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ABSTRACT

This dissertation presents three essays in life-cycle portfolio choice. Chapter 1
solves for optimal consumption and portfolio choice in a life-cycle model with
short sales and borrowing constraints, undiversifiable labor income risk and a
predictable, time-varying, equity premium and show that the investor pursues
aggressive market timing strategies. Importantly, it shows that, in the
presence of stock market predictability, the conventional financial advice of
reducing stock market exposure as retirement approaches is correct on
average, but ignoring changing market information can lead to substantial
welfare losses. Therefore, enhanced target-date funds (ETDFs) that condition
on expected equity premia increase welfare relative to target-date funds

(TDFs). Out-of-sample analysis supports these conclusions.

Chapter 2 studies the effect of observable predictors that imperfectly predict
conditional expected stock returns on optimal life-cycle consumption and
portfolio choice in the presence of undiversifiable labor income risk. Investors
filter the unobservable expected stock returns from realized predictive

variables and stock returns. Young stockholders hold more conservative



portfolios, better matching empirical observations, than models assuming a
predictor perfectly delivering the conditional expected stock return or models
assuming i.i.d. stock returns. Welfare losses from ignoring imperfect

predictability can be substantial.

Chapter 3 uses different stock return predictors at quarterly frequency to
solve for optimal consumption and portfolio choice in a life-cycle model with
short-sales and borrowing constraints and undiversifiable labor income risk.
Both wealth accumulation and asset allocation look similar qualitatively to
their i.i.d. unconditional averages, but are quantitatively different and depend
on predictors in different ways. Therefore, enhanced target-date funds
(ETDFs) that condition saving and portfolio choice on predictor variables can

lead to substantial welfare gains.
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Chapter 1

Stock Market Mean Reversion and Portfolio Choice

over the Life Cycle

I. Introduction

In the absence of stock market predictability and in the presence of
borrowing and short-sale constraints,! models with background labor income
risk (e.g., Cocco, Gomes, and Maenhout (2005)) predict that households
should invest a larger proportion of their savings in the stock market when
young: future labor income acts like an implicit risk free asset crowding out
riskless financial assets from household portfolios. This prediction resembles
the advice given by financial planning consultants in recommending

target-date funds (TDFs) that reduce exposure to stocks as retirement

'Deaton (1991) and Carroll (1997) propose models with background risks and potentially
binding liquidity constraints (“buffer stock saving models”) as the leading alternative to the classic

Permanent Income-Life Cycle Hypothesis.
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approaches.

How does the presence of stock market predictability affect these
predictions? Various papers have analyzed the implications of stock market
predictability for consumption and/or portfolio choice while ignoring labor
income risk,2 whereas others focus on the effect of background labor income
risk on portfolio choice while ignoring stock market predictability? This paper
jointly models stock market predictability and non-diversifiable background
labor income risk and analyzes the normative implications for optimal
consumption and portfolio choice over the life cycle using Epstein—Zin (1989)

and Weil (1990) preferences.* The results make the case for enhanced

?Kim and Omberg (1996), Brennan, Schwartz, and Lagnado (1997), Brandt (1999), Campbell
and Viceira (1999), Balduzzi and Lynch (1999), Barberis (2000), Campbell, Cocco, Gomes,
Maenhout, and Viceira (2001), Campbell, Chan, and Viceira (2003), and Wachter (2002) show

that stock market exposure varies substantially as a response to the predictive factor(s).

*For instance, Heaton and Lucas (2000), Viceira (2001), Haliassos and Michaelides (2003)
Gomes and Michaelides (2005), and Cocco, et al. (2005).

Y

“Benzoni, Collin-Dufresne, and Goldstein (2007) investigate the implications of a cointegrating
relation between labor income and stock returns to show how stock demand for young investors
can be reduced relative to the absence of this type of long-run risk. Lynch and Tan (2011)
generate a similar result by focussing on the implications of time variation in the mean and, in

particular, the variance of labor income. Munk and Sorensen (2010) focus instead on time
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target-date funds (ETDFs) that condition decisions on expected risk premia:

introducing such funds generates improvements in investor welfare.

As in the buffer stock saving literature, optimal consumption is a

concave function of liquid wealth, but does not respond substantially to

changes in the investment opportunity set. On the other hand, the

consumer /investor is shown to be an aggressive market timer in the presence

of stock market predictability. Relative to the independent and identically

distributed (i.i.d.) returns model, high expected future returns generate a

higher allocation of stocks in the portfolio for a given level of saving (when

constraints are not binding), while low expected future returns decrease the

exposure in the stock market. This translates to large variations over the life

cycle depending on the factor realization rather than the level of financial

wealth. This result substantially alters one of the main insights of life-cycle

variation in interest rates and expected income growth to illustrate the effects on portfolio choice,
while Koijen, Nijman, and Werker (2010) focus on the effects of bond risk premia predictability on
optimal life cycle asset allocation. Brennan and Xia (2002) instead focus on the effects of inflation

on dynamic asset allocation.

17



models with i.i.d. stock returns, namely that financial wealth tends to be the

main predictor of life-cycle portfolio choice.

When calibrated to the observed dividend yield as a factor of

predictability, the asset allocation profiles retain the TDF feature of slowly

decreasing stock market exposure as the household ages. Nevertheless, the

level of asset allocation moves up or down depending on the factor realization:

optimal portfolio choice shifts up or down depending on the expected risk

premium. When experimenting with a more volatile process, the portfolio

movements become a lot more aggressive to take advantage of factor

predictability.” Taken together, these findings make the case for enhanced

TDFs (ETDFs) that condition on the market timing ability of the investor.

From all the underlying correlations studied, the main correlation that

is found to quantitatively affect our conclusions is the correlation between

permanent earnings shocks and the stock market innovation. Financial

’Aggressive market timing behavior is similar to the behavior predicted in Brennan et al.

(1997) and Barberis (2000), models that do not feature undiversifiable labor income uncertainty.

18



advisors should therefore pay special attention to this correlation when

devising rules of thumb about life cycle portfolio allocations. We also

experiment with introducing model uncertainty with regards to the

persistence parameter and the correlation between the factor and stock

market innovation and find that they do not substantially alter the asset

allocation and wealth accumulation profiles.

To emphasize the results with regards to ETDFs, we next make welfare

comparisons across the Vanguard TDF recommendations, an i.i.d. stock

returns model and the baseline mean reversion model. We show substantial

welfare losses relative to the baseline and we show how these can arise either

from lower mean consumption or higher consumption volatility over the life

cycle when the incorrect portfolio rule is being used. Moreover, these losses

are maximized at around age 50 when the increase in average wealth

accumulation slows down and the net saving rate (the difference between

labor income and consumption) turns negative. We therefore experiment with

19



rules of thumb that alter the Vanguard recommendation depending on the

expected equity premium and show how these rules of thumb (a proxy for

ETDFs) reduce welfare less than following either the i.i.d. model or

Vanguard’s recommendation.

We also perform out-of-sample analysis adapting Lan’s (2015)

methodology to our life cycle setting and using the realized dividend yield and

stock returns to simulate life cycle wealth and utility in 2 subperiods:

1985 2014 and 1999 2014. We find that welfare is statistically and

economically significantly higher when comparing the baseline model to either

the Vanguard or i.i.d. stock returns model, especially in the 1999-2014 period.

The analysis demonstrates the value in devising ETDFs for individual

investors and calls for further research in this area.

The paper is organized as follows: Section II describes the theoretical

model, outlines the numerical solution algorithm and discusses the parameter

choices for the calibration. Section III discusses the effects of stock market

20



mean reversion by comparing the benchmark results to the i.i.d. stock returns
model. Section IV discusses hedging demands and how different correlation
changes also affect wealth accumulation, while Section V briefly discusses the
implications of model parameter uncertainty. Section VI discusses the

implications of the model for lifestyle funds and Section VII concludes.

II. The Model

Time is discrete, there is one nondurable good, one riskless financial
asset and a risky time varying investment opportunity. The riskless asset
yields a constant gross after tax real return, Ry, while the gross real return on
the risky asset is denoted by R. At time ¢, the agent enters the period with
invested wealth in the stock market S;_; and the bond market B;_; and
receives Y; units of the nondurable good. Following Deaton (1991), cash on
hand in period ¢ is denoted by X; = St_ll%t + By_1Ry + Y;. The investor then
chooses savings in the bond (B;) and stock (S;) market to maximize welfare.

The particular assumptions made about the economic environment are as

21



follows:

A. Preferences

Preferences separate the elasticity of intertemporal substitution from

risk aversion as in Epstein and Zin (1989) and Weil (1990). Specifically, they

are given by

1-1yp ) T
w{(1—6)021/¢+6(Et(pt+1v;iﬂ+b(1—le)X;J)) } (11)

where 3 is the time discount factor, b is the strength of the bequest motive, ¥
is the elasticity of intertemporal substitution (EIS) and ~ is the coefficient of
relative risk aversion. The conditional probability of surviving next period

conditional on having survived until period ¢ is given by ps.

22



B. Labor Income Process

Following a relatively standard specification in the literature (Carroll

(1997)), the labor income process before retirement is given by

}/it - Y;Zt)Uita (12>

Y = exp(g(t, Zin))Y}; N, (1.3)

where ¢(t, Z;;) is a deterministic function of age and household characteristics
Zi, YL is a permanent component with innovation Ny, and Uy a transitory
component of labor income, where In U;; and In N;; are i.i.d. with mean

{05 x 02, 0.5 x 02}, and variances 02 and o2, respectively. The natural
log of Y} evolves as a random walk with a deterministic drift, g(¢, Z;;). For
simplicity, retirement is assumed to be exogenous and deterministic, with all

households retiring in time period K, corresponding to age 65 (K = 46).

23



Earnings in retirement (¢ > K) are given by Yj, = AY}}, where \ is the
replacement ratio (A = 0.68) of the last working period permanent component
of labor income.

Durable goods, and in particular housing, can provide an incentive for
higher spending early in life. We exogenously subtract a fraction of labor
income every year allocated to durables (housing), and this fraction includes
both rental and mortgage expenditures. This empirical process is taken from
Gomes and Michaelides (2005) and is based on the Panel Study Income
Dynamics (PSID) data. We choose not to model explicitly the returns from
housing following the empirical evidence (e.g., Cocco and Lopes (2015) and
references therein) that households tend not to decumulate housing as fast as
life-cycle models predict. A prominent explanation tends to be a psychological
benefit from continuing to own one’s house, an explanation that is consistent
with the low observed demand for home equity conversion mortgages
(Davidoft (2015)). For these reasons we do not explicitly model the potential

24



effects of housing returns, and focus instead only on investments of liquid
financial wealth for rich households (that empirically tend to be both

stockholders and homeowners).

C. Liquidity Constraints

Borrowing and short sales of stocks are not allowed: B; 2 0 and S; = 0
to avoid the counterfactual implication that households lever up to invest in

the stock market. The share of wealth in stocks (oy) is defined as S;/(S; + By).

D. Mean Reversion

We follow Campbell and Viceira (1999) and Pastor and Stambaugh
(2012) in assuming that there is a single factor that can predict future excess
returns. Letting {rs, 7} denote the net risk-free rate and the net stock market
return, respectively and f; the factor that predicts future excess returns, we

have

Tty1 —Tf = ft + 241, (1-4)
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fror =+ o(fr — 1) + 41, (1.5)

where the two innovations {21, €11} are i.i.d. Normal variables with mean
equal to 0 and variances o2 and ag, respectively. Contemporaneous correlation
between these innovations is allowed, while correlation between the permanent
earnings innovation (In Ny) and {z, &} can also exist. Mean reversion in the
stock market is captured by the autoregressive nature of the factor (f;)
predicting stock market returns (¢ > 0) and negative correlation between the
excess stock market return innovation (z;41) and the innovation to the factor
(€¢41). One of the key contributions of the paper is to understand how
changing these correlations affects saving and portfolio choice decisions over
the life cycle. We will also be reporting results from a model with i.i.d. excess
returns; in that case r1 —ry = p + 2z,41. In order for the i.i.d. model to be

comparable to the factor model, the first two unconditional moments of
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returns are set to be equal in both cases.®

E.  Numerical Solution

The unit root process for labor income is convenient because it allows
the normalization of the problem by the permanent component of labor
income (V). Letting lower case letters denote variables normalized by the
permanent component of labor income (Y}), the evolution of the single

endogenous state variable is then given by

p
Titp1 = Yplt (reprcue + 151 — )i + Usprr - (1.6)
it+1

An Internet Appendix (available at www.jfqa.org) details the numerical

solution technique and the numerical accuracy in the implementation of the

Tauchen (1986) and Tauchen and Hussey (1991) approximation procedure for

a vector autoregression. Numerically, this proves to be a substantial challenge

5The i.i.d. returns specification is the one found in recent papers with either the constant
relative risk aversion preferences (Cocco et al. (2005)) or the Epstein—Zin—-Weil preferences (Gomes

and Michaelides (2005) or Cooper and Zhu (2016)).
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because of the strong persistence in the factor f; that requires a substantial

number of grid points to replicate key moments: the persistence, the

conditional variance and the conditional (1-period ahead) equity risk

premium. Moreover, the conditional expected risk premium must be positive,

especially when the factor is denoting the dividend yield, a theoretical

restriction that is not typically imposed in most estimation methods (a recent

counter example is Pettenuzzo, Timmermann, and Valkanov (2014)). Given

the low estimated volatility of the factor, we impose the theoretical restriction

that the conditional expected equity premium always be positive in the

baseline model. To do so, we follow Floden (2008) and use Tauchen’s (1986)

approximation for the very persistent first-order autoregression (AR(1)) case.

This allows us to explicitly control the range of the factor (thereby ensuring it

is always positive) irrespective of the number of grid points chosen to replicate

the chosen persistence and cross correlations. For the case with higher

volatility that allows negative factor states we revert to the Tauchen and
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Hussey (1991) approximation. The Internet Appendix provides extensive

details from different experiments to test numerical accuracy.

F.  Parameter Choice

Even though empirical predictability studies are typically done at a
monthly or quarterly frequency, we solve the model at an annual frequency to
maintain comparability with the life-cycle literature. The net constant real
interest rate, 7, equals 0.02. Carroll (1997) estimates the variances of the
idiosyncratic shocks using data from the Panel Study of Income Dynamics,
and the benchmark simulations use values close to those: 0.1 for o, and 0.1
for o,,. The deterministic component of labor income is identical to the one
used by most life cycle papers in this literature (Cocco et al. (2005)), and this
also facilitates comparisons between this model and its counterpart with i.i.d.
stock returns. The relatively large estimate for the replacement ratio during
retirement (68% of last working period labor income) arises from using both

social security and private pension accounts to estimate the benefits in the
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PSID data and is consistent with not explicitly modeling tax-deferred saving

through retirement accounts.

The baseline preference specification is taken to capture the observed

behavior of stockholders. Gomes and Michaelides (2005) argue that this is well

achieved when using a coefficient of relative risk aversion (y) equal to 5, and

an elasticity of intertemporal substitution (/) equal to 0.5. These choices are

consistent with the empirical estimates for the elasticity of intertemporal

substitution in Vissing-Jorgensen (2002) and the empirical preference

parameter estimates in Gomes, Michaelides, and Polkovnichenko (2009). The

bequest parameter is set to 2.5 to capture the empirical observation that few

rich stockholders die with zero financial assets. We set the discount factor (3)

equal to 0.96.

To calibrate the stock market predictability parameters we use one of

the more popular predictors of stock returns, namely the dividend yield. We

estimate the mean reversion system (3.3) and (3.4) using three data sources:
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the data from Pastor and Stambaugh (2012),” the publicly available data set
on Robert Shiller’s Web site.® and by decomposing the total return CRSP
value-weighted index into the capital gain and dividend return part. All of
these data series are annual, as is the model frequency, and start at 1802,
1871, and 1926, respectively. All three estimations of the model generate a
very persistent factor predicting the real log return on the U.S. equity market.
This is relatively stable across different subperiods and we therefore set this
persistence parameter at ¢ = 0.9. The unconditional stock market volatility is
given by the unconditional standard deviation of stock returns and is set
equal to 0.18.

A key parameter turns out to be the correlation between the factor and
the return innovation (p,.). For the Siegel and CRSP data sets this
parameter is estimated at —0.6, while for the Shiller data set, we estimate it

at around 0. Most estimates in the literature are toward the higher negative

"We thank Lubos Pastor for kindly providing this data set.

8At http://www.econ.yale.edu/ " shiller /data.htm.
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number (Campbell and Viceira (1999) for a quarterly estimation and Pastor
and Stambaugh (2012) for both an annual and quarterly estimation). We
therefore use p, . = —0.6 for the baseline model but also experiment with the
.. = 0.0 estimate, that also motivates a case with uncertainty about this
correlation in what follows.

The factor innovation is very smooth and we estimate (and use)
0. = 0.007° for the baseline model but we also find it useful to compare
results with the case when the factor is more volatile (0. = 0.015). This
second case is interesting because it allows us to admit the possibility of
negative expected returns (the factor can be negative), which could be a
possibility for a small investor taking prices as given (and using a factor other
than the dividend yield). The other benchmark parameters for the generation

of stock market returns are g = 0.04 (an unconditional equity premium at

“When discretizing the factor with 15 states using the Tauchen (1986) method with o. = 0.007,
the actual factor states are 0.0079, 0.0125, 0.0171, 0.0216, 0.0262, 0.0308, 0.0354, 0.0400, 0.0446,
0.0492, 0.0538, 0.0584, 0.0629, 0.0675, 0.0721.
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4%) as in most of the life-cycle literature. Given these estimates, we can infer
that the unconditional variance of the stock market return innovation equals
02 =10.18% — 0?.

[t should be noted that no estimate of the correlation between the
innovation in the factor predicting stock returns and permanent, idiosyncratic
earnings shocks (p,, .) exists in the literature and we therefore set this
correlation equal to 0. Angerer and Lam (2009) note that the transitory
correlation between stock returns and labor income shocks does not
empirically affect portfolios and this is consistent with simulation results in
life-cycle models (Cocco et al. (2005)). We therefore set the correlation
between transitory labor income shocks and stock returns equal to 0. The
baseline correlation between permanent labor income shocks and stock returns
(Pn..) is set equal to 0.15, consistent with the mean estimates in most
empirical work (Campbell et al. (2001), Davis, Kubler, and Willen (2006)).
Nevertheless, this can vary and be higher across heterogeneous occupations
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(Angerer and Lam (2009)) and/or workers (Bonaparte, Korniotis, and Kumar

(2014)) and we therefore experiment with values up to 0.5.

ITI. Effects of Stock Market Mean Reversion

How does the presence of a factor predicting returns affect saving and

portfolio choice behavior relative to the i.i.d. model?

The Internet Appendix presents the consumption function that has the

familiar shape from the buffer stock saving literature without risky asset

choice (Deaton (1991), Carroll (1997)): below a cutoff point 2* no saving takes

place, while the marginal propensity to consume falls quickly beyond z*. Once

the constraint stops binding, the saving reaction to the factor realization is

not quantitatively important.

The policy functions for the share of wealth in stocks illustrate the large

dependence of portfolios on the factor realization (age 25 (Graph A of Figure

1), age 55 (Graph B), and age 75 (Graph C)). Portfolios can shift from 40% to

100% and vice versa depending on the factor realization and the household’s
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age, something that does not happen in the i.i.d. model. The median factor

state resembles closely the i.i.d. case, while higher factor realizations (higher

expected stock returns) shift the share of wealth in stocks upward. These

policy function graphs illustrate clearly that portfolio allocations should be a

lot more volatile in the mean reversion than in the i.i.d. model, while the

range of outcomes is wider when households have longer horizons (e.g.,

comparing age 25 with age 55 or age 75). Moreover, the presence of labor

income prevents the portfolio from depicting the yo-yo type behavior found in

Brennan et al.(1997), where the portfolios move from 0 to 1 depending on the

factor realization. This happens in the baseline case because the factor

realization is always constrained to be positive, a feature that arises from the

low volatility of the dividend yield.

Figure 2 illustrates the differences in simulated profiles between the

i.i.d. and the mean reversion model, while also introducing the life style

recommendations issued by Vanguard (Donaldson, Kinniry, Aliaga-Diaz,
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Patterson, and DiJoseph (2013)) for TDFs. We introduce Vanguard in
anticipation of the discussion that follows on the optimality of TDF advice.
Vanguard’s basic recommendation is to invest 90% of a household’s financial
wealth in equities until age 40, and start decreasing that share as retirement
approaches to reach 50% at age 65. To simulate wealth profiles for this case,
we take the portfolio rule as exogenous but the household still makes optimal
consumption-saving decisions, taking this portfolio decision as given.

Average wealth accumulation' is similar across all three models (Graph
A of Figure 2). This is slightly surprising since Graph B illustrates that the
average share of wealth in stocks can differ substantially across models, even
though average behavior still follows the life style fund intuition: reduce
exposure to the stock market as retirement approaches. The fact that the
average share of wealth in stocks is never one might be surprising given the

results in the 1.i.d. version of the model. This arises here because we are

10The model is simulated 2000 times for 500 individual life histories.
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simulating based on different initial realizations of the factor and then

averaging over them. For most of these factor states, the investor deviates

from the 100% asset allocation to stocks.

The deviation from the i.i.d. model is even larger when the factor is

perceived to be more volatile (0. = 0.015). This is illustrated in Graph D of

Figure 2: the average share of wealth in stocks is now substantially below one

over the largest part of the life cycle. This reflects the fact that the household

now expects negative expected risk premia for the lowest factor realizations,

generating a full allocation in cash over this range.

The effect of the factor on portfolios can be more clearly seen by

tracking individual portfolio simulations starting from different initial factor

realizations. Figure 3 plots what happens over the life cycle when starting

from the lowest (state — 1), 6th, 10th and highest (state = 15) factor

realization for the baseline case. Because the factor is persistent, it takes a

substantial amount of time for a change to happen: when it does happen, the
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portfolio moves relatively quickly. Nevertheless, the change is different from

the bang-bang movement in the share of wealth in stocks found in Brennan et

al. (1997) that features no labor income risk since the 0 allocation in cash is

never visited in these simulations. This happens in the baseline model because

of the low volatility of the factor and the fact that the factor is always

constrained to be positive. In the model with higher factor variability, the

bang-bang portfolio behavior between 0 to full allocation in the stock market

arises once again.

We have also experimented with increasing the volatility of the stock

return innovation (o,) by 10%, 20% and 50% as a way to capture the

uncertainty over the coefficient relating the equity premium to the dividend

yield. We find that the share of wealth in stocks is reduced throughout the life

cycle relative to the baseline mean reversion case but portfolio behavior

remains qualitatively unchanged and do not report these results.
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IV. Hedging Demands

How do these results change when the correlations between the different
innovations vary? We next use the model to quantitatively assess the

magnitude of such hedging demands.

A.  Variation in Correlations

To investigate the importance of hedging demand due to p, . (the
correlation between the factor and the stock market innovation), we set it
equal to 0. In the Shiller dividend yield data set, we have found this
correlation to be close to 0, contrary to our findings using CRSP data. Setting
the correlation to 0 can therefore be useful in assessing the possible range of
hedging demands that might be generated from this correlation.

We also evaluate hedging demands when changing the correlation
between permanent earnings shocks and stock market innovations (p, ). In

our baseline model we use 0.15 for this correlation, a value that reflects the
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substantial idiosyncratic risk that exists in labor income data. Nevertheless,
one cannot deny that there are some households for whom this correlation is
substantially higher. Bonaparte et al. (2014) find that this correlation can
vary for different households from —0.6 to 0.6 and we therefore use 0.5 to
investigate how the results change.

There is no known empirical estimate for p,, . (the correlation between
the factor innovation and the permanent labor income shock) in the literature.
There are potentially some a priori reasons to expect it not to be statistically
different from 0 since earnings shocks at the household level have a large
idiosyncratic variance component, yet the component of this variance that can
be attributed to aggregate shocks is generally quite small. Given that most
factors predicting stock returns have very low volatility, we expect the
correlation between the factor innovation and the much more volatile
idiosyncratic earnings shocks to be close to 0. Nevertheless, we consider the

potential effects of this correlation by increasing it to a high enough value
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that can simultaneously maintain the positive definiteness of the variance
covariance matrix of the different innovations: setting p,, . equal to 0.15
satisfies this constraint.

The wealth accumulation and mean shares of wealth in stocks over the
life cycle are depicted in Graph A of Figure 4, and Graph B, respectively!!
When the correlation between the factor and the stock return innovation is
set to 0 (p,. = 0.0) from p, . = —0.6, the share of wealth in stocks is lower on
average between 0% and 5% over different parts of the working life cycle
(Graph B) and the effects are larger when the factor is more volatile (Graph
D), leading to a discernibly lower average wealth accumulation (Graph C). It

can be shown that the variance of longer term stock returns is higher when

" Campbell and Viceira (1999) quantify hedging demands by comparing hedging demands from
a model with a factor predicting returns relative to the myopic model with a constant share of
wealth in stocks. We consider the i.i.d. model as the equivalent of the myopic model in our case
since portfolios in the i.i.d. model do not exhibit any time variation in response to the factor
realizations. For a specific correlation (p) we can compute these hedging demands by comparing
the two simulated profiles and compute the percentage differences:
hedg(p) = 100 * (gactor (p) — a11.D.(p)) / arrp.(p). For space considerations we only report the

simulated shares of wealth in stocks generated from different correlations of interest.
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p.. = 0.0 rather than when p, . = —0.6, therefore explaining the slight
decrease in the share of wealth in stocks.

Changing the correlation between the factor innovation and the
permanent income shock (p,, .) does not materially affect the average share of
wealth in stocks (Graphs B and D of Figure 4 for the two cases), and
therefore also does not substantially affect average wealth accumulation.

What happens when the correlation between the permanent earnings
shock and the stock market innovation is raised from 0.15 to 0.57 Figure 5
plots the average life-cycle portfolio share allocation for the mean reversion
model versus the i.i.d. model when this correlation is 0.5. There is a
substantial difference across the life-cycle profiles both for the baseline case
(Graph A) and the higher factor variability case (Graph B). Interestingly, the
average share of wealth in stocks does not drop as much in the mean reversion
model as it does in the i.i.d. model. This happens because the higher
correlation does not push the share of wealth in stocks to 0 for the highest

42



factor realizations that signal high future expected stock returns.

V. Model Parameter Uncertainty

Model uncertainty is a feature in the stock market predictability
literature as emphasized, for example, in Xia (2001), Brandt, Goyal,
Santa-Clara, and Stroud (2005), and Pastor and Stambaugh (2012). We do
not introduce learning in the model because this can be a substantial
extension that requires either Kalman filtering or Bayesian updating
techniques, extensions that we view as an interesting and challenging future
research project in the context of life-cycle models. We therefore take a more
simplistic approach and assume that the investor observes a noisy signal of
two key structural parameters, whereas the truth is generated with the
baseline parameters analyzed above. We focus on the persistence of the factor
(¢) and the correlation between the stock return and factor innovations (p, ).

For ¢, we assume the investor expects three values: the baseline value

(0.9) with a 50% probability, a lower persistence (0.7) with 25% probability
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and a higher persistence (0.93) with a 25% probability. This is necessarily
asymmetric to respect factor stationarity. For p, . we assume the investor
expects two values: the baseline (—0.6) with a 50% probability and an
extreme equal to 0 with a 50% probability.

The recursive model is modified by simply assuming that the investor is
aware of this uncertainty and takes expectations over these three possibilities,
weighting each case with the assumed probability. In the case of p, _, for
example, the current value function is the result of an optimal saving-portfolio
choice that expects next period returns to be generated with p, . = —0.6 and
with p, . = 0.0 with a 50% probability each. The value function is not
otherwise affected since investors are assumed not to learn the true value of
this parameter. We then simulate stock returns assuming a 50-50 realization
of p, .. It turns out that results are not quantitatively affected if instead we
simulate by fixing p, . at either —0.6 or 0.0.

Figure 6 shows the results from introducing model uncertainty in these
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particular ways. Average portfolios are slightly more balanced over the life

cycle (Graphs B (for 0. = 0.007) and D (for 0. = 0.015)), especially for the

model with the correlation uncertainty, generating also slightly lower wealth

accumulation as a result (more clearly seen in Graph C). The effect is larger

for the case where factor variability is larger (compare Graphs D and B), but

the quantitative average effects are not substantial relative to the no

uncertainty cases.

VI. Are Lifestyle Funds Optimal?

A. Dewviations from the [.I.D. Model

Financial advisors argue that the share of wealth in stocks should

decrease as the investor approaches retirement and qualitatively this is what

the 1.1.d. model predicts as well. Nevertheless, we have seen that a factor

model will generate substantial variation in the share of wealth in stocks over

the life cycle based on the factor realization. The intuitive argument is that

households retiring in 2008 when the stock market had lost a substantial
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percentage of its value should not have followed blindly the rule followed by

life style funds.

In this section we evaluate how important this intuition might be. We

start a simulation from the beginning of life but assume that the investor

follows the asset allocation implied by the same factor state throughout the

life cycle. This could arise from heterogeneous expectations about the

underlying factor among different investors. As we have seen before, this

implies that households faced with the lower factor realization should have

lower exposure in the stock market. Figure 7 produces such a diagram by

assuming different factor realizations starting from each of the 15 initial states

that persist throughout the life cycle. Graph B produces the same information

by comparing the highest and lowest asset allocation experiences relative to

the Vanguard recommendation and Graphs C and D repeat the same exercise

for the higher factor variability case.

We can observe from these figures that the Vanguard life style
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recommendation is between the upper and lowest factor realization asset

allocation profiles and that the deviation is even more pronounced when the

factor is more volatile. Thus, the Vanguard recommendation is roughly correct

on average but for an investor with market timing ability or expectations

about time-varying expected risk premia, this recommendation will deviate

substantially from the optimal portfolio choice. We next evaluate the welfare

losses from ignoring stock market mean reversion.

B.  Welfare Evaluations

To calculate welfare changes we use the value functions across different

experiments. Given that we have solved for saving, portfolio choices and

value functions for all periods in the life cycle, we know that the value

functions at a particular age are a sufficient statistic for welfare effects. Let

Vo(it, ft) be the value function for the benchmark model and v, (x;, f;) be

the value function for a new model. We compute a measure of welfare change
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for a particular age group (AGE) as:

IIaqp = average of <— — 1|, for all i € Iygr and all factor stategl.7)
vo(Tits ft)

This is the unconditional (across factor states) certainty consumption
equivalent because we convert the change of the value into the dimension of
expenditure before taking the average.

Figure 8 plots the life cycle certainty equivalents in percent when
returns are simulated based on the mean reversion model and the comparison
is between the mean reversion and the i.i.d. model and between the mean
reversion and Vanguard recommendation. Graph A reports the results for the
baseline model (0. = 0.007) and Graph B for the higher factor volatility
model (. = 0.015). Graph A illustrates substantial welfare losses from
following the i.i.d. model relative to the optimal portfolio rule in the presence
of the factor, and the welfare losses are even more substantial when following

the Vanguard recommendation. This arises naturally given that the deviations
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of the average portfolio allocations are even larger between the Vanguard

recommendation and the factor model than the ones between the i.i.d. and

factor model (Graph B of Figure 2). With higher factor volatility (Graph B)

these effects are magnified as the differences across the average portfolio

shares further diverge (Graph D of Figure 2).

We make two observations based on the results in Figure 8. First, the

welfare losses are economically significant: they can reach 2%—7% of

consumption equivalents depending on the specification, and this represents a

substantial welfare loss. Second, the losses tend to get maximized at around

age 50, whereas average wealth accumulation is maximized at the exogenous

retirement age (65). What can explain these findings?

To better understand these welfare shapes and magnitudes, it is helpful

to recall that given the preference for consumption smoothing, welfare in the

model is increasing in consumption and decreasing in the variability of

consumption. We can therefore gain an insight on where the welfare
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differences are coming from by investigating how average consumption and

consumption inequality evolve over the life cycle across the 3 models. To do so

we compute the average consumption and standard deviation of consumption

as a cohort ages. Mean consumption is very similar over the life cycle across

the 3 models in a life-cycle graph. To emphasize the differences we therefore

report the percentage difference between the profiles generated by the baseline

versus the i.i.d. model and the baseline versus the Vanguard recommendation.

These differences are plotted in Figure 9 for the baseline case (0. = 0.007 for

Graphs A and B) and for the higher factor volatility case (Graphs C and D).

The Vanguard recommendation generates substantially more volatility

in consumption over the working part of the life cycle (Graphs B and D of

Figure 9), despite generating mildly higher average consumption in the

baseline case (Graph A). Given the preferences for smoother consumption,

this increased consumption inequality translates into a welfare loss that

essentially gets maximized at mid life (around age 50), justifying the peak in
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welfare loss depicted in Figure 8.

The i.i.d. model on the other hand generates lower mean consumption

but lower volatility over the life cycle. The biggest welfare loss is therefore

coming from lower mean consumption and this is even more pronounced in

the case where the factor is more volatile (e.g., compare Graph C of Figure 9

with Graph A). Consumption variability is actually lower with the i.i.d. model

since portfolio rules are a lot more stable, and this is especially so for the

more volatile factor (Graph D relative to Graph B).

The question remains as to why welfare losses are maximized at around

age 50. This happens because the saving rate (defined as the percent of labor

income that is saved) turns negative at around that age. This is driven by the

hump shape in the labor income process and the fact that the rate of average

wealth accumulation begins to slow down after that age as average labor

income begins to fall. Given the reduction in the saving rate, the welfare loss

from following an imperfect portfolio rule is reduced.
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C.  Out-of-Sample Analysis

We next compare how realized wealth and certainty equivalents evolve

out of sample, partly adapting the calculations in Lan (2015) for our model.

Specifically, for the 2 cases (high and low o.) we start simulating for every age

using the realized dividend yield and stock returns between 1985 and 2014 and

between 1999 and 2014. For instance, given a simulated initial distribution of

assets per age in 1985, from 1986 onward we use the realized dividend yield to

pick the relevant factor state and the realized stock return to shock financial

asset returns. We save financial wealth for every age group between 1986 and

2014, as well as the CEQs as defined in expression (3.6). For an investor at

age 30, for example, we track the evolution of individual wealth and CEQs

over the 1986 —2014 period and average in the cross section every year.

It might be helpful to start the discussion by plotting the wealth levels

for different models. Figure 10 shows how the mean wealth evolves for
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different starting ages according to the different models. As can be seen, the

baseline models typically generate higher mean wealth than either the i.i.d. or

Vanguard rule would predict. Moreover, younger households display the mean

wealth accumulation rising over time (and over the life cycle), while older

households can display the decreasing wealth after retirement.

Tables 1 and 2 report the mean differences across CEQs for different

models (0. = 0.007 and o. = 0.015, respectively). Specifically, as in Lan

(2015), the mean differences across CEQs for each age are computed over the

1985-2014 (Panel A) and 1999-2014 (Panel B) periods. The t-statistics are

computed using a Newey—West (1987) procedure to correct for serial

correlation. One conclusion from Table 1 is that the increase in welfare is not

always statistically significant (compare the baseline model with the i.i.d.

stock returns model in the 1985 2014 period). Nevertheless, the baseline

model statistically and economically outperforms the Vanguard model in both

periods, while the baseline model statistically and economically outperforms
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both the i.i.d. and Vanguard models in the 1999-2014 period. These

conclusions are strengthened when the factor is more volatile (Table 2) since in

that instance the dividend yield as a signal generates more aggressive investor

behavior. These results emphasize the importance of searching for good

signals when devising long-term asset allocation strategies, but also how the

same variable can generate different conclusions over different time periods.

D. Rules of Thumb

Can a rule of thumb be devised in the presence of factor predictability

that dominates widely used recommendations like the Vanguard one? Based

on our results we devise approximate asset allocation rules that are similar to

Vanguard’s but are conditional on the factor realization for the baseline case:

they are more aggressive for higher factor realizations and less aggressive for

lower ones. For the baseline case, and relative to the Vanguard

recommendation, the following different rules of thumb are applied. If the

factor realization is above 5%, the investor allocates all financial wealth to the
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stock market. If the factor realization is between 2% and 5%, then the

Vanguard rule is applied. If the factor realization is below 2%, then the

maximum of 0 and the Vanguard rule minus 50% is chosen. We also report

results for changing the thresholds between 1% and 6%, rather than between

2% and 5%, and also by adjusting the allocation relative to the Vanguard

recommendation by 30% instead of 50%. The consumption/saving rules are

chosen optimally in both cases. We think a richer model of retirement

uncertainties is needed to make similar recommendations for the retirement

period and we leave this extension for future work.

Tables 3 and 4 report the mean differences across CEQs for the 2

models (0. = 0.007 and 0. = 0.015, respectively). A positive percentage

means that the rule of thumb dominates the Vanguard recommendation. We

can see that over most time periods and experiments there is a statistically

and economically significant welfare improvement relative to the Vanguard

recommendations.
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We can also provide a rule of thumb of the saving rate (the proportion of

labor income that is saved). Depending on when the household begins saving

for retirement, the model predicts a rule of thumb of around 10% of labor

income saved for thirty years of working life to achieve adequate consumption

smoothing, regardless of the factor variability. Implementing these rules of

thumb lowers the welfare loss relative to both the i.i.d. and Vanguard models,

assuming stock returns are generated through the mean reversion process but

we do not report these welfare comparisons due to space considerations.

VII. Conclusion

In the presence of stock market predictability, undiversifiable labor

income risk and exogenously imposed liquidity constraints, the consumption

policy rule has a similar shape with consumption functions derived in the

buffer stock saving literature. Optimal portfolio choice is shown to be heavily

dependent on the realization of the factor predicting future returns. In the

baseline case where the factor is always positive, the share of wealth in stocks
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is a parallel shift of the i.i.d. model, and the extent of the shift depends on the

magnitude of the factor realization and the degree that short-sale constraints

bind. When the factor is more volatile and can take negative expected values,

portfolio holdings will very often be either completely allocated in the stock

market or in the riskless asset market. The large welfare losses from failing to

condition on market information support the case for enhanced TDFs

(ETDFs) that condition asset allocation on expected risk premia.

Future directions of research include the explicit introduction of

tax-deferred retirement accounts (for the i.i.d. case, see Gomes, Michaelides,

and Polkovnicheno (2009)), an explicit learning mechanism about the true

underlying model through either a Kalman filtering or Bayesian learning

approach (Brandt et al. (2005), Pastor and Stambaugh (2012)), an explicit

treatment of housing and introducing time-varying volatility and risk aversion

(e.g., through a stochastic discount factor). All these extensions will require

additional computational power to achieve the desired required solution
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accuracy but will further improve our understanding of life-cycle portfolio

choice under uncertainty and offer scientific advice to billions of households

increasingly making their own individual financial decisions.
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VIII. Appendix: Figures

FIGURE 1

Policy Function Comparison

Figure 1 presents the policy function comparisons between the i.i.d. stock returns model (solid line)
and three factor states from the baseline mean reversion model (the median factor (dash-dot line),
the lowest factor (dashed line) and the highest factor (dotted line)).
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FIGURE 2

Life-Cycle Profile Comparison

Figure 2 presents the life-cycle profile comparison between the benchmark stock market mean rever-
sion results (dashed line), the Vanguard recommendation (dotted line) and the i.i.d. stock returns
model (solid line).
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FIGURE 3

Life-Cycle Individual Share of Wealth in Stocks

Figure 3 presents the life-cycle individual share of wealth in stocks for different initial factors starting

from age 21 for the benchmark stock market mean reversion model.
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FIGURE 4

Life-Cycle Profiles for Average Wealth and Portfolio Shares for
Different Parameters

Figure 4 presents life-cycle profiles for average wealth and portfolio shares for different parameters.
The three cases are i) the benchmark case (v = 5 and ¢ = 0.5), ii) changing the correlation between
permanent labor income shocks and the factor innovations (p,, ) from 0.0 to 0.15, and iii) changing
the correlation between the stock return shocks and factor innovations (p, ) from -0.6 to 0.0.
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FIGURE 5

Life-Cycle Mean Portfolio Shares in Stocks

Figure 5 presents life-cycle mean portfolio shares in stocks. The average life-cycle portfolio shares in
stocks for the stock market mean reversion model and the i.i.d. stock returns model when the correla-

tion between the permanent earnings shocks and the stock market innovations is 0.5 instead of 0.15.
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FIGURE 6
Life-Cycle Profiles for Average Wealth and Portfolio Shares for
Different Parameters

Figure 6 presents the life-cycle profiles for average wealth and portfolio shares for differ-

ent parameters. The three cases are i) the benchmark case (y = 5 and ¢ = 0.5), ii
the benchmark case with uncertain ¢, and iii) the benchmark case with uncertain p, .
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FIGURE 7

Portfolio Shares with Different Constant Factor Realization

Figure 7 presents average portfolio shares with different constant factor realizations for
the stock market mean reversion model. Graphs B and D report the highest and lowest

states and also report the Vanguard recommendation that lies in between the two extremes.
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FIGURE 8

Welfare Evaluation

Figure 8 presents average consumption certainty equivalents in percent. We assume re-
turns are generated based on the mean reversion model but households are either using

the i.i.d. model or the Vanguard policy rule. Welfare loss is relative to the baseline case.
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FIGURE 9

Consumption Evaluation

Figure 9 presents percentage changes in average consumption and standard deviation of consumption
over the life cycle. The two cases are i) the i.i.d. case (y = 5 and ¥ = 0.5) relative to the baseline
model, and ii) the Vanguard case (7 =5 and ¢ = 0.5) relative to the baseline model.

Graph A. Mean Consumption Change: I.1.D. versus Graph B. S.D. Consumption Change: I.1.D. versus
Benchmark and Vanguard versus Benchmark (oce = 0.007) Benchmark and Vanguard versus Benchmark (oce = 0.007)
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FIGURE 10

Mean Wealth Profiles for Different Starting Investor Ages in 1985

Figure 10 presents mean wealth profiles for different starting investor ages in 1985. The initial
wealth distribution for all ages is generated through a simulation of the baseline model. From that
same initial wealth distribution in 1985, investors start behaving according to the baseline, i.i.d.
and Vanguard models, while realized dividend yields and stock returns are used from 1986 to 2014
to generate individual wealth profiles.

Graph A. Baseline Graph B. Baseline and Vanguard Models for Different
and I.1.D. Models for Different Starting Ages (e = 0.007) Starting Ages (oc = 0.007)
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IX. Appendix: Tables

TABLE 1

Out of Sample Analysis with o, = 0.007

Table 1 presents the mean differences in certainty equivalents (CEQs) between the benchmark model
(with 0. = 0.007) and the i.i.d. stock returns and Vanguard models, respectively. The t-statistics,
based on the asymptotic distribution, are in parentheses. In Panel A, for each starting age and initial
wealth distribution based on an initial life-cycle simulation, we do the out of sample analysis from
1985 to 2014, using the realized stock returns and the realized dividend yield to pick the relevant

policy function. In Panel B, we do the same from 1999 to 2014.

Starting Panel A. 1985-201 Panel B. 1999-2014
Age LLD. Vanguard LLD. Vanguard
30 0.3(0.3) -1.5(-1.6)  -1.5(-5.1) -4.9(-13.6)
40 -0.3(-0.4 —0 5(-0.6) -1.8(-4.7) -6.3(-12.4)
45 -0.1(-0.1)  0.0(0.0)  -1.8(-4.6) -6.0(-11.0)
50 0.3(0.2) 0.9(0.8) -1.6(-4.3)  -5.7(-9.9)
55 0.7(0.5) —0.1( 0.2) -1.6(-4.1) -5.5(-10.8)
60 0.0(-0.0)  -3.3(-11.6) -1.8(-4.6) -5.3(-13.9)
65 -0.9(-0.6 -7.5(-9.5)  -3.0(-5.9) -4.6(-11.0)
70 -0.6(-0.4) -12.8(-11.9) -3.3(-6.5) -5.2(-64.0)
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TABLE 2

Out of Sample Analysis with o, = 0.015

Table 2 presents the mean differences in certainty equivalents (CEQs)between the benchmark model
(with 0. = 0.015) and the i.i.d. stock returns and Vanguard models, respectively. The t-statistics,
based on the asymptotic distribution, are in parentheses. In Panel A, for each starting age and initial
wealth distribution based on an initial life cycle simulation, we do the out of sample analysis from
1985 to 2014, using the realized stock returns and the realized dividend yield to pick the relevant
policy function. In Panel B, we do the same from 1999 to 2014.

Starting Panel A. 1985-201 Panel B. 1999-2014
Age LLD. Vanguard LLD. Vanguard
30 -5.8(-13.5)  -6.2(-16.0) -6.5(-15.0) -8.6(-19.6)
40 -6.4(-10.4)  -5.5(-15.7)  -6.7(-14.9) -9.7(-20.4)
45 -6.6(-8.9)  -5.4(-13.9) -6.6(-16.4) -9.6(-18.0)
50 -6.8(-8.4)  -5.3(-10.6) -6.5(-18.2) -9.4(-16.9)
55 -7.3(-9.8)  -7.3(-15.7)  -6.5(-16.9) -9.5(-26.5)
60 -8.0(-10.9) -10.1(-13.5) -7.1(-17.8) -9.8(-29.0)
65 -8.2(-8.6) -13.5(-16.7) -9.1(-12.7) -10.0(-15.9)
70 -9.4(-11.1) -19.7(-12.6) -0.1(-13.8) -10.8(-21.0)
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TABLE 3

Out of Sample Analysis with o, = 0.007

Table 3 presents the mean differences in certainty equivalents (CEQs) between the Vanguard
model (with o, = 0.007) and the different rule-of-thumb, respectively. The t-statistics, based on
the asymptotic distribution, are in parentheses. In Panel A, for each starting age and initial wealth
distribution based on an initial life-cycle simulation, we do the out of sample analysis from 1985
to 2014, using the realized stock returns and the realized dividend yield to pick the relevant policy
function. In Panel B, we do the same from 1999 to 2014. U5L2R3: If the dividend yield is greater
than 5%, then set the share of wealth in stocks to 100%. If the dividend yield is below 2%, then take
the maximum of the Vanguard recommendation minus 30% and 0. Otherwise, follow the Vanguard
recommendation. U5L2R5: Same as U5L2R3 but subtract 50% from Vanguard recommendation
when the dividend yield is below 2%. U6L1R3: Same as U5L2R3 but the thresholds of inaction
are between 1% and 6% instead of 2% and 5%. U6L1R5: Same as U6L1R3 but subtract 50% from
Vanguard recommendation when the dividend yield is below 2%.

Starting Panel A: 1985-2014
Age U5L2R3 U6L1R3 U5L2R5 UGL1R5
30 1.5(4.5) 0.8(21.9) 1.8(4.2) 0.8(20.6)
40 1.4(3.1) 0.7(61.3) 1.7(3.1) 0.7(69.6)
45 1.3(3.3)  0.7(9.4) 1.6(3.2) 0.7(9.6)
50 1.7(3.2)  0.6(6.3) 2.4(2.5) 0.6(6.1)
55 1.6(3.5) 0.5(11.2) 1.5(3.1) 0.5(11.1)
60 1.0(3.2) 0.5(3.2) 0.9(2.9) 0.5(3.24)
65 1.2(3.7)  0.8(4.2) 1.2(3.6) 0.9(4.30)
70 2.0(6.5) 1.4(7.6) 2.1(6.8) 1.4(8.1)
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TABLE 3 (Continued)

Out of Sample Analysis with o. = 0.007

Table 3 presents the mean differences in certainty equivalents (CEQs) between the Vanguard
model (with 0. = 0.007) and the different rule-of-thumb, respectively. The t-statistics, based on
the asymptotic distribution, are in parenthesis. In Panel A, for each starting age and initial wealth
distribution based on an initial life cycle simulation, we do the out of sample analysis from 1985
to 2014, using the realized stock returns and the realized dividend yield to pick the relevant policy
function. In Panel B, we do the same from 1999 to 2014. U5L2R3: If the dividend yield is greater
than 5%, then set the share of wealth in stocks to 100%. If the dividend yield is below 2%, then take
the maximum of the Vanguard recommendation minus 30% and 0. Otherwise, follow the Vanguard
recommendation. U5L2R5: Same as U5L2R3 but subtract 50% from Vanguard recommendation
when the dividend yield is below 2%. U6L1R3: Same as U5L2R3 but the thresholds of inaction
are between 1% and 6% instead of 2% and 5%. U6L1R5: Same as U6L1R3 but subtract 50% from
Vanguard recommendation when the dividend yield is below 2%.

Starting Panel B: 1999 2014
Age UbL2R3  U6L1R3  U5L2R5  U6L1R5S

30 1.7(19.2)  0.8(95.6) 0.0(15.2) 0.9(109.1)
40 2.5(12.1)  0.8(48.5) 3.4(9.91) 0.9(32.2)
45 2.8(10.2) 0.8(32.5) 3.7(8.4)  0.8(49.8)
50 3.0(8.6) 08(44.2) 4.0(7.3) 08(7L.7)
55 3.1(8.0) 0.7(172.4) 4.2(7.2) 0.7(38.4)
60  3.5(10.2) 0.7(20.5) 4.7(8.4)  0.7(18.7)
65  4.4(10.5) 0.9(39.7) (8.5)  0.9(38.4)
70 4.9(10.9) 1.2(66.1) 5.3(10.5) 1.3(57.0)

57.0
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TABLE 4

Out of Sample Analysis with o, = 0.015

Table 4 presents the mean differences in certainty equivalents (CEQs) between the Vanguard model
(with 0. = 0.015) and the different rule-of-thumb, respectively. The t-statistics, based on the asymp-
totic distribution, are in parenthesis. In Panel A, for each starting age and initial wealth distribution
based on an initial life-cycle simulation, we do the out of sample analysis from 1985 to 2014, using
the realized stock returns and the realized dividend yield to pick the relevant policy function. In
Panel B, we do the same from 1999 to 2014. U5L2R3: If the dividend yield is greater than 5%, then
set the share of wealth in stocks to 100%. If the dividend yield is below 2%, then take the maximum
of the Vanguard recommendation minus 30% and 0. Otherwise, follow the Vanguard recommen-
dation. U5L2R5: Same as U5L2R3 but subtract 50% from Vanguard recommendation when the
dividend yield is below 2%. U6L1R3: Same as U5L2R3 but the thresholds of inaction are between
1% and 6% instead of 2% and 5%. U6L1R5: Same as U6L1R3 but subtract 50% from Vanguard
recommendation when the dividend yield is below 2%.

Starting Panel A: 1985 2014
Age U5L2R3  UG6L1R3 US5L2R5  UGLIR5

30 6.1(15.2) 5.0(32.4) 6.7(10.9) 5.2(32.1)
40 5.7(18.2)  4.6(27.6) 6.2(11.1) 4.6(29.7)
45 5.9(18.3) 4.2(11.6) 6.7(8.4) 4.2(11.6)
50 7.009.3)  3.8(9.1) 8.1(5.6) 3.8(9.0)
55 7.3(10.0) 3.4(11.4) 7.2(8.7) 3.5(11.5)
60 8.7(12.8) 3.4(19.2) 8.5(12.2) 3.4(19.8)
65 12.4(14.4)  4.3(9.8) 12.1(13.8) 4.3(9.9)
70 18.7(11.6)  6.4(9.2) 18.6(11.4) 6.4(9.4)
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TABLE 4 (Continued)

Out of Sample Analysis with 0. = 0.015

Table 4 presents the mean differences in certainty equivalents (CEQs) between the Vanguard model
(with 0. = 0.015) and the different rule-of-thumb, respectively. The t-statistics, based on the asymp-
totic distribution, are in parenthesis. In Panel A, for each starting age and initial wealth distribution
based on an initial life-cycle simulation, we do the out of sample analysis from 1985 to 2014, using
the realized stock returns and the realized dividend yield to pick the relevant policy function. In
Panel B, we do the same from 1999 to 2014. U5L2R3: If the dividend yield is greater than 5%, then
set the share of wealth in stocks to 100%. If the dividend yield is below 2%, then take the maximum
of the Vanguard recommendation minus 30% and 0. Otherwise, follow the Vanguard recommen-
dation. USL2R5: Same as U5L2R3 but subtract 50% from Vanguard recommendation when the
dividend yield is below 2%. U6L1R3: Same as U5L2R3 but the thresholds of inaction are between
1% and 6% instead of 2% and 5%. U6L1R5: Same as U6L1R3 but subtract 50% from Vanguard
recommendation when the dividend yield is below 2%.

Starting Panel B: 1999-2014
Age U5L2R3  U6L1IR3  USL2R5  UGLIR5

30 6.4(34.9) 5.1(202.8) 7.4(23.7) 5.3(181.5)
40 7.5(69.7)  5.2(26.8) 9.0(28.8)  5.4(24.7)
45 7.8(52.7)  5.1(24.4)  9.4(24.6)  5.2(21.8)
50 8.0(39.4)  5.1(28.0)  9.7(20.7)  5.1(23.9)
55 8.3(27.7)  5.0(27.7) 10.3(17.6) 5.0(25.9)
60 9.5(21.5)  5.0(22.5) 12.2(12.6) 4.9(20.3)

65  11.7(14.1) 5.6(121.6) 14.6(9.8) 5.4(164.0)
70 13.1(14.4) 6.9(121.1) 13.4(13.6) 6.8(142.4)
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Chapter 2

Life-Cycle Consumption and Portfolio Choice with

an Imperfect Predictor

I. Introduction

Optimal life-cycle portfolio choice is a classic problem in financial
economics, encountered by every investor. Samuelson (1969) argues that the
investment decision is independent of wealth and consumption-saving
decisions. However, Samuelson’s conclusion is confined to the assumption of
independent and identically distributed (i.i.d.) stock returns and the absence
of undiversifiable, risky labor income. Cocco, Gomes, and Maenhout (2005)

solve for optimal portfolio choice, consumption and saving decisions
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numerically and show that the labor income stream is a key factor for optimal

life-cycle portfolio choice with mortality risk, borrowing and short-sale

constraints, and time-separable power utility preferences. Their findings

provide rationale for age-varying investment advice such as recommending

target-date funds (TDFs) that reduce exposure to stocks as retirement

approaches.! These authors, however, assume that the stock returns are i.i.d.,

a classical view meaning that the expected return is constant over time.

Nevertheless, recent empirical studies provide evidence supporting the

predictability of stock returns. Many papers find that a number of variables

forecast stock returns. The main method is a simple predictive regression: if

we can find |[b| > 0in 7,11 = o + bg; + 2441, then we know that

E; (r441) = bgy. This implies that the expected stock return can be perfectly

predicted by the predictor. The popular predictors (¢;) provided by the

"Heaton and Lucas (2000), Viceira (2001), Haliassos and Michaelides (2003) and Gomes and
Michaelides (2005) also study the effect of labor income risk on portfolio choice while ignoring the

predictability of stock returns.
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literature are the dividend /price ratio(D/P), earnings per share (EPS) or
consumption-wealth ratio (CAY’).? Since these predictors themselves follow a
persistent auto-regressive process (AR model), the r; essentially is a mean
reversion process.®

In response to the evidence on the stock market predictability, various

papers have studied its implications for optimal portfolio choice and

?See Lettau and Ludvigso (2001) and Lan (2015).
For instance, Campbell (1987) and Fama and French (1988) show that dividend/price ratios predict
stock returns. Campbell and Shiller (1988) also make this point by proposing the following regressions:

rip1 =Trp+ b,ut + Zt41 Zta1
, ~ Normal (0,Q), where r;,1 denotes the real stock market return

Heyr = @+ By + €1 Et1

from time ¢ to t + 1, p, is the predictor such as the dividend/price ratio at time ¢, « and (3 are the
regression’s intercept and slop coefficients of the predictor, r¢ is the real risk free interest rate and z;1; and
€¢+1 are the white noises following a bi-variate normal distribution with mean of zero and covariance
structure of 2. When 8 = 0, this regression becomes the i.i.d. stock return model. Fama and French really
focus on the importance of the D/P on long-time horizon. These observations show that the predictability
of stock return is economically and statistically significant phenomenon that can not be dismissed. Fama
and French (1989) is an excellent summary and example that documents and illustrates the time variation

of expected stock returns.
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consumption.* Michaelides and Zhang (2016) build a model in which an
investor chooses consumption and optimal asset allocation over the life cycle
to maximize an Epstein-Zin-Weil preference function assuming that the
dividend yield can perfectly predict the expected stock returns (hereafter, the
perfect predictor model). This model, however, seems restrictive because
it assumes that an observable predictor such as the dividend yield can
perfectly predict expected stock returns. This assumption can be criticized for
data mining, non-robustness of test statistics and incorrect inference in small
samples. Goyal and Welch (2008) re-examine the performance of predictors
such as the dividend yield and find that these predictors are both weak
in-sample, and out-of-sample, indicating that the predictability of expected

stock returns is quite uncertain. It seems more likely that the predictors are

*Kim and Omberg (1996), Brennan, Schwartzc, and Lagnad (1997), Brandt (1999), Campbell and
Viceira (1999), Balduzzia and Lynch (1999), Campbell, Cocco, Gomes, Maenhout, and Viceira (1999), and
Wacher (2002) show that stock market risk premiums change materially with respect to the predictive

factor(s) and analyze the implications for optimal portfolio choice.
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noisy proxies, in that they are correlated with the time-varying expected stock

returns but can not predict them perfectly.

More recently, the idea that the predictive relation between the

predictor and expected stock returns is quite uncertain has gained more

ground. For example, Xia (2001) assumes that the predictability parameter

(b) in the predictive regression is ambiguous. This uncertainty in b is just one

specific example that the expected risk premium is hard to precisely observe.

Pastor and Stambaugh (2009) generalize Xia (2001) by assuming that the

current expected stock return is unobservable and the predictor is imperfect

so that the estimation of expected stock returns using the predictive

regression omits some important features. In fact, the unexpected stock

returns negatively correlate with the innovations in the unobservable expected

stock returns, when the stock returns exhibit mean reversion (Pastor and

®Ang and Bekaert (2007) also examine the predictive power of the dividend yield for forecasting the
excess stock returns. They find that the univariate dividend yield regression provides a rather poor proxy

to the true expected stock return.
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Stambaugh (2012)). Pastor and Stambaugh (2009) construct an imperfectly

predictive system with noisy predictors to estimate the expected stock returns

and find that this imperfection has a significant effect on the conditional

expected stock returns.

How does the presence of such impertect predictability affect optimal

consumption and portfolio choice for a stockholder over the life cycle? In this

paper, I solve a life-cycle portfolio choice model with an imperfect predictor,

jointly modeling an imperfect predictive system, liquidity constraints and

non-diversifiable background labor income risk to analyze the normative

implications for life-cycle consumption and portfolio choice using Epstein-Zin

(1989) preferences (hereafter, the imperfect predictor model). The key

feature of this model is to include the imperfection in the predictive relation

of stock returns model to understand how this type of uncertainty affects

saving and portfolio choice over the life cycle.

When calibrated to the observed dividend yield and stock returns from

80



1946 to 2015, under the imperfect predictive system of stock returns, the

portfolio allocation is more conservative than that in the perfect predictor

model or in the i.i.d. stock returns model. This result substantially alters one

of the main insights of models ignoring imperfect predictability. Specifically,

such models predict that "stocks are for the young" and such advice has been

popularized by Target Date Funds (TDFs) that advise a more aggressive asset

allocation in stocks when young and a gradual reduction in this exposure as

the investor gets older. With imperfect predictability, consistent with Pastor

and Stambaugh (2012), stocks become more volatile in the long run, and

therefore young households hold more conservative (balanced) portfolios.

Interestingly, this prediction of the imperfect predictor model is more

consistent with empirical observation than either the i.i.d. stock returns or the

perfect predictor models. When compared with the data from the U.S. Survey

of Consumer Finances (hereafter, SCF), the imperfect predictor model

matches the data better than either the perfect predictor model or the i.i.d.

81



stock returns model. Specifically, in the SCF data stockholder portfolios are

balanced between bonds and stocks. Recently, Wachter and Yogo (2010)

generate balanced portfolios through nonhomothetic utility over basic and

luxury goods. In this paper, the balanced portfolio early in life arises due to

the additional stock market uncertainty arising from imperfect predictability.

From all the underlying parameters studied, the main parameters that

materially affect the optimal consumption and investment choice are the

volatility of the unobservable expected stock return, the persistence of the

unobservable expected stock returns and the correlation between the

innovations to stock returns and shocks to unobserved expected stock returns.

Therefore, we should pay more attention to these parameters when making

investment decisions. I also experiment with respect to the correlation

between permanent earnings shocks and stock market innovations, the

correlation between innovations to stock returns and shocks to the dividend

yield and the correlation between shocks to the dividend yield and innovations
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to the unobserved expected stock returns. I find that these correlations do not

substantially change wealth accumulation and consumption, but they do

significantly alter the portfolio allocation.

These findings influence the design of target date funds (TDFs) because

market timing through the utilization of different information affects optimal

portfolio choice. The presence of imperfect predictability affects tactical asset

allocation and alters the prediction of models where investors expect either

i.1.d. stock returns or use a model with a perfect predictor to compute

expected stock returns. Therefore, the imperfection of the predictor

significantly changes the asset allocation decision, with potentially significant

implications for the design of optimal TDFs.

To illustrate the importance of taking imperfect predictability into

account when designing TDFs, I compare the welfare across different models

by computing the consumption certainty equivalent under different settings.

Specifically, I simulate 10,000 individual life histories assuming that the data
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generating process of stock returns is an imperfect predictive system. In the

imperfect predictor model, the investor chooses the investment policy

according to the expected return filtered from the observed data. On the

contrary, investors using the perfect predictor model or the i.i.d. stock returns

model make investment decisions without caring about any observed stock

returns. As to the investors using the Vanguard TDFs investment rules

(hereafter, Vanguard TDF model), they adjusts their portfolio allocation

only depending on age. I can then calculate the ratio of value functions from

the imperfect predictor model to the ones from the other models and report

the consumption certainty equivalent based on this ratio. In this way, I can

compare the change in investor welfare between the imperfect predictor model

and the other three models: the perfect predictor model, the i.i.d. stock

returns model, and the Vanguard TDF model.

The pertect predictor model has the smallest welfare loss, and the 1.1.d.

stock returns model generates the largest welfare loss. The Vanguard TDF
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model obtains the second largest welfare loss. All of these welfare losses vary

with the correlation between unexpected returns and shocks to the predictors,

and increase as this correlation approaches 1. These losses are maximized at

around age 50 when the increase in average wealth accumulation slows down

and the net saving rate (the difference between labor income and

consumption) turns negative.

Where do these welfare rankings come from? I show that these

substantial welfare losses relative to the baseline can be explained by the

differences in the first two moments of household consumption. The imperfect

predictor model has the highest mean consumption and volatility of

consumption, and the i.i.d. stock returns model generates the lowest mean

consumption and volatility of consumption over the working life. In the

middle is the perfect predictor model.

The paper is organized as follows. Section 2 explains the theoretical

model in the paper and a rough description of the numerical solution. Section
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3 illustrates the estimation method and discusses the calibration. Section 4
builds a baseline model with the risky labor income and Epstein—Zin
preferences to study the effect of the imperfect predictive system on the
portfolio choice over the life cycle, Section 5 contains the welfare analysis

across different models including the TDFs and Section 6 concludes.

II. The Model

A.  Model Specification

Preference Model

I denote adult age by t (¢ € [20,100]). The investor chooses the portfolio

and consumption policies to maximize the following Epstein-Zin preferences:

_ _ 1/(1-1/4)
Vi=mar { (1 8) G~ 4+ 8 R (Vi)
. o (2.1)

_ B 1/(1—7)
Re (Vigr) = [Et (pt+1Vt£er +b(1 — pr1) Xt1+1v>}

\
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where V; is the continuation value at age t, R, is the uncertainty aggregator,
X411 18 the terminal wealth if the investor is dead at age t-+1, 5 is the
discount factor, 1 is the elasticity of inter-temporal substitution (hereafter,
EIS), v is the risk aversion parameter, b is the strength of the bequest motive
and p;.1 is the conditional probability of surviving next period conditional on

having survived until age t.

Labor Income Process

Following the same method as Cocco, et al. (2005) andCarroll (1997), 1

build the labor income process before retirement as follows:

Yi = YUy (2.2)

Vi = eaplg (t, Zi)) Vi1 Nt (2.3)

87



where g (t, Z;;) is a deterministic function of age and household ¢’s
characteristics Z;, Y}/ is a permanent component with innovation Ny of
household 4’s age t labor income, and Uy, is a transitory component of
household 7’s age t labor income.

In equations (2.2) - (2.3), I assume that (n (U;) and In (N;;) are
independent and identically distributed with mean {—0.502, —0.502}, and
variances 02 and o2, respectively. As to Y2, In (YY) evolves as a random walk
with a deterministic drift, g(¢, Z;;). For simplicity, retirement is assumed to be
exogenous and deterministic, with all households retiring in time period K,
corresponding to age 65 (K = 46). Earnings in retirement (¢t > K) are given
by Yi; = AY},, where A is the replacement ratio (A = 0.68) of the last working
period permanent component of labor income.

Durable goods, and in particular housing, can provide an incentive for
higher spending early in life. We exogenously subtract a fraction of labor
income every year allocated to durables (housing), and this fraction includes
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both rental and mortgage expenditures. This empirical process is taken from
Gomes and Michaelides (2005) and is based on Panel Study Income Dynamics
(hereafter, PSID) data. We choose not to model explicitly the returns from
housing following the empirical evidence (e.g., Cocco and Lopes (2015) and
references therein) that households tend not to decumulate housing as fast as
life-cycle models predict. A prominent explanation tends to be a psychological
benefit from continuing to own one’s house, an explanation that is consistent
with the low observed demand for home equity conversion mortgages
(Davidoff (2015)). For these reasons we do not explicitly model the potential
effects of housing returns, and focus instead only on investments of liquid
financial wealth for rich households (that empirically tend to be both
stockholders and homeowners).

For convenience, I will take logarithms on both sides of (2.2) and (2.3)
while solving the investor’s problem. Hence,
log (Y}}) = g(t, Zir) +log (Yi}_,) + log (Ni) and
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log (Yir) = log (Y3)) + log (Uy).
Stock Return Predictability Model

I assume that there are two assets in which the investor can invest, a
risk-free asset, such as T-bills, and a risky asset, such as stocks. The risk free
asset has a constant gross real return of r¢, and the risky asset has a gross
real return r;. As to modeling the gross real return of risky asset, I follow the
idea of Pastor and Stambaugh (2009) that the expected stock returns are
unobservable and that investor must filter these expected stock returns from
the other observable information. Denote (r¢, ¢, 11;) as the stock return, the
predictor and the unobservable expected stock return, respectively. Then, an

imperfect predictive system can be defined as follows:

Pep1 = O+ ppty + €441 (2.4)
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Tep1 = 7§+ fy + 241 (2.5)

Qt+1 = Qg + Oyt + Vi1 (2.6)
0—? Oze Oye
where [ ity 21 Urin ] ~ Normal (0,€2) and 2 = 2 o,
o,

This imperfect predictive system is a generalization of the classical
predictive regression. The unobservable expected stock return (p,) follows a
simple AR(1) process described by equation (2.4). Equation (2.5) defines the
next period’s stock return (r441) as a sum of the risk free rate (ry), the
unobservable expected stock return (u,) and an innovation term (unexpected
stock return, z;). Equation (2.6) assumes that the predictor (¢) evolves in a
manner of a persistent AR(1) process, which is a standard assumption in the

literature about the predictability of stock returns. This model is consistent
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with a variety of economic models in which the expected return not only

varies over time but also exhibits mean reversion.

Based on this imperfect predictive system. the investor must filter out

i, from the other observable variables (4, ¢;). Applying the simplest filtering

algorithm (see theorem A in the appendix, the conditional distribution of a

multivariate normal distribution), the first two conditional expected moments

of u; can be rewritten as

TE—Tf E.
E (py|de) = By + Eﬂdzgl - (2.7)
qt Eq
Var (plde) = 07 — 2,484 'S0y (2.8)
o2 oy
where dy = 14, q¢], Xpa = [0, 0,¢) and Xg =
o 02
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(7) and (8) can be further simplified as:

E (el [re, at]) = Py = Er + K [re —rp — B + kg lgr — By (2.9)
Var (e, ¢]) = Ui — RrOpur — RqOpg (2.10)
2_ —
where f, = DT < 0, g, = UL I 5 0, F, = 1%, B = 1%,
2=02402 02 =% _ P2=_ % 5 —p g4+ T
r Y 2R (1_¢)i)7 q (1_¢3)7 MT_pZE ZYe (1_¢}2L>’
— _PueTv0e_ _ PqTve
7 = (g0, MM T T P g gy

(2.9) and (2.10) say that the conditional moments of p, consist of three
information sources. The first source is the unconditional mean of risk
premium (F,). The second source is the current stock return (r;), and the last
one is the current dividend yield (¢;). Similarly, the conditional variance of p,
can be decomposed into three parts: the variance of unobservable expected

stock returns (oi), the covariance between the unobservable expected stock
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returns and the realized stock returns (o) and the covariance between the
unobservable expected stock returns and the dividend yield (o).

Several important conclusions can be drawn from (2.9) and (2.10). First,
K, 18 negative, which implies that an unexpected increase in the stock return
leads to the decrease in the next period’s expected stock return. s, , therefore,
measures the mean reversion effect. In contrast, the positive k, measures the
predictability effect because a positive shock to the dividend yield predicts an
increase in the next period’s expected stock return and vice versa.

Second, when p,, =1, £, = E, 0, = 04 and p,, = p,,, K, = 0 and

ke = 1. (2.9) and (2.10), therefore, become

ﬂt\t = E (l[re, &) = a (2.11)

Var (p[re, ¢]) =0 (2.12)
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(2.11) and (2.12) implies that E; (r:11) = ¢, namely, the predictor
perfectly predicts the expected stock return. The imperfect predictive system
((2.4) - (2.6)) degenerates into the classical predictive regression used in
Campbell and Shiller (1988), Campbell and Viceira (1999), Michaelides and
Zhang (2016) etc. Similarly, the i.i.d. stock returns model is also a special case
of this imperfect predictive system. In contrast, if |p,.| < 1 and p,. # 0, the
predictor (¢;), is not a perfect proxy of u,, and the information from r; and ¢
enters the conditional expected i, according to (2.9) - (2.10). Hence, the
expected stock return of the next period is not completely determined by the
observed predictor so that uniquely relying on the this predictor can deliver
an inaccurate estimation.

Third, the conditional moments of the unobservable expected stock
return depend on both the observed data (7, ¢;) and the correlations among
the unobservable expected stock return, the observed predictor and the

current stock return (pw, Prg> puq)' This also explains why the correlation
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between the innovations to observable predictor and the shocks to current
stock return does not play a key role in the perfect predictor model solved by
Michaelides and Zhang (2016)%. The perfect predictor model rule out the
effect of these correlations from calculating the conditional expected stock
return of the next period (E; [ryy1] = ¢;) and conditional variance

(Vart [1e41] = ag), which means that these correlations only have a small

effect on the optimal investment and consumption decision.
B. The Investor’s Optimization Problem

At the beginning of period ¢, investor ¢ has a wealth WW;;. Then, during
this period, labor income Y;; is realized. Following Deaton (1991), cash on

hand X;; can be defined as X;; = W, ; + Y;;. Then, the investor must

determine how much to consume, C;; and how to invest the remaining savings

SMichaelides and Zhang (2016) use the perfect predictor model/classical predictive regression to solve
the life-cycle portfolio choice problem and find that only the correlation between the innovations of stock
returns and the permanent earning shocks of labor income (p,,,) materially affects the optimal portfolio

choice.
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in stocks 5;; and the risk free asset B;;. In the next period, before earning
period t + 1’s labor income, the wealth at ¢ + 1 is given by

Witp1 =8it(L+rg) + By (L4+7rf) =ap (T + 1) + (1 — ) (L+74)
where S;; is the investment in the stock market in the previous period, B;; is

the investment in risk-free asset in the previous period and o, is the share of

wealth in stocks in the previous period and defined as a;; = thS:Sm The
budget constraint of investor ¢ at time t is S;+ + B;y = Wi + Y — Cis.

The investor maximizes the household’s utility subject to the budget
constraint and the constraints (2.2) through (2.6) with the non-negativity
restrictions on Cj+, By and S;. These non-negativity constraints on B;; and
Si+ guarantee the investor not to borrow against his/her future labor income
or retirement wealth.

In this optimization problem, y, is unobservable and the investor has to
estimate it through (2.9) - (2.10) conditional on the observed information

(r¢, q;) available at time ¢. The state variables of the investor’s problem are ¢,
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Xit, [LW and Yif./ the control variables are C;; and «; 4, and the policy
functions are defined as C;; (me, Y;{Jt, /lﬂt) and o ¢ (Xi,t, Y?ft, ﬂt|t).

Since, the problem uses the Epstein-Zin utility, the value function is
homogeneous with respect to the current permanent part of labor income.
This property allows us to normalize the investor’s cash on hand (X;;) by
dividing Y;.f’t./ which means the number of state variables is reduced by one.
The policy functions, therefore, become ¢; (ZUi,t, ﬂt|t) and «; 4 (:cz-,t, ﬂt|t), where

Xit

2,0 Yi?t

C. Numerical Solution

The optimization problem faced by the investor can be rewritten as the

following optimization model:
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1- - N
(1=8)c, "+ HEt (Z%HWLW (%41, flgaeen)
Vi (ﬂ?z‘,t;ﬂﬂt) = Max <

=

)
1

Ci,tQi,t) 171=
#(1 =) alil)} |
\

Pup1 = Q=+ Quply + €t
Tip1 = T+ by + 241

Q1 = Qg+ PGt + V1
S.T. <

In (Nij1) = iy + s

In (Up1) = py, + uea

YP
Tit41 = yipz_l (revrcie + 7 [ — aig]) (i — cig) + Uiz

\

(2.13)

where fi, is a linear function of (14, ¢;) and updated through formula
(2.9), ¢ is the normalized consumption of household ¢ at time t, z;; is the
normalized cash on hand of household 7 at time ¢ and «;; is the risky asset
allocation of household 7 at time t.
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This problem has no analytical solution. I, therefore, solve this problem

numerically by using backward induction. In the last period (hereafter, T),

the optimal policy functions are easy to solve because the investor does not

invest any more and consumes all wealth except for the saving bequeathed to

heirs. Then, I can now replace the value function in the Bellman equation

(2.13) with the optimal policy function solved at time T and calculate the

optimal policies for T-1. Repeating this procedure up to age 20, I can obtain

the policy functions at each age.

In the backward induction algorithm, grid search is used to find the

optimal policy functions of the problem (2.13) based on a fine discrete

approximation of the following VAR model:
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Pis1 = Qp + Gl + €41
Tep1 = Tf+ Wy + 21
¢ (2.14)

Q11 = Qg + Oyt + Vi1

N[Ny = pn + s

\

[ use Tauchen and Hussey (1991) method to discretize the state space of the
VAR model (2.14) and calculate the transition probabilities among these grid
points assuming that they follow a Markov Chain. Then, using the grid points

from the discretization of (2.14)", T can construct the next period’s return by:

Tre1je = Tf =+ [y + 241 + Wi
< (2.15)

ﬂt|t = E, + ke [re — 15 — B} + Kg g — By
\

where wy,1 is an independent innovation term introduced by the

"The temporary part of labor income (In (U;)) is not correlated with the other variables. Its grid points

are, therefore, generated independently.
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filtering algorithm and follows N (0, Var {u|[r, ¢:]}).

Finally, I iteratively apply the backward induction algorithm to solve
the consumption and investment policy functions of the optimization problem
(2.13) based on 7y from age T to age 20. The details of numerical
implements are the same as the Online Appendix of Michaelides and Zhang
(2016).

[ implement this numerical algorithm using Fortran 2003 on a Windows
workstation®. For accelerating the time of computation, I parallelize this
algorithm according to the state variables using OpenMPY, which makes the

problem can be solved in twenty four hours.

8Intel Xeon E5-2699 v3 2.3GHz RAM 256GB
9OpenMP is a set of compiler directives, library routines, and environment variables to enable

programmers to develop parallel applications for shared memory multiprocessor computer.
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III. Empirical Analysis

A. Data

The stock market data used in this paper comes from the Center for

Research in Securities Prices (CRSP). I screen out the annual one year bond

return, annual CPI growth rate, monthly value-weighted cumulative return of

S&P 500 and monthly value-weighted ex-return of S&P 500 from Dec. 31st,

1946 to Dec. 31st, 2015. Next, I construct annual cumulative and ex-dividend

S&P 500 price index based on the monthly data with the initial cumulative

price of 1.00. Using the difference between annual cumulative and ex-dividend

price index, I can easily obtain the annual cumulative return and annual

ex-dividend return. The annual dividend is calculated by multiplying the

lagged total annual price index by the difference between the annual

cumulative return and ex-dividend return. Finally, I compute the real return

as the difference between the annual cumulative return and annual CPI
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growth rate. Table 1 shows the summary of stock market data.

The empirical portfolio holding data are based on the SCF 2007. The
empirical asset holding is defined as either o = equity/(equity + bond) or
a = equity/(equity + bond + liquidity), where liquidity is the financial

wealth with high liquidity such as the cash.

B. Parameter Estimation

The first step of solving the investor’s optimization problem is to
estimate the parameters of the equation (2.4) - (2.6). For estimating this VAR
model through the observed data, I transform it into the following

VARMA(1,1) model:

7

Tig1 —Tf = (1_¢u> B+ ¢, (re —rf) + nvy — (¢M_m)wt+wt+1

g1 = (1 — @) Eq + ¢qr + ve1a
\

(2.16)
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where m and n are constant parameters derived based on the equations (2.4) -
(2.6) and wy is forecast error (wt =71y — ft|t—1) and serially uncorrelated.

The appendix describes how to derive this VARMA(1,1) model and
estimate it using MLE.!” Table 2 summarizes the results of the parameter
estimation.

Some parameters in the covariance matrix of equations (2.4) - (2.6)
remain unidentified because the covariance matrix consisting of three variables
can not be exactly estimated through only two observed variables (see
appendix C). I, therefore, describe the solution space of the covariance matrix
(Q) with respect to a specific variable. As o,. play a critical role in
determining the conditional expected return, I solve the solution space of the
covariance matrix (£2) with respect to o... The details about how to derive
the solution space of the covariance matrix are explained in the appendix. In

short, the solution space of the covariance matrix with respect to o,. is

1T thank Lubos Pastor for kindly providing matlab codes to perform this estimation.
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simplified into the following linear system:

\

Jg — 0‘% — (Cov (14, 11-1) — 02¢) /%

A7
Ug = (Cov (ry,r4-1) — 04¢) (1 _ gbi) /¢M (2.17)

sit. |p.,| < land|p,.| <1

As 0.. = p,.0.0., I can only discuss the correlation between the shocks

to unobservable expected stock returns and the innovation of stock returns

(p,.) instead of the covariance, o... Various studies provide empirical evidence

that p.. < 0. Pastor and Stambaugh (2009) find that this correlation is

negative if the stock returns exhibit mean reversion. Figure 1, Graph A, plots

the solution space of (p,., P,y P..) While changes p.. from -1 to 0. Graph B

projects the solution space onto the plane consisting of p., and p.., and

Graph C describes

the relationship between p,. and p,..

Several conclusions can be drawn from the Figure 1. First, based on the

data, the ranges of p._, p., and p,. are approximately [-0.66,-0.99], [-0.65,
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-0.99] and [0.37, 0.94], respectively. Second, Graph B shows that the

correlation between the innovations of stock returns and the shocks to the

dividend yield (p.,) has approximately a negative relation with the correlation

between the innovations of stock returns and the shocks to the unobservable

expected stock returns (p,.). When p,. tends to be a perfect negative

correlation, |p,,| decreases from 0.99 to 0.65. In contrast, the correlation

between the shocks to the unobservable expected stock returns and the

innovations of the dividend yield (p,.) positively relates with p... When p..

tends to be a perfect negative correlation, p,. is close to a perfect positive

correlation.

For better understanding the effect of the imperfect predictive system of

stock returns on the life-cycle consumption and portfolio choice, I set up a

baseline model, where p,. = —0.7, 0. = 0.09852, 0, = 0.1646, p,, = —0.723,

Pve = 0.56 and p,,, = 0.15.
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IV. Optimal Consumption and Portfolio Choice

A.  The Baseline Model

Parameter Choice

Even though empirical predictability studies are typically done on a

monthly or quarterly frequency, I solve the model at an annual frequency to

maintain comparability with the existing life-cycle portfolio literature.Carroll

(1997) estimates the variances of the idiosyncratic shocks using data from the

PSID, and the baseline simulations use values close to those: 0.1 for o, and

0.1 for g,,. The deterministic component of labor income is identical to the

values used by most life cycle papers, for example, Cocco, et al. (2005), and

this setting also facilitates comparisons between this model and its

counterparts such as perfect predictor model and 1.i.d. stock returns model.

The relatively large estimate for the replacement ratio during retirement (68%

of last working period labor income) arises from using both social security and
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private pension accounts to estimate the benefits in the PSID data and is

consistent with not explicitly modeling tax-deferred saving through retirement

accounts.

The baseline preference specification is taken to capture the observed

behavior of stockholders. Gomes and Michaelides (2005) argue that this is well

achieved, when using a coefficient of relative risk aversion () equal to 5. The

elasticity of inter-temporal substitution () is set to be 0.5. These choices are

close to the empirical estimates for the EIS in Vissing-Jorgensen (2002) and

the empirical preference parameter estimates in Gomes, Michaelides, and

Polkovnichenko (2009). The bequest parameter is set to 2.5 to capture the

empirical observation that few rich stockholders die with zero financial assets.

As to the discount rate, much macroeconomic research estimates this rate to

be 1% per quarter or approximate 4% per year. In order to emphasize that

the results in this paper does not stem from extreme assumptions about

discount factor, £ in the baseline model is 0.96, which means the discount rate
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is assumed to be 4% per year.

The parameters used in the imperfect predictive system of the stock

market are listed in Table 1 and 2. In addition, I set a trading cost of 2.9% to

reflect transaction cost, tax and other implicit trading costs, which implies a

risk premium of 4% the same as in the most of the life-cycle portfolio

literature.

There is no estimate of the correlation between the innovations of the

unobservable expected stock returns and the permanent, idiosyncratic

earnings shocks to the labor income (p,,.) in the literature. I therefore set this

correlation equal to zero. Angerer and Lam (2009) note that the correlation

between the innovations of stock returns and transitory part of labor income

(p.,) does not empirically affect portfolios and this is consistent with the

simulation results in life cycle models (Cocco, et al. (2005)). I set this

correlation at zero. Similarly, I also set p,,, to zero. The correlation between

the permanent earning shocks to the labor income and the innovations of
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stock returns (p,,,) is set equal to 0.15 in the baseline model, which follows the

same setting as Michaelides and Zhang (2016). Table 3 summarizes the

parameter values used in the baseline model.

Consumption and Portfolio Choice in the Baseline Model

Figure 2 plots the life-cycle profiles of wealth accumulation,

consumption, labor income and share of wealth in stocks by simulating 10,000

individual life histories and reports the average.

Graph A shows the mean wealth accumulation and consumption over

the life cycle in the presence of a bequest motive and labor income. The

wealth accumulation increases as the investor approaches retirement and

reaches the peak at the retirement age. After the retirement, the wealth

accumulation starts to decrease as agent ages.

Graph A also shows that the consumption tracks labor income very

closely before retirement and the gap between consumption and labor income

gets larger as the wealth deaccumulates, reflecting that the liquidity
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constraint becomes less binding. When the agent approaches death, the

consumption path decreases. Graph B graphs the mean share of wealth in

stocks over the life cycle. Early in life, a higher proportion of wealth is

invested in the risky asset except for at the very beginning of life. As the

agent approaches retirement, the share of wealth in stocks slopes down. After

retirement, the mean stock allocation bounces up a little then keeps highly

stable until the agent reaches the end of life. During the whole life cycle, the

mean stock allocation is clearly less than 1 and fluctuates between 40% and

65%. These findings (Graph A and B) are consistent with Cocco, et al. (2005),

Gomes and Michaelides (2005) and Michaelides and Zhang (2016).

Figure 3 compares the life-cycle profiles between the baseline model

(imperfect predictor model), perfect predictor model, i.i.d. stock returns

model and the Vanguard TDF model. The Vanguard TDF model’s basic

recommendation is to invest 90% of a household’s financial wealth in stocks

until age 40, and start decreasing that share as retirement approaches reach
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50% at age 65. After retirement, the Vanguard TDF model recommends the

investor to continuously reduce the stock market exposure to approximate 30%

and keep this proportion until death. To simulate wealth profiles for this case,

[ take the portfolio rule as exogenous but the household still makes optimal

consumption-saving decisions, taking this portfolio decision into account.

The mean wealth accumulation and consumption shows a notable

difference between the baseline model and the other three models. Graph A

shows that the wealth accumulation and the consumption in the baseline

model are the highest in all of these models. This arises here because the

imperfection of the predictive system leads the investor to increase the

precautionary saving in the baseline model. Graph B describes the difference

in simulated average consumption over the life cycle. The mean consumption

of the baseline and perfect predictor model are the highest and the second

highest respectively because the investor takes advantage of predictability.

Graph C depicts the mean share of wealth in stocks over the life cycle. The
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i.1.d. stock returns model maintains the highest proportion of wealth in the

stock market, except between ages 45 and 65, and the baseline model has the

lowest mean share allocation. On the other hand, the perfect predictor model

falls in between. The glide path of the Vanguard TDF model is exogenous as

it is fixed at each age without considering any information.

The remarkable difference of mean portfolio allocation across these

models can be explained by the investment policy functions. Figure 4 shows

the share of wealth in stocks with respect to low, medium and high

estimations of the expected stock return for age 25, 55 and 75 (Graph A, B

and C show the share of wealth in stocks for age 25, Graph D, E and F for

age 55, and Graph G, H and I for age 75). The investment policy functions of

the 1.i.d. stock returns model vary with age besides the cash on hand, and

does not depend on the other factors. In the baseline and perfect predictor

models, the portfolio allocation can drastically shift up or down depending on

the estimation of the expected stock return besides age and cash on hand.
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When focusing on the baseline model and the perfect predictor model, I find

that the investment policy functions in the baseline model are always less

than that of the perfect predictor model. This result arises because the

imperfection of the predictive system increases the conditional variance of the

next period’s return given the same estimation of the expected return.

An empirical puzzle arises that the predictions of portfolio allocation

from the i.i.d. and perfect predictor model have a large gap during the

working age over the life cycle. Figure 5 compares the mean share of wealth in

stocks from the perfect predictor model and the imperfect predictor model

with the data of SCF 2007. Graph A compares the mean share of wealth in

stocks with the empirical porttfolio allocation without considering liquidity.

Graph B, however, includes the asset with high liquidity in the calculation of

empirical portfolio allocation. The smoothed empirical portfolio allocation is

calculated by the linear regression method. From Figure 5, we can find that

the prediction from the imperfect predictor model matches the SCF data
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better than the perfect predictor model, which shows that the imperfection of
the predictive system possibly make an important contribution to explain the

observed pattern of household portfolio choice.

The Analysis of Model Parameter Uncertainty

Even though the baseline model has considered the imperfection of
predictability in the stock returns, the estimation of parameter such as the
unconditional expected risk premium (F,), persistence of the unobservable
expected stock returns (¢#) and standard error of the unobservable expected
stock returns (o) possibly still have an estimation error. These parameters
materially affect the mean wealth accumulation, consumption and asset
allocation when the preference parameters such as risk aversion(y) and
EIS(7)) remain unchanged. Therefore, this section measures the sensitivity of
the baseline model to these parameters.

Figure 6 shows the effect of a higher unconditional expected risk

premium (F,) on the mean wealth accumulation (Graph A), consumption

116



(Graph B) and share of wealth in stocks (Graph C) over the life cycle of the
baseline model, perfect predictor model and 1.i.d. stock returns model,
respectively. For obtaining a higher unconditional expected risk premium

(B, =T%), I set up a 0% of the Trading Cost. Under the scenario in which
the risk premium is perceived to be higher, the mean wealth accumulation,
consumption and portfolio allocation all shift up. A higher unconditional
expected risk premium makes investor lean to holding stocks, which leads to a
higher wealth accumulation and, then, a higher consumption.

Figure 7 plots how a lower standard error of the unobserved expected
stock return (o) affects the life-cycle profiles of the baseline model. When the
volatility of the unobserved expected stock return (o) decreases to 0.005 from
0.0985, the mean wealth accumulation and consumption decrease, and
portfolio allocation shifts up except for the 45 - 65 age group. A lower o, leads
to the unobservable expected stock returns fluctuating around the

unconditional expectation of risk premium within a narrow band, which
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makes the imperfect predictive system act as a i.i.d. stock returns. The
life-cycle profiles are, therefore, closer to that of the i.i.d. stock returns model.
The parameter ¢, measures the persistence of the unobservable
expected stock returns. This parameter is of our interest because the predictor
used in the predictive regression is often a highly persistent process in the
classical literature such as Campbell and Shiller (2009), Fama and French
(1988), Xia (2001) and Cochrane (2005). Figure 8 depicts the life-cycle profile
given a higher persistence of the unobservable expected stock returns (Graph
A shows the mean wealth accumulation and consumption, and Graph B
describes the mean share of wealth in stocks). From Graph A and B, a higher
persistence makes the agent take advantage of predictability so that the mean
share of wealth in stocks shifts up and seems close to that of the perfect
predictor model. This is reasonable because the unobservable expected stock
return is close to the high persistent predictor process when its persistence is

high. On the other hand, the high persistence of the unobservable expected
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stock returns makes the investor more willing to consume in the earlier stage

of life, attaining a lower mean wealth accumulation at retirement. The

conclusions drawn from Figure 7 and 8 remind us that it is dangerous to

depend entirely on an imperfect predictor such as dividend yield. The

characteristics of high persistence and low volatility in the dividend yield

process can lead to more aggressive investment polices and inappropriate

consumption decisions.

Admittedly, the unconditional expected risk premium and standard

error and persistence of the unobservable expected stock return are not the

whole story. The variations due to correlations such as p.,, and p.. are also

crucial in the household financial decisions. I analyze these effects in the next

subsection.

B.  Hedging Demands

How does the correlations among the different innovations change the

results of baseline model? In the 1.i.d. stock returns model and perfect
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predictor model, the most important correlation generating quantitatively

substantial hedging demands is the correlation between the permanent

earnings shocks and the innovations to stock returns (p,,,), and the other

correlations such as p.. do not materially affect the results. Does this

conclusion change when I introduce the imperfection to the predictive

regression?

Correlation between the Shocks to the Unobservable Expected Stock Returns and the Innovations of

Stock Returns

To investigate the importance of the correlation between the shocks to

the unobservable expected stock returns and the innovations of stock returns

(p..), I vary p.. from -0.9 to -0.5 and use the baseline model (p,. = - 0.7) and

perfect predictor model as benchmarks for comparison. Figure 9 plots the

mean wealth accumulation, consumption (Graph A) and the mean share of

wealth in stocks (Graph B) over the life cycle due to the variation of p,..

When p,. tends to be 0 from a perfect negative correlation, the investor views

120



the dividend yield as a better predictor of the unobserved expected stock

return. From Table 4, we know that a smaller |p,.| decreases the mean

reversion effect and increases the predictability effect. This implies that

results are close to that from the perfect predictor model. The investor,

therefore, decreases the wealth accumulation and consumption (Graph A) and

increases the stock holding. On the contrary, when this correlation is close to

perfect negative, the mean asset allocation in risky stocks shifts down and the

mean wealth accumulation and consumption move up.

Correlation between the Permanent Earnings Shocks and the Innovations of Stock Returns

I also measure the sensitivity of the correlation between the permanent

earnings shocks and the innovations of stock returns (p.,,). In the baseline

model, this correlation is 0.15, a value that reflects the substantial

idiosyncratic risk that exists in labor income data. I vary this correlation from

-0.15 to 0.3.

Figure 10 plots its effect of p,,, on the results from the baseline model.
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From Graph A, when p,, changes, I find that the mean wealth accumulation

and consumption rarely change. However, in Graph B, I find that the investor

is more willing to invest risky stocks when this correlation decreases. The

labor income acts more as a risk less asset when p.,, is small, which leads

investors to taking more risk exposure in the stock market. On the contrary,

when this correlation increase, it crowds out the risky investment because the

labor income acts more like a risky stock. Hence, the portfolio allocation

negatively correlates with p.,, which is consistent with the results found in

Cocco, et al. (2005) and Michaelides and Zhang (2016).

Correlation between the Innovations of Stock Returns and the Shocks to Dividend Yield

Changing the correlation between the innovations of stock returns and

the shocks to dividend yield (p.,) does not materially affect the mean wealth

accumulation and consumption (Figure 11, Graph A), but does significantly

change the portfolio allocation (Figure 11, Graph B). According to Table 5,

when |p.,| close to 0, the predictability effect from dividend yield becomes
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stronger, while the mean reversion effect from the current return does not

change. This makes the investment behavior from the imperfect predictor

model more like that from the perfect predictor model. This conclusion is

different from the result of Michaelides and Zhang (2016) because p,, has

little effect on determining the conditional moments of the next period’s

return in the perfect predictor model.

Correlation between the Innovations of the Dividend Yield and the Shocks to the Unobservable Ez-

pected Stock Returns

What happens when the correlation between the innovations of the

dividend yield and the shocks to the unobservable expected stock returns

(pye) varies? Figure 12, Graph A plots the mean wealth accumulation and

consumption over the life cycle, and Figure 12, Graph B plots the mean share

of wealth in stocks. When p,. increases from 0.2 to 0.8, the mean wealth

accumulation and consumption rarely change. The mean share of wealth in

stocks, however, shows a positive correlation with p,. before retirement. Table
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6 shows that the predictability effect from the dividend yield becomes strong,

while the mean reversion effect from the stock returns only slightly decreases.

Therefore, as p,. increases, the portfolio choices from the imperfect predictor

model tend toward the predictions from the perfect predictor model.

V. Optimal TDFs

Financial advisors argue that the share of wealth in stocks should

decrease as the investor approaches retirement and also quantify this as what

the i.i.d. stock returns model predicts. The target date fund (TDF) using the

results from the i.i.d. stock returns model has therefore become quite a

popular financial advice, commonly recommended by large financial advisors

like Vanguard TDFs. When the stock returns are predictable, however, the

share of wealth in stocks should change according to market timing. This is

what the perfect predictor model predicts. Retrospecting the financial crisis in

1929, 1997, 2001 and 2008, blindly following the rules suggested by life style

funds for households entering retirement would not have been sound
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investment advice. Hence, the enhanced TDF (eTDF) has been proposed to
take advantage of changing market conditions and expectations. This paper,
however, shows that it is not easy to take advantage of changing market
conditions and expectations. When the predictor is imperfect, the investment
decision from the perfect predictor model seems over optimistic. But, what is
the quantitative magnitude of investor welfare from investment rules given by
the different models? In this section I evaluate the welfare loss of the investor
with respect to the perfect predictor model, the i.i.d. stock returns model and
the Vanguard TDF model when the stock market is modeled as the imperfect

predictive system.

A, Welfare Evaluation

To measure welfare changes I use the value functions across different
models. Given that I have solved for saving, portfolio choices and value
functions for all periods in the life cycle, I know that the value functions at a

particular age are a sufficient statistic for welfare effects. Let V} (CL‘Z"t, ,&ﬂt) be
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the value function from the baseline model, and V,, (z;, fi) be the value
function from the alternative model such as the perfect predictor model or the
1.i.d. stock returns model or the Vanguard TDF model. In these notations, fi,
is the conditional expectation of unobservable expected stock return and f; is
the observed state factor. The f; in perfect predictor model or Vanguard TDF
model is the dividend yield. In contrast, f; in i.i.d. stock returns model is a
null variable because the policy functions are all the same for the different
dividend yield.

I compute consumption certainty equivalent for a particular age as the

follows:

E

Vn (xi,ta ft) Ve -1 (2 18)
) .

Vo (CUz',t, ot

where ¢ € 44, and z;; is the same in both V) and V},. This definition is the

consumption certainty equivalent because I convert the change of the value

into the dimension of expenditure before taking the unconditional
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expectation. Moreover, this consumption certainty equivalent is computed

when stock returns are simulated based on the imperfect predictive system.

Figure 13 plots the consumption certainty equivalent of the different

models relative to the baseline mode over the life cycle when changing p,,.

from 0.2 to 0.8. Graph A illustrates substantial welfare loss from following the

strategy predicted by the perfect predictor model relative to using the optimal

investment policy given by the imperfect predictor model. Graph B shows

that the welfare losses are even more substantial from following the i.i.d. stock

returns model, and Graph C reports that welfare loss from taking the

investment rules from the Vanguard TDF model is in the middle.

Several observations can be drawn based on Figure 13. First, the welfare

losses are economically significant: they vary from 2% to 4% of consumption

equivalent when the investor follows the strategy from the perfect predictor

model, from 5% to 11% when the investor follows the strategy from the i.i.d.

stock returns model and from 2% to 6% when investor follows the strategy
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from the Vanguard TDF model. Second, these welfare losses positively

correlated with p,.. When the predictor is close to perfect positive (p,. ~ 1),

the welfare loss becomes even larger. Third, the welfare losses from the i.i.d.

stock returns model and perfect predictor model tend to get maximized at

around age 50, whereas average wealth accumulation is maximized at the

exogenous retirement age of 65. On the contrary, the welfare losses from the

Vanguard TDF model has a peak at around age 70.

To better understand these welfare shapes and magnitudes, it is helpful

to recall that given the preference for consumption smoothing, welfare is

increasing in average consumption and decreasing in the volatility of

consumption. I can therefore obtain an insight on where the welfare

differences are coming from by comparing the mean change of consumption

and the change of standard deviation of consumption over the life cycle. To do

so, I define the average change of consumption for a particular age as

E, (010—202)’ where (1 is the consumption stream from the first model and Cs
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is from the second model, and the change of standard deviation of

consumption as SD(%Z))E(,S*Q?(CQ)-

Figure 14 plots the mean change of consumption and the change of

standard deviation of consumption for the baseline model relative to the

perfect predictor model (Graphs A and B), the i.i.d. stock returns model

(Graphs C and D) and the Vanguard TDF model (Graphs E and F). The

[.I.D model produces the largest change in consumption volatility over the

working life. Given the preferences for smoother consumption, this increased

consumption inequality translates into a welfare loss that essentially gets

maximized at mid life (around age 50), justifying the peak in welfare losses

depicted in Figure 14.

The perfect predictor model on the other hand generates a lower mean

consumption change over the life cycle. Since the portfolio rules are more

stable than i.i.d. stock returns model, consumption variability is actually

lower with the perfect predictor model relative to the i.i.d. stock returns
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model but higher relative to the baseline model.

When compared to the Vanguard TDF model, the welfare loss

approaches the peak at about age 70 (see Figure 14, Graph E) because the

mean change of consumption reaches the summit at age 70 (Figure 14, Graph

E and F).

VI. Conclusions

In this paper, I jointly analyze the implications of an imperfect

predictive system, undiversifiable labor income risk and exogenously imposed

liquidity constraints on optimal consumption and portfolio decisions over the

life cycle. In the presence of an imperfect predictor of the unobservable

expected stock returns, the optimal portfolio choice is shown to be more

conservative than that predicted by an i.i.d. and perfect predictor model when

calibrated to the observed data from 1946 to 2015. Different from Wachter

and Yogo (2010) which use the nonhomothetic utility over basic and luxury

goods to generate balanced portfolios, this paper generates the balanced
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portfolios through introducing the imperfection to the predictor of stock

returns. Compared with the SCF 2007, the imperfect predictor model matches

the data better than the i.i.d. stock returns model and the perfect predictor

model. Moreover, when the imperfection is introduced into the perfect

predictor model, almost all correlations (p,., p.., Pons Pue) Decome important,

which is different from one of the conclusion of Michaelides and Zhang (2016).

Hence, a financial advisor should pay more attention to these correlations

when giving investment advice.

To measure the benefits of taking the imperfect predictor into account, I

compare the welfare loss of the perfect predictor, i.i.d. and Vanguard TDF

model relative to baseline model. The largest welfare loss is obtained from

following the rules predicted by the i.i.d. stock returns model. The perfect

predictor model has the smallest welfare loss, and the Vanguard TDF model

is in the middle. Hence, an investment strategy uniquely relying on a single

information source or the unconditional expected stock return leads to an
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incorrect investment decision and substantial welfare loss.

Future directions of research include the explicit introduction of

ambiguity aversion in preferences, ambiguity in the parameters such as the

risk premium and persistence of the unobservable expected return process,

Bayesian posterior distributions for the parameters (Barberis (2000), Xia

(2001) and Pastor and Stambaugh (2009)), a stochastic volatility in stock

returns and an explicit model of housing. All these extensions will require

additional computational power to achieve the desired required solution

accuracy, but will further improve our understanding of life cycle portfolio

choice under uncertainty and provide reasonable advice to billions of

households increasingly making their own financial decisions.

VII. Appendix

A. A Theorem of Multivariate Normal Distribution

Theorem 7.1 (Tsay (2010), Ch11): Suppose that x and y are two

random vectors such that their joint distribution is multivariate normal. In
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addition, assume that the diagonal block covariance matrix >, is

non-singular for w — x, y. Then,

L. E(zly) = pty + Suy Xy (v — 1)
2. Var(zly) = Spw — X0y 2,130

yy —yx

This theorem provides us with an algorithm of filtering the unobservable

state, x, from the observable variables y.

B. Definitions and Notations

e /i, is the unobservable expected stock return

e ¢ is the observable dividend yield.

e [, is the unconditional expectation of p,;

e [, is the unconditional expectation of g;

Tt
o d, = , Dy = (dy, dy, ..., d;), where Dy is the full history of dy;
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e ¢; = F (d¢|p;, Di—1) is the expectation of observable d; conditional on the
current unobservable i, and historical observed values of d; up to time

t—1;

® jiy_1 = E (| Di-1) is the expectation of unobservable jz, conditional on

the historical observed values of d; up to time ¢t — 1;

° ciﬂt_l = F (d¢|D;_1) is the expectation of observable d; conditional on the

historical observed values of d; up to time t — 1;

® ji, = E(p;|Dy) is the estimation of unobservable p, conditional on the

historical observed values of d; up to time ¢;

o Gy = Cov (dy, 1| De—1) is the covariance between the observable variables
d; and the unobservable i, conditional on the historical observed data up

to time t — 1.

o P, =Var (u,|Di-1) is the variance of unobservable y, conditional on the
historical observed data up tot — 1.
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o Ry = Var (di|p, Ds—1) is the variance of d; conditional on the current
unobservable expected stock return (p,) and the historical observed data

up to time t — 1.

e Q; = Var (u,|Dy) is the variance of the unobservable y, conditional on

the historical observed data up to t.

e S; = Var(d;|D;—1) is the variance of d; conditional on the historical

observed data up to time t — 1.

C. Mazimum Likelihood Estimation

Since the expected stock return (p,) is unobservable, the classical
maximum likelihood estimation needs a modification that rewrites the VAR
(2.24) to make it only involve the observable variables, the stock returns (r;)
and the predictor (¢;). For doing this modification, I follow the same idea of
Pastor and Stambaugh (2012) and use this method to estimate the

parameters of the imperfect predictive system conditional on all the observed
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data. The first step is to set up the recursive formula to update conditional

moments of the unobservable expected stock return using the observed data.

Starting the Recursion

The recursion begins with py| Dy, where Dy is the empty set. At time 0,
since there are no observations of d;, I use the unconditional mean of p, as the
estimation of unobservable expected stock returns, figy = E (x| Do) = E;-
Similarly, the Qo = Var (p9|Dy) = V,,,, is the unconditional variance of yu;.

At time 0, I can predict the moments of d; conditional on Dy. Assuming
that the process of y, is stationary, I obtain £ (u,|Do) = g + ¢, (19| Do)-
This implies:

flajo = £ (k1] Do) = Ep;

Py =Var (pu,|Do) = Xy

and

CZ1|0 = E (di|Dy) = + B Dy | =
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E,

dypo = and S; = Var (di|Dy) =

Ly

Z]’I"’I“

T

0

qu

As (dy|Dy) and (| Dy) follow bi-variate normal distribution, I can

obtain the following through applying theorem A;

€1 = E(d1’“17 DO) -

and

Ry = Var (di|py, Do) =

E,

By

+

ZTT qu

ZQT qu

Xgu

-1
2 [ Y Dgu ]

Hence, I find the formulae for e1 and R as follows:

e = CZHO —+ Glpl_l (,u1 — ’[LHO) (219)

where G = Cov (dy, 41| Dy) =

and

Ry =S -G P&,
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ZT’F ZTq

where S} = and P! = E;ﬁ

Eqr qu

Updating via Bayes Theorem

Recalling the conditional probability formula, I can obtain the following

equation, f (u|dy, Do) = f(dlm}iio‘)bfé)“lwo). Since Dy = (dy, Dy), I have a

probability density function as follows.

S (mldy, Do) o< f (dulpr, Do) f (11| Do) (2.21)

Now, I expand the right hand side of equation (2.21) as follows:

f <[ rq1 } |N17D0) [ (p1|Do) =

(\/%)2 |P1\’1|R1|’lexp{—% {(d1 - 61)/371 (di —e1) + (Ml - ﬂuo) P! (Ml - ﬂ1|0>}}
x e:cp{—% (d1 - dl\o +G P! (M - ﬂl\o))/R_l (dl - dl|0 +G P! (Hl - ﬂl\o))
+ (lh - ﬂl\o) pt (Hl - ﬂ1|0)}

After rearranging the terms and ignoring the irrelevant quadratic terms
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of dq, I can obtain the follows:
f <[ r, @ ]Iul,Do> f (| Do) o
cxp {; [(dl i) PR (o) + (1 — i) (P GLR (d — o
+ (- ﬂno)/ (PTY) GARG P (= o) + (11 = fiago) P (1 - /fmo)} }
Since p;, Py and (d1 — (f1|0>/G1P11R_1 are scalars, I can rewrite this

formula as

f ([ _— Jul,D()) F (a1Do) o

eap{~4 [2PT G R (dy — i) (i — o) +

(P + (P LRGP (1= )]

= eap {4 [2PGLR (dy = dy ) (0 — i)

PP (P (P GHRGHET) PP ()]
= cap {3 [2PT'GLR (dy — dip) (11 — i) +

P (P + GYR'Gy) Pyt (g — ﬂ10)2} }

& exp { [Ml_ﬂuo—ﬂ (Pl"i‘Gi]“jflGH)_1G/1Rﬂ(dl—dnoﬂ2 }

2P (P+G,R-1G1) ' Py

This is the kernel of the normal distribution again. Hence, after the
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Bayesian update, conditional probability density of p, is still a normal

distribution, and its conditional moments are:
N ~ — -1 _ 3
g = E (4| D1) = iy + P (P +GiR'GY)  GiR;! <d1 - d1|0> (2.22)

and

Var (1y|D1) = Q1 = Py (P + GllRl_lG1)_1 Py (2.23)

For finding all conditional probability densities and moments of p, for t — 2,

..., T, I rewrite the equations (2.4) - (2.6) as follows:

re—1rr— b, 0 0 1 ri—1—ry— L, 2
w—E |=|0¢ 0 w1—E, |tlol| &2
e — Ly 0 0 ¢, e — Ly =

Assuming the VAR represented by (2.24) is stationary, I obtain the

following:
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E(u — Ep|Dy1) = (buE (-1 — Er|Dyq) =

E (| Di1) = (1= ¢,) Er + ¢, E (11| Die—1).
Since the p, is unobservable, I can not delete the E(.) in E (u,_|D¢-1).

Simplifying the formula above, I rewrite it as:

fufe—1 = (1 - %) I N (2.25)

Similarly, I can rewrite czt|t,1 as the following:

) f—1jt—1
dt\t—l - E (dt|Dt,1) - (226)

(1 - ¢q) Eq + gbqqt—l

and

Py = Var (u|Di1) = ¢pVar (y_y|Di1) + 02 = ¢, Qi1 + 02 (2.27)

Next, for getting the other update formulae, I take the variance on both
sides of the VAR (2.24).
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Tt

Var g |Di—1 | —

L]

0 0 1 rt_l—Er 0 0 1 Zt

0 ¢, 0 Var G1— B, | Dy_q 0 ¢, 0 +Var "

_0 0 <Z5M_ \ Mt—l—Er_ / _O 0 4%_ \_515
0 0 1 00 O 0 0 1 az P00y P00
0 ¢, 0 00 0 0¢, 0T 02 OO
00 ¢, 00 Q| |00 ¢, o2
] . ]
G P,

Hence, I obtain

e = E(difpy, Di-1) = dAtIt—l + G P (Mt - ﬂt|t—1) (2.28)
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Rt =Var (dt|ﬂt7 Dt—l) = St — th)t_lGé (229)

and, the conditional moments of p,
. . . -1 . 5
et = E (| Dy) = Hijg—1 =+ B (Pt + G;SRt 1Gt) GéRt ! (dt - dtt—l) (2.30)

_ -1
Qi = Var (|Dy) = P (P, + GR'Gy) P, (2.31)
Mazximum Likelihood Estimation of Parameter

Denote [my, ny| = P, (P, + G;R;th)il G'R;'. Then, according to

(2.30), I have

Tt —Tf— ﬂt—ut—l
Hip = Hyp—1 T [, 1¢]

Ty — Et—l(Qt)

= (1= 0,) Br + Sufis—1jp—1 +mu (e — 75 — fy_1j—1) + nevy

The last equality hold because ji,_ = (1 — gbu) Er 4+ ity _1jp-1
(equation 2.25).

Then, I rewrite this formula as follows.
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fly = (1 - 925/1) By + (¢u - mt) i1+ mu(re — 1) + gy (2.32)

Next, I define the forecast error of 7,11 — r; conditional on information

at time t as

W1 = (re —ry) — By (ry — 1y) (2.33)

Since 7441 — rp = p; + 2141 (equation (2.5)), I have

By (resa — ) = B (1) = fge-

Now, replacing Ej (r; — r¢) with iy, in (2.33), T obtain

Wi+l = Tt+1 — T'f — Myt

Rearrange this equation, I obtain as the following:

Tt41 —Tf = (]- - QSM) Er + QSM(Tt - Tf) -+ ngup — (¢,u — mt) Wy + Wil (234)
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Combining (2.34) with (2.6), I obtain a new equation system consisting

of only observable data as follows:

(

Tty1 —Tf = (1 - %) E, + %(7’1: - Tf) + v — (% - mt) Wt + Wit

Q41 = Qg+ OyGr + V41
\

(2.35)
In steady state, I can delete the time index of m; and n; and rewrite the

equation system (2.35) as the following VARMA(1,1) model.

TE— Ty E, ¢u 0 Ti—1— Ty E.
_ — _ +
qt Eq 0 ¢q qdi—1 Eq
(2.36)
— ( w m) n Wi—1 Wt
_|_
0 0 V-1 Ut

. / .
Now, define the state variable as &, = (wy, v, w1, v;-1)". This
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VARMA(1,1) model can be rewritten as a state space model consisting of a

observation equation and a state equation and estimated by the Kalman

Filter algorithm.

d = Ad;_, + HE,

) . (2.37)
§=F& 1+
0
\ L
¢u 0 —( p m) n
where df = d; — [E,, B,), A= , Hip =
0 ¢, 0 0
O2x2  O2x2 /
F = , H = Ino Hyp |26t = [wy, ve], and
Irxo Oaxo
Var(e,) = 2. )

Given a sample of d;, the joint likelihood function of the state space
T
model (2.37) is L = tl:[1f (dy|d;_) , where f (df|d;_;) is the conditional

probability density of d;. I, therefore, can estimate the parameters by
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maximizing the following log-likelihood function'!

—2In(L) =

IIMH

(ln‘%t 1+ [d* t\t 1}/‘/t|t 1 [d* t|t 1}) (2.38)

The terms in equation (2.38) are defined as the following:

Var(r,) = o = (1 — qﬁu)_l [na%n +(1— gbi +m?)o? + ZmJWn} 12,

COU(T’D Qt) = Ogr = (1 - ¢M¢q) [Qb O n + ( (Cbu - m)%) O_vw} 13;

Var(q) = 02 =(1-— qbg)_la%;

— Bia(df) = Adi_y + HuS Vol [diy = diyy, )5 and

A>|<
tt—1 —

Vit = Via(df) = Hia (37 = S48 Hip + 3

"This log-likelihood function (2.38) is based on the logarithm of the equation (13.4.1) from Hamilton
(1994)

2 Taking variance on both sides of (2.34), I obtain
o= q&ia% —2¢,(¢, — m)o? + (b, — m)%o? +n?c? + 02 — 2(¢,, — m)NOyy + 2¢,n0y,. Solve this equation
for o2

'3Taking covariance between r; and ¢; based on (2.35), I obtain the equation

Ogr = ¢gPuTzr + n¢>q012, — (¢, —Mm)¢,0u0 + O Then, oy, is from solving this equation.
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~

The formula of updating dj, , is from taking E;_(-) on the both sides of the

observation equation of (2.37).

diy = Bia(df) = Adi_y + HEy

tt—1 —

= Adj 4 + HFét—Ht—l

* ¢ -1 * T
= Adi o+ | Hyy 0y ] (&mnms Vi [ = )
Wi 1)t—2
Vp_1)t—2
=Adi | Hy 0., T
Wi—9|t—2
\ @t72|t72 )
—1 * T
[ His 0949 Zfd*‘é—ut—? [dtl - dtl|t2]‘
Wi—1|t—2
As =0 and Hyy gy e = HppX, this equation can
Vp_1)t—2

be simplified as:
d = Ad:—l + HIZZ*‘Q:%H_Q [d;fk—l o d:—1|t—2:|'

tt—1 —

As to Vi_1. the update formula is from taking Var(-) on both sides of
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state equation of (2.37).

€t
Vieor = Via(d}) = HFVar (€ F'H' + HFVar F'H
0
O2x2 O2x2 1 O2x2  Lax2 I5yo
- /
Iryo Hyg (ng_zgdv;&—ﬂt—def)
Iy O2x2 O2x2 O2x2 Hyo
O2x2 O2x2 O2x2  Lax2 I5yo
Iy Hio 2
Iryo 022 O2x2 O2x2 Hys
O2x2 O2x2
Since Loy His = Hy9, I have:
I5yo Ogx2

Vieor = Hys (2* S 2*) Hiy + 5,

t—1[t—2

Last, the necessary initial values for solving the log-likelihood function

(2.38) are:

ocz*

o = 0; and

Var(ry) Cov(r, q)
o Vi = Var(d;) =

Var(q)
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Unidentified Covariance Matriz

Through the MLE, I can obtain the estimation of parameters in
VARMA model (2.16). Our goal, however, is to find the covariance matrix of
0 O O

equations (4) - (6), Q = 2 . Unfortunately, in €2, 0,, is the only

term that can be identified. As to estimate the other terms in €, obviously, a
good starting point is the moments because the moments of VARMA model
(2.16) should equal to that of the original VAR model (2.24). The moments

we need in VARMA model can be computed as follows:

eoi=(1—¢,) " [noin+(1- gbi + m?)o? + 2moun]
i OQT - (1 - ¢M¢q)_1 [qbqo-%)n + (1 - (¢N - m)¢q) O-Uw}

o Cov(ry,req)

= Cov (%(thl - Tf) + NV — (% - m) Wi—1 + Wiy Te—1 — Tf)
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= qbﬂaf +nCov (v_1, 141 — 1)) — ((bﬂ — m) Cov (w—1,74—1 — T7)
o Cov(ri_1,q)

= Cov (frt_l, Pyi—1 + vt)

= ¢,Cov (ri-1,¢1-1)
o Cov(ry,qi1)

=Cov (gbum_l + nup_q — (gbu — m) wi—1 + Wy, qt_l)

= ¢,0rq + nCov (v1-1,q1) — (¢, — m) Cov (w;1,¢1)

On the other hand, based on the VAR model (2.24), T can write down

the following linear equation system about the moments as follows:

0.2

;
Tgr
Cov (ry,1-1)

Cov (r¢-1, qt)

Cov (Tt; Qtfl)
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1/(1-¢2) 1 0 0 0
0 0 ¢,/ (1—0,0,) 1 0
¢,/ (L—¢7) 0 0 0 1
0 0 dy/ (1= dud,) ¢, 0

0 0 1/(1—¢,0,) 0 0

Since both the VARMA (2.16) and VAR (2.24) models describe the
same thing, their moments must be the same as each other. This linear
equation system, therefore, becomes solvable, when I replace the right hand

side of this equation with the corresponding calculation from the VARMA

model (2.16).

The rank of this linear equation system is, however, four because the

second row can be eliminated by the fourth row, which makes this linear

equation system be reduced into:
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02 = o2/ (1—¢i) + o2

Ogr = PyOve/ (1 - ¢u¢q) RECED
) (2.39)

Cov (T‘t, thl) =0z + ¢uag (1 o qbi)

Cov (Tt; Qtfl) = OUE/ (1 - ¢u¢q)

\

(2.39) shows that this linear equation system has not unique solution
but a solution space. For obtaining the solution space, I represent this linear
equation system (2.39) with respect to 0., because this parameter is

important in the estimation. Then, it becomes as follows:
(

Ug = O'% — (COU (Tt,rt—l) - Uzs) /¢N

02 = (Cov (ry,m-1) — 0.2) (1 - Cbi) /o,

\

st. p, <landp, <1
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Figure 1 presents the solution space from MLE method. Graph A shows a 3D graph of the rela-
tionship between p,,, p,. and p,,., where p,, is the correlation between shocks to stock returns and
innovations of predictor, p,. is the correlation between innovations of predictor and unobservable
expected return, and p,. is the correlation between innovations of stock returns and unobservable
expected return. Graph B is the projection of the 3-D graph in Graph A on the plane of p,, and

VIII. Appendix: Figures

FIGURE 1

Solution Space of MLE

... Similarly, Graph C project the solution space on the plane of p,. and p,,.
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FIGURE 2

Mean Life-Cycle Profiles for Baseline Model

Figure 2, Graph A presents the mean wealth, consumption and labor income over the life cycle by
simulating 6000 individual life histories. Graph B shows the mean share of wealth in stocks over the
life cycle.
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FIGURE 3

Comparison of Life-Cycle Profiles among Different Models

Figure 3, Graph A presents the mean wealth over the life cycle for four different models, where
PP is the perfect predictor model, i.i.d. is the i.i.d. stock returns model and Vanguard represents
the Vanguard TDF model. Graph B and C describe the mean consumption and share of wealth in
stocks for the corresponding models.
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FIGURE 4

Investment Policy Function for Different Expected Stock Returns

Figure 4 presents the share allocation policy functions of different states, ages and models. The first
row (Graph A, B and C) describes the share allocation policy functions between the baseline model
(imperfect predictor model), perfect predictor model (PP model) and i.i.d. stock returns model for
a 25-year-old investor when the estimations of the expected stock return is low, median and high
respectively. The second row (Graph D, E and F) displays the share allocation policy functions for a
55-year-old agent, and the last row (Graph G, H and I) shows the share allocation policy functions
for a 75-year-old agent.
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FIGURE 5

The Mean Share of Wealth in Stocks from the Baseline Model,
Perfect Predictor Model and SCF Data

Figure 5, Graph A and B present the mean share of wealth in stocks () between the baseline model,
perfect predictor model (PP model) and SCF data. The only difference between Graph A and B is
the definition of the empirical o from SCF data. The empirical o in Graph A rules out the asset
with high liquidity and is defined as equity/(equity+bonds). In contrast, in Graph B, the empirical
a includes the asset with high liquidity and is calculated by equity/(equity-+bonds-+liquidity). T
compute smoothed empirical a through running weighted linear least squares and a 2nd degree
polynomial model with a span of 20% at each age.
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FIGURE 6

The Life-Cycle Profiles with High Risk Premium

Figure 6, Graph A, presents the comparison of mean wealth between the baseline model (imper-
fect predictor model), perfect predictor model (PP model) and i.i.d. stock returns model over the
life cycle. Graph B reports the difference of mean consumptions between these models. Graph C

compares mean share of wealth («) in stocks.
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FIGURE 7

Life-Cycle Profile Comparison under the Low Volatility of
Unobserved Expected Stock Returns

Figure 7, Graph A, presents how the low volatility of unobserved expected stock returns o. affects
the mean wealth accumulation and consumptions over the life cycle. Graph B shows the change of
mean share of wealth in stocks from the baseline model when the volatility of unobserved expected
stock returns is low.
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FIGURE 8

The Effect of High Persistence of Unobservable Expected Stock
Return (%) on the Life Cycle Profiles

Figure 8 presents how the persistence of unobservable expected stock returns (¢u) affects mean
wealth accumulation, consumption and portfolio choice. Graph A shows the mean wealth accumu-
lation and consumption by varying ¢, from 0.01 to 0.9. Graph B shows the mean share of wealth
in stocks due to changing ¢,,.
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FIGURE 9

The Effect of Correlation between the Shocks to Stock Returns and
Innovations of Unobservable Expected Stock Returns(p..)

Figure 9, Graph A presents the effect of correlation between the shocks to stock returns and the

innovations of unobserved expected stock returns (p,.) on the mean wealth accumulation and con-

sumption, and compares that with the perfect predictor model (PP model). Graph B shows its effect
on mean share of wealth in stocks.
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FIGURE 10

The Effect of Correlation between the Shocks to Stock Returns and
the Permanent Part of Labor Income (p.,,)

Figure 10, Graph A presents the effect of correlation between the shocks to stock returns and the
permanent part of labor income (p,,,) on the mean wealth and consumption. Graph B depicts the
change in the mean share of wealth in stocks due to the variation of p,,,.
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The Effect of Correlation between the Shocks to Stock Returns and

Figure 11, Graph A presents the effect of correlation between the shocks to stock returns and the
innovations of predictor (p,, ) on the mean wealth accumulation and consumption. Graph B exhibits

FIGURE 11

the Innovations of Predictor (p.,)

its effect on the mean share of wealth in stocks.
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FIGURE 12

The Effect of Correlation between the Innovations of Predictor and
the Shocks to the Unobservable Expected Stock Returns (p,.)

Figure 12, Graph A presents the effect of correlation between the innovations of predictor and the
shocks to the unobservable expected stock returns (p,.) on the mean wealth accumulation and
consumption. Graph B describes the change of the mean share of wealth in stocks by varying p,,..
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FIGURE 1

Welfare Evaluation

Figure 13 presents the change of consumption certainty equivalent of the baseline model with respect
to the perfect predictor model (PP model), i.i.d. stock returns model and the Vanguard TDF model
(Vanguard model) when changing the correlation between the shocks to the unobservable expected
stock returns and the innovations of predictor (p,.). Graph A shows the welfare loss from the perfect
predictor model when p,, varies. Graph B plots the welfare loss from the i.i.d. stock returns model
when changing p,,.. Graph C gives the welfare loss from the Vanguard TDF model for different p,,..
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FIGURE 14

Consumption Evaluation

Figure 14 presents the average change of consumption and standard deviation of consumption over
the life cycle. Graph A, C and E describe the mean change of consumption in the baseline model
compared to the perfect predictor model (Graph A), the i.i.d. stock returns model (Graph C) and

the Vanguard TDF model (Graph E). The mean change of consumption is defined as Ej (%)

2
Graph B, D and F show the change of standard deviation of consumption for the corresponding
models. The change of standard deviation is defined as (W).
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IX. Appendix: Tables

TABLE 1

Descriptive Statistics

Table 1 presents descriptive statistics of the annual data from CRSP. The real risk free is defined
as the mean of the difference between the 1-Year bond return and annual CPI growth rate. Real
adjusted return (r;) is defined as the difference between the annual value weighted adjusted returns
and annual CPI growth rate. SD is the standard deviation.

1946/12/31 2015/12/31 Mean(%) SD(%) Skewness Kurtosis
1-Year Bond Return 5.07 3.9 1.0 4.23
Annual CPI Growth Rate 3.79 3.4 2.81 7.14
Value Weighted Adjusted Returns 12 17 -0.4 3.02
Value Weighted Ex-Returns 8.28 17 -0.41 2.93
Dividend /Price 3.39 1.5 0.47 3.05
Real Adjusted Return 8.22 18 -0.43 3.04
Real Risk Premium (r; —ry¢) 6.93 18 -0.43 3.04

Real Risk Free Rate 1.29 - - -
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TABLE 2

The Results of Parameter Estimation

Table 2 shows the parameter estimation of the equations (4) - (6). E,. is the unconditional expectation
of the risk premium, F,; is the unconditional expectation of the predictor, ¢, is the persistence
parameter of the predictor, ¢,, 1s the persistence parameter of the unobserved expected stock return
process, o, is the standard deviation of the predictor’s innovations, o, is the standard deviation
of the forecast error specified in (16), m and n are the parameters in (16) which are derived from
equations (4) - (6), p,, is the correlation between the innovations of the predictor process and the
forecast errors, o, is the standard deviation of stock returns, p,, is the correlation between the stock
returns and the predictors and oy is the standard deviation of the predictor.

Parameters Estimation Parameters Estimation

E, 0.0326 b 0.9553
m -0.2242 or 0.1921
n 5.7292 E, 0.069
ou 0.004968 Prg -0.0932
¥, 0.1022 Ou 0.1813
Do -0.6562 oq 0.01681
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TABLE 3

Summary of Parameter Choice

Table 3 presents the parameter choice used in the baseline model. The o, is the standard error of
the stock returns, o, is the standard deviation of the shocks to the unobservable expected stock
return, o, is the standard error of the predictor, o, is the standard error of the permanent part of
labor income, o, is the standard deviation of the transitory component of labor income, F, is the
unconditional expected risk premium, E, is the unconditional expected dividend yield, « is the risk
aversion, ¢, is the persistence parameter of the dividend yield process, ¢, is the persistence of the
unobservable expected stock returns, r; is the real risk free rate, p,. is the correlation between the
innovations of stock returns and the shocks to the dividend yield, p,,, is the correlation between the
shocks to the dividend yield and the innovations of stock returns, p,,. is the correlation between the
innovations of the dividend yield and the shocks to the unobservable stock returns, v is the elasticity
of inter-temporal substitution, b is the bequest motive, p,,, is the correlation between the innovations
of stock returns and the transitory component of labor income, p,,, is the correlation between the
innovations of dividend yield process and the shocks to the permanent part of labor income, p,,, is
the correlation between the innovations of dividend yield process and the transitory component of
labor income, p,,, is the correlation between the innovations of unobservable expected stock returns
and the shocks to the permanent part of labor income. p_,, is the correlation between the innovations
of unobservable expected stock returns and the transitory component of labor income, E [In (V)] is
the expectation of logarithm of the permanent earning shocks to the labor income, E [in (U;)] is the
expectation of logarithm of the transitory earning shocks to the labor income, and 3 is the discount
factor of the utility function.

Parameters Value  Parameters Value
o 0.1646 by 0.955
Pou 0.0 oy 0.1921
o: 0.0985 E. 0.069
Oy 0.00497 Tf 0.0129
by 0.1022 Pou 0.0
On 0.1 Oy 0.1
Pze -0.7 Pen 0.0
Pos -0.723 Peu 0.0
pUE 056 pzn 015
E [In (Ny)] -0.005 E, 0.0326
E[In (Uy)] -0.005 y 5
P 0.5 15} 0.96
Trading Cost  0.029 b 2.5
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TABLE 4

Conditional Expectation and Standard Deviation due to Variation of p,.

Table 4 presents the conditional moments of the unobservable expected stock return (u,) and the
next period’s stock return (ry4q) with different correlations between the shocks to the stock market
and the innovations of unobservable expected stock returns (p,.). E (p]re, ¢¢) is the conditional
expectation of the current unobserved expected stock return based on the current observed return
(r+) and dividend yield (gt), 0|, 4, is the conditional standard deviation of the current unobserved
expected stock return based on the current observed return (r;) and dividend yield (¢;), and o5, | |, 4,
is the conditional standard deviation of next period’s stock return based on the current observed
return (r;) and dividend yield (g;).

Pze E (“t|rt’ Qt) Ouglrege Oregrlre,q

-0.5 E, —0185[r; —ry — E;] +0.88[¢: — E,]  0.091 0.188
-0.7(baseline) E, —0.274[ry —ry — E,;| +0.79 [t — E,]  0.082 0.184

-0.9 E, —0.363[r; —ry — E,] +0.69 (s — Eg]  0.068 0.178
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TABLE 5

Conditional Expectation and Standard Deviation due to Variation of p,,,

Table 5 presents the conditional moments of unobservable expected stock return (u,) and the next
period’s stock return (ry41) with different correlations between the shocks to the stock market and
the innovations of dividend yield (p,,). E (u|re,q) is the conditional expectation of the current
unobservable expected stock return based on the current observed return () and the dividend yield
(@), Oy, |re,q. 18 the conditional standard deviation of the current unobservable expected stock return
based on the current observed return (r;) and dividend yield (g), and o, |, 4, is the conditional
standard deviation of the following period’s stock return based on the current observed return (r)
and dividend yield (g;).

Pzv E (:ut|rt? Qt) Ouglrege Oregrlre,qe

-0.5 E, —0.277 [T’t —rf— ET] + 0.96 [qt — Eq] 0.082 0.184
-0.723(baseline)  E, —0.274 [Tt —rf— Er] +0.79 [qt — Eq] 0.082 0.184

-0.9 E, —0.273 [T‘t —rf— ET] + 0.65 [qt — Eq] 0.082 0.184
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TABLE 6

Conditional Expectation and Standard Deviation due to Variation of p,.

Table 6 presents the conditional moments of the unobservable expected stock return (u,) and the
next period’s stock return (r441) for different correlations between the shocks to the unobservable

expected stock returns and the innovations of dividend yield (p,.).

E (p4]74, q¢) is the conditional

expectation of the current unobservable expected stock return based on the current observed return

(r+) and the dividend yield (g:), 0,14,

is the conditional standard deviation of the current unob-

servable expected stock return based on the current observed stock return (r;) and the dividend
yield (g;), and 0., |r, 4 is the conditional standard deviation of next period’s return based on the

current observed return (r;) and the dividend yield (q).

Pue E (ﬂt|rta Qt) O',ut|rt,qt Orii1lre,qe
0.2 —0.28[r; —ry— E,]—0.10[¢, — E,] 0.0831  0.1844
0.4 —0.28[ry— 17— E,]+0.39[q — B, 00828  0.1843
0.56(baseline)  E, — 0.27[r; — 1 — B, +0.79 [ — E,]  0.0820  0.1839
0.8 —0.27[ry — 1y — E,] + 1.37[q — E,] 0.0798  0.1830
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Chapter 3

How Should Stock Market Predictability Affect

Target-date Fund Design?

I. Introduction

In analyzing the effects of stock market predictability on life cycle
portfolio choice, the choice of the factor predicting stock returns and the
frequency at which decisions are made could become important determinants
of life cycle saving and portfolio choice. Either of these choices can
substantially alter the conventional advice that households should invest a
larger proportion of their financial wealth in the stock market when young and
gradually reduce the exposure to the stock market as they grow older. This is

the standard advice given by financial planning consultants (for instance,
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Vanguard) who recommend target-date funds (TDFs) that reduce exposure to
the stock market as retirement approaches and is also a typical result in the
academic literature in the presence of undiversifiable labor income risk (for
example, Cocco, Gomes, and Maenhout (2005), Gomes and Michaelides
(2005), Polkovnichenko (2007) and Fagereng, Gottlieb and Guiso (2016)).
Nevertheless, the conventional TDF advice rests on a key assumption
about stock returns, namely that they are independently and identically
distributed (i.i.d.). Substantial evidence exists, however, that certain factors
can inform the investor about the future evolution of the stock market. As a
result, various papers have analyzed the implications of stock market
predictability for consumption and/or portfolio choice while ignoring labor

income risk,! whereas others focus on the effect of background labor income

'Kim and Omberg (1996), Brennan, Schwartz and Lagnado (1997), Brandt (1999), Campbell
and Viceira (1999), Balduzzi and Lynch (1999), Barberis (2000), Campbell et. al. (2001), (2003),
and Wachter (2002) show that stock market exposure varies substantially as a response to the

predictive factor(s).

175



risk on portfolio choice while ignoring stock market predictability?
Michaelides and Zhang (2016) jointly model stock market predictability and
non-diversifiable background labor income risk and analyze the normative
implications for optimal consumption and portfolio choice over the life cycle
using Epstein-Zin (1989) and Weil (1990) preferences Michaelides and Zhang
(2016) make the case for enhanced target-date funds (ETDFs) that condition
decisions on expected risk premia: introducing such funds generates
improvements in investor welfare.

In both the i.i.d. stock returns or stock market mean reversion literature

analyzed above, the investor allocates financial assets strategically (from a

*For instance, Heaton and Lucas (2000), Viceira (2001), Haliassos and Michaelides (2003)
Gomes and Michaelides (2005), and Cocco, Gomes, and Maenhout (2005).

Y

*Benzoni, Collin-Duffresne, and Goldstein (2007) investigate the implications of a cointegrating
relationship between labor income and stock returns to show how stock demand for young
investors can be reduced relative to the absence of this type of long-run risk. Lynch and Tan
(2011) generate a similar result by focussing on the implications of time-variation in the mean
and, in particular, the variance of labor income. Munk and Sorensen (2010) focus instead on time
variation in interest rates and expected income growth to illustrate the effects on portfolio choice,
while Koijen, Nijman, and Werker (2010) focus on the effects of bond risk premia predictability on
optimal life cycle asset allocation. Brennan and Xia (2002) instead focus on the effects of inflation

on dynamic asset allocation.
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longer run perspective, see Campbell and Viceira, 2002). In particular, this

means that most models are solved at an annual frequency: the investor is

assumed to make decisions once a year and stick with them for the rest of the

year.

There is no a priori evidence that this modeling choice is correct.

Rather, it seems to be dictated by computational constraints and the fact

that the empirical evidence on most inputs in the model (the process for labor

income risk, for example) has been determined at the annual frequency.

Nevertheless, many factors that have been used to predict the stock market

are available at the quarterly frequency, implying that a quarterly life cycle

model is needed to analyze the implications for predictability for portfolio

choice at the quarterly frequency. Moreover, investigating differences between

the quarterly and annual versions of the same model could be interesting in

its own right (that is, even with i.i.d. stock returns). This will be our first

innovation in this paper relative to the rest of the literature: solve a life cycle
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model at a quarterly rather than annual frequency.

Once this can be achieved, then we can use recently discovered factors

in predicting stock returns that have not been previously used in the life cycle

portfolio choice literature, despite being robust predictors of expected stock

returns. We focus on two particular factors. The first is the variance risk

premium (VRP) to predict expected stock returns, a factor that has been

found to be a robust predictor both using US data (Bollerslev, Tauchen and

Zhou (2009)) and international data (Bollerslev, Marrone, Xu, and Zhou

(2014)). The second is CAY, Lettau and Ludvigson (2001), found to be the

most robust predictor in a recent paper in RFS (2015, Magdalinos et al). A

drawback of the predictive model is that quarterly monitoring the predictor

has a higher cost than i.i.d. model or Vanguard TDFs so that we have to

consider the effect of transaction cost. But, the risky asset in our study is the

market index. The transaction cost is therefore only several bps. In this paper,

we report the results with the extra trading cost of 10bp or 50bp.
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We find that tactical asset allocation (using a model with stock market

predictability than a model without one) can increase life cycle wealth

accumulation and the effect is larger for models that have a more reliable

predictability. Such market timing also affects the total share of wealth in

stocks. Large variations over the life cycle depend on the factor realization

rather than the level of financial wealth. This result substantially alters one of

the main insights of life-cycle models with i.i.d. stock returns, namely that

financial wealth tends to be the main predictor of life-cycle portfolio choice.

It is perhaps important to note that VRP is not a persistent factor

predicting stock returns thereby differentiating its importance from previously

used factors (like the dividend yield, for example). Using this factor to predict

stock returns we find that the asset allocation profiles retain the target date

funds (TDF) feature of slowly decreasing stock market exposure as the

household ages, on average. Nevertheless, the level of asset allocation moves

up or down depending on the factor realization: optimal portfolio choice shifts
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up or down depending on the expected risk premium. When experimenting
with a more volatile process, the portfolio movements become a lot more
aggressive to take advantage of factor predictability? Similar conclusions
qualitatively are generated when CAY is used to predict the stock market.
Taken together, these findings make the case for enhanced TDFs (ETDFs)
that condition on the market timing ability of the investor.

We also present different comparative statics adjusting both the bequest
parameter and also other parameters determining hedging demands (different
correlations between the different innovations in the stock market and labor
income generating processes). The bequest motive affects primarily the speed
with which wealth is decumulated during retirement and that affects the
average allocation to the stock market during retirement, as found in the i.i.d.

stock returns literature. The main correlation that affects hedging demands is

*Aggressive market timing behavior is similar to the behavior predicted in Brennan, Schwartz,
and Lagnado (1997) and Barberis (2000), models that do not feature undiversifiable labor income

uncertainty.
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the correlation between the permanent labor income shock and the stock

return innovation, as in the 1.1.d. stock returns literature. Nevertheless, the

correlation between the stock market innovation and the shock to the factor

predicting stock returns affects the average share of wealth in stocks when

CAY is used as a predictor. A more negative correlation reduces the average

share of wealth in stocks during working life.

What is the quantitative impact on investor welfare if the data

generating process for stock returns follows any of the predictors but instead

investors are making decisions based on the i.i.d. stock returns model or based

on the Vanguard TDF recommendations? We show that the VRP model

generates improved certainty equivalent welfare relative to either the CAY or

the i.i.d. stock returns model. This improvement is still significant even

though the trading cost is included. We therefore conclude that basing

decisions on the factor realizations can improve investor welfare.

The paper is organized as follows. Section II describes the empirical

181



analysis and reproduces two popular predictors in the literature (CAY and

VRP). Section III outlines the theoretical life-cycle model, outlines the

numerical solution algorithm and discusses the parameter choices for the

calibration. Section IV discusses the effects of stock market mean reversion by

comparing the benchmark results to the i.i.d. stock returns model. Section IV

discusses hedging demands and how different correlation changes also affect

wealth accumulation, while Section V briefly discusses the implications of

model parameter uncertainty. Section VI discusses the implications of the

model for lifestyle funds and Section VII concludes.

II. Empirical Analysis

A. Data

The stock market data come from the Center for Research in Securities

Prices (CRSP). We use the quarterly bond return, CPI growth rate, monthly

cumulative and ex-dividend returns of the US S&P 500 index from January

Ist, 1990 to September 30th, 2016. The quarterly cumulative and ex-dividend
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return are constructed from the monthly return of the US S&P 500 index.
The quarterly volatility index is from Federal Reserve Bank of St. Louis,
and the quarterly consumption wealth ratio (CAY) as defined in Lettau and
Ludvigson (2001) is downloaded from Lettau and Ludvigson’s Web site. We
construct the quarterly realized volatility based on the monthly realized

volatility defined in Bollerslev et al. (2009):

" 2
RV, = j§1 Pryyi — pt—1+jn1(A)} ’

where RV} is the realized variation over the discrete t — 1 to ¢ time interval
and p; is the natural logarithmic price of the asset.

Table 1 contains the descriptive statistics from the data set. The risk
free rate has a 0.16% real quarterly return with a very low standard deviation
and we will therefore be assuming it to be constant in what follows. The real

stock quarterly return has a mean of 1.98% with a standard deviation equal to

7.84%. CAY is very smooth (s.d. equal to 1.98%) and has a persistent (AR(1))
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coefficient equal to 0.88. IV and RV are both individually persistent but when

combined have very weak serial correlation.

B.  Empirical Results

Table 2 contains the predictive regression results that use the predictors
of CAY (Lettau and Ludvigson, 2001) and VRP (variance risk premium) as in
Bollerslev et al. (2009). The results in Table 2 reveal a fact that VRP has a
higher degree of predictability (adjusted R? of 15%) comparing with CAY
which has an adjusted R? of 5.5%.

To illustrate the data, Figure 1 reproduces the Figure 2 in Bollerslev et
al. (2009). Our plots are consistent with the results in Bollerslev et al. (2009)
and Lettau and Ludvigson (2001). Figure 1 Graphs A and B show how
implied and realized variance, respectively, rise in a recession and Graph C
shows their difference. which can be used as a factor to predict the stock
market. Graph D in Figure 1 shows how the consumption to wealth ratio rises

in recessions, as discussed in Lettau and Ludvigson (2001).
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C. Conclusion

There are good predictors of future returns and can use as input in a

quarterly frequency model. Some predictors more persistent than others and

correlations between factor and stock market innovations can be different.

ITI. The Model

Time is discrete, but contrary to previous literature we solve the model

at a quarterly than annual frequency. This is an important deviation from the

previous literature that solves similar models at an annual frequency. There is

no a priori reason to solve the model at an annual frequency other than the

availability of annual labor income income (typically from the Panel Study of

Income Dynamics (PSID hereafter)). Given that predictability is posited at a

quarterly frequency we solve both the i.i.d. and model with predictability at a

quarterly frequency.

There is one non-durable good, one riskless financial asset and a risky
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time varying investment opportunity. The riskless asset yields a constant gross
after tax real return, Ry, while the gross real return on the risky asset is
denoted by R. At time ¢, the agent enters the period with invested wealth in
the stock market S;_; and the bond market B;_; and receives Y; units of the
non-durable good. Following Deaton (1991), cash on hand in period ¢ is
denoted by X; = St_lfit + B;_ 1Ry + Y;. The investor then chooses savings in
the bond (B;) and stock (S;) market to maximize welfare. The particular

assumptions made about the economic environment are as follows:

A. Preferences

Preferences separate the elasticity of intertemporal substitution from
risk aversion as in Epstein and Zin (1989) and Weil (1990). Specifically, they

are given by

11 ) TS
V, = max {(1 — BT 4+ (Et(pmvtiﬂ +07(1 = pen) Xy )) h }
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where (3 is the time discount factor, b is the strength of the bequest motive,
is the elasticity of intertemporal substitution (EIS) and v is the coefficient of
relative risk aversion. The conditional probability of surviving next period

conditional on having survived until period ¢ is given by ps.

B. Labor Income Process

Following a relatively standard specification in the literature (eg Cocco

et al. (2005)), the labor income process before retirement is given by

}/;t - Y;‘Z;Uib (31>

Y = exp(g(t, Zi))Y;_ Nit, (3.2)

where ¢(t, Z;;) is a deterministic function of age and household characteristics
Zit, Yzf is a permanent component with innovation Ny, and U;; a transitory

component of labor income, where In U;; and In N;; are independent and
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2

identically distributed with mean {—0.5 x 02, —0.5 x 02}, and variances o>

and o2, respectively. The log of Y} evolves as a random walk with a
deterministic drift, g(¢, Z;). For simplicity, retirement is assumed to be
exogenous and deterministic, with all households retiring in time period K,
corresponding to age 65 (K = 46). Earnings in retirement (f > K) are given
by Yii = AY}, where X is the replacement ratio (A = 0.68) of the last working
period permanent component of labor income. We will assume that the
quarterly data generating process for labor income is the same as the one at
the annual frequency. This will allow us to pick the variances of the labor
income shocks in a specific way to make them consistent with their estimated
annual equivalents: essentially, permanent variances will cumulate from
quarterly to annual while transitory variances will stay the same. The
calibration section discusses this issue in greater detail.

Durable goods, and in particular housing, can provide an incentive for
higher spending early in life. We exogenously subtract a fraction of labor
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income every year allocated to durables (housing), and this fraction includes

both rental and mortgage expenditures. This empirical process is taken from

Gomes and Michaelides (2005) and is based on the PSID annual data. When

moving to quarterly data we linearly interpolate across years to find the

relevant quarterly expenditure. We choose not to model explicitly the returns

from housing following the empirical evidence (e.g., Cocco and Lopes (2015)

and references therein) that households tend not to decumulate housing as

fast as life-cycle models predict. A prominent explanation tends to be a

psychological benefit from continuing to own one’s house, an explanation that

is consistent with the low observed demand for home equity conversion

mortgages (Davidoff (2015)). For these reasons we do not explicitly model the

potential effects of housing returns, and focus instead only on investments of

liquid financial wealth for rich households (that empirically tend to be both

stockholders and homeowners).
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C. Liquidity Constraints

In the presence of a positive expected equity premium households in the
model will counterfactually lever up to invest in the stock market in the
absence of any borrowing constraints and vice versa when the VRP predicts
lower expected stock returns in the future. To prevent such counterfactually
levered and volatile household portfolios (that are rarely advised by financial
consultants), it is common to assume no borrowing and no short sales of
stocks: B; 2 0 and S; = 0. Equivalently, the share of wealth in stocks (o) is

defined as S;/(S; + B;) and constrained between zero and one.

D. Mean Reversion

We follow Campbell and Viceira (1999) and Pastor and Stambaugh

(2012) in assuming that there is a single factor that can predict future excess

returns. Letting {rs, 7} denote the net risk free rate and the net stock market

return, respectively and f; the factor that predicts future excess returns, we
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construct a VAR:

Tepl —Tp =+ Bfi + 241, (3.3)

fror = p+ o(fr — 1) + €41, (3.4)

where the two innovations {21, €11} are i.i.d. Normal variables with mean
equal to zero and variances o2 and o2, respectively. Contemporaneous
correlation between these innovations is allowed, while correlation between the
permanent earnings innovation (In N;) and {z;, &} can also exist. Mean
reversion in the stock market is captured by the autoregressive nature of the
factor (f;) predicting stock market returns (¢ > 0) and negative correlation
between the excess stock market return innovation (z;41) and the innovation
to the factor (g441). One of the key contributions of the paper is to
understand how changing these correlations affects saving and portfolio choice
decisions over the life cycle.

We will also be reporting results from a model with i.i.d. excess returns;
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in that case ry41 —ry = p + 241. In order for the i.i.d. model to be
comparable to the factor model, the first two unconditional moments of

returns are set to be equal in both cases.

FE.  Numerical Solution

The unit root process for labor income is convenient because it allows
the normalization of the problem by the permanent component of labor
income (V7). Letting lower case letters denote variables normalized by the
permanent component of labor income (Y}), the evolution of the single

endogenous state variable is then given by

p

Tit41 = YT“(Tt+105it +7p(1 = ay))zie + Uipr. (3.5)
it+1

We use Tauchen and Hussey (1991) approximation procedure for a
vector autoregression model. Numerically, this proves to be a substantial

challenge because of the strong persistence in the factor f; that requires a
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substantial number of grid points to replicate key moments: the persistence,
the conditional variance and the conditional (one-period ahead) equity risk

premium.

F.  Parameter Choice

Consumers/investors start working life at age 21. Typically, in annual
frequency models, investors die for sure by age 100, therefore living for a
maximum of 81 years. In the quarterly analog we construct, there are
therefore 324 periods.

Using an annual frequency model, Cocco et al. (2005) estimate the
variances of the idiosyncratic shocks using data from the PSID, and the
literature uses values close to those: 0.1 for ¢, and 0.1 for ¢,. We assume that

the quarterly frequency model is identical to the annual frequency model. It

2

2) remains the same as in

can then be shown that the transitory variance (o

the annual model and the permanent variance (o) should be divided by four.

The deterministic component of labor income is also identical to the one used
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by most life cycle papers in this literature (Cocco, Gomes, and Maenhout

(2005)): the only additional complication is that we linearly interpolate in

between years to derive the quarterly counterpart. The replacement ratio

during retirement (68% of last working period labor income) arises from using

both social security and private pension accounts to estimate the benefits in

the PSID data and is not affected by the move from annual to quarterly

frequency.

The baseline preference specification is taken to capture the observed

behavior of stockholders. Gomes and Michaelides (2005) argue that this is well

achieved when using a coefficient of relative risk aversion (y) equal to 5, and

an elasticity of inter-temporal substitution (1) equal to 0.5. These choices are

consistent with the empirical estimates for the elasticity of inter-temporal

substitution in Vissing-Jorgensen (2002) and the empirical preference

parameter estimates in Gomes, Michaelides, and Polkovnichenko (2009) and

Cooper and Zhu (2016). The bequest parameter is set to 0.0. We set the
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discount factor (/) equal to 0.99.

The net constant real interest rate, r, equals 0.16%. The estimates
from Table 1 show that the mean unconditional stock return in this period is
around 2% quarterly. In most of the life cycle literature, the equity premium
used is around 4% at an annual frequency to reflect transaction costs. To
make comparisons across models more meaningful, we subtract a constant
transaction cost in the excess return each period to make the mean
unconditional return equal to 1% per quarter.

To calibrate the stock market predictability parameters we use two of
the most popular predictors of stock returns, namely VRP and CAY, both in
quarterly frequency. CAY generates a very persistent factor predicting the real
log return on the U.S. equity market but the VRP predictor is not very
persistent. The unconditional stock market volatility is given by the
unconditional standard deviation of stock returns and is set equal to 0.08.

A key parameter turns out to be the correlation between the factor and
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the return innovation (p,.). Most estimates in the literature are towards the
higher negative number (Campbell and Viceira (1999) for a quarterly
estimation and Pastor and Stambaugh (2012) for both an annual and
quarterly estimation). We estimate it at around therefore use p, . = —0.5 for
the CAY model and -0.04 for the VRP model. We provide experiments about
this parameter in what follows.

The factor innovations of CAY and VRP model are very smooth and we
estimate (and use) . = 0.008 for the CAY baseline model and o. = 0.0074
for the VRP baseline model. Given these estimates, we can infer that the
unconditional variance of the stock market return innovation equals
02 =0.08% — 0?.

It should be noted that no estimate of the correlation between the
innovation in the factor predicting stock returns and permanent, idiosyncratic
earnings shocks (p,, ) exists in the literature and we therefore set this

correlation equal to zero. Angerer and Lam (2009) note that the transitory
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correlation between stock returns and labor income shocks does not
empirically affect portfolios and this is consistent with simulation results in
life cycle models (Cocco, Gomes, and Maenhout, 2005). We therefore set the
correlation between transitory labor income shocks and stock returns equal to
7Z€ero.

The baseline correlation between permanent labor income shocks and
stock returns (p,, ) is set equal to 0.15, consistent with the mean estimates in
most empirical work (Campbell et. al. (2001) or Davis, Kubler, and Willen
(2006)). Nevertheless, this can vary and be higher across heterogeneous
occupations (Angerer and Lam (2009)) and/or workers (Bonaparte, Korniotis,
and Kumar (2014)) and we therefore experiment with values up to 0.5.

Finally, we discuss the transaction cost. Quarterly model has a higher
re-balancing frequency so that the cost of monitoring factors is much higher
than the annual model. Since the risky asset considered in this study is the

market index, the trading cost is really low. For example, the expense of
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Vanguard 500(VFINX), Fidelity 500 Index fund(FUSEX) and Schwab S&P
500 Index(SWPPX) are only 12bp, 9bp and 3bp respectively. Therefore, the

transaction cost of 10bp or 50bp is enough.

IV. Comparing CAY and VRP with i.i.d. Model

How does the presence of a factor predicting returns affect saving and
portfolio choice behavior relative to the i.i.d. and Vanguard models?

Figure 2 illustrates the differences in simulated profiles between the
i.i.d., Vanguard and the mean reversion models (CAY and VRP).

Average wealth accumulation® varies across all three models (Figure 2,
Graph B). Higher wealth accumulation generates higher mean consumption:
Figure 2, Graph A. This allows "better" tactical asset allocation decisions
given the assumption of no model misspecification during the simulations.

The average share of wealth in stocks is plotted in Figure 2, Graph C.

The fact that the average share of wealth in stocks is never one or close to one

5The model is simulated 2000 times for 500 individual life histories.

198



might be surprising given the results in the i.i.d. version of the model. This

arises here because we are simulating based on different realizations of the

factor and then averaging over them. For most of these factor states, the

investor deviates from the 100% asset allocation to stocks and when taking the

average we have the optimal share of wealth in stocks substantially below one.

Figure 3 repeats this experiment but for an extra transaction cost

specification. The transaction cost is 10bp and 50bp. The qualitative nature of

the comparative statics discussed earlier does not change (higher wealth

accumulation and consumption for the VRP model relative to either the

Vanguard or i.i.d. models and more balanced portfolios for the VRP models).

Even though the higher transaction cost the lower wealth accumulation,

consumption and stock allocation, the extra transaction cost of 10bp or 50bp

is not able to change the main results.
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V. Hedging Demands

How do these results change when the correlations between the different
innovations vary? We next use the model to quantitatively assess the

magnitude of such hedging demands.

A.  Variation in Correlations

To investigate the importance of hedging demand due to p, . (the
correlation between the factor and the stock market innovation), we change it
to -0.1 and -0.3 from the VRP baseline of -0.05 and -0.1 and -0.8 from the
CAY baseline of -0.5.

We also evaluate hedging demands when changing the correlation
between permanent earnings shocks and stock market innovations (p, ). In
our baseline models (VRP and CAY) we use 0.15 for this correlation, a value
that reflects the substantial idiosyncratic risk that exists in labor income data.

Nevertheless, one cannot deny that there are some households for whom this

200



correlation is substantially higher. Bonaparte, Korniotis, and Kumar (2014)
find that this correlation can vary for different households from —0.6 to 0.6
and we therefore use 0.3 to investigate how the results change.

The life profiles (consumption, wealth accumulation and mean shares of
wealth in stocks) over the life cycle for different p, . are depicted in Figure 4
(VRP) and 6 (CAY), respectivelyS In the VRP model, when the correlation
between the factor and stock return innovations decreases to -0.8
(p.. = —0.8) from p, . = —0.05, the effect on the consumption, wealth
accumulation and share of wealth in stocks is not obvious. When using CAY
as the predictor, we find that the effects on the share of wealth in stocks

become larger than that of VRP case.

6Campbell and Viceira (1999) quantify hedging demands by comparing hedging demands from
a model with a factor predicting returns relative to the myopic model with a constant share of
wealth in stocks. We consider the i.i.d. model as the equivalent of the myopic model in our case
since portfolios in the i.i.d. model do not exhibit any time variation in response to the factor
realizations. For a specific correlation (p) we can compute these hedging demands by comparing
the two simulated profiles and compute the percentage differences:
hedg(p) = 100 * (gactor (p) — a11.D.(p)) / arrp.(p). For space considerations we only report the

simulated shares of wealth in stocks generated from different correlations of interest.
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What happens when the correlation between the permanent earnings
shock and the stock market innovation is raised from 0.15 to 0.37 Figure 5
and 7 plot the average life profiles over the life cycle for the mean reversion
models versus the i.i.d. model when this correlation increases to 0.3. We find
that this correlation has a significant effect on the asset allocation only
(Graph C). An increasing in p, , leads to an decrease in the share of wealth in
stocks over the working life. This is because the labor income looks more like
the risky asset rather than the riskless asset when p, , increases, which
squeezes the share of wealth in stocks. This conclusion is consistent with the
findings in Cocco et. al. (2005) and Michaelides and Zhang (2016).

Changing the correlation between the factor innovation and the
permanent income shock (p,, .) does not materially affect the average share of
wealth in stocks (Figure 6 and 9 for the two cases with different bequest
motives), and therefore also does not substantially affect average wealth

accumulation.
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VI. Are Lifestyle funds Optimal?

A.  Dewviations from the 1.1.D. model

Financial advisors argue that the share of wealth in stocks should

decrease as the investor approaches retirement and qualitatively this is what

the i.1.d. model predicts as well. Nevertheless, we have seen that a factor

model will generate substantial variation in the share of wealth in stocks over

the life cycle based on the factor realization. The intuitive argument is that

households retiring in 2008 when the stock market had lost a substantial

percentage of its value should not have followed blindly the rule followed by

life style funds.

In this section we evaluate how important this intuition might be. We

start a simulation from the beginning of life and assume that the stock market

can be predicted by the VRP model throughout the life cycle.
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B.  Welfare Evaluations

To calculate welfare changes we use the value functions across different
experiments. Given that we have solved for saving, portfolio choices and
value functions for all periods in the life cycle, we know that the value
functions at a particular age are a sufficient statistic for welfare effects. Let
Vo(it, f¢) be the value function for the benchmark model and v, (x;, f;) be
the value function for a new model. We compute a measure of welfare change

for a particular age group (age) as:

1

_ Un (it ft)) 1= .
ace = average of || ———= — 1| for all 7 € I, and all factor state$3.6
Heg [(Uo(%‘t, ft) ] ¢ 3.6

This is the unconditional (across factor states) certainty consumption
equivalent because we convert the change of the value into the dimension of
expenditure before taking the average.

When comparing the VRP with the CAY or i.i.d. models, we simulate
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wealth profiles based on the optimal solution when using the VRP factor.

This produces a series for cash on hand, and we use this same cash on hand to

evaluate how the investor would have behaved under the CAY or i.i.d. models.

This allows us to compare welfare keeping cash on hand constant and we can

track these differences in welfare throughout the life cycle.

Figure 8 plots the life cycle certainty equivalents when returns are

simulated based on the VRP model and the comparison is between the VRP

and the two other models: the CAY and the i.i.d. model. Graph A illustrates

substantial welfare losses from following the CAY model relative to the

optimal portfolio rule in the presence of the VRP factor, and the welfare

losses are even more substantial when following the i.i.d. recommendation.

This arises naturally given that the deviations of the average portfolio

allocations are even larger between the i.i.d. recommendation and the VRP

model than the ones between the VRP and CAY models. The transaction cost

of 10bp and 50bp does decrease the welfare loss, but it is still significant.
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Graph B recalculates the life cycle certainty equivalents when returns

are simulated based on the CAY model. There is a maximum of 2% welfare

loss comparing with the VRP model and a maximum of 2.5% welfare gain

relative to i.i.d model. Similarly, Graph C figures out the life cycle certainty

equivalents when returns are simulated based on the i.i.d. model. The i.1.d.

model generates a lower welfare loss at the same cash on hand than that using

the VRP model as a base. The transaction cost of 10bp or 50bp can decrease

the welfare loss but can not change the qualitative pattern.

We make three observations based on the results in Figure 8. First, the

welfare losses are economically significant: they can reach 5% of consumption

equivalents depending on the specification, and this represents a substantial

welfare loss at a quarterly frequency. Second, the VRP model has the largest

welfare gain relative to the other models (CAY and i.i.d.). The i.i.d model has

the largest welfare loss comparing to VRP and CAY model. The CAY model

is in an intermediate position. Third, the transaction cost can decrease the
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welfare loss, but welfare gain of VRP is still significant after deducting the

transaction cost of 10bp or 50bp.

C. Out-of-Sample Analysis

We next compare how realized wealth evolve out of sample, partly

adapting the calculations in Lan (2015) for our model. Specifically, we start

simulating for every age using the realized VRP, CAY and stock returns

between 1996QQ1 and 2016Q1. For instance, given a simulated initial

distribution of assets per age in 1996, from 1996 onward we use the realized

VRP and CAY to pick the relevant factor state and the realized stock return

to shock financial asset returns. We save financial wealth for every age group

between 1996(Q1 and 2016Q1. For an investor at age 30, for example, we track

the evolution of individual wealth over the 1996Q)1 —2016QQ1 period and

average in the cross section every quarter.

It might be helpful to start the discussion by plotting the wealth levels

for different models. Figure 9 shows how the mean wealth evolves for different
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starting ages according to the different models. As can be seen, the VRP

models typically generate higher mean wealth than either the i.i.d. or CAY

model would predict, while the CAY model can not statistically and

economically outperforms the i.i.d. model in every age groups. These results

emphasize the importance of searching for good predictors when devising

long-term asset allocation strategies. Moreover, younger households display

the mean wealth accumulation rising over time (and over the life cycle), while

older households can display the decreasing wealth after retirement.

VII. Conclusion

In the presence of stock market predictability, undiversifiable labor

income risk and exogenously imposed liquidity constraints, the consumption

policy rule has a similar shape with consumption functions derived in the

buffer stock saving literature. Optimal portfolio choice is shown to be heavily

dependent on the realization of the factor predicting future returns, and a

more volatile factor generates more volatile movements in the asset allocation
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policy rule. On average, the asset allocation based on the predictive model is

much lower than that from the i.i.d. case. Ignoring the stock market

predictability can lead to a severe welfare loss. Moreover, the investor should

pay more attention to the predictor. A reliable predictor has a positive effect

on reducing the welfare loss and better out of sample performance. A

unreliable predictor can lead to weak out-of-sample performance comparing

with the i.i.d model, even though it can generate a better theoretical results.

Future directions of research include the explicit introduction of tax

deferred retirement accounts (for the i.i.d. case, see Gomes, Michaelides, and

Polkovnicheno (2009)), an explicit learning mechanism about the true

underlying model through either a Kalman filtering or Bayesian learning

approach (Brandt et. al. (2005) and Pastor and Stambaugh (2012)), an

explicit treatment of housing and introducing time-varying volatility and risk

aversion (through a stochastic discount factor, for example). All these

extensions will require additional computational power to achieve the desired
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required solution accuracy but will further improve our understanding of life

cycle portolio choice under uncertainty and offer scientific advice to billions of

households increasingly making their own individual financial decisions.
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VIII. Appendix: Tables

TABLE 1

Descriptive Statistics

Table 1 presents descriptive statistics of the quarterly data from the first quarter of 1990 to the
third quarter of 2016. The r denotes the accumulate return on the S&P 500 in excess of quarterly
CPI rate. IV denotes the quarterly "model free" implied variance or VIX index. RV is the quarterly
"model free" realized variance. The other predictor variable is quarterly consumption wealth ratio
(CAY). CPI and 7 refers to the consumer price index and the 90-day T-bill rate respectively, and
are downloaded from CRSP as well.

Summary Statistics

1990/01/01 —2016,/09/30 r A% RV IV -RV CAY CPI rf
Mean(%) 1.98 1.11 0.62 0.49 0.04 0.06 0.16
SD(%) 7.84 094 0.98 0.75 1.98 0.08 0.09
Kurtosis 3.24 8.16 54.23 31.83 2.68 9.64 5
Skewness -04 225 645 -3.24 -0.45 -1.39 0.32
AR(1) 0.0 0.41 0.47 -0.17 0.88 0.0011 0.09
Correlation Matrix
1990/01/01 —2016,/09/30 r 1A% RV IV —-RV CAY CPI Ty
r 1.00 -0.52 -0.42 -0.096 -0.092 -0.11 0.096
1% - 1.00 0.7 0.34 026 -0.18 0.12
RV - - 1.00 -0.43 0.095 -0.46 0.3
IV — RV 1.00 0.2 0.38 -0.24
CAY 1.00 0.058 0.3
CPI 1.00 -0.76
Ty - - — - - - 1.00
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TABLE 2

Predictive Regressions

Table 2 presents predictive regressions based on the quarterly data from the first quarter of 1990
to the third quarter of 2016. The parameters related to the predictive regression using VRP as a
predictor are estimated from the following restricted VAR:

VRPt+1 :| |: Const :| |: (Z) 0 :| |: VRPt :|
= + +
Tigy1 —Tf «Q 6 0 TE—Tf

The parameters related to the predictive regression using CAY as a predictor are estimated
from the following restricted VAR:

][5 8] 5e) 2]

Hence, the constant term in the CAY AR(1) model is E(CAY) * (1 — ¢) and « in the
predictive regression is o/ — § x E(CAY).

Et+1
Zt+1

’I“t*Tf

1990/01/01 2016,/09/30 VRP CAY
Constant 0.0058 (6.72) 0.00003 (0.23)
oY 0.0 0.018 (2.45)
B 3.6 (4.48) 0.6 (1.4)
b -0.18 (-1.84)  0.93 (22.66)
Py -0.04 -0.51
oe 0.0074 0.008
o, 0.0746 0.078
o, 0.079 0.079
Adj. R? (%) 15 5.5
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IX. Appendix: Figures

FIGURE 1

Implied and Realized Variance, Variance Risk Premium and
Consumption Wealth Ratio

Figure 1 plots the implied variance (Graph A), the realized variance (Graph B) and variance risk
premium (Graph C) and consumption wealth ration (Graph D) for the S&P 500 index from the
first quarter of 1990 to the third quarter of 2016. The shaded areas represent NBER recessions.

Graph A. SE&P 500 Implied Variance

Graph B. S&P 50072“;3alized Variance

Graph C. SEP 500 Va;;;nce Risk Premium

R

Graph D. Consump;;;n Wealth Ratio

CAY
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FIGURE 2

The Life-Cycle Profiles (Bequest = 0.0)

Figure 2 shows the difference of consumption (Graph A), wealth accumulation (Graph B) and share
of wealth in stocks (Graph C) between the mean reversion models using VRP and CAY as predictor
and i.i.d. case while keeping bequest motive at 0.0.
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FIGURE 3

The Life-Cycle Profiles (Extra Transaction Cost)

Figure 3 shows the difference of consumption (Graph A), wealth accumulation (Graph B) and share
of wealth in stock (Graph C) between the mean reversion models using different transaction cost
and i.i.d. case while keeping bequest motive at 0.0.
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FIGURE 4

The Life-Cycle Profiles due to Variations in p,_

Figure 4 shows the difference of consumption (Graph A), wealth accumulation (Graph B) and share
of wealth in stock (Graph C) between the mean reversion models using VRP as predictor and i.i.d.
case due to variations in p,,.
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FIGURE 5

The Life-Cycle Profiles due to p,,

Figure 5 shows the difference of consumption (Graph A), wealth accumulation (Graph B) and share
of wealth in stock (Graph C) between the mean reversion models using VRP as predictor and i.i.d.
case due to variations in p,,,.
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The Life-Cycle Profiles due to Variations in p,_

FIGURE 6

Figure 6 shows the difference of consumption (Graph A), wealth accumulation (Graph B) and share
of wealth in stock (Graph C) between the mean reversion models using CAY as predictor and i.i.d.
case due to variations in p,,.
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FIGURE 7

The Life-Cycle Profiles due to Variations in p,,,

Figure 7 shows the difference of consumption (Graph A), wealth accumulation (Graph B) and share
of wealth in stock (Graph C) between the mean reversion models using CAY as predictor and i.i.d.
case due to variations in p,,,.
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Utiity Cost

Uity Cost

FIGURE 8

Welfare Evaluation

Figure 8 presents the welfare evaluation across different models.
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FIGURE 9

Out of Sample Testing
Figure 9 presents the out of sample testing across different models.
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