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Abstract

Background: DNA methylation changes in peripheral blood have recently been identified

in relation to lung cancer risk. Some of these changes have been suggested to mediate

part of the effect of smoking on lung cancer. However, limitations with conventional me-

diation analyses mean that the causal nature of these methylation changes has yet to be

fully elucidated.

Methods: We first performed a meta-analysis of four epigenome-wide association stud-

ies (EWAS) of lung cancer (918 cases, 918 controls). Next, we conducted a two-sample

Mendelian randomization analysis, using genetic instruments for methylation at CpG

sites identified in the EWAS meta-analysis, and 29 863 cases and 55 586 controls from

the TRICL-ILCCO lung cancer consortium, to appraise the possible causal role of methyla-

tion at these sites on lung cancer.

Results: Sixteen CpG sites were identified from the EWAS meta-analysis [false discovery

rate (FDR)< 0.05], for 14 of which we could identify genetic instruments. Mendelian randomi-

zation provided little evidence that DNA methylation in peripheral blood at the 14 CpG sites

plays a causal role in lung cancer development (FDR>0.05), including for cg05575921-AHRR

where methylation is strongly associated with both smoke exposure and lung cancer risk.

Conclusions: The results contrast with previous observational and mediation analysis,

which have made strong claims regarding the causal role of DNA methylation. Thus, pre-

vious suggestions of a mediating role of methylation at sites identified in peripheral

blood, such as cg05575921-AHRR, could be unfounded. However, this study does not

preclude the possibility that differential DNA methylation at other sites is causally in-

volved in lung cancer development, especially within lung tissue.

Key words: Lung cancer, DNA methylation, Mendelian randomization, ALSPAC, ARIES

Background

Lung cancer is the most common cause of cancer-related

death worldwide.1 Several DNA methylation changes have

been recently identified in relation to lung cancer risk.2–4

Given the plasticity of epigenetic markers, any DNA meth-

ylation changes that are causally linked to lung cancer are

potentially appealing targets for intervention.5,6 However,

these epigenetic markers are sensitive to reverse causation,

Key Messages

• DNA methylation is a modifiable biomarker, giving it the potential to be targeted for intervention in many diseases,

including lung cancer that is the most common cause of cancer-related death.

• This Mendelian randomization study attempted to evaluate whether there was a causal relationship, and thus poten-

tial for intervention, between DNA methylation measured in peripheral blood and lung cancer, by assessing whether

genetically altered DNA methylation levels impart differential lung cancer risks.

• Differential methylation at 14 CpG sites identified in epigenome-wide association analysis of lung cancer were

assessed. Despite >99% power to detect the observational effect sizes, our Mendelian randomization analysis gave

little evidence that any of the sites were causally linked to lung cancer.

• This is in stark contrast to previous analyses that suggested two CpG sites within the AHRR and F2RL3 loci, which

were also observed in this analysis, mediate >30% of the effect of smoking on lung cancer.

• Overall findings suggest there is little or no role of differential methylation at the CpG sites identified within the blood

in the development of lung cancer. Thus, targeting these sites for prevention of lung cancer is unlikely to yield effec-

tive treatments.
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being affected by cancer processes,6 and are also prone to

confounding, for example by socioeconomic and lifestyle

factors.7,8

One CpG site, cg05575921 within the aryl hydrocarbon

receptor repressor (AHRR) gene, has been consistently rep-

licated in relation to both smoking9 and lung cancer2,3,10

and functional evidence suggests that this region could be

causally involved in lung cancer.11 However, the observed

association between methylation and lung cancer might

simply reflect separate effects of smoking on lung cancer

and DNA methylation, i.e. the association may be a result

of confounding,12 including residual confounding after ad-

justment for self-reported smoking behaviour.13,14

Furthermore, recent epigenome-wide association studies

(EWAS) for lung cancer have revealed additional CpG sites

which may be causally implicated in development of the

disease.2,3

Mendelian randomization (MR) uses genetic variants

associated with modifiable factors as instruments to infer

causality between the modifiable factor and outcome,

overcoming most unmeasured or residual confounding and

reverse causation.15,16 In order to infer causality, three

core assumptions of MR should be met: (i) the instrument

is associated with the exposure; (ii) the instrument is not

associated with any confounders; and (iii) the instrument is

associated with the outcome only through the exposure.

MR may be adapted to the setting of DNA methylation17–

19 with the use of single nucleotide polymorphisms (SNPs)

that correlate with methylation of CpG sites, known as

methylation quantitative trait loci (mQTLs).20

In this study, we performed a meta-analysis of four lung

cancer EWAS (918 case-control pairs) from prospective co-

hort studies to identify CpG sites associated with lung can-

cer risk, and we applied MR to investigate whether the

observed DNA methylation changes at these sites are caus-

ally linked to lung cancer.

Methods

EWAS meta-analysis

We conducted a meta-analysis of four lung cancer case-

control EWAS that assessed DNA methylation using the

Illumina InfiniumVR HumanMethylation450 BeadChip.

All EWAS are nested within prospective cohorts that mea-

sured DNA methylation in peripheral blood samples before

diagnosis: EPIC-Italy (185 case-control pairs), Melbourne

Collaborative Cohort Study (MCCS) (367 case-control

pairs), Norwegian Women and Cancer (NOWAC) (132

case-control pairs) and the Northern Sweden Health and

Disease Study (NSHDS) (234 case-control pairs). Study

populations, laboratory methods, data preprocessing and

quality control methods have been described in detail else-

where3 and are outlined in the Supplementary Methods,

available as Supplementary data at IJE online.

To quantify the association between the methylation

level at each CpG and the risk of lung cancer, we fitted

conditional logistic regression models for beta values of

methylation [which ranges from 0 (no cytosines methyl-

ated) to 1 (all cytosines methylated)] on lung cancer status

for the four studies. The cases and controls in each study

were matched; details of this are in the Supplementary

Methods, available as Supplementary data at IJE online.

Surrogate variables were computed in the four studies us-

ing the SVA R package,21 and the proportion of CD8þ
and CD4þ T cells, B cells, monocytes, natural killer cells

and granulocytes within whole blood were derived from

DNA methylation.22 The following EWAS models were in-

cluded in the meta-analysis: Model 1—unadjusted; Model

2—adjusted for 10 surrogate variables (SVs); Model 3—

adjusted for 10 SVs and derived cell proportions.

Stratification of EWAS by smoking status was also con-

ducted [never (N¼304), former (N¼ 648) and current

smoking (N¼ 857)]. For Model 1, 2 and 3, the case-

control studies not matched on smoking status (EPIC-Italy

and NOWAC) were adjusted for smoking.

We performed an inverse-variance weighted fixed

effects meta-analysis of the EWAS (918 case-control pairs)

using the METAL software [http://csg.sph.umich.edu/abe

casis/metal/]. Direction of effect, effect estimates and the I2

statistic were used to assess heterogeneity across the studies

in addition to effect estimates across smoking strata (never,

former and current). All sites identified at a false discovery

rate (FDR) <0.05 in Models 2 and 3 were also present in

the sites identified in Model 1. The effect size differences

between models for all sites identified in Model 1 were

assessed by a Kruskal-Wallis test and a post hoc Dunn’s

test. There was little evidence for a difference (P> 0.1), so

to maximize inclusion into the MR analyses, we took

forward the sites identified in the unadjusted model

(Model 1).

Mendelian randomization

Two-sample MR was used to establish potential causal

effects of differential methylation on lung cancer risk.23,24

In the first sample, we identified mQTL-methylation effect

estimates (bGP) for each CpG site of interest in an mQTL

database from the Accessible Resource for Integrated

Epigenomic Studies (ARIES) [http://www.mqtldb.org].

Details on the methylation preprocessing, genotyping and

quality control (QC) pipelines are outlined in the

Supplementary Methods, available as Supplementary data

at IJE online. In the second sample, we used summary data
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from a GWAS meta-analysis of lung cancer risk conducted

by the Transdisciplinary Research in Cancer of the Lung

and The International Lung Cancer Consortium (TRICL-

ILCCO) (29 863 cases, 55 586 controls) to obtain mQTL-

lung cancer estimates (bGD).25

For each independent mQTL (r2 <0.01), we calculated

the log odds ratio (OR) per standard deviation (SD) unit

increase in methylation by the formula bGD/bGP (Wald ra-

tio). Standard errors were approximated by the delta

method.26 Where multiple independent mQTLs were avail-

able for one CpG site, these were combined in a fixed

effects meta-analysis after weighting each ratio estimate by

the inverse variance of their associations with the outcome.

Heterogeneity in Wald ratios across mQTLs was estimated

using Cochran’s Q test, which can be used to indicate hori-

zontal pleiotropy.27 Differences between the observational

and MR estimates were assessed using a Z test for difference.

If there was evidence for an mQTL-CpG site association

in ARIES in at least one time point, we assessed whether

the mQTL replicated across time points in ARIES (FDR <

0.05, same direction of effect). Further, we re-analysed this

association using linear regression of methylation on each

genotyped SNP available in an independent cohort

(NSHDS), using rvtests28 (Supplementary Methods, avail-

able as Supplementary data at IJE online). Replicated

mQTLs were included where possible to reduce the effect

of winner’s curse using effect estimates from ARIES. We

assessed the instrument strength of the mQTLs by investi-

gating the variance explained in methylation by each

mQTL (r2) as well as the F statistic in ARIES

(Supplementary Table 1, available as Supplementary data

at IJE online). The power to detect the observational effect

estimates in the two-sample MR analysis was assessed a

priori, based on an alpha of 0.05, sample size of 29 863

cases and 55 586 controls (from TRICL-ILCCO) and cal-

culated variance explained (r2).

MR analyses were also performed to investigate the im-

pact of methylation on lung cancer subtypes in TRICL-

ILCCO: adenocarcinoma (11 245 cases, 54 619 controls),

small cell carcinoma (2791 cases, 20 580 controls) and

squamous cell carcinoma (7704 cases, 54 763 controls).

We also assessed the association in never smokers (2303

cases, 6995 controls) and ever smokers (23 848 cases,

16 605 controls).25 Differences between the smoking sub-

groups were assessed using a Z test for difference.

We next investigated the extent to which the mQTLs at

cancer-related CpGs were associated with four smoking

behaviour traits which could confound the methylation-

lung cancer association: number of cigarettes per day,

smoking cessation rate, smoking initiation and age of

smoking initiation, using GWAS data from the Tobacco

and Genetics (TAG) consortium (N¼ 74 053).29

Supplementary analyses

Assessing the potential causal effect of AHRR methylation:

one-sample MR

Given previous findings implicating methylation at AHRR

in relation to lung cancer,2,3 we performed a one-sample

MR analysis30 of AHRR methylation on lung cancer inci-

dence, using individual-level data from the Copenhagen

City Heart Study (CCHS) (357 incident cases, 8401

remaining free of lung cancer). Details of the phenotypic,

methylation and genetic data, as well as the linked lung

cancer data, are outlined in the Supplementary Methods,

available as Supplementary data at IJE online.

An allele score of mQTLs located with 1 Mb of

cg05575921-AHRR was created and its association with

AHRR methylation tested (Supplementary Methods, avail-

able as Supplementary data at IJE online). We investigated

associations between the allele score and several potential

confounding factors (sex, alcohol consumption, smoking

status, occupational exposure to dust and/or welding

fumes, passive smoking). We next performed MR analyses

using two-stage Cox regression, with adjustment for age

and sex, and further stratified by smoking status.

Tumour and adjacent normal methylation patterns

DNA methylation data from lung cancer tissue and matched

normal adjacent tissue (N¼40 squamous cell carcinoma

and N¼29 adenocarcinoma), profiled as part of The

Cancer Genome Atlas (TCGA), were used to assess tissue-

specific DNA methylation changes across sites identified in

the meta-analysis of EWAS, as outlined previously.31

mQTL association with gene expression

For the genes annotated to CpG sites identified in the lung

cancer EWAS, we examined gene expression in whole

blood and lung tissue, using data from the gene-tissue ex-

pression (GTEx) consortium.32

Analyses were conducted in Stata (version 14) and R (ver-

sion 3.2.2). For the two-sample MR analysis we used the

MR-Base R package TwoSampleMR.33 An adjusted P-value

that limited the FDR was calculated using the Benjamini-

Hochberg method.34 All statistical tests were two-sided.

Results

A flowchart representing our study design along with a sum-

mary of our results at each step is displayed in Figure 1.

EWAS meta-analysis

The basic meta-analysis adjusted for study-specific covari-

ates identified 16 CpG sites that were hypomethylated in
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relation to lung cancer (FDR< 0.05, Model 1, Figure 2).

Adjusting for 10 surrogate variables (Model 2) and derived

cell counts (Model 3) gave similar results (Table 1). The di-

rection of effect at the 16 sites did not vary between studies

(median I2 ¼ 38.6) (Supplementary Table 2, available as

Supplementary data at IJE online), but there was evidence

for heterogeneity of effect estimates at some sites when

stratifying individuals by smoking status (Table 1).

Mendelian randomization

We identified 15 independent mQTLs (r2<0.01) associated

with methylation at 14 of 16 CpGs. Ten mQTLs replicated

at FDR< 0.05 in NSHDS (Supplementary Table 3, avail-

able as Supplementary data at IJE online). MR power anal-

yses indicated >99% power to detect ORs for lung cancer

of the same magnitude as those in the meta-analysis of

EWAS.

There was little evidence for an effect of methylation at

these 14 sites on lung cancer (FDR> 0.05, Supplementary

Table 4, available as Supplementary data at IJE online).

For nine of 14 CpG sites, the point estimates from the MR

analysis were in the same direction as in the EWAS, but of

a much smaller magnitude (Z test for difference,

P< 0.001) (Figure 3).

For nine of out the 16 mQTL-CpG associations, there

was strong replication across time points (Supplementary

Table 5, available as Supplementary data at IJE online)

and 10 out of 16 mQTL-CpG associations replicated at

FDR< 0.05 in an independent adult cohort (NSHDS).

Using mQTL effect estimates from NSHDS for the 10 CpG

sites that replicated (FDR< 0.05), findings were consistent

with limited evidence for a causal effect of peripheral

blood-derived DNA methylation on lung cancer

(Supplementary Figure 1, available as Supplementary data

at IJE online).

There was little evidence of different effect estimates be-

tween ever and never smokers at individual CpG sites

(Supplementary Figure 2, available as Supplementary data

at IJE online, Z test for difference, P> 0.5). There was

some evidence for a possible effect of methylation at

cg21566642-ALPPL2 and cg23771366-PRSS23 on squa-

mous cell lung cancer {OR¼ 0.85 [95% confidence inter-

val (CI)¼0.75, 0.97] and 0.91 (95% CI¼ 0.84, 1.00) per

SD (14.4% and 5.8%) increase, respectively} as well as

methylation at cg23387569-AGAP2, cg16823042-

AGAP2, and cg01901332-ARRB1 on lung adenocarci-

noma [OR¼ 0.86 (95% CI¼ 0.77, 0.96), 0.84 (95%

CI¼ 0.74, 0.95), and 0.89 (95% CI¼ 0.80, 1.00) per SD

(9.47%, 8.35%, and 8.91%) increase, respectively].

However, none of the results withstood multiple testing

correction (FDR<0.05) (Supplementary Figure 3, avail-

able as Supplementary data at IJE online). For those CpGs

where multiple mQTLs were used as instruments

(cg05575921-AHRR and cg01901332-ARRB1), there was

limited evidence for heterogeneity in MR effect estimates

(Q test, P> 0.05, Supplementary Table 6, available as

Supplementary data at IJE online).

Figure 1. Study design with results summary. ARIES, Accessible Resource for Integrated Epigenomic Studies; TRICL-ILLCO, Transdisciplinary

Research in Cancer of the Lung and The International Lung Cancer Consortium; MR, Mendelian randomization; CCHS, Copenhagen City Heart Study;

TCGA, The Cancer Genome Atlas. *2 000 individuals with samples at multiple time points.
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Single mQTLs for cg05575921-AHRR, cg27241845-

ALPPL2 and cg26963277-KCNQ1 showed some evidence

of association with smoking cessation (former vs current

smokers), although these associations were not below the

FDR< 0.05 threshold (Supplementary Figure 4, available

as Supplementary data at IJE online).

Potential causal effect of AHRR methylation on lung

cancer risk: one-sample MR

In the CCHS, a per (average methylation-increasing) allele

change in a four-mQTL allele score was associated with a

0.73% (95% CI¼ 0.56, 0.90) increase in methylation

(P< 1 x 10–10) and explained 0.8% of the variance in

cg05575921-AHRR methylation (F statistic¼ 74.2).

Confounding factors were not strongly associated with the

genotypes in this cohort (P�0.11) (Supplementary Table

7, available as Supplementary data at IJE online). Results

provided some evidence for an effect of cg05575921 meth-

ylation on total lung cancer risk [hazard ratio (HR)¼0.30

(95% CI¼ 0.10, 1.00) per SD (9.2%) increase]

(Supplementary Table 8, available as Supplementary data

at IJE online). The effect estimate did not change substan-

tively when stratified by smoking status (Supplementary

Table 8, available as Supplementary data at IJE online).

Given contrasting findings with the main MR analysis,

where cg05575921-AHRR methylation was not causally im-

plicated in lung cancer, and the lower power in the one-

sample analysis to detect an effect of equivalent size to the ob-

servational results (power ¼ 19% at alpha ¼ 0.05), we per-

formed further two-sample MR based on the four mQTLs

using data from both CCHS (sample one) and the TRICL-

ILCCO consortium (sample two). Results showed no strong

evidence for a causal effect of DNA methylation on total lung

cancer risk [OR¼ 1.00 (95% CI¼ 0.83, 1.10) per SD in-

crease] (Supplementary Figure 5, available as Supplementary

data at IJE online). There was also limited evidence for an ef-

fect of cg05575921-AHRR methylation when stratified by

cancer subtype and smoking status (Supplementary Figure 5,

available as Supplementary data at IJE online) and no strong

evidence for heterogeneity of the mQTL effects

(Supplementary Table 9, available as Supplementary data at

IJE online). Conclusions were consistent when MR-Egger27

was applied (Supplementary Figure 5, available as

Supplementary data at IJE online) and when accounting for

correlation structure between the mQTLs (Supplementary

Table 9, available as Supplementary data at IJE online).

Tumour and adjacent normal lung tissue

methylation patterns

For cg05575921-AHRR, there was no strong evidence for

differential methylation between adenocarcinoma tissue

and adjacent healthy tissue (P¼0.963), and weak evidence

for hypermethylation in squamous cell carcinoma tissue

(P¼ 0.035) (Figure 4; Supplementary Table 10, available

as Supplementary data at IJE online). For the other CpG

sites there was evidence for a difference in DNA methyla-

tion between tumour and healthy adjacent tissue at several

sites in both adenocarcinoma and squamous cell carci-

noma, with consistent differences for CpG sites in

ALPPL2 (cg2156642, cg05951221 and cg01940273), as

well as cg23771366-PRSS23, cg26963277-KCNQ1,

cg09935388-GFI1, cg0101332-ARRB1, cg08709672-

AVPR1B and cg25305703-CASC21. However, hyperme-

thylation in tumour tissue was found for the majority of

these sites, which is opposite to what was observed in the

EWAS analysis.

Figure 2. Observational associations of DNA methylation and lung can-

cer: a fixed effects meta-analysis of lung cancer EWAS weighted on the

inverse variance was performed to establish the observational associa-

tion between differential DNA methylation and lung cancer. a)

Manhattan plot, all points above the solid line are at P< 1 x 10-7 and all

points above the dashed line (and triangular points) are at FDR <0.05. In

total, 16 CpG sites are associated with lung cancer (FDR <0.05). b)

Quantile-quantile plot of the EWAS results [same data as (a) Manhattan

plot].
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Gene expression associated with mQTLs in blood

and lung tissue

Of the 10 genes annotated to the 14 CpG sites, eight genes

were expressed sufficiently to be detected in lung (AVPR1B

and CASC21 were not) and seven in blood (AVPR1B,

CASC21 and ALPPL2 were not). Of these, gene expres-

sion of ARRB1 could not be investigated as the mQTLs in

that region were not present in the GTEx data. rs3748971

and rs878481, mQTLs for cg21566642 and cg05951221,

respectively, were associated with increased expression of

ALPPL2 (P¼ 0.002 and P¼ 0.0001). No other mQTLs

were associated with expression of the annotated gene

at a Bonferroni corrected P-value threshold (P< 0.05/

19¼ 0.0026) (Supplementary Table 11, available as

Supplementary data at IJE online).

Discussion

In this study, we identified 16 CpG sites associated with

lung cancer, of which 14 have been previously identified in

relation to smoke exposure9 and six were highlighted in a

previous study as being associated with lung cancer.3 This

previous study used the same data from the four cohorts

investigated here, but in a discovery and replication, rather

than meta-analysis framework. Overall, using MR we

found limited evidence supporting a potential causal effect

of methylation at the CpG sites identified in peripheral

blood on lung cancer. These findings are in contrast to pre-

vious analyses suggesting that methylation at two CpG

sites investigated (in AHRR and F2RL3) mediated >30%

of the effect of smoking on lung cancer risk.2 This previous

study used methods which are sensitive to residual con-

founding and measurement error that may have biased

results.12,35 These limitations are largely overcome using

MR.12 Although there was some evidence for an effect of

methylation at some of the other CpG sites on risk of sub-

types of lung cancer, these effects were not robust to multi-

ple testing correction and were not validated in the

analysis of tumour and adjacent normal lung tissue methyl-

ation nor in gene expression analysis.

A major strength of the study was the use of two-

sample MR to integrate an extensive epigenetic resource

and summary data from a large lung cancer GWAS, to ap-

praise causality of observational associations with >99%

Figure 3. Mendelian randomization (MR) vs observational analysis. Two-sample MR was carried out with methylation at 14/16 CpG sites identified in

the EWAS meta-analysis as the exposure and lung cancer as the outcome. cg01901332 and cg05575921 had two instruments, so the estimate was cal-

culated using the inverse variance weighted method; for the rest, the MR estimate was calculated using a Wald ratio. Only 14 of 16 sites could be

instrumented using mQTLs from [mqtldb.org]. OR, odds ratio per SD increase in DNA methylation. *Instrumental variable not replicated in indepen-

dent dataset (NSHDS). The sites for which instrumental variables have not been replicated are cg01901332, cg21566642, cg05575921 and

cg08709672.
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power. Evidence against the observational findings was

also acquired through tissue-specific DNA methylation

and gene expression analyses.

Limitations include potential ‘winner’s curse’ which

may bias causal estimates in a two-sample MR analysis to-

wards the null if the discovery sample for identifying ge-

netic instruments is used as the first sample, as was done

for our main MR analysis using data from ARIES.36

However, findings were similar when using replicated

mQTLs in NSHDS, indicating that the potential impact of

this bias was minimal (Supplementary Figure 1, available

as Supplementary data at IJE online). Another limitation

relates to the potential issue of consistency and validity of

the instruments across the two samples. For a minority of

the mQTL-CpG associations (four out of 16), there was

limited replication across time points and in particular, six

mQTLs were not strongly associated with DNA methyla-

tion in adults. Further, our primary data used for the first

sample in the two-sample MR were ARIES, which contains

no male adults. If the mQTLs identified vary by sex and

time, then this could bias our results. However, our repli-

cation cohort NSHDS contains adult males. Therefore, the

10 mQTLs that replicated in NSHDS are unlikely to be bi-

ased by the sex discordance. Also, we replicated the find-

ings for cg05575921 AHRR in CCHS, which contains

both adult males and females, in a two-sample MR analy-

sis, suggesting that these results also are not influenced by

sex discordance. Caution is therefore warranted when

interpreting the null results for the two-sample MR esti-

mates for the CpG sites for which mQTLs were not repli-

cated, which could be the result of weak-instrument bias.

The lack of independent mQTLs for each CpG site did

not allow us to properly appraise horizontal pleiotropy in

our MR analyses. Where possible we only included cis-

acting mQTLs to minimize pleiotropy, and investigated

heterogeneity where there were multiple independent

mQTLs. Three mQTLs were nominally associated with

smoking phenotypes, but not to the extent that this

would bias our MR results substantially. Some of the

mQTLs used influence multiple CpGs in the same region,

Figure 4. Differential DNA methylation in lung cancer tissue: a comparison of methylation at each of the 16 CpG sites identified in our meta-analysis

was made between lung cancer tissue and adjacent healthy lung tissue for patients with: a) lung adenocarcinoma; and b) squamous cell lung cancer.

Publicly available Data from The Cancer Genome Atlas were used for this analysis.
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suggesting genomic control of methylation at a regional

rather than single CpG level. This was untested, but meth-

ods to detect differentially methylated regions (DMRs) and

identify genetic variants which proxy for them may be

fruitful in probing the effect of methylation across gene

regions.

A further limitation relates to the inconsistency in effect

estimates between the one- and two-sample MR analysis to

appraise the causal role of AHRR methylation. Findings in

CCHS were supportive of a causal effect of AHRR methyl-

ation on lung cancer [HR¼ 0.30 (95% CI¼ 0.10, 1.00)

per SD], but in two-sample MR this site was not causally

implicated [OR¼ 1.00 (95% CI¼ 0.83, 1.10) per SD in-

crease]. We verified that this was not due to differences in

the genetic instruments used, nor due to issues of weak in-

strument bias. Given that the CCHS one-sample MR had

little power (19% at alpha ¼ 0.05) to detect a causal effect

with a size equivalent to that of the observational analysis,

we have more confidence in the results from the two-

sample approach.

Peripheral blood may not be the ideal tissue to assess

the association between DNA methylation and lung

cancer. A high degree of concordance in mQTLs has been

observed across lung tissue, skin and peripheral blood

DNA,37 but we were unable to directly evaluate this here.

A possible explanation for a lack of causal effect at

AHRR is due to the limitation of tissue specificity, as we

found that the mQTLs used to instrument cg05575921

were not strongly related to expression of AHRR in lung

tissue. However, findings from MR analysis were corrob-

orated by the lack of evidence for differential methylation

at AHRR between lung adenocarcinoma tissue and adja-

cent healthy tissue, and weak evidence for hypermethyla-

tion (opposite to the expected direction) in squamous cell

lung cancer tissue. This result may be interesting in itself,

as smoking is hypothesized to influence squamous cell

carcinoma more than adenocarcinoma. However, the re-

sult conflicts with that found in the MR analysis.

Furthermore, another study investigating tumorous lung

tissue (N¼ 511) found only weak evidence for an associa-

tion between smoking and cg05575921 AHRR methyla-

tion, which did not survive multiple testing correction

(P¼ 0.02).38 However, our results do not fully exclude

AHRR from involvement in the disease process. AHRR

Figure 4. Continued.
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and AHR form a regulatory feedback loop, which means

that the actual effect of differential methylation or differ-

ential expression of AHR/AHRR on pathway activity is

complex.39 In addition, some of the CpG sites identified

in the EWAS were found to be differentially methylated

in the tumour and adjacent normal lung tissue compari-

son. Whereas this could represent a false-negative result

of the MR analysis, it is of interest that differential meth-

ylation in the tissue comparison analysis was typically in

the opposite direction to that observed in the EWAS.

Furthermore, although this method can be used to mini-

mize confounding, it does not fully eliminate the possibil-

ity of bias due to reverse causation (whereby cancer

induces changes in DNA methylation) or intra-individual

confounding e.g. by gene expression. Therefore, it does

not give conclusive evidence that DNA methylation

changes at these sites are not relevant to the development

of lung cancer.

Whereas DNA methylation in peripheral blood may be

predictive of lung cancer risk, according to the present analy-

sis it is unlikely to play a causal role in lung carcinogenesis at

the CpG sites investigated. Findings from this study issue

caution over the use of traditional mediation analyses to im-

plicate intermediate biomarkers (such as DNA methylation)

in pathways linking an exposure with disease, given the po-

tential for residual confounding in this context.12 However,

the findings of this study do not preclude the possibility that

other DNA methylation changes are causally related to lung

cancer (or other smoking-associated disease).40

Supplementary Data

Supplementary data are available at IJE online.
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