
Supporting Information 1: 

Improving expert forecasts in reliability.  

Application and evidence for structured elicitation protocols: 

Victoria	Hemming,	Nicholas	Armstrong,	Mark	A.	Burgman,	Anca	M.	Hanea.	

Quality	and	Reliability	Engineering	International	

 

Table of contents 
1	 DATA CLEANING AND CONVERSION INTO NON-PARAMETRIC DISTRIBUTIONS 1	

2	 PERFORMANCE MEASURES 5	

2.1	 IDEA	protocol	 5	
2.1.1	 ALRE	Accuracy	 5	
2.1.2	 Calibration	 7	
2.1.3	 Informativeness	(termed	‘precision’	in	the	study)	 8	

2.2	 The	Classical	Model	 11	
2.2.1	 Statistical	accuracy	 11	
2.2.2	 Information	 14	
2.2.3	 The	Classical	Model	score:	CM	Score	 20	
2.2.4	 Calculating	performance	weights	 20	

3	 EXPERT ESTIMATES AND AGGREGATIONS FOR QUESTIONS 24	

4	 SCORES OF EXPERTS COMPARED TO YEARS OF EXPERIENCE AND SELF-RATING 27	

5	 IMPROVEMENTS ROUND 2 CALIBRATION QUESTIONS 29	

6	 IMPROVEMENTS ROUND 2 QUESTIONS OF INTEREST 30	

7	 WEIGHTS PROVIDED TO EACH EXPERT 31	

8	 TABLE OF RESULTS 34	

9	 REFERENCES 38	

 



Hemming et al. 2019 Supporting Information: Improving expert forecasts in reliability.  Application and evidence for structured 
elicitation protocols. Quality and Reliability Engineering International. 
 

1 

1 Data cleaning and conversion into non-parametric 
distributions 

 

Data from Round 1 were cleaned and converted to 90% non-parametric distributions. This first 

involved converting ratios into their frequency formats. This was possible for all but one 

calibration question for which the raw values for either the denominator or numerator could 

not be obtained. 

Each expert’s bounds derived from the four-step elicitation were then extrapolated to 90% 

credible bounds using linear extrapolation, in which (equation 1.1 and 1.2): 

Lower standardised bound:  

ℓ"
#,% = 𝑏"

(#,% − *(𝑏"
(#,% − 	ℓ"

(#,%) ∗ /𝑗 𝑚′"
#,%3 45 

(A.1) 

Upper standardised bound:  

𝑢"
#,% = 𝑏"

(#,% + *(𝑢"
(#,% −	𝑏"

(#,%) ∗ /𝑗 𝑚"
(#,%3 45 

(A.2) 

where, 𝑏( =best estimate, ℓ( =lower bound estimate, 𝑢( = upper bound estimate, 𝑚( = level of 

confidence given by the participant e, in Round r, and j= the level of confidence each of the 

intervals was to be standardised to (i.e. 90%). 

The lower estimate of the 90% standardised intervals was assumed to represent the 5th quantile, 

the best estimate the median, and upper estimate the 95th quantile of a non-parametric 

distribution.  
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In cases where the adjusted intervals fell outside of reasonable bounds (such as [0,1] for 

probabilities), distributions were truncated just above their lower extreme, and just below their 

upper extreme. For example, if zero was specified as the absolute minimum and a participant 

estimated zero for one or more of their estimates, then a small number was added depending 

on which estimate the zero had been provided for. A zero in the: 

• 5th was converted to 0.00001.  

• 50th quantile was converted to 0.0001. 

• 95th quantile was converted to 0.001. 

In questions for which the experts provided estimates in which the upper, best, and /or lower 

estimates were equal to one another, a small number was either subtracted from the lower 

estimate to make it lower than the median, or added to the upper estimate to make it higher 

than the median. The actual number depended on the number of significant figures of the 

median for example, if the median was: 

• 100, then 1 was removed from the lower estimate, or added to the upper estimate. 

• 10, then 0.1was removed from the lower estimate, or added to the upper estimate. 

• 1, then 0.01 was removed from the lower estimate, or added to the upper estimate 

• 0.1, then 0.001, was removed from the lower estimate, or added to the upper estimate 

• 0.01, then 0.0001, was removed from the lower estimate, or added to the upper estimate 

This was required to avoid floating point errors in Excalibur [1], the program used to score 

experts, develop weights, and aggregate judgements for the IDEA protocol. 
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The estimates were then exported into individual .CSV files from R, and converted to .DTT 

files using the macro developed by Cooke [2]. The files from each participant were entered 

into Excalibur as two case files, one for each workshop group. Excalibur was then used to 

generate an equal weight aggregation for each of the calibration questions, and each of the 

questions of interest. The results from Excalibur were imported into R. RMarkdown was then 

used to create feedback documents for each of the workshops, which combined graphs and 

tables containing the standardized 90% intervals for each question. These feedback documents 

were sent to experts two days prior to each workshop.  

In the Round 2 analysis, data were read into R and cleaned as in Round 1. Only nine expert 

estimates were used to calculate aggregations that could be scored on calibration questions. 

The following data tables report summary statistics from the manuscript. Due to the small 

samples sizes and the non-normal nature of the scoring rules, a non-parametric method was 

used to calculate the 95% confidence intervals around the median. This involves reporting the 

value of the upper and lower ranked score. Where n was calculated using the following 

formula: 

𝑅𝑎𝑛𝑘	𝑜𝑓	𝐶𝐼@AB"% = 	
𝑛
2 −	

1.96	√𝑛
2  

 (Equation A.3) 

𝑅𝑎𝑛𝑘	𝑜𝑓	𝐶𝐼IJJ"% = 1 +	
𝑛
2 +	

1.96	√𝑛
2  

(Equation A.4) 

Where, n=the sample size. The rank order was rounded to the nearest integer (for a sample of 

nine this meant selecting the 2nd and 8th highest values). When sample sizes were less than or 
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equal to n=8 the confidence intervals correspond to the minimum and maximum values, and 

therefore were not calculated. 
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2 Performance measures 
 

The following section is adapted from the author’s work uploaded onto the Open Science 

Framework [3]. 

2.1 IDEA protocol 

2.1.1 ALRE Accuracy 

‘ALRE Accuracy’ is used as a measure of performance for the best estimate (a point estimate). 

It aims to assess the difference between the prediction b (the participant’s best estimate) and 

observed value x.  

Commonly applied measures of accuracy include Mean Absolute Percentage Error (MAPE), 

which gives the average percentage difference between the prediction and observed value, and 

Root Mean Square Percentage Error (RMAPE), which is the square root of the MAPE [4]. 

Both MAPE and RMAPE are strongly affected by one or a few very divergent responses [4].  

To overcome these limitations, Burgman, Carr [5] outlined an alternative approach, which we 

adopt. The approach involves first standardising the best estimates 𝑏"
(#,% from each participant 

e, for each question n, in each round r (including the realised outcome) by the range of 

responses for each question. This is termed ‘range-coding’ and is given by, 

𝑏"# =
(𝑏"(# − 𝑏KL#(# )

M𝑏KNO(# − 𝑏KL#(# P3 	

(Equation	A.5)	

 where, 𝑏"# is the range-coded response for participant e, 𝑏KNO(#  is the maximum best estimate 

response taken from the pool of responses (best estimates) from all participants for question n, 

and 𝑏KL#(#  is the minimum best estimate response. Note the realised truth (𝑥(#) for each question 
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is also range-coded using Equation A.5. If estimates are to be compared across rounds, then 

both Round 1 and Round 2 estimates need to be range-coded together. 

Range-coding reduces the contribution of the question scales on the results. The range-coded 

values are then used to calculate performance using the average log-ratio error (ALRE, [5]): 

𝐴𝐿𝑅𝐸" =
1
𝑁

V Wlog[\ ]𝑥
# + 1

𝑏"	# + 1^ _W
`

#a[

	

(Equation	A.6)	

where, 𝑁 is the number of quantities assessed 𝑏"# is the range-coded best estimate prediction 

for question n by expert e, and 𝑥#	is the range-coded observed (true) value for question n 

(range-coded values are derived from Equation A.5, above). A ‘1’ is added to avoid taking the 

log of zero (which occurs when the realisation is standardised). The log10 ratio provides a 

measure that emphasises order of magnitude errors rather than linear errors. That is, a 

prediction that is 10 fold greater than the observed value weighs as heavily as a prediction 

which is one-tenth the observed value [5]. Smaller ALRE scores indicate more accurate 

responses. For any given question, the log ratio scores have a maximum possible range of 0.31 

(=log10(2)), which occurs when the true answer coincides with either the group minimum or 

group maximum.  

To provide an example, imagine four experts provide the estimates listed in Table A. 1 for a 

single question. Imagine the realised truth for the question is 30. 

Table A. 1 Hypothetical estimates of four experts for a single question 

Expert 5th (lower) 50th (best) 95th (upper) 
1 2 12 34 
2 4 15 50 
3 7 9 40 
4 20 22 23 
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We then range-code the best estimates from the experts and include the answer using Equation 

A.5 above. Column 3 of  Table A. 2 provides the output of this range-coding, the numbers 

underlined represent the minimum and the maximum from the data set.  

We can then use these range-coded estimates to calculate the ALRE score, using Equation A.6 

above. In this case the experts are only assessed on one question. The ALRE scores for the 

experts are provided in Table A. 2. 

Table A. 2 The range-coded responses and the ALRE score 

Expert 50th Range coded 
responses (𝑏"# , 𝑥#) ALRE (for 1 question) 

1 12 0.14 0.24 
2 15 0.29 0.19 
3 9 0.00 0.30 
4 22 0.62 0.09 

Answer 30 1.00 N/A 

 

2.1.2 Calibration 

In this study, we refer to ‘calibration’ in terms of interval judgements in which a judge is 

considered well-calibrated if over the long run, for all questions answered, the proportion their 

intervals that capture the realised truth equals the probability assigned [6-9].  

As the information from the four-step elicitation involves a standardisation of intervals, we use 

the standardised upper and lower values of those intervals and the standardised level of 

confidence associated with those intervals. Scoring participants on their standardised intervals 

is thought to be acceptable as the participants receive feedback on these standardisations 

between Round 1 and Round 2 and are informed they can (and should) adjust their estimates if 
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they do not accord with their true beliefs. They are also made aware that this this is how they 

will be scored. 

In this study, we standardised intervals to 90%, therefore a perfectly calibrated individual will 

capture the realised truth approximately 90% of the time. We calculated the actual number of 

realisations captured as, 

𝐶" =
𝑡
𝑁

	× 100 

 (Equation A.7) 

where, 𝐶" 	is the score for calibration for participant e, while t is the number of standardised 

upper and lower intervals provided by the participant which contained the realised truth x, and 

𝑁 	is the total number of questions answered by the participant. 

This scoring rule follows that used by Burgman, Carr [5], Speirs-Bridge, Fidler [10], and 

McBride, Fidler [11] for evaluating performance of intervals derived from the four-step 

elicitation. As it is possible for participants to obtain a high calibration by providing very wide 

(uninformative) intervals, this measure must be considered alongside informativeness 

(precision) (described below). 

2.1.3 Informativeness (termed ‘precision’ in the study) 

‘Informativeness’ measures the width (or precision) of the of the participant’s intervals relative 

to the total range provided by participants for a question (in accordance with [12]). This differs 

from the relative information score [13] described by [11], which scores information within, 

and outside each of the participant’s quantiles relative to a uniform or log-uniform distribution  

The informativeness of participants is given by the width of standardised intervals (i.e. the 90% 

credible intervals) supplied by participants for each question in each round: 
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𝑤"# = 𝑢"# − ℓ"#	

(Equation	A.8)	

where, 𝑤"#	is the width of the standardised interval of participant e for question n, in round r, 

while 𝑢"# is the upper standardised estimate provided by participant e for question n, in Round 

r, and ℓ"#	is the lower standardised estimate provided by participant e for question n.  

For each question, a background range was also calculated  

𝑤KNO# = 𝑢KNO# − ℓKL## 	

(Equation	A.9)	

Where, 𝑤KNO#  is the background range created for question n, 𝑢KNO#  is the highest standardised 

upper bound estimate provided for question n by any participant, and ℓKL##  is the lowest 

standardised lower bound estimate provided by any participant.  

The average informativeness score of each participant can then be calculated as: 

𝐼" =
1
𝑁

V f
𝑤"#

𝑤KNO# 	
f

`

#a[

	

(Equation	A.10)	

where 𝐼"%	is the average informativeness of participant e over all questions in Round r, 	𝑤"
#,%  is 

the width of the interval provided by participant e in Round r for question n, 𝑤KNO# 	is the 

background range for question n, and 𝑁  is the total number of questions answered. 

Scores range between 0 (no uncertainty), to 1 (participant’s intervals were always equal to the 

background range of the questions). Lower scores are better.  

Note that the score must be considered in conjunction with calibration as it may reward 

participants who report no uncertainty. In this case, unless the participant knows the truth with 

absolute certainty, they would be expected to have poor calibration, which is often weighted 

higher than informativeness by a decision maker. 
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To provide an example, we can take the estimates provided by the four experts provided in 

Table A. 1, and determine the ranges 𝑤"#	for each expert’s 90% credible intervals. Table A. 3 

provides this information. 

We can also calculate a background range 𝑤KNO# 	using the upper (50) and lower (2) 

standardised estimates of the expert’s range, in this example the background range 𝑤KNO#  is 

50-2= 48. 

From this information, we can calculate the informativeness of each expert	𝐼"  using Equation 

A.10 above. Table A. 3 provides the output of these calculations. 

Table A. 3  Informativeness for each expert calculated from their 5th and 95th quantiles, 

and the background range R 

Expert 5th 95th 𝑤"# 𝐼"  
1 2 34 32 0.67 
2 4 50 46 0.96 
3 7 40 33 0.69 
4 20 23 3 0.06 
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2.2 The Classical Model 

2.2.1 Statistical accuracy 

Statistical accuracy (often referred to as calibration and often denoted by ‘C’) is an absolute 

value, defined as the p-value of the statistical test which assesses the degree to which the expert 

answers according to a theoretically optimal multinomial distribution (most often = 

p(0.05,0.45,0.45,0.05)). The resulting p-value can be interpreted as the value at which one 

would falsely reject the hypotheses that a set of probability assessments of the expert accord 

with this theoretical multinomial distribution [14]. 

An explanation of how this is calculated is nicely summarised in Quigley, Colson [15], this 

section draws extensively from Quigley, Colson [15], to summarise the key points here. 

Experts are asked to provide judgements as 5th, 50th, and 95th quantiles of a probability 

distribution. This creates four inter-quantile ranges (<5, 5-50, 50-95, >95). Over a set of 

questions for which realisations could be obtained, we would expect that for: 

• 5% of their judgements the realisations would fall below their 5th quantile. We express 

the observed proportion as Q1. 

• 45% of their judgements the realisation would fall between their 5th and their 45th 

quantile. We express the observed proportion as Q2. 

• 45% of their judgements the realisations would fall between their 50th and their 95th 

quantile. We express the observed proportion as Q3. 

• 5% of their judgements the realisation would fall above their 95th quantile. We express 

the observed proportion as Q4. 
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One thing to note in scoring expert judgements, if the realisations are equal to the values 

provided by the experts for the 5th, 50th, and 95th quantiles, then the following rules are used to 

decide which probability bin the realisation should be placed into: 

• If the realisation equals the 5th quantile, it is placed in first probability bin (Q1). 

• If the realisation equals the 50th quantile, it is place in the second probability bin (Q2). 

• If the realisation equals the 95th, it is placed in the third probability bin (Q3). 

The expectation of where the realisations will fall in relation to an expert’s inter-quantile ranges 

can be expressed as a theoretically optimal multinomial distribution p=(0.05, 0.45, 0.45, 0.05) 

[16]. Under the Classical Model, the actual proportion of realisations within each inter-quantile 

range for each expert (or aggregation) is tallied to create a multinomial distribution for each 

expert: s(e)=(Q1, Q2, Q3, Q4). 

As an example, if we imagine an expert (e) is asked to answer 10 calibration questions. We 

subsequently find that across these ten questions one realisation falls below their 5th quantile, 

four fall between their 5th and 50th quantile, four between their 50th and 95th quantile, and one 

above their 95th quantile, then the expert will have a distribution as follows: s(e)=(1/10, 4/10, 

4/10, 1/10) or (0.10, 0.40, 0.40, 0.10) (Table A. 4). 

Table A. 4 A summary of the performance of a hypothetical expert (e) on ten calibration 

questions compared to expected performance. Table adapted from Quigley, 

Colson [15]. 

 Inter-quantile intervals 
Q1 

Below 5th 
Q2 

5th to 
50th 

Q3 
50th to 95th 

Q4 
Above 

95th 
Observed proportion of realisations s(e) 0.10 0.40 0.40 0.10 

Expected proportion of realisations p 0.05 0.45 0.45 0.05 
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From this information, the Classical Model then measures how extreme the set of realisations 

s(e) are with respect to the expected realisations, p. This is done using the Kullback-Leibler 

(KL) divergence measure. The KL measure is a measure of difference between the observed 

and expected probabilities [15]. The formula is as follows: 

 

(Equation A.11) 

where: 𝐾(𝑠"	𝑝)	is the KL divergence measure for expert e, 𝑠"L is the observed proportion of 

realisations (out of N questions), in interval i, for expert e, 𝑝L is the expected proportion of 

realisations in interval i, m is the number inter-quantile intervals (in the Classical Model this is 

4). 

Applying this to the data in Table A. 4 we obtain: 

𝐾(𝑠"	𝑝) = 0.10ln /
0.10
0.054 + 0.40ln /

0.40
0.454 + 0.40ln /

0.40
0.454 + 0.10ln /

0.10
0.054 

     = 0.04 

(Equation A.12) 

If the observed proportions perfectly match the expected proportions then the divergence 

measure would be 0, as the difference grows so does the measure [15]. 

If an expert’s assessments are statistically accurate i.e. the long run observations will equal the 

expected proportions, then the probability measure will be equivalent to a chi-squared 

distribution for large sample sizes: 

𝑃𝑟{2N𝐾(𝑠"	𝑝) 	≤ 𝑔} 	→ 𝜒Kv[w (𝑔), 𝑎𝑠	𝑁 → ∞ 

!(#$	&) = 	) #$*
+

*,-
ln	 0#$*&*

1 
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(Equation A.13) 

where N is the number of calibration questions, and 𝜒Kv[w (𝑔) is the Cumulative Distribution 

Function (CDF) of the 𝜒w  distribution with m-1 degrees of freedom evaluated at x, where m 

represents the number of inter-quantile intervals assessed. 

In the Classical Model m is equal to 4 so we have a chi-squared distribution with three degrees 

of freedom. The expert had a divergence measure of 0.04 (Equation A.12), so 2𝑁𝐾(𝑠", 𝑝) is 

equal to 0.88. The statistical accuracy (SA) of the expert can then calculated as: 

𝑆𝐴 = 1 − 𝜒zw(0.88) 

= 0.83 

(Equation A.14) 

While this is calculated in Excalibur, it can also be calculated using the divergence measure 

and the pchisq() function in R.  

A multinomial distribution provided by the expert s(e) which is equal to the distribution p will 

receive a score close to or equal to 1. A distribution which is dramatically different from the 

distribution p will result in a lower score [16, 17]. Scores below and alpha level of 0.05 are 

usually interpreted as statistically inaccurate, in other words there is less than a 5% chance that 

one would falsely reject the hypothesis that the expert is answering according to the p-

distribution [16]. We recommend referring to Quigley, Colson [15] for a more thorough 

explanation. 

2.2.2 Information 

‘Information’ (often referred to as informativeness but differentiated here from the IDEA 

protocol) under the Classical Model (CM) measures the degree to which the distribution 
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supplied is both concentrated and the level of departure from a uniform or log-uniform 

distribution (which are considered the least informative distributions). 

To calculated this, the Classical Model again uses the Kullback-Leibler (KL) divergence 

measure, as this measure is scale invariant [15]. The spread of the expert’s distributions is 

assessed relative to an intrinsic range (Zn). This is calculated by assessing the spread of all 

expert’s distributions for each question, determining the lowest estimate and the highest 

estimate provided to create a range (i.e. 𝑤KNO# ), and adding a 10% overshoot (O) to the lowest 

ℓKL##  and highest 𝑢KNO# 	estimates of this range to create a maximum 𝑂KNO# 	and minimum values 

𝑂KL## 	for range. See Equations A.15 – A.17 below. 

The informativeness of an expert’s probability distribution is then assessed using the KL 

divergence measure relative to a uniform distribution applied over the intrinsic range. The 

uniform distribution is chosen because it’s the least informative distribution (note that a log-

uniform background measure is used across very wide ranges). 

On any question, an uninformative expert is one whose estimates accord to a uniform 

distribution in relation to the intrinsic range (i.e. 5% of the range accords with their 5th quantile, 

50% below their 50th quantile). As expert’s estimates provide ranges which are narrower and / 

or demonstrate more departure from a uniform distribution, their information score increases. 

The lowest score for information is 0, which coincides to a uniform distribution of the intrinsic 

range, while the score is theoretically unbounded above. 

To provide an example, revisit the estimates provided by four experts in Table A. 1 for a single 

question. We have already determined that the range Rn for the estimates is 48. 

From this data, we then add the 10% overshoot to the range using the following formulas: 

Lower bound: 
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𝑂KL## = ℓKL## 	− (𝑤KNO# ∗ 	 .10) 

(Equation A.15) 

Upper bound: 

𝑂KNO# = 𝑢KNO# + (𝑤KNO# ∗ 	 .10) 

 (Equation A.16) 

Intrinsic Range: 

𝑍KNO# = 𝑂KNO# −	𝑂KL##  

(Equation A.17) 

Where, 𝑂KL## 	is the lower bound of the intrinsic range (𝑍KNO# 	),	for question n, ℓKL##  is the lowest 

estimate provided by the group of experts, 𝑂KNO# 	is the upper bound of the intrinsic range, 

𝑢KNO# 	is the upper estimate provided by the group of experts, 𝑤KNO#  is the range (without the 

overshoot) provided by the group of experts for question n (i.e. See Equation A.9 above). 

When we apply these equations to the estimates provided in Table A 1, it gives us a lower 

bound of -2.8 and an upper bound of 54.8, thus the intrinsic range (𝑍KNO# ) for this question (n) 

is 57.6. 

We then calculate the range (𝐴L,"# ) for each expert’s inter-quantile intervals (Qi), for question n 

of N and determine the proportion of the intrinsic range 𝑍KNO#  that is captured in each 𝐴L,"#  using 

the following formula: 

𝑍L,"# =
~𝐴L,"# ~
𝑍KNO#  

(Equation A.18) 
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Where m relates to the ith interquantile interval (Q), where i takes a number between 1 and m. 

Where the range of: 

• Q[ extends from the lower limit of the intrinsic range 𝑂KL## 	to the 5th quantile (lower 

standardised estimate) provided by the expert (i.e. ℓ"
#,%), 

• Qw extends from the 5th quantile (lower standardised estimate) provided by the expert 

(i.e. ℓ"
#,%) to the 50th quantile (i.e. their best estimate 𝑏"

(#,%). 

• Qz extends from the 50th quantile (i.e. their best estimate 𝑏"
(#,%) to their 95th quantile 

(i.e. their upper standardised estimate 𝑢"
#,%). 

• Q� extends from the 95th quantile (i.e. their upper standardised estimate 𝑢"
#,%) to the 

upper limit of the intrinsic range 𝑂KNO# 	.	the 5th to the 50th quantile, and X� from the 

95th to the upper limit of the intrinsic range.  

We provide a worked example for Expert 1 in Table A. 5, and the results for all experts in 

Table A. 6. 

Table A. 5 Calculating the proportion of the intrinsic range captured by the expert’s inter-

quantile ranges 

Expert 𝑍[,[#  𝑍w,[#  𝑍z,[#  𝑍�,[#  

1 *
|2 −	−2.8|

57.6 5 *
|12 − 2|
57.6 5 *

|34 − 2|
57.6 5 *

|54.8 − 34|
57.6 5 
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Table A. 6 The proportion of the intrinsic range captured within each of the expert’s inter-

quantile ranges. 

Expert 𝑍[,"#  𝑍w,"#  𝑍z,"#  𝑍�,"#  

1 0.08 0.17 0.38 0.36 
2 0.12 0.19 0.61 0.08 
3 0.17 0.03 0.54 0.26 
4 0.40 0.03 0.02 0.55 

Background 0.08 0.17 0.38 0.36 
 

The information from Table A. 6 can be used to create another multinomial distribution for 

each expert. For Expert 1 the multinomial distribution would be s(e)= (0.08, 0.17, 0.38, 0.36). 

This can then be compared against the expectation had the range been a uniform distribution, 

p=(0.05, 0.45, 0.45, 0.05), to obtain the relative information score using the following formula, 

noting that the expectation, p, is the numerator which differs from Equations A.11 and A.12 

above: 

 

(Equation A.19) 

!"($, &') = 	+$,
-

,./
ln	 2$,&',

3 
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If we expand this for Expert 1 then we get the following score for relative Information (RI), 

𝑅𝐼(𝑝, 𝑠") = .05ln/
. 05
. 084 + 0.45ln /

. 45

. 174 + 0.45ln /
. 45
. 384 . 05ln/

. 05

. 364 

  = 0.38 

(Equation A.20) 

Applying this formula to all experts we get the relative information scores provided in Table 

A. 7. 

Table A. 7 The relative information for each inter-quantile range provided by four experts, 

and their average relative information (RI). 

 𝑅𝐼(𝑄[) 𝑅𝐼(𝑄w) 𝑅𝐼(𝑄z) 𝑅𝐼(𝑄�) I 
Expert 1 -0.03 0.43 0.07 -0.10 0.38 
Expert 2 -0.04 0.39 -0.14 -0.03 0.18 
Expert 3 -0.06 1.15 -0.08 -0.08 0.93 
Expert 4 -0.10 1.15 1.46 -0.12 2.39 
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2.2.3 The Classical Model score: CM Score 

In the Classical Model, the scores for experts are obtained by multiplying the information (RI) 

Score by the statistical accuracy (SA) Score: 

CM Score= SA x RI. 

(Equation A.21) 

The Classical Model scoring rule is termed an asymptotically proper scoring rule. It is 

asymptotical because the distribution of the test statistic used to calculate statistical accuracy 

has an asymptotic distribution. Theoretically this means that you would have infinitely many 

calibration questions then the scoring rule will be a proper scoring rule. However, these 

asymptotic properties are well approximated by 10-15 questions.  

Another property which makes the scoring rule a proper scoring rule is that a cut-off is imposed 

for statistical accuracy (alpha > 0). However, all possible combinations of multinomial 

distributions will have an alpha > 0 (they just might be very small numbers).  

2.2.4 Calculating performance weights 

In the Classical Model, the scores for statistical accuracy (SA) and relative information (RI) 

are then used by ‘Excalibur’, to develop weights, these weights are used to combine judgements 

of experts (termed Decision-makers, or DM). 

There are five types of aggregations that are calculated each of which were compared in this 

paper.  
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Equal Weights: The equally weighted group aggregation is simply a linear pool of all expert 

distributions using the arithmetic mean of their distributions. It affords all experts the same 

weight in the group aggregation regardless of how well they perform on test questions. It can 

be calculated without calibration questions.  

Global Weights: considers the statistical accuracy and the relative information of the experts. 

Those who performed better on the calibration questions are afforded more weight than those 

who performed poorly. An expert may also receive little weight in the group aggregation if 

they are as statistically accurate but less informative to another expert.  

To calculate global weights an average information score across the set of calibration questions 

is calculated: 

RI" =
∑ 𝑅𝐼(𝑝, 	𝑠")�
�a[

N  

(Equation A.22) 

Raw weights are then calculated removing any expert who has a statistical accuracy below 

acceptable levels, typically below 0.01 (Quigley et al. 2018). 

𝑣�( = SA"𝑅𝐼" × 1�(SA") 

(Equation A. 23) 

Where 1�(SA") is 1 if the statistical accuracy SA"	exceeds the cutoff for α. The use of 1�(SA") 

is imposed by the requirement that the weights w�
( 	should be an asymptotically proper scoring 

rule: where an expert maximises their long run expected weight if and only if their quantile 

assessments correspond to their true belief (Quigley et al. 2018). Weights are then normalised 

across all experts (Quigley et al. 2018). 

v� =
v�(

∑ 𝑣′�∀�
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(Equation A. 24) 

Itemised Weights: uses the same SA scores as Global Weights, however, the weight each 

expert is awarded will change per question because it takes into account the informativeness 

of the expert for each particular question rather than the average one calculated based on all 

questions. This often leads to a slightly more informative decision-maker on average than 

Global Weights.  

To calculate itemised weights the raw weight for expert e on question n is calculated as follows: 

v��( = SA"𝑅𝐼"# × 1�(SA") 

(Equation A. 25) 

Noticing that we have two subscripts, one for the expert and one for the question. If there is 

little relative information in the information score between experts across questions then the 

assessment will be similar to Global Weights (Quigley et al. 2018). 

Optimised Global Weights and Optimised Itemised Weights: these aggregations are similar 

to their un-optimised variants described above (i.e. Global Weights and Itemised Weights). 

However, unlike the Global Weights and Itemised Weights, they look to optimise the 

calibration of the weighted aggregations by successively raising the level of	𝛼 from	𝛼 = 0. The 

subsequent weights are then recalculated, and the DM with the highest Performance weight is 

chosen (Quigley et al. 2018). In decisions where there are clearly one or two well calibrated 

experts, this can lead to most or all of the weight being afforded to those experts and no weight 

being afforded to the other experts.  
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3 Expert estimates and aggregations for questions 
 

Figure A 1Error! Reference source not found. shows the quantitative estimates (best 

estimates and 90% credible intervals) of individual experts and the resulting aggregations on a 

single calibration question in Round 1 and Round 2.  

The red horizontal line shows the realised truth for this question. The aggregations only include 

estimates from experts who took part in both Round 1 and Round 2 and did not look at any of 

the answers for the realisations. As can be seen, there was a high degree of variation between 

experts in their Round 1 (dashed lines) and Round 2 (bold lines) estimates in terms of the width 

of their intervals and to a lesser degree the distance of their best estimate from the truth. For 

this question, when experts updated their estimates, their best estimate moved closer to the 

truth and many became more precise in their 90% credible intervals.  

 

Figure A 1 Round 1 and Round 2 estimates for Question 2, a calibration question (due to 

confidentiality the Y-axis (plotted on a square root scale) cannot be displayed). 

The graph shows estimates for each Expert (Exp) and Aggregation (Agg). 
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Dashed lines indicate Round 1 estimates (R1), whilst solid lines are the revised 

Round 2 estimates (R2). The aggregations do not include those who withdrew 

(Exp (W)) or who looked at calibration questions (Exp (R)). Key: EW= Equal 

Weights, IT=Item Weights, IWO= Item Weights Optimised, GW=Global 

Weights, GWO=Global Weights Optimised. 

Figure A 2 demonstrates the difference between equal-weighted (EW (9 participants), X.EW 

(all 20 participants)) and performance-weighted aggregations (GW, IW, GWO, IWO, 9 

participants) for three of the 17 questions of interest. The orange line represents a point at which 

Australia would lose an equivalent number of air-vehicles as the Foreign Air Force (FAF) for 

a particular difference in configuration, role and environment. Numbers above the orange line 

represent a belief that Australia would lose more air-vehicles than the FAF, and numbers below 

the line represent a belief Australia would lose less air-vehicles than the FAF. The median 

estimate for all aggregations in Round 2 on these questions is closely centred on the same 

number of losses as the FAF, suggesting that for these questions the expert’s best estimate was 

that there would be little difference between Australia and the FAF. However, for each question 

the 90% credible intervals extend above and below the orange line indicating experts thought 

there were factors which could make the attrition rates much higher or lower than the FAF.  

There was little difference between the two different equal weighted aggregations (EW, 

X.EW) in their estimates. 
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Figure A 2. The graph shows each of the aggregations for three questions of interest, the Y-axis 

cannot be displayed, but all graphs are on the same linear scale. The white and 

blue dots represent the best estimate (taken to represent a median), the vertical 

line represents the 90% credible intervals. The orange line represents Australia 

losing the equivalent number of air-vehicles as the FAF. Key: EW= Equal 

Weights, IT=Item Weights, IWO= Item Weights Optimised, GW=Global 

Weights, GWO=Global Weights Optimised, X.EW=Equal weighted aggregation 

with all individuals who took part in Round 1 and Round 2. 
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4 Scores of experts compared to years of experience and self-
rating  

 

 

Figure A 3 Years of experience relevant to the Skua and performance in relation to the 

CM_Score, Calibration of 90% credible intervals, and accuracy of the best 

estimate (ALRE Accuracy in Round 1). One expert failed to provide 

demographic information therefore the graph only demonstrates the scores of 

eight experts. 

 

Figure A 4 Self-rating relevant to the Skua and performance in relation to the CM_Score, 

Calibration of 90% credible intervals, and accuracy of the best estimate (ALRE 

Accuracy in Round 1). One expert failed to provide demographic information 

therefore the graph only demonstrates the scores of eight experts. Experts were 

enabled to rate themselves on a continuous scale (0= no prior knowledge of the 

Skua, 1= Basic understanding (e.g. have read a report, or news article, but have 

no direct experience), 5= Intermediate experience (e.g. relevant experience 

gained through work, study, hobbies, or lay knowledge), 10=specialist 
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understanding (e.g. regularly collect data, prepare or sign off reports, or provide 

advice on this topic). 
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5 Improvements Round 2 Calibration Questions 
 

 

 

Figure A 5 Changes in performance on calibration questions between Round 1 and Round 2 

for each of the individuals and each of the aggregations. GWO (visible) and GW 

(hidden) had the same statistical accuracy in Round 1 and Round 2, IWO 

(visible) and IW (hidden) also had the same statistical accuracy. All aggregations 



Hemming et al. 2019 Supporting Information: Improving expert forecasts in reliability.  Application and evidence for structured 
elicitation protocols. Quality and Reliability Engineering International. 
 

30 

had the same calibration in Round 1 and Round 2. Key: EW= Equal Weights, 

IT=Item Weights, IWO= Item Weights Optimised, GW=Global Weights, 

GWO=Global Weights Optimised. 

 

6 Improvements Round 2 Questions of Interest 
 

 

 

Figure A 6 Changes in information and precision on questions of interest between Round 1 

and Round 2 for each of the individuals and each of the aggregations. Key: EW= 

Equal Weights, IT=Item Weights, IWO= Item Weights Optimised, GW=Global 

Weights, GWO=Global Weights Optimised. 
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7 Weights provided to each expert 
 

Table A. 8 provide the weights (Normalised Weight) that each expert received in each 

aggregation method in Round 1 and Round 2. Note that the calibration and relative information 

scores will differ from those displayed in the report because they represent the weights for 

Round 1 and Round 2 calculated separately. These weights were used to develop each of the 

aggregations. Once the aggregated quantiles for each aggregation were derived for both Round 

1 and Round 2 (separately), then the estimates for the experts and each of the aggregations in 

Round 1 and Round 2 (combined) were scored (i.e. the scores reported in the manuscript). This 

was required because relative information is a relative score. 

Also note that itemised weights (IW, and IWO) do not provide the normalised weight that each 

expert receives because it takes into account information contained in their estimates on each 

of the questions of interest (therefore their weight changes per question). 

Table A. 8 Change Round 1 and Round 2 Calibration Questions.  
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R1 EW Individual 22 2.95E-08 1.82 14 5.38E-08 0.11 

R1 EW Individual 20 5.80E-07 1.69 14 9.81E-07 0.11 

R1 EW Individual 5 6.38E-07 1.71 14 1.09E-06 0.11 

R1 EW Individual 12 5.80E-07 2.02 14 1.17E-06 0.11 

R1 EW Individual 23 1.90E-05 1.7 14 3.24E-05 0.11 

R1 EW Individual 7 2.16E-04 1.62 14 3.51E-04 0.11 

R1 EW Individual 2 1.19E-02 1.11 14 0.01 0.11 

R1 EW Individual 8 1.35E-02 1.16 14 0.02 0.11 

R1 EW Individual 17 8.69E-02 0.97 14 0.08 0.11 

R1 EW Excalibur EW 0.53 0.53 14 0.28             

R1 GW Individual 22 2.95E-08 1.82 14 5.38E-08 4.74E-07 

R1 GW Individual 20 5.80E-07 1.69 14 9.81E-07 8.66E-06 

R1 GW Individual 5 6.38E-07 1.71 14 1.09E-06 9.60E-06 
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R1 GW Individual 12 5.80E-07 2.02 14 1.17E-06 1.03E-05 

R1 GW Individual 23 1.90E-05 1.7 14 3.24E-05 2.86E-04 

R1 GW Individual 7 2.16E-04 1.62 14 3.51E-04 3.10E-03 

R1 GW Individual 2 1.19E-02 1.11 14 0.01 0.12 

R1 GW Individual 8 1.35E-02 1.16 14 0.02 0.14 

R1 GW Individual 17 8.69E-02 0.97 14 0.08 0.74 

R1 GW Excalibur GW 0.66 0.6 14 0.4             

R1 GWO Individual 23 1.90E-05 1.7 14 0 0 

R1 GWO Individual 22 2.95E-08 1.82 14 0 0 

R1 GWO Individual 7 2.16E-04 1.62 14 0 0 

R1 GWO Individual 12 5.80E-07 2.02 14 0 0 

R1 GWO Individual 20 5.80E-07 1.69 14 0 0 

R1 GWO Individual 5 6.38E-07 1.71 14 0 0 

R1 GWO Individual 2 1.19E-02 1.11 14 0 0 

R1 GWO Individual 8 1.35E-02 1.16 14 0.02 0.16 

R1 GWO Individual 17 8.69E-02 0.97 14 0.08 0.84 

R1 GWO Excalibur GWO 0.66 0.65 14 0.43             

R1 IW Individual 22 2.95E-08 1.82 14 5.38E-08             

R1 IW Individual 20 5.80E-07 1.69 14 9.81E-07             

R1 IW Individual 5 6.38E-07 1.71 14 1.09E-06             

R1 IW Individual 12 5.80E-07 2.02 14 1.17E-06             

R1 IW Individual 23 1.90E-05 1.7 14 3.24E-05             

R1 IW Individual 7 2.16E-04 1.62 14 3.51E-04             

R1 IW Individual 2 1.19E-02 1.11 14 0.01             

R1 IW Individual 8 1.35E-02 1.16 14 0.02             

R1 IW Individual 17 8.69E-02 0.97 14 0.08             

R1 IW Excalibur IT 0.66 0.78 14 0.51             

R1 IWO Individual 23 1.90E-05 1.7 14 0             

R1 IWO Individual 22 2.95E-08 1.82 14 0             

R1 IWO Individual 7 2.16E-04 1.62 14 0             

R1 IWO Individual 12 5.80E-07 2.02 14 0             

R1 IWO Individual 20 5.80E-07 1.69 14 0             

R1 IWO Individual 5 6.38E-07 1.71 14 0             

R1 IWO Individual 2 1.19E-02 1.11 14 0             

R1 IWO Individual 8 1.35E-02 1.16 14 0.02             

R1 IWO Individual 17 8.69E-02 0.97 14 0.08             

R1 IWO Excalibur IWO 0.66 0.83 14 0.55             

R2 EW Individual 12 1.23E-05 1.85 14 2.27E-05 0.11 
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R2 EW Individual 20 1.26E-03 1.51 14 1.91E-03 0.11 

R2 EW Individual 22 2.20E-03 1.31 14 2.89E-03 0.11 

R2 EW Individual 5 2.20E-03 1.41 14 3.10E-03 0.11 

R2 EW Individual 23 6.46E-03 1.17 14 0.01 0.11 

R2 EW Individual 7 9.84E-03 1.37 14 0.01 0.11 

R2 EW Individual 17 5.43E-02 1.04 14 0.06 0.11 

R2 EW Individual 2 0.1 0.8 14 0.08 0.11 

R2 EW Individual 8 0.16 1.02 14 0.16 0.11 

R2 EW Excalibur EW 0.66 0.47 14 0.31             

R2 GW Individual 12 1.23E-05 1.85 14 2.27E-05 6.93E-05 

R2 GW Individual 20 1.26E-03 1.51 14 1.91E-03 5.82E-03 

R2 GW Individual 22 2.20E-03 1.31 14 2.89E-03 8.81E-03 

R2 GW Individual 5 2.20E-03 1.41 14 3.10E-03 9.46E-03 

R2 GW Individual 23 6.46E-03 1.17 14 0.01 2.31E-02 

R2 GW Individual 7 9.84E-03 1.37 14 0.01 4.11E-02 

R2 GW Individual 17 5.43E-02 1.04 14 0.06 0.17 

R2 GW Individual 2 0.1 0.8 14 0.08 0.25 

R2 GW Individual 8 0.16 1.02 14 0.16 0.49 

R2 GW Excalibur GW 0.53 0.44 14 0.23             

R2 GWO Individual 22 2.20E-03 1.31 14 0 0 

R2 GWO Individual 23 6.46E-03 1.17 14 0 0 

R2 GWO Individual 12 1.23E-05 1.85 14 0 0 

R2 GWO Individual 7 9.84E-03 1.37 14 0 0 

R2 GWO Individual 20 1.26E-03 1.51 14 0 0 

R2 GWO Individual 5 2.20E-03 1.41 14 0 0 

R2 GWO Individual 17 5.43E-02 1.04 14 0.06 0.19 

R2 GWO Individual 2 0.1 0.8 14 0.08 0.28 

R2 GWO Individual 8 0.16 1.02 14 0.16 0.53 

R2 GWO Excalibur GWO 0.53 0.49 14 0.26             

R2 IW Individual 12 1.23E-05 1.85 14 2.27E-05             

R2 IW Individual 20 1.26E-03 1.51 14 1.91E-03             

R2 IW Individual 22 2.20E-03 1.31 14 2.89E-03             

R2 IW Individual 5 2.20E-03 1.41 14 3.10E-03             

R2 IW Individual 23 6.46E-03 1.17 14 0.01             

R2 IW Individual 7 9.84E-03 1.37 14 0.01             

R2 IW Individual 17 5.43E-02 1.04 14 0.06             

R2 IW Individual 2 0.1 0.8 14 0.08             

R2 IW Individual 8 0.16 1.02 14 0.16             
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R2 IW Excalibur IT 0.66 0.69 14 0.45             

R2 IWO Individual 12 1.23E-05 1.85 14 0            

R2 IWO Individual 20 1.26E-03 1.51 14 1.91E-03            

R2 IWO Individual 22 2.20E-03 1.31 14 2.89E-03            

R2 IWO Individual 5 2.20E-03 1.41 14 3.10E-03            

R2 IWO Individual 23 6.46E-03 1.17 14 0.01            

R2 IWO Individual 7 9.84E-03 1.37 14 0.01            

R2 IWO Individual 17 5.43E-02 1.04 14 0.06            

R2 IWO Individual 2 0.1 0.8 14 0.08            

R2 IWO Individual 8 0.16 1.02 14 0.16            

R2 IWO Excalibur IWO 0.66 0.69 14 0.45            

8 Table of results 
 

Table A. 9 Change Round 1 and Round 2 Calibration Questions.  

Grouping Improvement Median n 25th 75th Min Max Change in 

EW increase 0.13 1 0.13 0.13 0.13 0.13 SA (CM) 

Excalibur decrease 0.13 2 0.13 0.13 0.13 0.13 SA (CM) 

Excalibur no change 0.00 2 0.00 0.00 0.00 0.00 SA (CM) 

Individual decrease 0.03 1 0.03 0.03 0.03 0.03 SA (CM) 

Individual increase 4.32E-03 8 0.03 1.97E-03 1.17E-05 0.14 Change SA (CM) 

EW decrease 0.03 1 0.03 0.03 0.03 0.03 Information (CM) CAL 

Excalibur decrease 0.12 4 0.13 0.10 0.06 0.13 Information (CM) CAL 

Individual decrease 0.25 8 0.33 0.15 0.11 0.50 Information (CM) CAL 

Individual increase 0.12 1 0.12 0.12 0.12 0.12 Information (CM) CAL 

EW increase 0.08 1 0.08 0.08 0.08 0.08 Cooke CM 

Excalibur decrease 0.12 4 0.18 0.06 0.04 0.18 Cooke CM 

Individual decrease 0.03 1 0.03 0.03 0.03 0.03 Cooke CM 

Individual increase 0.01 8 0.04 3.19E-03 2.49E-05 0.18 Cooke CM 

EW no change 0.00 1 0.00 0.00 0.00 0.00 Calibration (IDEA) 

Excalibur no change 0.00 4 0.00 0.00 0.00 0.00 Calibration (IDEA) 
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Grouping Improvement Median n 25th 75th Min Max Change in 

Individual increase 0.18 8 0.21 0.14 0.14 0.29 Calibration (IDEA) 

Individual no change 0.00 1 0.00 0.00 0.00 0.00 Calibration (IDEA) 

EW increase 0.01 1 0.01 0.01 0.01 0.01 ALRE (IDEA) 

Excalibur increase 0.01 4 0.02 0.01 0.01 0.02 ALRE (IDEA) 

Individual decrease 3.95E-03 2 0.00 3.42E-03 2.89E-03 5.00E-03 ALRE (IDEA) 

Individual increase 0.02 7 0.04 0.02 0.01 0.05 ALRE (IDEA) 

EW increase 0.04 1 0.04 0.04 0.04 0.04 Precision (IDEA) CAL 

Excalibur decrease 0.04 4 0.06 0.02 0.01 0.06 Precision (IDEA) CAL 

Individual decrease 0.03 4 0.05 0.03 0.01 0.11 Precision (IDEA) CAL 

Individual increase 0.06 5 0.06 0.03 0.03 0.07 Precision (IDEA) CAL 
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Table A. 10 Change Round 1 and Round 2 Questions of Interest 

 

Grouping Improvement Median n 25th 75th Min Max Change in 

EW increase 0.38 1 0.38 0.38 0.38 0.38 Information (CM) QOI 

Excalibur increase 0.42 4 0.58 0.32 0.30 0.78 Information (CM) QOI 

Individual decrease 1.35 2 1.82 0.88 0.42 2.28 Information (CM) QOI 

Individual increase 0.20 6 0.62 0.03 0.00 0.73 Information (CM) QOI 

EW increase 0.29 1 0.29 0.29 0.29 0.29 Precision (IDEA) QOI 

Excalibur increase 0.37 4 0.43 0.31 0.28 0.47 Precision (IDEA) QOI 

Individual decrease 0.01 1 0.01 0.01 0.01 0.01 Precision (IDEA) QOI 

Individual increase 0.11 7 0.19 0.08 0.02 0.31 Precision (IDEA) QOI 
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Table A. 11 Scores of individuals and aggregations 

Name Aggregation CM Score Stat. Acc Cal R.Inf Inf ALRE Acc Round 

12 Individual 1.25E-06 6.38E-07 0.36 1.96 0.31 0.10 1 

13 Individual 0.11 0.087 0.79 1.21 0.44 0.07 1 

16 Individual 1.13E-06 5.80E-07 0.29 1.95 0.19 0.10 1 

19 Individual 6.11E-08 2.95E-08 0.21 2.07 0.22 0.11 1 

20 Individual 3.71E-05 1.90E-05 0.36 1.95 0.27 0.11 1 

3 Individual 4.06E-04 2.16E-04 0.43 1.88 0.31 0.11 1 

4 Individual 0.02 0.013 0.57 1.40 0.52 0.08 1 

8 Individual 1.31E-06 5.80E-07 0.29 2.27 0.27 0.12 1 

9 Individual 0.02 0.012 0.71 1.35 0.38 0.10 1 

EW EW 0.41 0.527 0.93 0.77 0.67 0.08 1 

GW Excalibur 0.55 0.659 0.93 0.84 0.59 0.07 1 

GWO Excalibur 0.58 0.659 0.93 0.89 0.58 0.07 1 

IW Excalibur 0.67 0.659 0.93 1.02 0.51 0.08 1 

IWO Excalibur 0.71 0.659 0.93 1.07 0.49 0.08 1 

12 Individual 3.71E-03 2.20E-03 0.57 1.69 0.28 0.07 2 

13 Individual 0.07 0.054 0.79 1.32 0.37 0.06 2 

16 Individual 2.26E-03 1.26E-03 0.50 1.79 0.19 0.09 2 

19 Individual 3.50E-03 2.20E-03 0.50 1.59 0.25 0.11 2 

20 Individual 9.37E-03 6.46E-03 0.57 1.45 0.31 0.12 2 

3 Individual 0.02 9.84E-03 0.57 1.65 0.25 0.06 2 

4 Individual 0.20 0.156 0.71 1.30 0.47 0.07 2 

8 Individual 2.62E-05 1.23E-05 0.43 2.13 0.24 0.08 2 

9 Individual 0.11 0.104 0.86 1.07 0.50 0.07 2 

EW EW 0.49 0.659 0.93 0.74 0.63 0.07 2 

GW Excalibur 0.38 0.527 0.93 0.71 0.65 0.06 2 

GWO Excalibur 0.40 0.527 0.93 0.76 0.64 0.05 2 

IW Excalibur 0.64 0.659 0.93 0.96 0.52 0.06 2 

IWO Excalibur 0.64 0.659 0.93 0.96 0.52 0.06 2 
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