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Abstract—Extracting human attributes, such as gender and
age, from biometrics have received much attention in recent
years. Gender and age recognition can provide crucial infor-
mation for applications such as security, healthcare, and gaming.
In this paper, a novel deep learning approach on gender and
age recognition using a single inertial sensors is proposed. The
proposed approach is tested using the largest available inertial
sensor-based gait database with data collected from more than
700 subjects. To demonstrate the robustness and effectiveness
of the proposed approach, 10 trials of inter-subject Monte-
Carlo cross validation were conducted, and the results show
that the proposed approach can achieve an averaged accuracy of
86.6%±2.4% for distinguishing two age groups: teen and adult,
and recognizing gender with averaged accuracies of 88.6%±2.5%
and 73.9%±2.8% for adults and teens respectively.

Index Terms—Age recognition, gender recognition, soft bio-
metrics, gait biometrics, inertial sensors

I. INTRODUCTION

In recent years, biometrics has been widely adopted in
security applications such as mobile phone authentication.
These applications are often focused on the uniqueness of
hard biometrics - typical physiological traits, such as face and
fingerprint, and behavioral traits, such as gait and voice [1].
Although hard biometrics are the core metrics for biometric
systems, much research has showed that soft biometrics,
such as age, skin color, and gender, can also improve the
performance of biometric systems [2]–[4]. Soft biometrics,
especially gender and age, can also provide personal spe-
cific information which could benefit in business, healthcare,
robotic, and gaming applications. The state-of-the-art human
gender and age recognition methods are often based on the
static facial features [5] or whole body images [6], and
dynamic features from voice [7] and gait [8]. Gait, the walking
pattern of a person, can be captured by a camera from a
distance, or captured by inertial sensors attached to the person
[9]. Similar to face and iris, a gait pattern of a person is unique
because bones, joints and muscles used for walking are very
different from person to person.

Gender and age recognition using gait sequences captured
by a camera has gained more popularity in the past few
years. For example, Li et al [10] proposed a vision-based
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Fig. 1: Illustration of the proposed inertial sensor-based gender
and age recognition approach

gender recognition method using different components of
human walking silhouettes, and Makihara et al [11] proposed a
vision-based age estimation method also using human walking
silhouettes. Vision-based gender and age recognition is robust
and effective in a controlled environment, such as a situation
where a person walking in front of a camera at a fixed location.
It is difficult to extract gait silhouettes if the target subject is
occluded by another person or objects. These problems can
be solved by using inertial sensors to capture gait biometrics.
Although inertial sensors have to be attached to or carried by
the person, they can be used in uncontrolled environments,
such as a group of people walking closely together in a
pedestrian area, a situation where vision-based approaches
could not be applied.

Although inertial sensor-based gait biometrics is widely
used for authentication, it has not been fully exploited for
gender and age recognition. Riaz et al [12] studied the es-
timation of gender, age and height using a trained random
forest classifiers with hand-crafted features of single-step
inertial signal recordings. The dataset collected by the authors
consisted of only 26 subjects with a balanced gender ratio
and an averaged age of 48.1±12.7 years. The authors have
demonstrated the feasibility of gender and age recognition
using inertial sensors on a small population using 10-fold cross
validation. But the hand-crafted feature extraction technique
used by the authors suffered significant performance drop
(from over 85% to around 65%) when using inter-subject cross
validation for age estimation, failing to show the robustness



of the proposed approach.
Furthermore, Jain and Kanhangad [13] studied gender clas-

sification using a built-in inertial sensors of smartphones when
users are walking at different speeds. The authors also used
hand-crafted features in the proposed approach, and tested
it on two datasets containing 46 and 63 subjects separately.
The subjects in these datasets are mostly adults and age
from 19 to 36 years, and people younger than 19 years or
older than 36 years were not considered in the experiments.
Another related work carried out by Bales et al [14] also
based on inertial sensors, however, the sensors were installed
beneath the floor of a building instead of attaching to the
body. The authors proposed a machine learning based gender
classification approach using data collected from only fifteen
subjects.

In this paper, we propose a deep learning approach for gen-
der and age recognition using a single inertial sensor attached
to the lower back of the subjects. Deep learning approaches
are widely exploited in vision-based gender recognition, but
to our best knowledge, it has not been used for inertial sensor-
based gender and age recognition. The proposed approach was
evaluated on the largest inertial sensor-based gait database
available [15], which has inertial data collected from 744
subjects. 640 out of 744 subjects (whose gender information
is provided) with a gender ratio of 1:1 and age range from
2 to 79 years, were used in the experiments. 10 trials of
inter-subject Monte-Carlo cross validation were carried out
for all the experiments to demonstrate the robustness and
effectiveness of the proposed approach.

II. METHODOLOGY

As shown in Fig. 1, the proposed deep learning-based
age and gender recognition approach requires only a single
inertial sensor attached to the lower back of the subject. The
deep learning approach consists of three blocks as shown
in Fig. 2: a signal pre-processing block, a convolutional
feature extraction block, and a fully connected classifier. In
the signal pre-processing block, a sliding window is applied
to the accelerometer and gyroscope signals collected from the
inertial sensor. Then, the partitioned signal data is fed into
the convolutional feature extraction block to extract features
inside each sliding window. At last, a 2-class fully connected
classifier will then classify either teen or adult, or male or
female.

A. Convolutional Feature Extraction

The partitioned signal data fed into the first layer is in a
3D matrix form of (B×W ×N), in which batch size B = 10,
sliding window size W = 100 (which is 1 second), and the
number of channels N = 6 (i.e. 3-axis accelerometer and 3-
axis gyroscope data). In the first 1D convolutional layer, there
are 200 filters/kernels with kernel size set to 5 and stride set to
2. The output feature map of the first convolutional layer has a
shape of (25×50×200), and it is fed into a max pooling layer
whose pool size is set to 2 and stride is set to 3. The dimension
of feature map is reduced based on the maximum value of

Fig. 2: Network architecture of the proposed deep learning
approach

each pool, and its shape is reduced to (25× 17× 200). The
same feature extraction procedure is repeated 3 more times as
indicated in Fig. 2. The mathematical expression of the output
feature maps of lth (l = [1,2,3,4]) 1D convolutional layer is

θ
l =

[
γ l

1( j),γ l
2( j),γ l

3( j), · · · ,γ l
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]
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and feed forwarding process for each neuron is
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where γ l
m( j) is the jth neuron in the mth kernel of the lth 1D

convolutional layer, and wk(l,m, i) refers to the weights of the
l,m, ith filter used in the neural network. β l( j) is the bias of the
jth neuron in the lth 1D convolutional layer. Kl is the number
of kernel being used in the lth 1D convolutional layer, and θ l

i, j
is the i, jth element of the output feature maps from the max
pooling layer following the (l − 1)th 1D convolutional layer.
The output of the final max pooling layer is flatten to a shape
of (25×1200), and it passes through a dropout layer with a
keep probability of 0.95 to prevent overfitting. Then, the final
feature map is fed into a classifier with two fully connected
layers to produce the final output, which is the probabilities of
the two classes (teen/adult or male/female). The softmax layer
at the end calculates the loss, which is used for optimizing the



Fig. 3: Distributions of gender and age of the selected subjects
from the OU-ISIR gait database

neurons of the network in the training phase.

B. Database

To evaluate the proposed gender and age recognition ap-
proach on the whole generation, the largest available inertial
sensor-based OU-ISIR gait database [15] was used in the
experiments. To ensure a balanced gender ratio in all age
groups, we followed protocol 5.6 [15], in which 640 subjects
are selected. The distributions of gender and age of the selected
subjects as shown in Fig. 3. The subplot on the left side shows
the number of subjects of teens and adults respectively, and
the subplot on the right side shows the number of subjects for
6 age groups. Each subject has two sequences of level walking
inertial sensor recordings, which contains about 7 to 12 steps.

C. Training and Testing

To demonstrate the robustness and effectiveness of the
proposed approach, inter-subject Monte-Carlo cross validation
was carried out 10 times, and the means and standard devia-
tions of the results across 10 trials are presented in the exper-
imental results section for both gender and age recognition.
For age recognition, there were two classes: teen (age<20)
and adult (age≥20). In each trial, 70% of the subjects in each
class were randomly selected for training, and the rest was
reserved for testing. For gender recognition, two experiments
were carried out: 1) in the first experiment, all the subjects,
either teens or adults, were trained in the same network; 2)
in the second experiment, gender recognition for teens and
adults was carried out using two separate networks (i.e. a
subject who is below 20 will not be considered at all in the
network for recognizing gender for adults). In addition, the
data of the selected testing subjects were not used for training
the network, which eliminates the possibilities of over-fitting
the network for better testing results. It can be also proven
that the proposed approach is capable of recognizing gender
and age of subjects from other dataset with high accuracy.
As shown in Fig. 2, a sliding window is applied to partition
the sequences of inertial sensor recordings into slices of data
with shape (100×6). Then, a batch of 25 slices is fed into
the network together in each iteration. The initial learning
rate of the network is set to 0.001, and it decays by 4%
after every 10 thousand iterations. The weights and biases
in the convolutional and fully connected layers are randomly

(a) Confusion matrix for adults (b) Confusion matrix for teens

(c) ROC curves for female (d) ROC curves for male

Fig. 4: Experimental results for gender recognition: (a) and
(b) show confusion matrices (sum up for 10 trials) for adult-
only and teen-only respectively. (c) and (d) show ROC curves
for female class and male class separately, with point-wise
confidence bounds calculated for 10 trials

TABLE I: Gender recognition results (averaged for 10 trials)

Accuracy Sensitivity Specificity F1-score

per
recording

Teen 0.739±0.028 0.766±0.092 0.713±0.066 0.744±0.043
Adult 0.886±0.025 0.878±0.053 0.893±0.058 0.885±0.026
All 0.828±0.028 0.822±0.040 0.833±0.042 0.827±0.029

per
sliding
window

Teen 0.702±0.017 0.728±0.074 0.676±0.058 0.706±0.033
Adult 0.836±0.016 0.821±0.055 0.853±0.052 0.837±0.019
All 0.787±0.015 0.788±0.036 0.787±0.028 0.790±0.019

initialized and optimized using ADAM optimization algorithm
[16], and the training process is stopped when reaching 5
epochs.

III. EXPERIMENTAL RESULTS

In this section, the performance of the proposed approach
is presented, using evaluation matrices for typical biometric
systems, including confusion matrices and Receiver Operating
Characteristic (ROC) curves. The recognition performance per
sliding window and per recording was reported using accuracy,
sensitivity, specificity, and F1-score, which are averaged across
10 trials.

A. Gender Recognition

As aforementioned, there are two experiments conducted for
gender recognition using the proposed approach: the first one
using the entire dataset and the second one splits the dataset
into teen group and adult group for separate training. This is to
investigate how the age of the subject affects the performance
of the proposed approach on gender recognition. Fig. 4(a)
and (b) show confusion matrices for gender recognition using



(a) Confusion matrix (b) ROC curves

Fig. 5: (a) shows the confusion matrix of 10 trials for age
recognition, and (b) shows the ROC curves for all, female-only
and male-only respectively for age recognition with point-wise
confidence bounds calculated across 10 trials

adult-only dataset and teen-only dataset respectively. The
proposed approach can distinguish gender for adults (age≥20)
with an averaged accuracy of 88.56% across 10 trials, whereas
it performs poorly, with only an averaged accuracy of 73.94%
for teens. This is expected because the muscle and bones of
teens are still growing, which makes their gait less predictive.
In addition, female is more recognizable then male for adults,
and male is more recognizable than female for teens. Fig. 4(c)
and (d) show the ROC curves for the proposed approach for
gender recognition, and they also indicate that gender is more
distinctive for adults than teens. More details for the gender
recognition performance are listed in Table I, where accuracy,
sensitivity, specificity, and F1-score for teen-only, adult-only,
and all age group across 10 trials are presented. The results
for each inertial data recording, which contains about 5 to 10
steps, are aggregated from the recognition results from each
sliding window. Therefore, accuracy per recording is better
than that of per sliding window.

B. Age Recognition

The proposed approach is capable of distinguishing two age
groups: teen and adult. The confusion matrix in Fig. 5(a)
show that the average accuracies for teens and adults are
85.50% and 86.57% respectively. It indicates that proposed
approach has no bias towards either age group. Fig. 5(c) shows
the ROC curves of the age recognition for all the subjects,
female subjects, and male subjects. The proposed approach
performs better for age recognition on male subjects than
female subjects. This is also shown in Table II, where the
age recognition accuracy of male subjects per recording is
88.7%, 4.4% higher than that of female subjects. Moreover,
age recognition using the proposed approach for male subjects
has higher sensitivity but less specificity than female subjects.

IV. CONCLUSION

In this paper, a deep learning approach on gender and age
recognition using a single inertial sensor is proposed, and
the proposed approach was tested on the largest available
inertial sensor-based gait database. The results from 10 trials
of inter-subject Monte-Carlo cross validation show that the
proposed approach is robust and effective. The proposed

TABLE II: Age recognition results (averaged for 10 trials)

Accuracy Sensitivity Specificity F1-score

per
recording

Female 0.843±0.028 0.785±0.033 0.896±0.054 0.827±0.028
Male 0.887±0.026 0.913±0.029 0.864±0.037 0.885±0.026
All 0.866±0.024 0.849±0.025 0.880±0.042 0.857±0.023

per
sliding
window

Female 0.775±0.025 0.728±0.050 0.814±0.052 0.743±0.027
Male 0.830±0.019 0.867±0.026 0.798±0.033 0.827±0.019
All 0.802±0.019 0.798±0.031 0.806±0.040 0.787±0.018

approach is capable of recognizing either teen or adult with
an averaged accuracy of 86.6%±2.4%, and recognizing gender
with averaged accuracies of 88.6%±2.5% and 73.9%±2.8%
for adults and teens separately.
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