hamiltonian. This is given by

HEMFT =

HAA
high HAB

low

HBA
low HBB

low

 . (9)

Each block is created by calculating the expectation value of the appropriate Hamiltonian

operator between an appropriate set of basis functions on either side – for example, for the

high level Hamiltonian

HIJ
high;αβ = 〈φIα| Ĥhigh |φJβ〉 , (10)

where I, J label the regions, and |φIα〉 is a NGWF from region I. A similar equation applies

for the low level Hamiltonian. The Hamiltonian operators themselves are defined as

Ĥhigh = T̂ + V̂ext + V̂Hartree + V̂ high
XC , (11)
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with a similar definition again for the low level Hamiltonian. The kinetic energy T̂ and

external potential V̂ext (which includes local and non-local pseudopotential contributions)

together correspond to the single-electron core Hamiltonian H0 in Eq. (3); the Hartree po-

tential V̂Hartree and the exchange-correlation potential V̂XC together correspond to the two-

electron term G in Eq. (3). Only V̂XC changes as the level of theory is changed. Exact

exchange contributions are a special case – they are calculated as discussed in Sec. 2 and

added on to the energy and its gradient afterwards. This allows us to treat V̂XC as local

in the following discussion. One other thing to note is that the off-diagonal blocks in the

Hamiltonian are treated at the lower level of theory.

The Hamiltonians, defined as in Eq. (11), are then constructed as follows. Firstly, the

total electron density n(r) is constructed from the full system NGWFs and kernel, and from

this V low
XC (r) is calculated. Next, the active subsystem density nA(r) is constructed from

the active region NGWFs and kernel block KAA, from which the potentials V high,A
XC (r) and

V low,A
XC (r) are calculated. The high-level EMFT potential is then calculated as

V high
XC (r) = V low

XC (r) +
(
V high,A
XC (r)− V low,A

XC (r)
)
. (12)

Finally, from the potentials V low
XC (r) and V high

XC (r), we can calculate Ĥlow and Ĥhigh respectively.

Given K, S and H in this way, a calculation within onetep may proceed as usual, using

all the computational machinery already available. In particular, the covariant NGWF

gradient, which provides the main information required to minimise the energy with respect

to the NGWFs, is given by

gα =
∂EEMFT

∂ 〈φαA|
= |φAi 〉Aiα + Ĥhigh |φAi 〉 Biα + |φBi 〉 Ciα + Ĥ low |φBi 〉Diα . (13)

This expression gives the gradient for NGWFs within region A; there is a precisely analogous

one for NGWFs in region B. Summation over i is assumed. The gradient is tensorial in nature

owing to the non-orthogonality of the NGWFs, meaning that the metric (the overlap matrix)
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is non-trivial.

Eq. (13) is similar to the general form of the NGWF gradient for non-embedding calcu-

lations,48 but with the terms for the two regions separated out. The coefficient matrices in

this expression are defined as

A = [3LHL− 2LHLSL− 2LSLHL]AASAA (14)

B = [3LSL− 2LSLSL]AASAA = KAASAA (15)

C = [3LHL− 2LHLSL− 2LSLHL]BASAA (16)

D = [3LSL− 2LSLSL]BASAA = KBASAA , (17)

where L is the auxiliary matrix used in the purification of the density kernel, defined as

K = 3LSL−2LSLSL.49 The [· · · ]AA notation means that the expression inside the brackets

is calculated using the full matrices, and the AA block of the result is taken. It is important

to note that in Eq. (13), Ĥhigh only acts on NGWFs from the active region A, and Ĥ low only

acts on NGWFs from the environment, B.

As mentioned above, when there is a large difference between the levels of theory used, a

block orthogonalisation procedure is necessary to prevent unphysical growth of the diagonal

blocks of the overlap matrix. The transformation required to orthogonalise the environment

basis functions with respect to those in the active region is as shown previously in Eq. (8), but

the fact that the basis functions are optimised in onetep presents an additional challenge.

The block orthogonalisation procedure works well for kernel optimisation, as in previous

work,42 but severely affects the optimisation of the NGWFs. Block orthogonalisation ef-

fectively adds another term into the NGWF gradient that competes with the usual terms

present in the gradient. This competition is strong enough that in many cases, the NGWF

gradient never converges to zero, instead stalling at a finite value. The energy of the system

continues to decrease indefinitely, in a similar way to the issue with the optimisation of the

density kernel that block orthogonalisation was designed to prevent. The NGWFs try to
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optimise towards the region described by the level of theory with the lowest energy. This

is inconsistent with a good description of the system, and as such these results are unphys-

ical. To overcome this issue, we pre-optimise all the NGWFs in the system, as well as the

kernel, at the lower level of theory, before block orthogonalising and fixing the NGWFs for

an optimisation of the kernel within the EMFT framework. Whilst this implies that the

NGWFs are not ideally optimised under the EMFT Hamiltonian HEMFT, our results, which

we will discuss in detail in the next section, show that the error introduced by using NGWFs

optimised at the lower level of theory is typically only 1% of the energy difference between

the low and high levels of theory; in the worst case scenario where the character of the local

environment of the NGWFs in the active region significantly changes when the level of theory

changes, a larger set of NGWFs may be used, still enabling high quality calculations.

Additional results further demonstrating the effect of using NGWFs optimised at different

levels of theory are presented in the Supplementary Information. These results use a mixed

set of NGWFs, where the NGWFs in the active region are taken from a full system high-

level calculation, and the NGWFs in the environment are taken from a full system low-level

calculation. No block orthogonalisation was applied, allowing the smooth transition from

PBE to B3LYP to be seen clearly. As performing such calculations requires a full high-level

calculation, however, negating any performance gains from embedding, we do not discuss

this method further.

4 Results

We have applied our implementation of EMFT in onetep to several different systems. In

this section, we describe each of these systems, and detail the results that demonstrate the

capability of and validate our implementation.
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(a) 4 C atoms embedded (b) 8 C atoms embedded (c) 12 C atoms embedded

(d) 16 C atoms embedded (e) Full molecule, pentacene (f) Full molecule,
hydrogenated pentacene

Figure 1: The different embedding regions used for the various calculations on pentacene
and terminally-hydrogenated pentacene. The atoms in the active region are opaque and
the atoms in the environment are translucent. a)-d) show the embedding regions used
for pentacene – the regions used for hydrogenated pentacene are identical, but with the 2
additional hydrogen atoms bonded to the two left-most carbon atoms. e) and f) show the full
structure of pentacene and terminally-hydrogenated pentacene, respectively. The individual
figures are labelled by the number of carbon atoms included in the active region. H and
C atoms are white and grey respectively. The structures are geometry optimised within
onetep at the PBE level. Figures produced using Jmol.50

4.1 Hydrogenation of pentacene

Pentacene is an organic molecule that has been the subject of significant research interest in

recent years. As a linear acene, it consists of five fused benzene rings, giving it the chemical

formula C22H14 (see Fig. 1e). Thanks to its light-absorbing and semiconducting properties,

it is of interest in several different fields: it has been used as part of organic photovoltaic

systems,51 organic thin-film transistors,52 and when doped into para-terphenyl, it forms the

basis for a room-temperature maser.53 This makes pentacene an excellent first system for

our implementation of EMFT.

As relative energies, rather than total energies, are almost always the quantity of interest

in DFT calculations, we will apply our implementation to both pentacene and terminally-

hydrogenated pentacene – that is, pentacene where two hydrogen atoms have bonded with

the two carbon atoms at one end of the molecule (see Fig. 1f). From the energy difference

between these two molecules, we can calculate the terminal hydrogenation energy of pen-
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tacene, ∆Ehyd. This reaction has been used as a test case for previous implementations of

EMFT.20,42

In our calculations, we use the PBE functional28 as the low level of theory and the

B3LYP hybrid functional54 as the high level. We use a cutoff energy of 800 eV throughout,

and all NGWF radii are set to 4.76 Å (9 bohr). The carbon and hydrogen norm-conserving

pseudopotentials distributed with onetep were used. In all EMFT calculations, we use the

procedure outlined in Sec. 3 – we optimise both the NGWFs and kernel at the low level

of theory, then freeze the NGWFs and optimise the kernel alone within EMFT, using block

orthogonalisation. We initially treat both molecules wholly at the PBE level of theory (a ‘full’

PBE calculation), and then increment the size of the region being treated with B3LYP until

we are treating both molecules wholly at this higher level of theory. The embedded regions

and their sizes are detailed in Fig. 1. To ensure the comparisons made between the different

calculations are meaningful, we calculate the full molecules’ energy at the B3LYP level twice:

once using NGWFs that are optimised at the PBE level as in the other calculations, and once

using NGWFs that are optimised at the B3LYP level (a ‘full’ B3LYP calculation). This last

calculation provides the benchmark against which all others are measured. Once we have

the energy of both the pentacene and hydrogenated pentacene molecules for each embedding

configuration, we calculate the terminal hydrogenation energy as

∆Ehyd = EHP − EP − EH2 , (18)

where EHP, EP, and EH2 are the energy of terminally-hydrogenated pentacene, pentacene,

and an isolated hydrogen molecule respectively. EH2 is always calculated at the same level of

theory as the additional hydrogen atoms in the hydrogenated pentacene, i.e. PBE for a ‘full’

PBE calculation, B3LYP with B3LYP-optimised NGWFs for a ‘full’ B3LYP calculation, and

B3LYP with PBE-optimised NGWFs otherwise.

The results of these calculations are shown in Fig. 2. The first data point, where there are
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Figure 2: Terminal hydrogenation energy, ∆Ehyd, of a pentacene molecule as a function of
the number of C atoms treated with B3LYP, with all NGWFs optimised at the PBE level
of theory. The energy obtained when both the kernel and the NGWFs are optimised using
B3LYP is marked with a dotted line. ∆Ehyd is calculated as shown in Eq. (18). The precise
atoms included within the embedded active region for each calculation are shown in Fig. 1.

no C atoms in the active region, corresponds to a full PBE calculation. The final data point,

where all C (and H) atoms are in the active region, corresponds to the B3LYP calculation

using NGWFs optimised at the PBE level. The dotted line shows the energy obtained from

a full B3LYP calculation, which will act as our reference result.

The first aspect of these results to note is that, when treating the whole molecule at the

B3LYP level, there is practically no difference between the energy obtained with B3LYP-

optimised NGWFs and PBE-optimised NGWFs. The difference in energy is 0.01 eV, which

is at least an order of magnitude smaller than the energy difference between the full B3LYP

calculation and any other embedding configuration. This demonstrates that the approxima-

tion of using only low level-optimised NGWFs, made as part of our block orthogonalisation

implementation, is valid.

It can also be observed that the energy oscillates around the full B3LYP value, as seen in

previous implementations of EMFT,20 but that the amplitude of these oscillations reduces

as the active region increases in size. Going from four to eight carbon atoms in the active

region reduces the absolute value of the error relative to the full B3LYP calculation by 32%,

from 2.12 eV to 1.44 eV. With 16 carbon atoms in the active region, the error reduces again,
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by 59% relative to the error for eight carbon atoms. (The fact that the value for 12 carbon

atoms is anomalously close to the full B3LYP value is almost certainly coincidental.) This

demonstrates that as the size of the active region increases, the result tends towards the

high-level result for the full system, as would be expected. As increasing the size of the

active region will bring the result closer to the full high-level result, this means that we

can vary the size of the active region to obtain the desired balance between computational

cost and accuracy. Depending on the accuracy required, even relatively small active regions

can give an acceptable result. From a practical standpoint, this shows the utility of our

implementation of EMFT, as we can potentially obtain high-accuracy results for a fraction

of the cost of a full high-level calculation. Although pentacene is a system that has been

studied with previous implementations of EMFT,20,42 the linear scaling behaviour of onetep

will enable much larger systems to be studied, such as those presented in the next sections.

4.2 Pentacene in p-terphenyl

As noted in Sec. 4.1, if a crystal of p-terphenyl is doped with pentacene, it can form the

basis of a room-temperature maser – essentially a laser based on microwaves instead of

visible light.53 Although the invention of the maser actually predates the laser,55,56 most

maser systems are only operational in vacuum, under strong magnetic fields, and at very

low temperatures.57–59 The general introduction of a room-temperature maser will therefore

make significant improvements in several fields possible, ranging from medical diagnostics to

biological structure determination.53

To obtain the population inversion necessary for masing, the system must be pumped

using a visible light laser, which excites the pentacene molecules from their overall (sin-

glet) ground state S0 into their first-excited singlet state S1. These excited molecules then

go through an intersystem crossing, via a triplet excited state T2, into the triplet ground

state T1, but in a spin-selective way – the highest energy spin sub-level X is preferentially

populated over the lowest energy sub-level Z, leading to a population inversion and masing
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(a) Cluster configuration (b) Crystalline configuration

Figure 3: The two configurations used in this study for the pentacene in p-terphenyl system.
(a) shows the cluster configuration, consisting of a pentacene molecule surrounded by six
nearest neighbour p-terphenyl molecules. (b) shows the crystalline configuration, consisting
of a 3 × 5 × 3 supercell of crystalline p-terphenyl, with the central p-terphenyl replaced by
a pentacene molecule. The supercell is shown at an angle slightly away from the c-axis for
clarity, but it should be noted that three molecules appear on top of each other along the
viewing direction. (b) also shows the periodic unit cell used in the calculations. In both
cases, the p-terphenyl molecules are shown as wireframes, and the pentacene using a ball-
and-stick model for ease of viewing. H and C atoms are white and grey respectively. Figures
produced using Jmol.50

behaviour.53,60 Non-radiative decay or phosphorescence then leads to the molecules decaying

back to the overall ground state S0. The energy differences between the ground state S0 and

the excited states S1 and T1, ∆ES0→S1 and ∆ES0→T1 respectively, are therefore of critical

importance in understanding this system, the former as the alignment of S1 with T2 enhances

the intersystem crossing, and the latter as it determines how long it takes for the pentacene

molecules to decay from the T1 state.

Previous experimental work has shown that the excitations of the pentacene molecule de-

pend strongly on the identity of the host molecules.61–63 Attempts have been made to include

this effect in computational calculations by treating the host as an implicit solvent,64 but

this did not solve the problem completely. Studies on similar systems in solution have shown

that some of the solution/host must be treated quantum mechanically to obtain agreement

with experimental data, including the nearest neighbour molecules at a minimum.6,65 The
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requirement to include some of the host explicitly, therefore, makes this system an excellent

example of an embedded system amenable to the EMFT method in onetep.

Here, we focus on calculating the values of ∆ES0→T1 and ∆ES0→S1 , first by treating the

whole system with the PBE functional, and then by defining the pentacene molecule as the

active region, treated with B3LYP, whilst the environment is treated with PBE. The energy

∆ES0→T1 can be determined using the ∆SCF method – since the T1 state is in fact the

ground state if the electrons are restricted to be in their triplet configuration, its energy can

be calculated as simply the difference between the ground state energies of the S = 1 and

S = 0 spin states.

The ∆ES0→S1 transition energy cannot be determined directly using the ∆SCF method

since S1 does not correspond to a ground state in the singlet spin configuration. The S1

excited state consists of a transition from the highest occupied molecular orbital (HOMO)

to the lowest unoccupied molecular orbital (LUMO) of the pentacene, as indeed does T1.

Consequently, we can calculate the singlet-triplet splitting ∆ET1→S1 via the virial exciton

method due to Becke,66 whereby the splitting is determined exactly as the following electron

repulsion integral (ERI) for the frontier orbitals,

∆ET1→S1 = (ψHψH|ψLψL) =

∫∫
ψ∗H(r)ψH(r)ψL(r′)ψ∗L(r′)

|r− r′|
d3r d3r′, (19)

where ψH and ψL are the HOMO and LUMO wavefunctions, respectively. This method has

previously been applied to evaluating S1 for single molecules, producing promising results for

a multitude of systems, for example benzene where charge-transfer effects are significant.66,67

The molecular orbitals can be readily obtained via a one-off diagonalisation of the Hamilto-

nian matrix after a ground state optimisation of the NGWFs and density kernel. Then, as a

post-processing step, the ERI in Eq. (19) can be computed using the same infrastructure as

a regular exact-exchange calculation.47

We conduct the ∆SCF calculations at the PBE and B3LYP-in-PBE level for three dif-
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ferent geometries: vacuum pentacene, a cluster and a fully periodic crystal (see Fig. 3). In

addition, the singlet-triplet splitting is determined for every S = 1 triplet state calculation

for all geometries. A previous first-principles study of the pentacene-in-p-terphenyl system,

using both PBE and the range-separated hybrid OT-LCωPBE functionals, treated a clus-

ter of a pentacene molecule and its six nearest neighbour p-terphenyls.60 We use the same

structure for our cluster geometry, which is shown in Fig. 3a, and we compare the results of

the current work to those found in this previous study.

We also go beyond the cluster geometry, by conducting calculations on a fully periodic

structure. The experimental structure of p-terphenyl68 was obtained from the Cambridge

Structural Database.69 A 3×5×3 supercell containing 90 molecules was then produced, and

a pentacene molecule was substituted for the central p-terphenyl molecule, as in the cluster

geometry. This structure can be seen in Fig. 3b. This structure contains 2884 atoms, an

order of magnitude more than the 228 atoms included in the previous cluster calculations.

Performing such a large calculation, which will include longer range interactions between

the pentacene guest and the p-terphenyl host, demonstrates the utility of our implementa-

tion of quantum embedding methods within linear-scaling DFT – we can treat a very large

environment at the low-level of theory, before making use of embedding to treat the ac-

tive region more accurately. Such a calculation would have been impossible using previous

implementations of EMFT.

In all calculations, a cutoff energy of 750 eV was used, and all NGWF radii were set

to 4.76 Å (9 bohr). As before, we use PBE and B3LYP as the low and high levels of the-

ory, respectively, and use the block orthogonalisation procedure. The carbon and hydrogen

norm-conserving pseudopotentials distributed with onetep were used. In this system, all

calculations used NGWFs optimised at the PBE level – no full B3LYP calculations were

performed.

Table 1 shows the results for all three structures at both the PBE and B3LYP-in-PBE

levels of theory. In addition to the raw excitation energies from the ∆SCF calculations and
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Table 1: Energy differences between the S0 ground state and the T1 and S1 excited states for
pentacene, both in vacuum and doped into p-terphenyl, treated using both cluster and crystal
geometries shown in Fig. 3. The effect of the p-terphenyl host on the S0 → S1 excitation
energy is also shown. All results are compared to experimental data, taken as marked from
Refs. 61,70,71. For the cluster and crystal configurations, B3LYP-in-PBE refers to an EMFT
calculation, with the pentacene molecule forming an active region treated with B3LYP,
and the environment of p-terphenyl molecules being treated with PBE. For the vacuum
configuration, B3LYP-in-PBE refers to a calculation where the NGWFs are optimised at the
PBE level, before the density kernel is optimised at the B3LYP level, for consistency with
the EMFT calculations. All ∆ES0→T1 values were calculated using the ∆SCF method. The
values for ∆ES0→S1 were calculated using the Becke method.66 See main text for further
details.

∆ES0→T1 (eV) ∆ES0→S1 (eV)
Configuration PBE B3LYP-in-PBE Exp.70 PBE B3LYP-in-PBE Exp.

Vacuum 0.885 0.942 1.835 1.895 2.3171

Cluster 0.879 0.934
0.86± 0.03

1.801 1.853
2.1± 0.161

Crystal 0.891 0.934 1.804 1.756

∆ES0→S1 host redshift (eV)
Configuration PBE B3LYP-in-PBE Exp.

Cluster 0.034 0.042
0.2Crystal 0.031 0.139

the singlet-triplet splittings, Table 1 includes the calculated redshift for both the S1 and T1

states, plus experimental results for comparison.

It can immediately be seen that the B3LYP-in-PBE calculations slightly overestimate

∆ES0→T1 in vacuum and host by 0.07 eV, whilst the PBE results are somewhat closer – this

is almost certainly coincidental, however, and due to both calculations missing an effect that

would reduce ∆ES0→T1 . One possibility may be the presence of a Stokes shift in the triplet

state, which is reasonably long-lived. It is likely that the energies obtained using PBE are

affected by over-delocalisation, a well known issue with semi-local functionals;72 as the S0

state will be more delocalised than the T1 state due to the Pauli exclusion principle, the S0

state will be more strongly affected by this, relatively lowering its energy and thus increasing

∆ES0→T1 . This is borne out by the increase in ∆ES0→T1 as we go from the smaller cluster

configuration to the larger crystal, where more delocalisation is possible. These results

are consistent with previous ∆SCF calculations on the vacuum and cluster configurations,
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however, which also found that hybrid functionals overestimated ∆ES0→T1 , with PBE giving

a result closer to experiment.60 This shows that our implementation of EMFT is successfully

replicating the high-level result, as it is meant to do – the fact that the high level description

actually produces a result slightly further from experiment than the low level description

in this system does not alter this. As expected, there is a very small redshift for ∆ES0→T1

from the vacuum to the cluster and crystal, amounting to only 8 meV in both cases. This

indicates that the highly localised T1 state changes little in the host compared to vacuum,

with the cluster of nearest neighbours capable of capturing the impact of the environment.

Turning our attention to the S1 state, we notice that both PBE and B3LYP-in-PBE

significantly underestimate ∆ES0→S1 for both the vacuum and p-terphenyl host structures.

The vacuum energy of 1.895 eV for B3LYP-in-PBE is in line with previous ab initio calcula-

tions of ∆ES0→S1 using time-dependent density functional theory (TDDFT) with B3LYP,73

which predicted an S1 energy of 1.89 eV. While also underestimated relative to experiment,

the PBE vacuum result of 1.835 eV is significantly higher than reference ab initio studies

of pentacene using PBE with TDDFT, which predict values in the range of 1.58–1.64 eV

for S1,60,64,74 suggesting that the virial exciton method can reduce the error caused by the

failure of semi-local TDDFT to capture excitation energies for linear acenes. These results

seem to confirm that the combination of EMFT and the virial exciton approach is working

as expected in producing vacuum excitation energies, although these do not match exper-

imental absolute energies. Instead, we now consider the solvatochromic shift from placing

the pentacene within a p-terphenyl host.

For PBE, we observe a redshift of 34 meV and 31 meV in ∆ES0→S1 for the cluster and

crystal, respectively, relative to the vacuum energy. The former is in fact lower than a

previous study using PBE for the same structure,60 though this may reflect the tendency of

PBE to encourage charge delocalisation as a result of spurious self-interaction. This causes

long-range charge-transfer effects to be underestimated in energy by semi-local TDDFT,

such that the S1 state is no longer a pure HOMO→LUMO transition and instead contains
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significant contributions from neighbouring molecules.60 The fact that the crystal redshift is

in fact lower than the cluster result using ∆SCF implies that the PBE excitation is largely

unaffected by the presence of the wider crystal.

For B3LYP-in-PBE, the redshifts amount to 42 meV and 139 meV in ∆ES0→S1 for the

cluster and crystal, respectively. The cluster result is slightly larger than the PBE redshift

of 34 meV, in line with past studies using the cluster structure that showed a greater redshift

for ∆ES0→S1 using OT-LCωPBE as compared to PBE.60

Comparing the cluster and crystal results, we observe a much larger redshift of 139 meV

in the crystal structure with B3LYP-in-PBE, which is much closer to the anticipated redshift

of ∼ 0.2 eV and, significantly, indicates a different behaviour between the PBE and B3LYP

functionals for this system. There are two scenarios that may explain the difference between

the cluster and crystal redshifts. First, this suggests that the cluster is not sufficient to

capture all the effects of the environment on the pentacene excited states, for example, the

cluster only includes a ‘cylinder’ of p-terphenyls around the pentacene, with the end-to-end

molecules along the c-axis in Fig. 3 being excluded. Thus a larger structure such as the

periodic crystal utilised here is required to describe the full impact of the environment. The

fact that PBE does not demonstrate similar behaviour suggests there are long-range effects

that are not accounted for by the use of semi-local functionals for the crystal structure. Al-

ternatively, this may indicate a spuriously low singlet-triplet splitting in the crystal structure

due to changes in the S1 state in the host — if the excited state is not strictly composed of

the HOMO→LUMO transition, then Eq. (19) is not valid and ∆ET1→S1 may be misleading.

However, it is not clear why this would only apply to the crystal and not the cluster too,

and past studies60 of the composition of the S0 → S1 transition in explicit host suggest that

HOMO→LUMO remains dominant, particularly for hybrid functionals, so it appears that

the redshift is meaningful. Further studies of the validity of the virial electron method in

host structures would help to clarify this issue.

In summary, our B3LYP-in-PBE calculations produce results that are consistent with
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(a) Cobaltocene (CoCp2) (b) Ferrocene (FeCp2) (c) Dimethylferrocene
(Fe
(
CpMe)

2
)

Figure 4: The metallocenes considered in this study. All consist of a transition metal ion,
either Co or Fe, sandwiched between two cyclopentadienyl rings, which may have methyl
side-groups substituted onto them. Each molecule is labelled by the name it is referred to
by in this work. All structures are geometry optimised within onetep in vacuo at the
PBE level. Co, Fe, H, and C atoms are pink, orange, white, and grey respectively. Figures
produced using Jmol.50

past ab initio studies using B3LYP for both the singlet and triplet configurations, and

demonstrates divergent behaviour compared to using PBE. Although there are unanswered

questions regarding the validity of the redshifts obtained for the explicit host systems, the

combination of EMFT and linear-scaling DFT opens new avenues for studying such systems

by expanding the range of possible simulations that can be done at the DFT-in-DFT level

to several thousands of atoms.

4.3 Metallocenes in carbon nanotubes

The final system we study in this work is that of metallocenes encapsulated in carbon

nanotubes. Carbon nanotubes (CNTs) are among the most well-known and studied materials

for future technological applications, thanks to their very large tensile strength,76,77 high

electrical78 and thermal conductivity,79 and chemical stability. The precise properties of

a CNT depend on exactly how it is ‘rolled up’, usually defined by the two integers (n,m)

– for example, if n − m is divisible by 3, the CNT will be metallic (although curvature
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(a) Top view (b) Side view

Figure 5: An example geometry for a metallocene encapsulated within a CNT – in this
case ferrocene within a semiconducting (17, 0) CNT – from two perspectives. (a) shows the
structure looking along the axis of the CNT, showing the orientation of the metallocene
perpendicular to this axis, following previous work.75 (b) shows the structure looking per-
pendicular to the axis of the CNT, and also shows the periodic box used for the calculations.
The box has significant size in the plane perpendicular to the axis of the CNT to prevent
the system interacting with its periodic images. Fe, H, and C atoms are orange, white, and
grey respectively. Figures produced using Jmol.50

effects will open up a gap if n and m are small), but semiconducting otherwise.80 Besides

the details of their construction, the electronic properties of CNTs can be further tuned by

encapsulating guest molecules within them. Recent work has made use of transition metal

complexes, including metallocenes, for this.81–84 Metallocenes, which consist of a transition

metal cation M sandwiched between two cyclopentadienyl anions, have the general formula

M(C5H5)2, often abbreviated as MCp2. Ferrocene (FeCp2) and cobaltocene (CoCp2)85 are

among the most commonly synthesised metallocenes, and derivative compounds have also

been synthesised and studied extensively.86

Such metallocene@CNT systems are amenable to investigation using EMFT within onetep

for several reasons: there is a clear separation between an active region (the guest molecule)

and the environment (the CNT); including exact exchange should allow us to describe tran-

sition metal complexes more accurately (although this is not guaranteed in all cases87,88),

and embedding allows the metallocene to be described in this way whilst still including a

large portion of the CNT; and the potential technological importance of these systems means
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there is previous work to compare against.75

Here, we will focus on the encapsulation of three different complexes – cobaltocene

(CoCp2), ferrocene (FeCp2), and a derivative of ferrocene here called dimethylferrocene

(Fe
(
CpMe)

2
). The structure of these compounds is shown in Fig. 4. The CNT considered here

is the (17, 0) CNT, which is semiconducting. These components are chosen to allow straight-

forward comparison to the results of Ref. 75. The quantity of interest is the encapsulation

energy of the guest molecule, calculated as ∆Eenc = Emetallocene@CNT − Emetallocene − ECNT,

where care is taken to ensure that the metallocene and the CNT are treated at the same

level of theory in the calculation of all terms on the right hand side. If a fixed localised

basis set, such as Gaussians, were used to calculate this quantity, a counterpoise correction

would typically be required.89 In standard onetep calculations, this correction is unneces-

sary, thanks to the optimisation of the NGWF basis set.90 However, the NGWFs used for

the active region in our EMFT implementation are only optimised at the lower level of the-

ory, meaning that a counterpoise correction is no longer strictly unnecessary. Nevertheless,

this change in basis set only has a small effect on our results, as demonstrated above, and

therefore we expect any counterpoise correction to also be small.

To create the geometries required for these calculations, firstly the structure of the met-

allocene molecules was optimised at the PBE level in vacuum. These optimised molecules

were then placed in a perpendicular orientation75 at the centre of a (17, 0) CNT. No further

geometry optimisation was performed; previous PBE calculations on similar systems predict

that the metallocenes do not move significantly away from the CNT axis.91 A test geometry

optimisation using PBE on the cobaltocene@CNT system confirmed this. Previous geometry

optimisations done using the LDA functional do predict that the metallocenes move away

from the CNT axis, in better agreement with experiment,91 but in this work, we choose to

adhere to the PBE result to be consistent throughout. Fully periodic boundary conditions

were used, but the cell size was sufficient to separate the CNT and its periodic images by at

least 40 Å. The only real periodicity, therefore,was that along the CNT itself, with a lattice
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Table 2: Error in total energy from using PBE-optimised NGWFs in a B3LYP calculation
on several metallocenes, relative to the difference in energy between a full PBE and a full
B3LYP calculation.

Molecule Relative error from NGWFs (%)
CoCp2 1.06
FeCp2 0.960

Fe
(
CpMe)

2
0.998

Table 3: Encapsulation energy of several metallocenes within a (17, 0) CNT, calculated at the
PBE and at the B3LYP-in-PBE level. In the B3LYP-in-PBE calculations, the metallocene
forms the active region treated with B3LYP. The structures of the molecules used are shown
in Fig. 4, and an example of an encapsulated configuration is shown in Fig. 5.

Eenc (eV)
Molecule PBE B3LYP-in-PBE
CoCp2 0.112 0.654
FeCp2 0.051 0.277

Fe
(
CpMe)

2
0.114 0.756

vector of 25.584 Å. An example of one of the resulting structures is shown in Fig. 5.

In all calculations, a cutoff energy of 1200 eV was used, with all NGWF radii were set to

5.29 Å (10 bohr). PBE and B3LYP are used for the low and high levels of theory respectively.

The overall spin of the system is fixed at zero throughout, and the pseudopotentials used

were the appropriate on-the-fly norm-conserving pseudopotentials generated by the castep

code.92 The block orthogonalisation procedure outlined in Section 3 was used for all EMFT

calculations. All calculations were done using NGWFs optimised at the PBE level, with the

exception of some calculations of the total energy of individual metallocene molecules, which

were done fully at the B3LYP level for the purposes of comparison.

Table 2 shows, for each of the metallocenes in vacuo, the difference in energy (calculated at

the B3LYP level) arising from using PBE-optimised NGWFs rather than B3LYP-optimised

NGWFs, expressed as a percentage of the difference in energy between the full PBE and

full B3LYP calculations. As also seen above in Fig. 2, the error arising from using NGWFs

optimised at the low level of theory is relatively small, around 1%, again justifying the

approximation made in Section 3.
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Table 3 shows the value of Eenc for each metallocene encapsulated in a (17, 0) CNT,

calculated at both the PBE and B3LYP-in-PBE level. It can be seen that cobaltocene binds

significantly more strongly to the CNT than ferrocene. This is consistent with similar previ-

ous work on (16, 0) CNTs,91 and is as expected due to cobaltocene’s much higher tendency

to transfer charge to the CNT.75 Dimethylferrocene is also seen to bind more strongly than

bare ferrocene, as the methyl groups encourage charge transfer to the CNT.75 Our results

here are not directly comparable to these previous results, as the metallocene is positioned

on-axis (as discussed above). However, from a qualitative standpoint, the PBE results agree

well with the general trend outlined above, as do the B3LYP-in-PBE results, which shows

our implementation of EMFT is successfully describing the system. It should be noted

that there are no direct experimental measurements of the encapsulation energies in metal-

locene@CNT systems that we can compare against, only semi-local DFT calculations, but

these results demonstrate the power of our implementation. We are able to describe a large

host-guest system fully from first principles using a high level of theory, at a significantly

reduced computational cost – such a calculation would not have previously been possible.

5 Conclusions

In conclusion, we have presented the first implementation of embedded mean-field theory,

a quantum embedding scheme already successfully applied to molecular systems, into a

linear scaling DFT code, onetep. This allows the possibility of DFT-in-DFT embedding

calculations on systems significantly larger than was previously possible, by making use

of the linear scaling behaviour of onetep. By doing this, the behaviour of the region of

interest can be investigated at a high level of theory, whilst still including the effect of a

large environment, at a fraction of the cost of treating the whole system at the high level

of theory. Our implementation has been applied to a range of different systems, and was

found to perform very well compared to previous first principles calculations and experiment.
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In particular, the power of this new work is demonstrated explicitly by the application of

EMFT to a pentacene-doped p-terphenyl system containing nearly 3000 atoms. In this

calculation, the active region was treated with a hybrid functional, and the environment

with a semi-local functional, obtaining accurate results at a significantly lower computational

cost than an equivalent full hybrid functional calculation. This work therefore opens the

door for applying such embedding calculations to even larger systems, enabling the study

of a variety of problems of interest in condensed matter physics and chemistry, including

solvatochromism, doping of molecular crystals, and defects in semiconductors.

Supporting Information Available

The supplementary information provided alongside this work includes details of the pseu-

dopotentials used in this work, and an auxiliary set of results obtained using a ‘mixed’ set of

NGWFs – that is, where some NGWFs are optimised at the lower level of theory and some

at the higher level.
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