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Multiscale model calibration by inverse analysis for nonlinear 1 

simulation of masonry structures under earthquake loading 2 
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Abstract 4 

The prediction of the structural response of masonry structures under extreme loading conditions, 5 

including earthquakes, requires the use of advanced material descriptions to represent the nonlinear 6 

behaviour of masonry. In general, micro- and mesoscale approaches are very computationally 7 

demanding, thus at present they are used mainly for detailed analysis of small masonry components. 8 

Conversely macroscale models, where masonry is assumed as a homogeneous material, are more 9 

efficient and suitable for nonlinear analysis of realistic masonry structures. However, the calibration 10 

of the material parameters for such models, which is generally based on physical testing of entire 11 

masonry components, remains an open issue. In this paper, a multiscale approach is proposed, in 12 

which an accurate mesoscale model accounting for the specific masonry bond is utilised in virtual 13 

tests for the calibration of a more efficient macroscale representation assuming energy equivalence 14 

between the two scales. Since the calibration is performed offline at the beginning of the analysis, the 15 

method is computationally attractive compared to alternative homogenisation techniques. The 16 

proposed methodology is applied to a case study considering the results obtained in previous 17 

experimental tests on masonry components subjected to cyclic loading, and on a masonry building 18 

under pseudo-dynamic conditions representing earthquake loading. The results confirm the potential 19 

of the proposed approach and highlight some critical issues, such as the importance of selecting 20 
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appropriate virtual tests for model calibration, which can significantly influence accuracy and 21 

robustness.  22 

Keywords: Multi-objective optimisation, macroscale modelling, mesoscale modelling, virtual test, dynamic analysis, 23 

plastic-damage model. 24 

List of symbols 25 

General 26 

𝝈𝑴, 𝝈𝒎 : stress (M: macroscale; m: mesoscale) 27 

𝜺𝑴, 𝜺𝒎 : strain (M: macroscale; m: mesoscale) 28 

𝜿𝑴, 𝜿𝒎 : historical variables (M: macroscale; m: mesoscale) 29 

ϵ(𝑡) : cumulative error between macroscale representation and mesoscale representation at time t 30 

𝒑 : material parameters 31 

𝜔1 = 𝜖(𝑇) : discrepancy function 1 32 

𝜔2 : discrepancy function 2 33 

𝚽𝑴, 𝚽𝒎 : feature vector (M: macroscale; m: mesoscale) 34 

𝝈̅ : effective stress 35 

𝜺𝒆: elastic strain 36 

𝜺𝒑 : plastic strain  37 

𝜺̂𝒑 : plastic strain direction 38 

Mesoscale model 39 

c : cohesion 40 

φ : friction angle 41 

ft : tensile strength 42 

Macroscale model 43 

𝜅𝑡 , 𝜅𝑐 : historical variables in tension and compression 44 

𝑓𝑡(𝜅𝑡), 𝑓𝑐(𝜅𝑐) : strength in tension and compression (nominal stress space) 45 



 

3 

 

𝑓𝑡̅(𝜅𝑡), 𝑓𝑐̅(𝜅𝑐) : strength in tension and compression (effective stress space) 46 

𝑑𝑡(𝜅𝑡), 𝑑𝑐(𝜅𝑐) : damage in tension and compression 47 

F : yielding function 48 

g : plastic flow potential 49 

𝒉 : hardening rule 50 

𝜖 : flow potential eccentricity 51 

𝐼1: first invariant of stress tensor 52 

𝐽2 : second invariant of deviatoric stress tensor 53 

𝜓 : dilatancy angle 54 

𝑓𝑏0𝑟: ratio between biaxial and uniaxial compressive strength 55 

𝐾𝑐: ratio of the second stress invariant on the tensile meridian to that on the compressive meridian at 56 

initial yield 57 

𝑤𝑡, 𝑤𝑐 parameters governing stiffness recovery respectively from compression to tension and 58 

viceversa 59 

𝑝1𝜒, 𝑝2𝜒, 𝑝3𝜒, 𝑝4𝜒 parameters for strength functions (𝜒 = 𝑡, 𝑐) 60 

𝑓𝜒0 : initial strength (𝜒 = 𝑡, 𝑐) 61 

𝑓𝜒,𝑚𝑎𝑥 : maximum strength (𝜒 = 𝑡, 𝑐) 62 

𝐺𝑡 : fracture energy (in tension) 63 

𝜇 : ratio between residual plastic strain and total strain when plastic work reaches s times fracture 64 

energy (in tension) 65 

𝜌 : ratio of plastic strain at maximum strength when damage starts (in compression)  66 
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1 Introduction 67 

Numerical modelling of masonry structures is currently an active and challenging research field in 68 

structural engineering. The mechanical behaviour of unreinforced masonry (URM) buildings and 69 

monuments, especially under extreme loading conditions is very complex and can be accurately 70 

predicted only when allowing for masonry material nonlinearity. This is due not only to the 71 

independent behaviour of the masonry constituents, e.g. mortar joints and units, but it is also related 72 

to the specific masonry bond. Recently, several numerical strategies for nonlinear analysis of URM 73 

structures have been developed. These include micro- or mesoscale models, where the individual 74 

masonry constituents are modelled separately (Lotfi & Shing, 1994; Lourenço & Rots, 1997; 75 

Gambarotta & Lagomarsino, 1997; Macorini & Izzuddin, 2011), and macroscale models which 76 

represent masonry as a homogeneous material. Whereas microscale modelling represents separately 77 

units, mortar and adhesion between them, mesoscale modelling lumps the latter two constituents into 78 

nonlinear interfaces. Applications of the Discrete Element Method can also be included in this 79 

category (Lemos, 2007; Baraldi, et al., 2018). Macroscale descriptions encompass i) generic finite 80 

element representations utilising several nonlinear continuum 2D plane stress/3D solid elements 81 

(Lourenço, et al., 1997; Berto, et al., 2002; Pelà, et al., 2011; Fu, et al., 2018; Gatta, et al., 2018) for 82 

modelling each masonry structural part, and ii) simplified models with macro-elements 83 

(Lagomarsino, et al., 2013; Pantò, et al., 2016), where different URM structural components (e.g. 84 

pier, spandrel etc.) are represented by specific multi-degree-of-freedom nonlinear elements. In the 85 

analysis of entire buildings and monuments, the use of mesoscale approaches with standard 86 

computational resources is prohibitive because of the high computational cost. Thus, in practice, 87 

numerical simulations for structural assessment are mainly performed employing macroscale models.  88 

In general, whichever approach is utilised, realistic predictions can be achieved only when the 89 

material model parameters are correctly calibrated. The calibration of mesoscale material parameters 90 

is relatively simple, as it is based on non-invasive material tests on small specimens (CUR, 1994). 91 

Limitations concerning such type of tests pointed out by many authors (Brencich & de Felice, 2009; 92 
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Da Porto, et al., 2010) have been tackled recently by more advanced approaches based on inverse 93 

analysis (Sarhosis & Sheng, 2014; Chisari, et al., 2015; Chisari, et al., 2018a). On the other hand, the 94 

calibration of macro-model material parameters is problematic, as it should be based upon invasive 95 

in-situ tests carried out on large masonry portions (Borri, et al., 2011). Evidently, these tests are 96 

expensive and impractical in the case of constructions with historical value, as they may cause 97 

substantial damage on large parts of the analysed structure. Thus, macro-models are usually calibrated 98 

employing approximate empirical expressions provided by current building codes and based upon 99 

previous experience.  100 

A compromise between macro- and micro-modelling is represented by multiscale approaches, which 101 

connect material descriptions with different characteristic length scales. They include concurrent 102 

methods where the multiple scale models are solved simultaneously and a continuous exchange of 103 

information develops between them (Eckardt & Könke, 2008; Reccia, et al., 2018), and 104 

homogenisation procedures which assume a clear separation between the scales of representation. 105 

Nguyen, et al., (2011) identified three types of homogenisation strategies: analytical homogenisation, 106 

computational homogenisation and numerical homogenisation. Methods in the first category (Nemat-107 

Nasser & Hori, 1999) determine analytically an equivalent homogeneous constitutive relationship 108 

from the microstructure, and thus they are usually restricted to simple geometries and/or to represent 109 

the elastic behaviour. Macro-scale models are usually based on Cauchy continuum, but extensions to 110 

micropolar continuum (higher-order homogenisation) have been also proposed to allow for the effects 111 

of block rotation (Trovalusci & Masiani, 1996; Trovalusci & Pau, 2014). 112 

Computational homogenisation, as the FE2 method (Feyel & Chaboche, 2000), is based on online 113 

exchange of information between a microscale Representative Volume Element (RVE) and the 114 

macroscale domain (Luciano & Sacco, 1997; Massart, et al., 2007; Addessi & Sacco, 2016; Di Re, et 115 

al., 2018; Leonetti, et al., 2018). In general, a macroscale model is used for the analysis and its 116 

constitutive behaviour is obtained by the solution of a Boundary Value Problem (BVP) for the 117 

corresponding RVE. Finally, in numerical homogenisation, the macroscale constitutive model is 118 
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calibrated offline by fitting the response of a more detailed microscale description (Milani, 2011). 119 

Bertolesi et al. (2016) proposed offline homogenisation for masonry components subjected to in-120 

plane loading, in which the mechanical behaviour of a rigid block-nonlinear spring system at the 121 

macroscale is defined once and for all at the beginning of the analysis by using a micromodel 122 

representing the masonry bond of the cell. 123 

In this paper, a multiscale approach for the calibration of a homogeneous isotropic macroscale model 124 

to be used for nonlinear dynamic analysis of masonry structures is proposed. The main objective of 125 

the work is to establish a practical and efficient strategy to calibrate macro-models based on the 126 

mechanical properties of the constituents. The approach considers energy equivalence between two 127 

different scales of representation on the same domain subjected to appropriate boundary conditions. 128 

Such equivalence is enforced in a weak sense, where the solution provides the macroscale material 129 

properties best fitting the mesoscale response, which acts thus as a virtual test. The approach is then 130 

applied to a case study based on previous experimental results on a masonry system subjected to 131 

earthquake loading. 132 

2 Multiscale model calibration 133 

2.1 Calibration methodology 134 

The procedure developed in this paper considers a macroscopic representation, here indicated by 135 

subscript M, and a mesoscopic description, identified by subscript m and it assumes a mapping 136 

𝑀: 𝛺𝑚 → 𝛺𝑀 between the mesoscale and the macroscale domains. Macroscale and mesoscale models 137 

define separately the nonlinear material constitutive laws: 138 

 𝝈𝑴 = 𝑓𝑀 (ℋ𝑀(𝒙, 𝜿𝑴(𝒙)), 𝜺𝑴(𝒙)) in ΩM (1a) 

 𝝈𝒎 = 𝑓𝑚 (ℋ𝑚(𝒙, 𝜿𝒎(𝒙)), 𝜺𝒎(𝒙)) in Ωm (1b) 
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where in Eqs (1a,b) the relationship between stress 𝝈 and strain 𝜺 depends on the position 𝒙 in the 139 

domain Ω through the material model ℋ at the point and sets of historical variables 𝜿.  140 

The Hill-Mandel principle of macro-homogeneity (Hill, 1965; Mandel, 1971) is generally used in 141 

first-order homogenisation to define the equivalence between the scales in terms of stress power of 142 

the RVE: 143 

 𝝈𝑴: 𝜺̇𝑴 =
1

𝑉𝑅𝑉𝐸
∫ 𝝈𝒎: 𝜺̇𝒎𝑑𝑉

𝑉𝑅𝑉𝐸

 (2) 

where 𝑉𝑅𝑉𝐸 is the representative volume. This approach enforces a correspondence between the 144 

mechanical response of a single integration point and the average response of the RVE (Figure 1a). 145 

 146 

Figure 1. Different approaches for scale transition: (a) first-order homogenisation; (b) proposed multilevel calibration. 147 

In the strain-driven FE2 approach 𝜺̇𝑴 is evaluated at the integration point from the trial solution of the 148 

global problem and applied to the RVE in average as boundary conditions. The Boundary Value 149 

Problem is solved for the RVE and the corresponding 𝝈𝒎 evaluated considering the specific 150 

constitutive relationship (1b). Eq. (2) provides 𝝈𝑴 to be used for the global equilibrium check at the 151 
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current iteration. Thus, following this approach, the constitutive relationship at macroscale (Eq. (1a)) 152 

is defined implicitly. This is the main advantage of this strategy, as it virtually allows for no 153 

approximation in the scale transition. However, the approximation of the RVE with a single 154 

integration point at the macroscale is acceptable when the stress state at the microscale is uniform, 155 

i.e., when the microscale typical length is small compared with the macroscale (principle of separation 156 

of scales, Geers et al. 2010). This may not always be the case for masonry structures, and thus some 157 

approximations are inevitably introduced. A second very important issue arises when strain 158 

localisation occurs at RVE level and the macroscale constitutive relationship presents strain softening, 159 

meaning that the macroscopic BVP becomes ill-posed. Regularisation is thus needed (Trovalusci & 160 

Masiani, 2003; Massart, et al., 2007; De Bellis & Addessi, 2011; Petracca, et al., 2016; Addessi & 161 

Sacco, 2016). 162 

In the procedure proposed here, stress power equivalence between the scales is approximately 163 

enforced on the entire domain of the structure, representing a masonry structural component (Figure 164 

1b). The stress power equivalence reads: 165 

 ∫ 𝝈𝑴: 𝜺̇𝑴𝑑Ω𝑀

Ω𝑀

= ∫ 𝝈𝒎: 𝜺̇𝒎𝑑Ω𝑚

Ω𝑚

+ ϵ̇ (3) 

where now ϵ̇ represents the error rate due to the approximations induced by the specific macromodel 166 

utilised. 167 

Considering pseudo-static stress states, the equality between internal and external work implies: 168 

 

∫ 𝒕𝑴 ⋅ 𝒖̇𝑴𝑑𝛤𝑀

Γ𝑀

+ ∫ 𝒃𝑴 ⋅ 𝒖̇𝑴𝑑Ω𝑀

Ω𝑀

= ∫ 𝒕𝒎 ⋅ 𝒖̇𝒎𝑑𝛤𝑚

Γ𝑚

+ ∫ 𝒃𝒎 ⋅ 𝒖̇𝒎𝑑Ω𝑚

Ω𝑚

+ ϵ̇ 

(4) 

where 𝒕 are the surface forces on the boundary Γ, while 𝒃 are volume forces. Neglecting the 169 

contribution of these latter for the sake of conciseness and considering the chain rule of 170 

differentiation, Eq. (4) finally reads: 171 
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  ∫ (𝒕𝑴 ⋅ 𝒖̇𝑴 − 𝒕𝒎 ⋅ 𝒖̇𝒎
𝜕𝛤𝑖

𝑚

𝜕𝛤𝑖
𝑀) 𝑑𝛤𝑖

𝑀

Γ𝑀

= ϵ̇ (5) 

Eq. (5) represents the error rate at time t due to the scale transition. We can hence define a non-172 

negative monotonically increasing error function: 173 

 

𝜖(𝑡) = ∫[ϵ̇(𝜏)]2𝑑𝜏

𝑡

0

= ∫ [∫ (𝒕𝑴(𝜏) ⋅ 𝒖̇𝑴(𝜏) − 𝒕𝒎(𝜏) ⋅ 𝒖̇𝒎(𝜏)
𝜕𝛤𝑖

𝑚

𝜕𝛤𝑖
𝑀) 𝑑𝛤𝑖

𝑀

Γ𝑀
]

2

𝑑𝜏

𝑡

0

 

(6) 

The solution of the calibration procedure is given by the solution of the following minimisation 174 

problem: 175 

 𝒑̃ = arg min
𝒑

𝜔1 (7) 

where 𝜔1 = 𝜖(𝑇) minimises the scale transition error along the whole time T of the analysis. 176 

In the case of a single applied displacement u at a node, with corresponding force F, Eq. (6) becomes: 177 

 𝜖(𝑡) = ∫[ϵ̇(𝜏)]2𝑑𝜏

𝑡

0

= ∫ [(𝐹𝑀(𝜏) − 𝐹𝑚(𝜏))
𝜕𝑢(𝜏)

𝜕𝜏
]

2

𝑑𝜏

𝑡

0

 (8) 

and thus: 178 

 𝜔1 = ∫(𝐹𝑀(𝑡) − 𝐹𝑚(𝑡))
2

𝑢̇2 𝑑𝑡

𝑇

0

  (9) 

Eq. (9) implies that, in case of monotonic loading at constant velocity, the minimisation of 𝜖(𝑇) 179 

reduces to minimisation of the force squared error. 180 

2.2 Features of optimisation problem 181 

In the process described above, it is pointed out that the calibration is performed offline before the 182 

actual analysis takes place. It is very important thus to select appropriately the applied loads and their 183 

evolution with time, which in the following will be named “pseudo-experimental tests” or “virtual 184 

tests”. As general principle, the virtual tests should provide a robust identification, meaning that if 185 
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the calibrated macroscale parameters are applied to a model of the same masonry type under different 186 

loading conditions, the results should be sufficiently close to the prediction obtained by means of the 187 

mesoscale representation. In the case study in Section 3, it will be seen how the selection of virtual 188 

test affects the robustness of the calibration. 189 

Minimising the energy error function (7) can sometimes lead to unrealistic solutions due to intrinsic 190 

imperfection of the model to calibrate, and thus some posterior engineering judgement may be 191 

required. An example is displayed in Figure 2, where a pseudo-experimental force-displacement 192 

curve characterised by very low dissipation is fitted by a trilinear hysteretic elastic-plastic model 193 

accounting for stiffness degradation but with linear elastic unloading stiffness, here acting as the 194 

macroscale model. Since the model is by nature unable to simulate the stiffness recovering observed 195 

at unloading point A, in the search for the best fit of the unloading branch the resulting calibrated 196 

model shows a significant stiffness degradation which in turn predicts an unrealistic intersection 197 

between the unloading and the elastic loading branches. This is thermodynamically inconsistent in 198 

the sense that at the end of a full cycle (from zero force to zero force, point B) the dissipated energy 199 

can potentially become negative.  200 

 201 

Figure 2. Calibration of an imperfect model: possibility of inconsistent results. 202 

In the case of a single force applied to the system, it is possible to embed this sort of engineering 203 

judgement in the optimisation formulation by means of a second error function. From both meso- and 204 

macroscale force-displacement plots, similar to that displayed in Figure 2, some suitable engineering 205 
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features Φi, e.g. initial stiffness, yielding force, maximum force, residual displacement at unloading, 206 

etc., can be extracted. It is possible to define a second error function related to the features: 207 

 𝜔2(𝒑) = (𝚽𝐌(𝒑) − 𝚽𝐦)𝐓𝑾(𝚽𝐌(𝒑) − 𝚽𝐦) (10) 

where the features are collected in two vectors 𝚽𝐌 and 𝚽𝐦, and the quadratic error between meso- 208 

and macroscale representation is scaled by a weight matrix 𝑾 accounting for different physical units. 209 

This second error function can act as a regularisation term in the optimisation problem, which now 210 

reads: 211 

 Find 𝒑̃ s.t. 𝒑̃ = arg min
𝒑

[𝜔1(𝒑) + 𝜆 𝜔2(𝒑)] (11) 

In the theoretical case of perfect macromodel, i.e. where there exists a combination of macroscale 212 

model parameters which gives an identical response to the mesoscale model, the two objectives 𝜔1 213 

and 𝜔2 have a common (zero) minimum, which thus is also the minimum of the regularised function. 214 

In general, however, this is not the case and depending on the regularisation parameter 𝜆 it is possible 215 

to obtain different solutions, and selecting it appropriately may not be easy in most applications.  216 

A more general formulation can be given by transforming the mono-objective optimisation problem 217 

(11) into a multi-objective one: 218 

 Find 𝒑̃ s.t. 𝒑̃ = arg min
𝒑

[𝜔1(𝒑), 𝜔2(𝒑)] (12) 

the solution of which is the Pareto Front, i.e. the set of non-dominated solutions (Miettinen, 1999). 219 

Several methods exist in general to solve such problem, depending on the type of information 220 

available (Marler & Arora, 2004). The dependence of the error functions 𝜔1, 𝜔2 on the material 221 

parameters 𝒑 is implicitly defined by the material model ℋ𝑀 in Eq. (1). The FE analysis acts as a 222 

black box function which, after receiving a trial set of material parameters 𝒑, provides the value of 223 

𝜔. As no information is available about the convexity or even differentiability of this function, a zero-224 

order global optimisation method is advised for solving the problem. In this work, a Genetic 225 

Algorithm implemented in the software TOSCA-TS (Chisari & Amadio, 2018) has been utilised. The 226 



 

12 

 

use of population-based optimisation methods also leads to the solution of problem (12) by tracking 227 

the entire Pareto Front, and thus avoiding the need of defining a suitable regularisation parameter 𝜆. 228 

2.3 Mesoscale model 229 

In the mesoscale approach employed in this work (Macorini & Izzuddin, 2011), a masonry element 230 

is modelled by explicitly representing units and mortar joints. Mortar and unit–mortar interfaces are 231 

lumped into 2D 16-noded zero-thickness nonlinear interface elements. Masonry units are represented 232 

by elastic 20-noded solid elements, and possible unit failure in tension and shear is accounted for by 233 

means of zero-thickness interface elements placed at the vertical mid-plane of each brick/block 234 

(Figure 3). The discretisation for the structure, as proposed in (Macorini & Izzuddin, 2011), consists 235 

of two solid elements per unit connected by a unit-unit interface. 236 

 237 

  
(a) (b) 

  
(c) (d) 

Figure 3. Mesoscale modelling of masonry by means of solid elements for units (in transparency) and zero thickness 238 
interfaces: (a) real bond, (b) bed joints, (c) head joints, and (d) brick-brick interfaces.  239 

The interface local material model is formulated in terms of one normal and two tangential tractions 240 

𝝈 = {𝜏𝑥, 𝜏𝑦, 𝜎}
𝑇
 and relative displacements 𝒖 = {𝑢𝑥, 𝑢𝑦, 𝑢𝑧}

𝑇
 evaluated at each integration point over 241 
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the reference mid-plane. In the linear range, they are linked one another by uncoupled elastic 242 

stiffnesses, which simulate the linear response of the mortar joints, 𝝈 = 𝒌 𝒖.  243 

The material model used for the 16-noded zero-thickness interfaces to simulate the response of both 244 

cracks in bricks and mortar joints is based on the coupling of plasticity and damage (Minga, et al., 245 

2018). This approach can simulate all the principal mechanical features of a mortar joint or a dry 246 

frictional interface - when mortar is absent - by an efficient formulation that ensures numerical 247 

robustness. It can describe i) the softening behaviour in tension and shear, ii) the stiffness degradation 248 

depending on the level of damage, iii) the recovering of normal stiffness in compression following 249 

crack closure and iv) the permanent (plastic) strains at zero stresses when the interface is damaged.  250 

The yield criterion is represented in the stress space by a conical surface which simulates the 251 

behaviour in shear according to the Coulomb law, corresponding to mode II fracture. This surface, 252 

defined by cohesion c and friction angle φ, is capped by two planar surfaces representing failure in 253 

tension and compression respectively (Figure 4). 254 

 255 

Figure 4. Multi-surface yield criterion (Minga, et al., 2018). 256 

The evolution of the effective stresses is elastic perfectly-plastic, except for the case where the plastic 257 

surface F1, representing failure in tension, is traversed. The damage of the interfaces is defined by a 258 

diagonal damage tensor D which controls stiffness degradation and is governed by the plastic work 259 

corresponding to each fracture mode. By applying damage to the effective stresses 𝝈̅, corresponding 260 
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to the physical stresses developed in the undamaged part of the interface, it is possible to obtain the 261 

nominal stresses 𝝈, defined as: 262 

 𝝈 = (𝑰 − 𝑫)𝝈̅ = (𝑰 − 𝑫)𝑲(𝜺 − 𝜺𝒑) (13) 

In this way the implicit solution of the plastic problem and the damage evolution are decoupled, thus 263 

allowing for increased efficiency and robustness at the material level. Further details about the 264 

material model may be found in (Minga, et al., 2018). 265 

2.4 Macroscale model 266 

The isotropic macroscale model used in this paper is a modified version of the plastic-damage model 267 

proposed by Lee & Fenves (1998). In this model a standard decomposition of strains 𝜺 in elastic 𝜺𝒆 268 

and plastic 𝜺𝒑 components is considered: 269 

 𝜺 = 𝜺𝒆 + 𝜺𝒑 (14a) 

 𝜺𝒆 = 𝑲𝒆
−𝟏𝝈 (14b) 

where 𝑲𝒆 is the fourth-order isotropic elastic stiffness tensor and 𝝈 is the nominal Cauchy stress 270 

tensor. According to continuum damage mechanics, the nominal stress tensor 𝝈 is mapped into an 271 

effective stress tensor 𝝈̅: 272 

 𝝈 = (1 − 𝑑)𝝈̅ (15) 

where 𝑑 = 𝑑(𝝈̅, 𝜿) is a scalar global damage variable depending on the stress state and two historical 273 

variables 𝜿 = (𝜅𝑡 , 𝜅𝑐)𝑇 representing the evolution of damage in tension and in compression. The 274 

effective stress 𝝈̅ is defined as the theoretical stress if the stiffness is equal to the initial one 𝑲𝟎, and 275 

thus: 276 

 𝝈̅ = 𝑲𝟎(𝜺 − 𝜺𝒑) (16) 

From (14)-(16) the standard plastic-damage constitutive relationship is obtained: 277 

 𝝈 = 𝑲𝒆(𝜺 − 𝜺𝒑) = (1 − 𝑑)𝑲𝟎(𝜺 − 𝜺𝒑) (17) 
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where, following the approach proposed by Lee & Fenves (1998), the evaluation of 𝜺𝒑 is performed 278 

working in the effective stress space. The plastic strain rate is evaluated from the plastic flow 279 

potential: 280 

 𝜺̇𝒑 = 𝜆̇
𝜕𝑔

𝜕𝝈̅
 (18) 

with: 281 

 𝑔(𝝈̅) = √(𝜖𝑓𝑡0 tan 𝜓)2 + 3𝐽2 +
tan 𝜓

3
𝐼1 (19) 

where 𝜆 plastic multiplier, 𝜖 flow potential eccentricity, 𝜓 dilation angle, 𝑓𝑡0 the initial uniaxial tensile 282 

stress and 𝐼1, 𝐽2 are the first invariant of stress and the second invariant of deviatoric stress. The 283 

incremental plastic problem in the effective stress space reads: 284 

 {
𝑑𝝈̅ − 𝑲𝟎(𝑑𝜺 − 𝑑𝜆 𝜺̇̂𝒑) = 𝟎

𝐹(𝝈̅, 𝜿) = 0
𝑑𝜿 − 𝑑𝜆𝒉(𝝈̅, 𝜿) = 𝟎

 (20) 

where the yielding function F and the hardening function h are: 285 

 𝐹(𝝈̅, 𝜿) =
1

1 − 𝛼
⋅ (𝛼𝐼1 + √3𝐽2 + 𝛽(𝜿)〈𝜎̅𝑚𝑎𝑥〉 − 𝛾〈−𝜎̅𝑚𝑎𝑥〉) + 𝑓𝑐̅(𝜅𝑐) (21a) 

 𝒉(𝝈, 𝜿) = (
𝑟(𝝈)〈𝜀̂𝑚̇𝑎𝑥

𝑝 〉

(1 − 𝑟(𝝈))〈−𝜀̂̇𝑚𝑖𝑛
𝑝 〉

) (21b) 

with: 286 

− 𝛽(𝜿) = −
𝑓𝑐̅(𝜅𝑐)

𝑓𝑡̅(𝜅𝑡)
 (1 − 𝛼) − (1 + 𝛼) ; 287 

− 𝛼 =
𝑓𝑏0𝑟−1

2𝑓𝑏0𝑟−1
 ; 288 

− 𝛾 =
3(1−𝐾𝑐)

2𝐾𝑐−1
 ; 289 

− 𝐾𝑐= Ratio of the second stress invariant on the tensile meridian to that on the compressive 290 

meridian at initial yield; 291 

− 𝑓𝑏0𝑟= Ratio between biaxial and uniaxial compressive strength; 292 
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− 𝜎̅𝑚𝑎𝑥 = max(𝜎̅1, 𝜎̅2, 𝜎̅3) with 𝜎̅i principal effective stress; 293 

− 𝜀̂𝑚̇𝑎𝑥
𝑝

, 𝜀̂̇𝑚𝑖𝑛
𝑝

= Maximum (resp. minimum) principal components of tensor 𝜺̇̂𝒑 =
𝜕𝑔

𝜕𝝈̅
; 294 

− 𝑟(𝝈̅) = {
0 𝑖𝑓 𝜎̅1 = 𝜎̅2 = 𝜎̅3 = 0

∑ 〈𝜎̅𝑖〉3
𝑖=1

∑ |𝜎̅𝑖|3
𝑖=1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
; 295 

− 〈𝑥〉 =
𝑥+|𝑥|

2
. 296 

The scalar damage variable d depends on two other scalar variables 𝑑𝑡(𝜅𝑡) and 𝑑𝑐(𝜅𝑐), while stiffness 297 

recovery is obtained including the dependence on the stress state: 298 

 𝑑(𝝈̅, 𝜿) = 1 − [1 − 𝑠𝑡(𝝈̅) 𝑑𝑐(𝜅𝑐)][1 − 𝑠𝑐(𝝈̅) 𝑑𝑡(𝜅𝑡)] (22) 

with: 299 

- 𝑠𝑡(𝝈̅) = 1 − 𝑤𝑡𝑟(𝝈̅); 300 

- 𝑠𝑐(𝝈̅) = 1 − 𝑤𝑐(1 − 𝑟(𝝈̅)), 301 

where 𝑤𝑡 and 𝑤𝑐 govern stiffness recovery respectively from compression to tension and viceversa. 302 

For the complete definition of the model the four functions 𝑓𝑡̅(𝜅𝑡), 𝑓𝑐̅(𝜅𝑐), 𝑑𝑡(𝜅𝑡) and 𝑑𝑐(𝜅𝑐) must 303 

be defined. In this work, uniaxial strengths in the nominal and in the effective stress space, i.e., 304 

functions 𝑓𝜒(𝜅𝜒), 𝑓𝜒̅(𝜅𝜒), 𝜒 = 𝑡, 𝑐 have been defined and consequently damage variable is obtained 305 

as: 306 

 𝑑𝜒(𝜅𝜒) = 1 −
𝑓𝜒(𝜅𝜒)

𝑓𝜒̅(𝜅𝜒)
 (23) 

Following Lubliner et al. (1989), both tensile and compressive nominal strengths are expressed as 307 

double-exponential function of the relevant historical variable 𝜅𝜒, which represents the plastic strain 308 

in uniaxial stress states: 309 

 𝑓𝜒(𝜅𝜒) = 𝑓𝜒0[(1 + 𝑝1𝜒)𝑒−𝑝2𝜒𝜅𝜒 − 𝑝1𝜒𝑒−2 𝑝2𝜒𝜅𝜒] (24) 
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where 𝑓𝜒0 is the initial strength and 𝑝1𝜒, 𝑝2𝜒 parameters to be calibrated (see Appendix). As far as 310 

the effective strength is considered, increased robustness is obtained if a hardening behaviour is 311 

considered (Minga, et al., 2018) while the introduction of damage allows for modelling both stiffness 312 

and strength degradation. The hardening behaviour is expressed as: 313 

 𝑓𝜒̅(𝜅𝜒) = {
𝑓𝜒(𝜅𝜒) 𝜅𝜒 < 𝜅̅χ

𝑓𝜒0(𝑝4𝜒 + 𝑝3𝜒𝜅𝜒) 𝜅𝜒 ≥ 𝜅̅χ

 (25) 

where 𝜅̅χ = 𝜌 𝜅𝜒(𝑓𝜒,𝑚𝑎𝑥) is the plastic strain at the onset of damage, 𝜅𝜒(𝑓𝜒,𝑚𝑎𝑥) is the plastic strain 314 

at maximum strength and 0 ≤ 𝜌 ≤ 1 is a scalar. Eq. (25) implies that the effective plastic strain-stress 315 

coincides with 𝑓𝜒(𝜅𝜒) while it is linear afterwards (Figure 5). The calibration of parameters 𝑝1𝜒, 𝑝2𝜒, 316 

𝑝3𝜒, 𝑝4𝜒 based on mechanical parameters with physical meaning is described in the Appendix. The 317 

material model has been implemented in the FE software ADAPTIC (Izzuddin, 1991). 318 

 319 

Figure 5. Nominal and effective strength in tension and compression 320 

3 Case study 321 

3.1 Overview 322 

A case study is considered here to illustrate the calibration procedure described in the previous 323 

Section. It considers the extensive experimental programme performed within the FP6 European 324 

project “ESECMaSE - Enhanced Safety and Efficient Construction of Masonry Structures in Europe”. 325 
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A two-storey full-scale prototype of a terraced house with rigid base and RC floor slabs was built and 326 

tested under pseudo-dynamic loading. The running bond masonry was made of 327 

250mm×175mm×250mm calcium silicate units of type 6DF optimised for the project. The units were 328 

assembled with thin mortar bed joints, while the head joints remained unfilled. All these 329 

characteristics should lead to a marked orthotropic response, both in the elastic and post-elastic 330 

ranges, when the masonry panels are subjected to in-plane loading. Thus, it is of interest to investigate 331 

the degree of approximation which is possible to obtain when using an isotropic model, as that 332 

described in Section 2.4 which is typically employed for advanced nonlinear analysis of masonry 333 

structures, whose material properties are calibrated according to the procedure detailed above. 334 

3.2 Calibration of macroscale material model 335 

Material tests were performed on small wallets to determine basic masonry material properties. 336 

Starting from those, the material properties for the mesoscale representation were estimated as 337 

reported in  338 
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Material Parameter Value 

Brick Young’s modulus 13620 MPa  

 Poisson’s ratio 0.253 

Concrete Young modulus 30000 MPa 

 Poisson’s ratio 0.15 

Bed joints Axial stiffness 34.0 N/mm3 

 Shear stiffness 16.5 N/mm3 

 Tensile strength 0.35 MPa 

 Cohesion 0.28 MPa 

 Friction angle atan(0.55) 

 Fracture energy (mode I) 0.01 N/mm 

 Fracture energy (mode II) 0.2 N/mm 

 Fracture energy (compression) 0.5 N/mm 

 Damage parameter 0.1 

 Compressive strength 23.6 MPa 

Brick-brick interface Axial stiffness 104 N/mm3 

 Shear stiffness 104 N/mm3 

 Tensile strength 1.49 MPa 

 Cohesion 2.235 MPa 

 Friction angle atan(1.0) 

 Fracture energy (mode I) 0.1 N/mm 

 Fracture energy (mode II) 0.5 N/mm 

 Fracture energy (compression) 5 N/mm 

 Damage parameter 0.1 

 Compressive strength 23.6 MPa 
 339 
Table 1. More specifically, brick elastic properties and compressive strength were obtained from 340 

compressive tests on single units, while brick tensile strength was given by the producer (in general 341 

cases it can be estimated by means of indirect tension test). Bed joint stiffness was estimated based 342 

on unit and masonry stiffness, considered as spring in series, while bed joint compressive strength 343 

represents overall masonry compressive strength in a phenomenological way and was obtained from 344 

compressive tests on small wallets. Interface friction coefficient was provided in the ESECMaSE 345 

project experimental report and can be estimated from triplet tests along with cohesion. All the other 346 

properties were assigned typical values for masonry (CUR, 1994). 347 



 

20 

 

Material Parameter Value 

Brick Young’s modulus 13620 MPa  

 Poisson’s ratio 0.253 

Concrete Young modulus 30000 MPa 

 Poisson’s ratio 0.15 

Bed joints Axial stiffness 34.0 N/mm3 

 Shear stiffness 16.5 N/mm3 

 Tensile strength 0.35 MPa 

 Cohesion 0.28 MPa 

 Friction angle atan(0.55) 

 Fracture energy (mode I) 0.01 N/mm 

 Fracture energy (mode II) 0.2 N/mm 

 Fracture energy (compression) 0.5 N/mm 

 Damage parameter 0.1 

 Compressive strength 23.6 MPa 

Brick-brick interface Axial stiffness 104 N/mm3 

 Shear stiffness 104 N/mm3 

 Tensile strength 1.49 MPa 

 Cohesion 2.235 MPa 

 Friction angle atan(1.0) 

 Fracture energy (mode I) 0.1 N/mm 

 Fracture energy (mode II) 0.5 N/mm 

 Fracture energy (compression) 5 N/mm 

 Damage parameter 0.1 

 Compressive strength 23.6 MPa 
 348 

Table 1. Material properties of the mesoscale model in the virtual tests. 349 

To calibrate the macroscale model, three virtual tests, involving different failure modes in the 350 

masonry, have been considered (Figure 6). In tests (a) and (b) a stiff elastic element is applied on the 351 

top of the specimen to transfer the vertical load p=0.5MPa uniformly. Then a horizontal displacement 352 

history is imposed at the top. Constraints are applied to the stiff element to couple the vertical 353 

displacements and keep the top element horizontal. In the out-of-plane test (c), a uniform stress is 354 

applied on one face of the wall, while all edges except the top one are restrained. A load spreader 355 

element is utilised to apply a load history on the specimen by controlling the mean displacement of 356 

the load application nodes. Load protocol for all tests is characterised by a parabolic curve with 357 

maximum displacement equal to 2.5mm for tests (a) and (b) and 1.25mm for tests (c). This protocol 358 

has been designed to evaluate the main characteristics of the cyclic response of the specimens, 359 

including initial stiffness, peak load, post-peak response and stiffness degradation upon unloading. 360 
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1250mm ×175mm×2500mm 1500mm×175mm×1500mm 1500mm×175mm×1500mm 

(a) (b) (c) 

Figure 6. Virtual tests for the calibration of the macromodel. 361 

In Figure 7, the deformed shapes and the force-displacement curves of the three specimens are shown. 362 

It is possible to observe the different failure modes predicted for the tests under in-plane loading: (a) 363 

flexural failure and (b) shear failure with crack opening at the toes. Diagonal cracks are observed in 364 

test (c), with additional flexural crack opening at the base. In terms of force-displacement, the first 365 

two tests show quite stable plastic behaviour and reduced dissipation, characteristic of rocking 366 

behaviour. On the contrary, the out-of-plane behaviour is characterized by large loss of strength at 367 

maximum displacement and significant stiffness degradation at unloading. 368 
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(a) (b) (c) 

Figure 7. Deformed shapes (magnification factor 50) at maximum displacement and force-displacement plots for the 369 
virtual tests. 370 

The virtual tests were then modelled by the macroscale approach. Twenty-noded solid elements with 371 

average dimensions equal to 250mm×250mm ×175mm were used, and the material model described 372 

in Section 2.4 was considered to represent the nonlinear behaviour of masonry at the macroscale. The 373 

model material parameters and their ranges of variation are displayed in  374 

Parameter 
Definition Minimum Maximum 
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E Young’s modulus 100 MPa 5000 MPa 

ν Poisson’s ratio 0.001 0.499 

𝑓𝑏𝑜  Ratio between biaxial and uniaxial compressive strength 0.9 1.5 

ψ Dilation angle 0° 90° 

ϵ Flow potential eccentricity 0.05 0.15 

wt Tension stiffness recovery factor 0.0 1.0 

wc Compression stiffness recovery factor 0.0 1.0 

ft0 Initial uniaxial tensile strength 0.01 MPa 1.0 MPa 

Gt Fracture energy in uniaxial tension 
1e-5 

N/mm 
0.1 N/mm 

μ Parameter controlling stiffness degradation in tension 0.0 1.0 

fc,max Maximum uniaxial compressive strength 5.0 MPa 30.0 MPa 

𝑓𝑦  
Ratio between uniaxial yielding stress and maximum 

strength in compression 
0.01 1.0 

𝑘𝑐,𝑓𝑚𝑎𝑥  Plastic strain in compression at fc,max 1e-5 1e-2 

ρc Ratio of 𝑘𝑐,𝑓𝑚𝑎𝑥 where damage in compression starts 0.0 1.0 
 375 
Table 2. 376 

Parameter Definition Minimum Maximum 

E Young’s modulus 100 MPa 5000 MPa 

ν Poisson’s ratio 0.001 0.499 

𝑓𝑏𝑜  Ratio between biaxial and uniaxial compressive strength 0.9 1.5 

ψ Dilation angle 0° 90° 

ϵ Flow potential eccentricity 0.05 0.15 

wt Tension stiffness recovery factor 0.0 1.0 

wc Compression stiffness recovery factor 0.0 1.0 

ft0 Initial uniaxial tensile strength 0.01 MPa 1.0 MPa 

Gt Fracture energy in uniaxial tension 
1e-5 

N/mm 
0.1 N/mm 

μ Parameter controlling stiffness degradation in tension 0.0 1.0 

fc,max Maximum uniaxial compressive strength 5.0 MPa 30.0 MPa 

𝑓𝑦  
Ratio between uniaxial yielding stress and maximum 

strength in compression 
0.01 1.0 

𝑘𝑐,𝑓𝑚𝑎𝑥  Plastic strain in compression at fc,max 1e-5 1e-2 

ρc Ratio of 𝑘𝑐,𝑓𝑚𝑎𝑥 where damage in compression starts 0.0 1.0 
 377 

Table 2. Material parameters for the macromodel. 378 

The optimization problem (12) for each virtual test was solved by means of a Non-dominated Sorting Genetic Algorithm 379 
(NSGA-II, Deb et al. 2002) implemented in TOSCA-TS (Chisari & Amadio, 2018) using the parameters specified in  380 
Table 3. 381 
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Parameter Value 

Population 50 individuals 

Initial population 

generation 
Sobol algorithm (Sobol, 1967) 

Number of 

generations 
50 

Selection 
Stochastic Universal Sampling, with linear ranking based on domination 

and scaling pressure equal to 2.0 (Baker, 1987) 

Crossover Blend-α, with α=2.0 (Eshelman & Schaffer, 1992) 

Crossover 

probability 
1.0 

Mutation probability 0.007 
 382 

Table 3: GA parameters adopted for the calibration. 383 

In the application of definition (5) in tests (a,b) the contribution of the vertical load was neglected for 384 

the sake of simplicity. Following the discussion about regularisation of the calibration problem in 385 

Section 2.2, a second objective related to the horizontal force-displacement curve was added to the 386 

optimisation problem. It reads: 387 

 𝜔2(𝒑) = (𝚽𝐌(𝒑) − 𝚽𝐦)𝐓𝑾(𝚽𝐌(𝒑) − 𝚽𝐦) (26) 

where: 388 

- 𝚽 = [𝐾𝑖𝑛 𝐾𝑓𝑖𝑛 𝐹𝑦 𝐹𝑚𝑎𝑥 𝐹(𝑢𝑚𝑎𝑥) 𝐹𝑓𝑖𝑛]𝑇; 389 

- 𝐾𝑖𝑛, 𝐾𝑓𝑖𝑛 respectively initial and final stiffness; 390 

- 𝐹𝑦, 𝐹𝑚𝑎𝑥, 𝐹(𝑢𝑚𝑎𝑥), 𝐹𝑓𝑖𝑛 respectively yielding force, maximum force, force at maximum 391 

displacement, force at final displacement; 392 

- 𝑾 = 𝑑𝑖𝑎𝑔 ([(
𝐹𝑚𝑎𝑥

𝑚

𝐾𝑖𝑛
𝑚⁄ )

2

  (
𝐹𝑚𝑎𝑥

𝑚

𝐾𝑖𝑛
𝑚⁄ )

2

1 1 1 1 1]). 393 

Considering the three tests individually as calibration tests, three Pareto Fronts were obtained and 394 

then considered as solutions of the multi-objective optimisation problem.  395 

The results shown in Figure 8 allow to draw some conclusions on the calibration procedure and on 396 

the macromodel employed. On the main diagonal of the matrix, the force-displacement plots of the 397 

solutions are compared to the pseudo-experimental results obtained in the relevant virtual test used 398 
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in the calibration. It is possible to see that in all cases a good agreement is obtained, meaning that: (i) 399 

there exists at least one set of material parameters fitting with satisfactory accuracy any of the three 400 

tests used in the procedure, and (ii) the optimisation procedure is able to find such solution. 401 

Conclusion (i) however does not guarantee that such three sets are coincident, that is, there exists a 402 

unique set of parameters fitting with satisfactory accuracy all three virtual tests at the same time. It is 403 

important thus to study how the solutions predict the response in tests not used in the calibration 404 

(Chisari, et al., 2018b). This is shown in the off-diagonal plots in Figure 8. 405 

In case of a calibration performed by means of test (a) or (c), the calibrated parameters applied to the 406 

other tests show both large variability and low accuracy (first and third rows in Figure 8). In particular, 407 

maximum load and global stiffness are largely overestimated in both tests (b) and (c) with the 408 

solutions from test (a), while with the solutions from test (c) stiffness degradation is overestimated in 409 

tests (a) and (b), and initial stiffness is underestimated. The curves in the second row in Figure 8, 410 

however, show that a calibration performed with test (b) can predict reasonably well the behaviour 411 

of the specimen under test (a), while, again, relatively large variability of the prediction is observed 412 

for test (c). In any case, it is possible to find some solutions fitting with sufficient accuracy the 413 

response of the out-of-plane virtual test. 414 
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 415 

Figure 8. Results of the calibration and validation. 416 

Among all the solutions obtained by calibration with test (b), the one with minimum discrepancy from the mesoscale 417 
test (c) results was then assumed as final solution. This is characterised by the values reported in  418 
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Parameter Value 

E 2850 MPa 

ν 0.31 

𝑓𝑏𝑜  1.23 

ψ 16° 

ϵ 0.13 

wt 0.87 

wc 0.16 

ft0 0.215 MPa 

Gt 9.11e-3 N/mm 

μ 0.216 

fc,max 18.4 

𝑓𝑦  1.0 

𝑘𝑐,𝑓𝑚𝑎𝑥  7e-4 

ρc 0.299 
 419 
Table 4. 420 

 421 

Parameter Value 

E 2850 MPa 

ν 0.31 

𝑓𝑏𝑜  1.23 

ψ 16° 

ϵ 0.13 

wt 0.87 

wc 0.16 

ft0 0.215 MPa 

Gt 9.11e-3 N/mm 

μ 0.216 

fc,max 18.4 

𝑓𝑦  1.0 

𝑘𝑐,𝑓𝑚𝑎𝑥  7e-4 

ρc 0.299 
 422 

Table 4. Final solution of the macroscale calibration. 423 

The deformed shape and tensile damage pattern, which is a crack indicator in the continuum, are 424 

displayed in Figure 9. Comparing these results with Figure 7, it is possible to appreciate that a 425 

correctly calibrated model seems to be able to capture the main damage patterns as observed in the 426 

mesoscale representation in all cases. 427 

 428 
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(a) (b) (c) 

Figure 9. Deformed shapes (same amplification as in Figure 7) and tensile damage patterns for the calibrated 429 
macromodels. 430 

3.3 Validation against pseudo-dynamic test 431 

The calibrated macromodel was then used to predict the response of the two-storey structure subjected 432 

to pseudo-dynamic loading. The specimen (Figure 10a) representing half of a symmetric two-storey 433 

terraced house with rigid base was tested at the ELSA Reaction-wall Laboratory of the JRC (Anthoine 434 

& Capéran, 2008). It was characterised by floor plan dimensions of 5.30m×4.75m and a 5.40m height. 435 

The pseudo-dynamic test simulated the application of an earthquake along the short wall direction (x 436 

direction in Figure 10b). 437 
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(a) (b) 

Figure 10. Pseudo-dynamic test: (a) view of the structure (courtesy of Dr Armelle Anthoine), and (b) numerical model. 438 
The different colours in (b) represents different applied loads. 439 

A 3D solid numerical model of the building was developed (Figure 10b), where the walls were 440 

modelled with the nonlinear model described in Section 2.4 and calibrated in Section 3.2. The 441 

concrete floor was represented by means of elastic elements with Young’s modulus equal to 30GPa, 442 

typical of the concrete type utilised. The additional masses on the first and second floor were equal 443 

to the experimental added masses reproducing design dead and live loads (4.52t on the first floor and 444 

7.39t on the second floor). Such masses were distributed on the floor plane in the real test such as to 445 

minimise the eccentricity between centre of mass and centre of stiffness in y direction (orthogonal to 446 

the ground motion) and thus to have a mainly translational motion of the structure along x. 447 

In the pseudo-dynamic test, the equations of motion for a simplified 2-dof mechanical system were 448 

solved iteratively online using experimentally observed stiffness to obtain the corresponding relative 449 

displacements to apply to the structure by means of actuators at floor level. The ground motion 450 

considered was a 10.23s long artificially generated time history matching the EUROCODE 8 (EN 451 

1998-1-1, 2005) design spectrum with elastic response spectrum type I, peak ground acceleration 452 

PGA=0.04g and soil type B. It was then scaled to PGA=0.12g corresponding to the acceleration for 453 
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which the first significant damage was experimentally observed. Two numerical modelling 454 

approaches concerning the loading history are considered here: 455 

a) Dynamic analysis with application of the ground motion at the base; 456 

b) Dynamic (pseudo-static) analysis with experimental displacements applied at the floors.  457 

In case (b), the experimental floor displacements have been previously fitted with a spline. By 458 

differentiating the spline twice, it was possible to obtain an approximate acceleration history to apply 459 

at floor level. This was deemed convenient to run a dynamic analysis which is generally more stable 460 

than a displacement-controlled static analysis since inertial terms make the problem better 461 

conditioned even in case of loss of stiffness. The results of the numerical analyses in terms of force-462 

displacement plots are displayed in Figure 11. 463 

 464 

Figure 11. Base shear-floor displacement plots for experimental tests and numerical models. 465 
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They are displayed until the numerical model reached convergence, which is equal to 6.3s for model 466 

(a) (applied base acceleration history) and 5.66s for model (b) (applied displacements at the floors). 467 

After that the structure completely lost its stiffness and no meaningful results could be obtained. 468 

Looking at Figure 11, it is possible to notice a very good agreement between the experimental data 469 

and the numerical output in terms of force-displacement curves as far as stiffness, maximum force 470 

and maximum displacement is concerned. In model (b) larger strength is predicted by the numerical 471 

model in the first steps of the load history, but this is reasonable as the numerical model is initially 472 

undamaged while the experimental specimen had undergone previous tests with lower accelerations 473 

which could have provoked damage and strength degradation. Furthermore, in Figure 12 it is evident 474 

that the spline approximation induces larger displacements at the beginning of the analysis, and 475 

consequently larger forces. The comparison between base shear force after t=3s shows a very good 476 

agreement between experimental results and numerical predictions. 477 

 478 

Figure 12. Comparison between applied displacements at first floor and resulting forces for model (b). 479 

The contour of damage variable dt can be assumed as an approximation of cracking occurrence in a 480 

homogenous model. It is shown in Figure 13 for models (a) and (b) at time t=5.5s, when damage has 481 

generally occurred. 482 
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(a) (b) 
Figure 13. Damage contour at t=5.5s: (a) model with applied ground motion, and (b) model with applied floor 483 

displacements. 484 

The comparison between the damage contours in models (a,b) shows that they are generally different 485 

and rather more spread in model (a), where, unlike model (b) a shear wall results almost completely 486 

damaged (A marker in Figure 13). Even in the long wall orthogonal to this damage is more 487 

accentuated (B marker). It is believed that in case of model (a) the additional mass distribution was 488 

not perfectly able to cancel floor rotations leading thus to a more severe stress state on the structure. 489 

In Figure 14 model (b), which more closely reproduces the test loading protocol as effectively 490 

performed, is compared to the experimental cracking pattern.  491 
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(a) (b) (c) 
Figure 14. Comparison between experimental cracking pattern (courtesy of Dr Armelle Anthoine) and numerical 492 

damage contour for model (b): cracking patterns (a) in the long wall, (b) in the short wall, and (c) damage contour at the 493 
intersection between the two walls.  494 

It is possible to see that the damage can generally represent the cracking in the wall, even though, 495 

especially in the short wall, a shift toward the intersection between floors and wall and between 496 

orthogonal walls is visible in the numerical model. It is believed that the limitations of using an 497 

isotropic model for such an anisotropic material, as the masonry utilised for the test, greatly justify 498 

such discrepancy. A similar shift was observed in the comparison of the other wider wall on the 499 

opposite side of the building (Figure 15). 500 
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(a) (b) 

Figure 15. Comparison between (a) experimental cracking pattern (courtesy of Dr Armelle Anthoine) and (b) numerical 501 
damage pattern for model (b): wider wall in the direction of the motion. 502 

4 Conclusion 503 

In this paper, a multiscale model calibration procedure is proposed to provide an efficient and accurate 504 

framework for the use of approximate macroscale models in the prediction of the response of masonry 505 

structures under extreme loading, including earthquakes. The methodology utilises two different 506 

scales of representation for the same structural component. The mesoscale representation, which can 507 

be calibrated by means of material tests on constituents, is taken as virtual test for the calibration of 508 

the more approximate and computationally efficient macroscale model. The latter calibration is 509 

performed by means of minimisation of energy discrepancy. A case study is presented involving 510 

experimental tests performed on a running bond masonry with large blocks and unfilled head joints. 511 

The results highlight the importance of careful selection of the virtual test, which needs to be able to 512 

represent different failure modes of masonry material. In the cases studied, calibration performed by 513 

means of a shear test on a square panel leading to diagonal and flexural failure allows for a robust 514 

prediction of the response under different in-plane loading conditions. However, as far as the out-of-515 

plane response is concerned the accuracy of the prediction can deteriorate despite achieving a good 516 

fit with the calibration response. This implies that information regarding out-of-plane behaviour needs 517 
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to be included in the calibration process, suggesting that a mixed in-plane/out-of-plane virtual test 518 

could lead to a calibrated model with superior predictive capability. The selection of the optimal 519 

virtual tests, which clearly depends on the model to calibrate, will be considered in further 520 

developments. 521 

The validation of the calibrated models has been performed considering an entire building subjected 522 

to earthquake loading. The numerical prediction has shown remarkable agreement with the 523 

experimental response in terms of force-displacement curves. An improved approximation of the 524 

crack pattern by means of damage contours in the macroscale model could be potentially achieved 525 

by employing an enhanced orthotropic material model, which is currently under study. 526 
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Appendix 533 

Parameter 𝑝1𝜒 can be evaluated based on the ratio between initial and maximum strength. In fact, the 534 

maximum of function (24) is: 535 

 𝑓𝜒,𝑚𝑎𝑥 =
𝑓𝜒0(1 + 𝑝1𝜒)

2

4𝑝1𝜒
 (A.1) 

from which: 536 

 𝑝1𝜒 = 2
𝑓𝜒,𝑚𝑎𝑥

𝑓𝜒0
− 1 + 2√(

𝑓𝜒,𝑚𝑎𝑥

𝑓𝜒0
)

2

−
𝑓𝜒,𝑚𝑎𝑥

𝑓𝜒0
 (A.2) 
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In tension there is no hardening, so 𝑓𝑡0 = 𝑓𝑡,𝑚𝑎𝑥 and 𝑝1𝑡 = 1.  537 

The value of 𝑝2𝜒 can be evaluated starting from either (1) the value of plastic strain at maximum 538 

strength 𝜅𝜒(𝑓𝜒,𝑚𝑎𝑥), or (2) fracture energy. In case (1), used for the curve in compression, the 539 

condition of maximum strength is obtained imposing: 540 

 
𝑑𝑓𝜒

𝑑𝜅𝜒
= 0 = 𝑓𝜒0[−𝑝2𝜒(1 + 𝑝1𝜒)𝑒−𝑝2𝜒𝜅𝜒 + 2𝑝1𝜒𝑝2𝜒𝑒−2 𝑝2𝜒𝜅𝜒] (A.3) 

from which: 541 

 𝑝2𝜒 =
1

𝜅𝜒(𝑓𝜒,𝑚𝑎𝑥)
log

2𝑝1𝜒

1 + 𝑝1𝜒
 (A.4) 

In case (2), utilised for the curve in tension, fracture energy density 𝑔𝜒 is defined as the area under 542 

the 𝑓𝜒(𝜀𝜒) curve from the onset of cracking: 543 

 𝑔𝜒 =
𝐺𝜒

𝑙
= ∫ 𝑓𝜒𝑑𝜀𝜒

+∞

𝑓𝜒0/𝐸

 (A.5) 

Since  544 

 𝜀𝜒 = 𝜀χ
𝑒𝑙 + 𝜅𝜒 =

𝑓𝜒̅

𝐸
+ 𝜅𝜒 (A.6) 

it follows that: 545 

 𝑑𝜀𝜒 =
𝜕𝜀𝜒

𝜕𝜅𝜒
𝑑𝜅𝜒 = (

1

𝐸

𝜕𝑓𝜒̅

𝜕𝜅𝜒
+ 1) 𝑑𝜅𝜒 = (

𝑝3𝜒𝑓𝜒0

𝐸
+ 1) 𝑑𝜅𝜒 (A.7) 

and so Eq. (A.5) becomes: 546 

 

𝑔𝜒 = ∫ 𝑓𝜒𝑑𝜀𝜒

+∞

𝑓𝜒0/𝐸

= (
𝑝3𝜒𝑓𝜒0

𝐸
+ 1) ∫ 𝑓𝜒𝑑𝜅𝜒

+∞

0

= (
𝑝3𝜒𝑓𝜒0

𝐸
+ 1)

𝑓𝜒0

𝑝2𝜒
(1 +

𝑝1𝜒

2
) 

(A.8) 

𝑝3𝜒 can be evaluated differently in tension or in compression. In the first case, a fairly intuitive 547 

definition (see also Minga et al. 2018) can be given providing the ratio 𝜇 = 𝜅𝑠𝜒/𝜀𝑠  between residual 548 
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plastic strain 𝜅𝑠𝜒 and total strain 𝜀𝑠 at unloading when the plastic work in monotonic loading has 549 

reached 𝑠 ⋅ 𝑔′𝜒 where 𝑔′𝜒 = ∫ 𝑓𝜒𝑑𝜅𝜒
+∞

0
. The plastic work reads: 550 

 

𝑊𝑝 = ∫ 𝑓𝜒(𝜏)𝑑𝜏
𝜅𝜒

0

=
𝑓𝜒0

2𝑝2𝜒
𝑒−2𝑝2𝜒𝜅𝜒(𝑒𝑝2𝜒𝜅𝜒 − 1)[𝑝1𝜒(𝑒𝑝2𝜒𝜅𝜒 − 1) + 2 𝑒𝑝2𝜒𝜅𝜒]

=
𝑔′𝜒

(2 + 𝑝1𝜒)
(1 − 𝑒−𝑝2𝜒𝜅𝜒)[𝑝1𝜒(1 − 𝑒−𝑝2𝜒𝜅𝜒) + 2 ] = 𝑠 𝑔′𝜒 

(A.9) 

Defining 𝜅̃𝜒 = 1 − 𝑒−𝑝2𝜒𝜅𝜒, Eq. (A.7) becomes: 551 

 𝑝1𝜒𝜅̃𝜒
2 + 2𝜅̃𝜒 − 𝑠(2 + 𝑝1𝜒) = 0 (A.10) 

whose meaningful solution is: 552 

 𝜅̃𝜒 = 1 − 𝑒−𝑝2𝜒𝜅𝜒 =
−1 + √1 + 𝑠 𝑝1𝜒(2 + 𝑝1𝜒)

𝑝1𝜒
 (A.11) 

and thus the corresponding 𝜅𝜒 is: 553 

 𝜅𝑠𝜒 = −
log(1 − 𝜅̃𝜒)

𝑝2𝜒
 (A.12) 

Imposing 𝜅𝑠𝜒 = 𝜇 𝜀𝑠 it follows that: 554 

 𝑝3𝜒 =
1 − 𝜇

𝜇

𝐸

𝑓𝜒0
−

1

𝜅𝑠𝜒
 (A.13) 

Substituting (A.13) in (A.8), the final expression for 𝑝2𝜒 can be obtained: 555 

 𝑝2𝜒 =
1

𝜇
(

𝑔′
𝜒

𝑓𝜒0 (1 +
𝑝1𝜒

2
)

−
𝑓𝜒0

𝐸 log(1 − 𝜅̃𝜒)
)

−1

 (A.14) 

In compression 𝑝3𝜒 is evaluated imposing the continuity of tangent at 𝜅̅χ = 𝜌 𝜅𝜒(𝑓𝜒,𝑚𝑎𝑥): 556 
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𝑝3𝜒 =

1

𝑓𝜒0
 
𝜕𝑓𝜒

𝜕𝜅𝜒
|

𝜅̅χ

= −𝑝2𝜒(1 + 𝑝1𝜒)𝑒−𝑝2𝜒𝜅̅χ + 2𝑝1𝜒𝑝2𝜒𝑒−2 𝑝2𝜒𝜅̅χ 
(A.15) 

Finally, 𝑝4𝜒 is evaluated imposing the value of strength at 𝜅̅χ: 557 

 𝑝4𝜒 = 𝑓𝜒(𝜅̅χ)/𝑓𝜒0 − 𝑝3𝜒𝜅̅χ (A.16) 

 558 

  559 
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