
Modelling of Turbulent Reacting Flows

with Polydispersed Particle Formation

by

Fabian Sewerin

00788523

PhD thesis

submitted for the degree of

Doctor of Philosophy

in Mechanical Engineering

at Imperial College London,
Department of Mechanical Engineering

(Division of Thermofluids)

Supervisor: Dr Stelios Rigopoulos

September 4, 2017

Abstract

The formation of particles in a turbulent carrier flow is central to many environmental processes

and engineering applications. Specific examples include the precipitation of crystals from aqueous

solutions, the condensation of droplets in the context of cloud formation, flame synthesis of metal

oxide particles or the formation of soot in hydrocarbon combustion devices. Frequently, the parti-

cles can be characterized by intrinsic properties such as the particle size, shape or charge and the

distribution of values for these properties amongst a particle population is taken as an indicator

for the quality, toxicity or environmental impact of the particulate product.

In the present work, we consider particle size as a representative property and develop a com-

prehensive model and numerical solution scheme for predicting the evolution of the size distribution

associated with a particulate phase forming in a turbulent carrier flow. Physically, the evolution of

the particle size distribution can be described by the population balance equation (PBE) which we

incorporate into a large eddy simulation (LES) framework for turbulent reacting flows. In order

to resolve the influence of turbulence on chemical reactions and particle formation, a formulation

based on an evolution equation for the LES-filtered one-point, one-time probability density function

(pdf) associated with the instantaneous fluid composition and particle number density distribution

is developed. This forms the basis of our LES-PBE-PDF approach; its main advantage is that the

LES-filtered particle size distribution can be predicted at each spatial location in the flow domain

and every time instant without any restriction on the chemical or particle formation kinetics.

In view of a numerical solution scheme, we present a formulation in terms of Eulerian stochastic

fields whose evolution statistically reproduces that of the joint scalar-number density pdf. For the

discretization of the particle number density stochastic field equation, we develop a novel explicit

adaptive grid technique which is able to accurately resolve sharp and moving features of the LES-

filtered particle size distribution. This scheme is based on a space and time dependent coordinate

transformation on particle size space which is explicitly marched in time. One innovative feature

is an adjustment scheme for the distribution of grid points in particle size space which allows us to

accommodate nucleation source terms and control the grid stretching. Our analysis demonstrates

that the explicit adaptive grid method requires over an order of magnitude fewer grid points in

particle size space to obtain a similar accuracy as a comparable fixed grid discretization scheme.

In a final investigation, we explore accelerating the time consuming chemical kinetics integra-

tion by implementing a high order implicit integration scheme for execution on a graphics card

(GPU). This GPU implementation can be operated in conjunction with conventional solver imple-

mentations on central processing units (CPUs), yielding a notable performance benefit on desktop

computer systems.

The combined LES-PBE-PDF approach is applied to model the precipitation of BaSO4 particles

in a coaxial pipe mixer, the condensation of an aerosol in a developed turbulent mixing layer and the

formation of soot in a turbulent, non-premixed methane-air flame. Here, predictions of the particle

size distribution or its moments are compared with experimental measurements and solutions from

direct numerical simulations (DNS). Our analyses and findings not only indicate the predictive

capabilities of the LES-PBE-PDF approach, but also demonstrate the computational efficiency

and accuracy of the numerical solution scheme.

3

4

Copyright declaration

The copyright of this thesis rests with the author and is made available under a Creative

Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to

copy, distribute or transmit the thesis on the condition that they attribute it, that they

do not use it for commercial purposes and that they do not alter, transform or build upon

it. For any reuse or redistribution, researchers must make clear to others the licence terms

of this work.

Declaration of originality

I certify that the work presented here is, to the best of my knowledge and belief, original

and the result of my own investigations, except as acknowledged, and has not been sub-

mitted, either in part or whole, for a degree at any other university than Imperial College

London. Formulations and ideas taken from other sources are cited as such.

Fabian Sewerin

5

6

Acknowledgements

Throughout my time as a PhD student at Imperial College London I have been financially

supported by the Imperial College PhD Scholarship Scheme. I am grateful for having

had the opportunity to pursue a PhD at Imperial and to be part of the scientific commu-

nity here. For the computationally intensive test cases reported in this work I used the

ARCHER UK National Supercomputing Service (http://www.archer.ac.uk) whose sup-

port I gratefully acknowledge. The DNS data of Reference [213] were provided to me by

Fabrizio Bisetti, Amjad Alshaarawi and Kun Zhou who also shared their implementation

of the DBP droplet formation kinetics with me.

I wish to thank my supervisor Dr Stelios Rigopoulos for his support, encouragement

and trust and, above all, for giving me the liberty to explore and develop my ideas. Our

discussions and his critical advice have been invaluable to me and I am grateful for his

patience and positive spirits during the set backs I experienced. I also wish to express my

sincerest gratitude to Dr Salvador Navarro-Martinez for his advice and comments on the

practical problems I encountered with LES-BOFFIN.

My colleagues at Imperial have been invaluable to the creative, supportive and harmo-

nious atmosphere in our offices and I am very grateful for their friendship and for rendering

my past years in London so extraordinary and memorable: Vasilis, Petros, Teddy, Benoit,

Panos, Lucas, Larry, Yuri and Sun (in the order in which we met) and my table tennis

partners Nuri, Kris and Sam. I wish them all the good fortune they deserve for embarking

on the careers they have in mind.

I am thankful to Kate for her presence, her love and her rationality – and for our many

common journeys.

My parents and my brother Sebastian have contributed to my PhD and my personal

endeavours in so many ways that I feel words are too little to do them justice. I am

indebted to Mum for her patience, positivity, care, her love and her encouragement in

difficult times; to Pap for all his love, advice, experience, efforts and empathy; and to

Sebastian for the times we spent together, his humour, advice and for patiently reviewing

my proof in Appendix A.1.

7

8

To Mum and Pap

9

10

Er sprach leise, doch beschwingt; die

klaren, harten, logischen, lateinischen

Sätze kamen aus seinem Mund wie

griechische Verse.
”
Macht“, träumte

er,
”
[...] das ist die Idee, wie sie aus

dem Kopf herausspringt, Tat wird, die

plumpe Wirklichkeit überwältigt. [...]“

Varro in
”
Der falsche Nero“

Lion Feuchtwanger

11

12

Contents

1 Introduction 33

1.1 Turbulent flows with particle formation . 33

1.2 Specific contributions . 35

2 An explicit adaptive grid approach for solving the PBE 39

2.1 Introduction . 39

2.2 Review of moving and adaptive grid discretization schemes for the PBE . . 41

2.3 The population balance equation . 44

2.4 A space and time dependent coordinate transformation on particle property

space . 45

2.4.1 The transformed PBE . 45

2.4.2 Semi-discrete representation . 48

2.5 An explicit adaptive grid approach . 52

2.5.1 The equidistribution principle . 52

2.5.2 An adjustment scheme for the node density 54

2.5.3 Prescribing the coordinate transformation explicitly 58

2.6 Numerical experiments . 60

2.6.1 Advection of a unit step . 61

2.6.2 BaSO4 precipitation in a plug flow reactor 64

2.7 Chapter summary . 79

3 An LES-PBE-PDF approach for modelling turbulent precipitation and

condensation 83

3.1 Introduction . 83

3.2 The LES-PBE-PDF framework for turbulent reacting flows with particle

formation . 88

3.2.1 Governing equations . 88

3.2.2 Large eddy simulation . 90

3.2.3 The LES-PBE-PDF framework . 91

3.2.4 Mixing on the molecular scale . 94

3.2.5 The statistical significance of the pdf in the context of LES 96

13

Contents

3.2.6 A stochastic field approach for solving the joint scalar-number den-

sity pdf transport equation . 97

3.3 Numerical solution scheme . 100

3.4 Applications . 101

3.4.1 BaSO4 precipitation in a coaxial pipe mixer 101

3.4.2 Droplet condensation in a turbulent mixing layer 109

3.5 Chapter summary . 118

4 An LES-PBE-PDF approach for modelling soot formation 121

4.1 Introduction . 121

4.2 Approaches for modelling soot formation in turbulent non-premixed flames 123

4.3 Physical model . 127

4.3.1 Governing equations . 127

4.3.2 Large eddy simulation . 129

4.3.3 The joint scalar-number density pdf 131

4.3.4 Micromixing model . 132

4.3.5 The stochastic field equations . 133

4.4 Gas phase and soot kinetics . 134

4.4.1 Gas phase kinetics and radiation . 134

4.4.2 Soot kinetics . 135

4.5 Delft III flame . 137

4.5.1 Flame configuration . 137

4.5.2 Previous investigations of the nearfield 138

4.5.3 Numerical solution scheme and implementational aspects 140

4.5.4 Results and discussion . 141

4.6 Chapter summary . 145

5 A methodology for the integration of stiff chemical kinetics on GPUs 151

5.1 Introduction . 151

5.2 Sample problem . 155

5.3 Radau5 II . 158

5.4 GPU computing . 160

5.4.1 Characteristics of CPU and GPU architectures 160

5.4.2 GPU architecture and the OpenCL standard 161

5.4.3 Portability . 162

5.4.4 SIMD architecture . 163

5.5 GPU parallelization strategy . 164

5.5.1 Techniques for improving performance on a GPU 165

5.5.2 Mapping the reaction fractional step onto the GPU’s execution model166

5.5.3 Memory layout . 170

14

Contents

5.5.4 Solving the linear systems . 172

5.5.5 Overlapping kernel invocation and data transfer 173

5.5.6 Employing a different integration scheme 176

5.6 Numerical experiments . 177

5.6.1 Varying the problem size . 178

5.6.2 Speedup compared to an MPI-CPU implementation 180

5.6.3 A performance measure . 181

5.6.4 Varying the mechanism size . 182

5.6.5 Varying the time step size . 186

5.6.6 Concluding remarks . 187

5.7 Chapter summary . 189

6 Chemical kinetics integration on a CPU-GPU pair 191

6.1 Introduction . 191

6.2 Reaction fractional step . 192

6.3 Distribution strategies . 193

6.3.1 ODE systems which behave similarly stiff 193

6.3.2 Accounting for stiffness . 198

6.4 Numerical experiments . 199

6.5 Chapter summary . 201

7 Conclusions 203

7.1 Summary . 203

7.2 Outlook . 206

Bibliography 209

Appendix A Node density distribution 229

A.1 Steady-state solutions of Eq. (2.48) . 229

A.2 An iterative solution scheme for the steady-state node density distribution . 230

Appendix B The LES-PBE-PDF method 233

B.1 Identity in Eq. (3.18) . 233

B.2 An evolution equation for the transition pdf associated with the stochastic

fields . 234

B.2.1 Incompressible, constant density flows 234

B.2.2 Variable density flows at low Mach number 236

B.3 An adaptive grid discretization of Eq. (3.33) 237

Appendix C Algorithmic details of the Radau5 GPU implementation 241

C.1 Radau5 . 241

C.2 Determining the number of kernel invocations 241

15

16

List of Figures

2.1 Numerical solution schemes for the PBE . 41

2.2 Flow chart of the explicit adaptive grid scheme for solving the PBE 51

2.3 Arc length monitor function . 54

2.4 The padding of the node density distribution 57

2.5 An example for the node density adjustment scheme 58

2.6 Schematic illustration of the l-t-mesh . 59

2.7 Algorithmic steps for explicitly constructing the coordinate transformation 60

2.8 Advection of a step-shaped profile . 62

2.9 Convergence diagram for the step advection example 63

2.10 Influence of the time step size . 64

2.11 Varying b in the definition of the monitor function 65

2.12 BaSO4 nucleation rate . 68

2.13 BaSO4 growth rate in a steady-state plug flow reactor 69

2.14 Evolution of the BaSO4 particle size distribution along a plug flow reactor . 72

2.15 Reduction in supersaturation . 73

2.16 Evolution of the particle volume density . 73

2.17 BaSO4 particle size distributions for different r-values 74

2.18 BaSO4 particle size distributions for different discretization schemes 75

2.19 Convergence diagram for the zeroth moment of the fully developed BaSO4

particle size distribution . 76

2.20 Convergence diagram for the fully developed volumetric BaSO4 particle size

distribution . 76

2.21 BaSO4 particle size distributions in an unsteady plug flow reactor 80

3.1 The LES-PBE-PDF framework . 89

3.2 A coaxial pipe mixer . 102

3.3 Contour plots of kinetic fields for the precipitation of BaSO4 104

3.4 Axial and radial profiles of supersaturation 105

3.5 Evolution of the BaSO4 particle size distribution along the centerline 106

3.6 Total particle number and volume density along the centerline 107

3.7 Radially integrated particle volume fraction along the centerline 107

17

List of Figures

3.8 Particle size distribution at the reactor outlet 108

3.9 Schematic illustration of the DBP-laden mixing layer 111

3.10 Mean axial velocity profiles . 113

3.11 Crosswise profiles of number density statistics 114

3.12 Crosswise profiles of droplet volume fraction statistics 115

3.13 Crosswise profiles of mean nucleation rate 116

3.14 Crosswise profiles of mean growth rate . 117

3.15 Instantaneous droplet size distribution along the center of the mixing layer 118

4.1 Computational domain for the Delft III flame calculation 138

4.2 Radial profiles of mean axial velocity and temperature 142

4.3 Radial profiles of selected species mass fractions 147

4.4 Contour plots of mean temperature, soot number density and volume fraction148

4.5 Soot volume fraction along the centerline 148

4.6 Soot number density and volume fraction conditioned on mixture fraction . 149

4.7 Instantaneous soot particle size distributions 149

5.1 CPU/GPU architectures . 163

5.2 Cycles for multiple kernel invocations . 176

5.3 Runtime over problem size for GRI 1.2 . 180

5.4 Runtime over problem size for GRI 3.0 . 181

5.5 Runtime over problem size for Curran mechanism 182

5.6 Relative runtime over problem size . 183

5.7 Runtime over mechanism size . 185

5.8 Number of ODE systems per time unit over mechanism size 186

5.9 Solver efficiency over time step size for user-end devices 187

5.10 Solver efficiency over time step size for professional level devices 188

6.1 Combined CPU/GPU implementation . 196

6.2 Sample distributions of ODE systems across MPI processes 197

6.3 Maximum number of ODE systems on an MPI process over the CPU frac-

tion of ODE systems . 198

6.4 Sandia D flame . 199

6.5 Instantaneous temperature field and flammability indicator 200

C.1 Radau5 flow chart . 242

C.2 Radau5 flow chart (continued) . 243

C.3 Number of ODE systems per kernel invocation 244

18

List of Tables

2.1 Constitutive, kinetic and transport parameters for BaSO4 precipitation . . 66

2.2 Runtime measurements for a BaSO4 plug flow reactor 77

3.1 Modelling approaches for turbulent reacting flows with polydispersed par-

ticle formation . 88

3.2 Integral properties of the (volumetric) particle size distribution 109

3.3 Runtime measurements for BaSO4 precipitation in a coaxial pipe mixer . . 110

3.4 DBP kinetics . 112

3.5 Runtime measurements for DBP mixing layer 119

4.1 Approaches for modelling soot formation in turbulent non-premixed flames 127

4.2 Runtime measurements for the Delft III flame 145

5.1 GPU implementations of integration schemes for chemical kinetics 155

5.2 Numbers . 158

5.3 GPU resources . 172

5.4 Reaction mechanisms . 178

5.5 Comparing the solver efficiency for selected processors 184

6.1 Comparing runtimes for CPU, GPU and CPU/GPU implementations . . . 201

19

20

Nomenclature

Operators and symbols

(·)−1 Inverse

(·)T Transposition

˙(·) Time derivative

〈(·)〉Ωj
Average over cell Ωj

← Substitution operator

(·) LES-operator

∂(·)/∂t Partial derivative with respect to t

(̃·) Favre-filter

D(·)/Dt Material time derivative

d(·)/dt Derivative with respect to t

Sets and spaces

[0, L] Particle property space

L⋆ An interval about l⋆

L+ An interval about l+

Ω Flow domain

R+
0 Set of non-negative real numbers

Functions

arg Argument function

δ(·) Dirac’s delta distribution

erf Error function

21

Nomenclature

exp Exponential function

floor Returns the largest integer that is smaller than or equal to the argument

value

ln Natural logarithm

max Maximum of the argument values

mod Modulo operation

id Identity

Physical quantities

t̄(x) Time coordinate associated with a batch reactor

x̄(t) Spatial coordinate associated with a steady-state plug flow reactor

χ(z) Scalar dissipation rate

ω̇(Y, N) Scalar production/destruction rates

ṡ(l,Y, N) Particle formation rate

ρ̂(Y) Mixture density computed in terms of the reactive scalars

n(x) Outward unit normal vector

ν(x, t) Kinematic viscosity

ρ(x, t) Mixture density

τij(x, t) Viscous stress tensor

u(x, t) Ambient velocity field

x A location in physical space

Y(x, t) Reactive scalars (fluid phase composition)

Y0(x) Initial reactive scalars

YF Fuel composition

YO Oxidizer composition

D(x, t) Diffusivity of the reactive scalars

Dp(x, t) Particle diffusivity

22

Nomenclature

f(τ,x, t) Transformed particle number density

G(l,Y) Particle growth/shrinkage rate

Jij(x, t) Diffusive flux of scalar i in the jth coordinate direction

Kj(x, t) Diffusive flux of number density in the jth coordinate direction

l A particle property (e.g., particle size)

Mk(N) kth moment of N(l,x, t)

N(l,x, t) Particle number density

N0(l,x) Initial particle number density (Chapter 3)

NΩ(l,x) Initial particle number density (Chapter 2)

Nρ,0(l,x) Initial mass-based particle number density

Nρ(l,x, t) Mass-based particle number density

ns Number of reactive scalars

p(x, t) Pressure

s Flamelet strain rate (Chapter 5)

t Time

T (Y) Temperature

t0 Initial time

v Particle volume

V (x, t) Volume density of the particulate phase

x Axial coordinate

z Mixture fraction

LES and PDF-formalism

∆ Local LES mesh size

ǫ(·,x, t) Monte Carlo error

Γ(x, t) Eddy viscosity

κ(x, t) Turbulent mixing frequency

23

Nomenclature

m(x, t, z) Micromixing model

Mi,Mp Micromixing operators

Φ(u, p,Y, N) A scalar function(al) of u(x, t), p(x, t), Y(x, t) and N(·,x, t)

φ(x, t) A scalar function

φ(t; τ,x) Transformed stochastic fields

φ(i)(t; τ,x) ith realization of the transformed stochastic fields

ψ Sample space variable associated with φ(x, t)

s(·,y, n(·)) Joint scalar-number density source term

σ(·,x, t) Standard deviation of an observable F (Y(x, t), N(·,x, t))

τ∗ij(x, t) Residual stress tensor

θ(t; l,x) Stochastic fields

θ(i)(t; l,x) ith realization of the stochastic fields

v Sample space variable associated with u(x, t)

y Sample space variable associated with Y(x, t)

z Joint sample space variable associated with (Y(x, t), N(·,x, t)) or (Y(x, t), Nρ(·,x, t))

a A constant field

Cκ Micromixing constant

F (y, n(·)) A scalar function(al) of (y, n(·))

f(y, n(·);x, t) Joint scalar-number density pdf

fφ(ψ;x, t) Filtered pdf associated with a single realization of φ(x, t)

fY(y;x, t) Joint scalar pdf

G(x,x′) LES filter kernel

g(y, n(·);x, t) Fine-grained density associated with f(y, n(·);x, t)

h′(z, t;x) Fine-grained density associated with h(z, t;x)

h(z, t;x) pdf associated with θ(t;x)

n(·) Sample space function associated with N(·,x, t) or Nρ(·,x, t)

24

Nomenclature

nf Number of stochastic fields

nφ Number of reactive scalars plus one

q Sample space variable associated with p(x, t)

Wj(t) jth Wiener process

Coordinate transformation

τ̄(l,x, t) Inverse coordinate transformation associated with l̄(τ,x, t)

τ̄0(l) Inverse coordinate transformation associated with l̄0(τ)

τ̄∞(l) Inverse coordinate transformation associated with l̄∞(τ)

l̄(τ,x, t) An (x, t)-dependent coordinate transformation on [0, L]

l̄0(τ) Equidistributing coordinate transformation on [0, L]

l̄∞(τ) Adjusted equidistributing coordinate transformation on [0, L]

Ṙ(l, s) Rate of change for the node density constraints violation

κ Relaxation time constant

λ Scaling parameter

ρ(l, s) Node density distribution

ρ0(l) Node density distribution associated with τ̄0(l)

ρ∞(l) Node density distribution associated with τ̄∞(l)

ρτ Uniform node density in τ -space

ρmin(l) Minimum admissible node density in l-space

b Regularization constant

b(τ,x, t) A term involving second order derivatives of l̄(τ,x, t)

C A constant

c Normalization constant

C ′ A positive constant

d Equidistribution constant associated with a node density distribution

g(τ,x, t) Contribution of l̄(τ,x, t) to the cumulative particle growth rate

25

Nomenclature

Gρ0(l, l′) A hyperbolic function with a tip at (l′, ρ0(l′))

L Maximum representable value for the particle property

l+ A particular l-value

l⋆ A particular l-value

ll Minimum representable value for the particle property

M0(N0) Zeroth moment of N0(l)

mN0(l) Monitor function

N0(l) Reference particle property distribution

Pρ0(l) Padding associated with ρ0(l)

Pρ∞(l) Padding associated with ρ∞(l)

Pρ(l, s) Padding associated with ρ(l, s)

r Maximum admissible grid stretching

s A measure of progress or time

s∞ Time at which ρ(l, s) reaches a steady-state

T Time constant

w(τ,x, t) Jacobian associated with l̄(τ,x, t)

Discrete representation

τ̄j Coordinate transformation at time sj

∆s Constant time step

∆t Constant time step

∆tk Time step from tk to tk+1

∆x Constant grid spacing along the x-coordinate

∆τ Uniform grid spacing in τ -space

tol Absolute/relative convergence tolerances

Ωj Finite volume subdomain in physical space

∂Ωj Boundary of Ωj

26

Nomenclature

φ(τi,x, t) Flux limiter at node τi

τi A grid node in τ -space

xj Midpoint of cell Ωj

D′(x, t) Effective diffusivity

fi(x, t) Average transformed particle number density on cell [τi, τi+1]

Fi,j(t) Average discrete number density on [τi, τi+1]× Ωj

h Constant time step

li A grid node in l-space

nc Number of finite volume cells in physical space

np Number of grid points in τ -space

sj A point in time

tk A point in time

u(τi) Index of the cell upstream of node τi

uu(τi) Index of the second cell upstream of node τi

Vj Volume of cell Ωj

wi(x, t) Jacobian of l̄(τ,x, t) on [τi, τi+1]

zi A grid point in mixture fraction space

Numerical examples and kinetics

[(·)] Molar concentration of species (·)

C̄p Mixture molar specific heat at constant pressure

χ A fraction of surface sites

ω̇⋆
C2H2

(Y, N) Consumption/release rate of C2H2 due to soot formation

ω̇⋆
H2

(Y, N) Consumption/release rate of H2 due to soot formation

Γ Kinematic diffusivity

γ±(Y) Mean activity coefficient

M̂2(x, t) Second moment computed for a lognormal distribution from M0(x, t),

M1(x, t) and M3(x, t)

27

Nomenclature

λ(x, t) Coefficient for a lognormal droplet size distribution at (x, t)

νij Stoichiometric coefficients

φ Particle sphericity

ρs Density of solid soot

ρBaSO4
Density of BaSO4

σ Stefan-Boltzmann constant

σ(x, t) Coefficient for a lognormal droplet size distribution at (x, t)

Cmin Number of C-atoms per soot nucleus

Cs Radiation coefficient

d Jet diameter

e(t) Average deviation from reference solution

fa(N) Soot surface fraction

fv(N) Soot particle volume fraction

g Constant advection velocity

H(Y, N) Loss in enthalpy due to gas phase and soot radiation

Hi(T) Molar enthalpy of species i

k1(T), k2(T) Arrhenius rate expressions

KA(T),KB(T) T -dependent parameters due to Nagle and Strickland-Constable [134]

kB Boltzmann’s constant

kD Mass transfer coefficient

kg Surface integration coefficient

kS Solubility product

KT (T),Kz(T) T -dependent parameters due to Nagle and Strickland-Constable [134]

kv Volume shape factor

l1, l2, l3 Length of the computational domain in the x1, x2 and x3-directions

lnuc Mean nuclei size

28

Nomenclature

MWi Molecular weight of species i

MWs Molecular weight of solid soot

NA Avogadro’s number

pi Partial pressure of species i

qj Progress variable associated with reaction j

RN (Y) Nucleation rate

S(Y) Supersaturation

sN (Y) Soot nucleation rate

sC2H2
(Y) Specific surface growth rate

sO2
(Y) Specific surface shrinkage rate due to oxidation by O2

sOH(Y) Specific surface shrinkage rate due to oxidation by OH

Tb Ambient background temperature

u Bulk velocity

Time integration

αl Quadrature mid-points

βlk Quadrature weights

γl Quadrature weights

kl Intermediate solutions

α̃ A particular quadrature mid-point

γ̃l Quadrature weights

m Number of stages of an implicit Runge-Kutta method

t′ Normalized time

GPU computing

t̄hd Overhead for submitting a read/write command to the device

ṅ Number of ODE systems that are solved per unit of time

P Property matrix

29

Nomenclature

ri Row i of property matrix P

P̃ Permuted property matrix

x Permutation vector

a0, ahd, bhd Coefficients

Kj Number of reactions assigned to work item j

l OpenCL work group size

mfo Maximum number of fall-off parameters per reaction

msp Maximum number of species per reaction

mtb Maximum number of third bodies per reaction

n Number of ODE systems

n0 Number of ODE systems below which the runtime remains constant

n1 Number of ODE systems solved in a single t-cycle

n2 Number of ODE systems solved in a single p-cycle

nb Memory buffer size required by a single ODE system

nc Number of reactive scalars

nfo Number of fall-off reactions

nhd Number of ODE systems beyond which the data transfer time increases

linearly with n

nmax Maximum number of ODE systems per kernel invocation

np Number of ODE systems per t/p-cycle

nr Number of reactions

nsp Number of species

ntb Number of reactions involving third body efficiencies

p1, p2, p3 Properties associated with chemical reactions

r Number of t/p-cycles

rb Maximum allocatable buffer size

30

Nomenclature

rm Remaining memory available on a device

s1, s2 Number of p-cycles

t(r) Total runtime as a function of the number of t/p-cycles

tdd Time for executing a kernel on a device

tdh Time for device-to-host memory transfer

thd Time for host-to-device memory transfer

Abbreviations

fdf A filtered density function

pdf A probability density function

API Application programming interface

BC Boundary condition

CPU Central processing unit

DBP Dibutyl phtalate (C16H22O4)

DNS Direct numerical simulation

DPB Discretized population balance

DQMOM Direct quadrature method of moments

DRAM Dynamic random access memory

EAGM Explicit adaptive grid method

FDM Finite difference method

FEM Finite element method

FVM Finite volume method

GPU Graphics processing unit

HMOM Hybrid method of moments

IEM Interaction by exchange with the mean

IVP Initial value problem

LES Large eddy simulation

31

Nomenclature

MMPDE Moving mesh partial differential equation

MOM Method of moments

MOMIC Method of moments with interpolative closure

MPI Message passing interface

ODE Ordinary differential equation

OpenCL Open Computing Language

PBE Population balance equation

PCIe Peripheral component interconnect express

PDF Probability density function (modelling approach)

QMOM Quadrature method of moments

RANS Reynolds averaged Navier-Stokes equations

rms Root mean square

SIMD Single instruction stream, multiple data streams

TVD Total variation diminishing

VSD Volumetric size distribution

XMOMY A variant of the method of moments, e.g., MOMIC, QMOM, DQMOM,

HMOM

32

Chapter 1

Introduction

1.1 Turbulent flows with particle formation

Turbulent reacting flows with particle formation appear in many environmental and engi-

neering processes. In some applications such as precipitation, crystallization or cell growth

experiments, the particulate phase constitutes the desired product of the unit operation,

while in others particles appear as by-products, possibly altering the process characteris-

tics or affecting its outcomes. This may occur, for instance, in hydrocarbon combustion

devices, where under certain conditions soot particles form, potentially polluting the com-

bustor or being released into the environment. The prediction and analysis of particle

formation processes play an important role, for instance, in the reduction of pollutant

emissions, the control of aerosols or the design of process conditions in chemical reactors.

Depending on the particular application, the individual particles can be characterized

by different intrinsic properties, representing, for instance, the particle size, shape, charge

or velocity. As the particles interact with the ambient fluid phase and/or with each other,

these intrinsic properties change and, by consequence, the particles evolve both in particle

property space and in physical space. If a large number of particles is present, it is common

to adopt a continuum viewpoint and to monitor the number density of particles whose

intrinsic properties take on particular values at a given point in the flow domain and

instant of time. This naturally leads to the particle property distribution which describes

the change in particle number density as particle property space is traversed. The Eulerian

evolution of the particle property distribution throughout the flow domain is physically

governed by the population balance equation [77].

In the applications mentioned above, the particles are so small that momentum ex-

change between the particles and the carrier fluid is instantaneous. As a result, the

particles react immediately to changes in the ambient flow field and do not experience lift

or drag forces exerted by the ambient flow. Such particles are termed non-inertial particles

and we confine the attention to these particles in the present work. The formulation of

a population balance based model to account for particle inertia is outlined by Rigopou-

33

1 Introduction

los [173], for instance. Furthermore, our focus lies on applications in which particles are

polydispersed with respect to a single particle property, for example, particle size. The

particle population is then characterized by its particle size distribution and other relevant

properties are inherited from the ambient fluid.

Frequently, the carrier fluid and the immersed particulate phase flow turbulently. While

turbulence has been addressed in many scientific works, it seems to have evaded a precise

definition. Rather, our understanding of turbulence is more phenomenological in nature.

The instantaneous flow field appears to vary randomly and chaotically, forming a multi-

tude of eddies on different length and time scales that pervade the fluid motion. In this

way, mixing is greatly enhanced and the transport of momentum, fluid constituents or par-

ticles appears to be more homogenizing than in a laminar flow. In the Reynolds-averaged

approach to turbulence modelling, the governing fields describing the flow and the flowing

medium are considered as random fields; the objective then consists in computing expec-

tations, variances or, more generally, low order statistical moments of the random fields.

This is met with a paradox, however: The physical laws governing the time and space

evolution of the governing fields are deterministic. Commonly, this paradox is resolved

by arguing that randomness enters our physical description through initial and boundary

conditions. In practice, randomness can be triggered, for instance, by surface roughness

in wall-bounded flows, changes in flow rates, pollutants, dust or many other factors which

are difficult to control in the realization and repetition of a particular experiment. While

the instantaneous flow field displays the characteristics we associate with turbulence, it is

found that the ensemble average of several realizations behaves deterministically – reflect-

ing the statistical expectation mentioned above.

A central aspect of the Reynolds-averaged (RANS) description is that the influence of

the remaining statistical moments onto the moments which are solved for requires closure

by physical insights into the processes through which the moments interact. Although

these closures have reached a mature state by now and are widely deployed in industrial

applications, there does not exist as of yet a universal closure model which is suitable

for all flow configurations and performs equally well in wall-bounded flows as in free

jets, for instance. This has led to the question whether a formal operation other than

the statistical moment transformation can be found for which the transformed fields are

less sensitive to the particular turbulence closure employed. Such an operation forms the

foundation of large eddy simulation (LES). Originally, the LES concept has been developed

by researchers in the atmospheric sciences community, but within the past two decades LES

has attracted increasing interest from fluid mechanicians with other applications in mind.

Indeed, current efforts of the combustion community are concerned with the construction

of LES closures that are suitable for modelling reacting flows, possibly including particle

formation. A part of these efforts are the developments which we report in this work.

Specifically, our objectives are, first, to develop an LES-based model for predicting the

change in fluid composition and particle size distribution throughout a turbulent carrier

34

1.2 Specific contributions

flow with particle formation and, second, to devise a computationally efficient and accurate

numerical solution scheme. In view of the second point, we invoke two complementary

strategies. In the first one, a novel numerical solution scheme with an advantageous

accuracy over computational cost ratio is developed, while in the second strategy a given

numerical solution scheme is reimplemented for execution on a graphics processing unit

(GPU). In the following section, the scientific contributions of our work are succinctly

summarized.

1.2 Specific contributions

In view of the objectives set out in the previous section, we report on four main contribu-

tions in this work:

A grid-adaptive discretization scheme for the PBE. In Chapter 2, we present a novel

explicit solution-adaptive numerical scheme for discretizing the spatially inhomogeneous

and unsteady PBE in particle size space. This scheme is based on a space and time

dependent coordinate transformation which redistributes resolution in particle size space

according to the shapes of recent solutions for the particle size distribution. In particular,

the coordinate transformation is marched in time explicitly.

By design, our adaptive grid technique is able to accurately capture sharp features

such as peaks or near-discontinuities, while maintaining the semi-discrete system size and

adhering to a uniform fixed grid discretization in transformed particle property space. This

is particularly advantageous if the PBE is combined with a spatially and temporally fully

resolved flow model and a standard Eulerian solution scheme is applied in physical space.

In order to accommodate localized source terms and to control the grid stretching, we

develop a robust scheme for modifying the coordinate transformation such that constraints

on the resolution in physical particle property space are obeyed.

As an example, we consider the precipitation of BaSO4 particles from an aqueous

solution in a plug flow reactor. Our findings demonstrate that for a given accuracy of the

numerical solution the explicit adaptive grid technique requires over an order of magnitude

fewer grid points than a comparable fixed grid discretization scheme.

An LES-PBE-PDF approach for modelling particle formation in turbulent constant den-

sity fluids. In Chapter 3, we present a comprehensive model and stochastic numerical

solution scheme for predicting the evolution of a particle property distribution in a turbu-

lent constant density flow. Based on the concept of LES, the existing LES-transported pdf

approach for fluid phase scalars is augmented by the particle number density and a mod-

elled evolution equation for the filtered probability density function (pdf) associated with

the instantaneous fluid composition and particle property distribution is obtained. This

LES-PBE-PDF approach allows us to predict the LES-filtered particle property distribu-

35

1 Introduction

tion at each spatial location and instant in time without any restriction on the chemical

or particle formation kinetics. The numerical solution scheme is based on a reformula-

tion of the joint scalar-number density pdf transport equation in terms of a statistically

equivalent system of Eulerian stochastic fields.

As test cases, we consider the precipitation of BaSO4 crystals in a coaxial pipe mixer

as well as the condensation of an aerosol in a developed turbulent mixing layer. Our

investigations in this chapter not only demonstrate the predictive capabilities of the LES-

PBE-PDF model, but also indicate the computational efficiency of the numerical solution

scheme.

An LES-PBE-PDF approach for modelling soot formation. Subsequently, in Chapter 4,

the LES-PBE-PDF model and the stochastic field formulation are generalized to variable

density flows at low Mach number and applied to investigate soot formation in the turbu-

lent non-premixed Delft III flame. Here, the soot kinetics encompass acetylene-based rate

expressions for nucleation and growth that have previously been validated in the context

of laminar diffusion flames. In addition, both species consumption by soot formation and

radiation based on the assumption of optical thinness are accounted for. While the agree-

ment of our model predictions with experimental measurements is not perfect, we indicate

the benefits of the combined LES-PBE-PDF model and demonstrate its computational

viability.

A GPU-based implicit solver for the reaction fractional step. Since much of the compu-

tational expense of current reacting flow solvers is incurred during the chemical kinetics

integration, we explore in Chapter 5 the question whether such integration schemes can

be accelerated by execution on a modern GPU. Frequently, chemical reaction mechanisms

exhibit severe stiffness such that, in practice, implicit integration schemes, typically of

high order are applied.

In this light, we have carefully reimplemented in OpenCL C the Fortran 77 program

of the 5th order accurate implicit Runge-Kutta method Radau5 by Hairer and Wanner

[67] and tested it extensively in the context of a transient equilibrium scheme for the

flamelet model. Our implementation can easily be integrated with any existing reacting

flow software in order to solve the reaction fractional step on an OpenCL-enabled GPU.

Moreover, it is suited for any Chemkin-format reaction mechanism with . 200 species

without incurring a loss in GPU occupancy and it reaches its limit speedup (which is largely

independent of the mechanism size) at a small problem size of ≈ 500 ODE systems. In view

of memory constraints, we include an optimized scheme for splitting the solver call across

several GPU invocations and overlapping the solver execution with data transfers. An in-

depth evaluation is based on runtime measurements of the original CPU implementation

and its GPU-based counterpart on a user level and a high-end CPU/GPU for an increasing

number of grid points, reduced and detailed reaction mechanisms and time step sizes.

36

1.2 Specific contributions

Solving the reaction fractional step on a CPU/GPU pair. In Chapter 5, we find that,

for an implicit time integration scheme of high order, a GPU-based solver of the reaction

fractional step runs at best approximately two times slower than a conventional CPU

implementation. However, since most desktop computers encompass both a CPU and a

GPU, it may be beneficial in practice to combine the CPU and GPU implementations

and parallelize the reaction fractional step across both processors. In Chapter 6, we hence

devise different strategies for parallelizing the reaction fractional step across a multi-core

CPU and a GPU and assess the performance gain in the context of an LES of the Sandia

D flame. The implementation here is modularized and may be readily incorporated into

existing reacting flow solvers.

The developments in Chapters 2 through 6 have recently been reported in our publi-

cations [185–188] and the conference article [184]. The main content of these references

(text, figures, tables) is reproduced here with minor modifications and amendments, while

we have taken care to ensure that no input from the publishers (Elsevier, AIP Publishing)

has been included.

As part of our research efforts, a second conference article has been published [58] re-

cently. This conference article originated from a collaboration with C. E. Garcia-Gonzalez,

A. Liu, S. Rigopoulos and B. A. O. Williams from the Department of Mechanical Engi-

neering, Imperial College London, and the Department of Engineering Science, University

of Oxford, respectively. Here, our objective was to obtain predictions of laser diagnostic

signals from computed gas phase compositions and primary soot particle size distributions

in a laminar co-flow diffusion flame [33] and to assess the influence of soot polydispersity

on the recorded signals. It was found that the light scattered elastically from soot is

not sensitive to the primary particle size distribution, supporting the common practice of

considering soot particles as monodisperse for the interpretation of elastic light scattering

signals.

37

38

Chapter 2

An explicit adaptive grid approach

for solving the PBE

2.1 Introduction

From a Eulerian perspective, the evolution of the property distribution associated with a

particulate phase that is immersed in a carrier flow can be described by the PBE. In the

present chapter, we confine the attention to discretization-based methods for numerically

solving the spatially inhomogeneous and unsteady PBE. Alternative approaches such as

the method of moments and stochastic solution schemes have been reviewed by Ramkr-

ishna [169] and Rigopoulos [173], for instance.

In the context of discretization-based methods, the PBE is commonly discretized on a

fixed grid in particle property space and the resulting semi-discrete equations are solved by

applying a standard Eulerian solution scheme [209]. Here, the semi-discrete system consists

of scalar transport equations for so-called discrete number densities. Since these transport

equations are formally identical to those of the reactive scalars which characterize the fluid

phase, the PBE can be naturally incorporated into models for the laminar or turbulent

carrier flow [39, 40, 173, 174].

While fixed grid discretization schemes are very mature, they frequently require an

extremely fine grid throughout particle property space. This is particularly acute if the

particle property distribution evolves over several orders of magnitude, potentially devel-

oping peaks or near-discontinuities. In commercial crystallizers, for instance, the particle

size can span up to five orders of magnitude, ranging from the nucleation size ∼ 1 nm

to the final crystal size ∼ 100µm. By consequence, the computational effort may be-

come immense, in particular, if the particle property distribution evolves in a spatially

inhomogeneous flow field.

Alternatively, the PBE can be discretized in particle property space by a moving or

adaptive grid approach in which the local grid resolution varies dynamically. Here, the

grid node locations in particle property space appear as additional dependent variables

39

2 An explicit adaptive grid approach for solving the PBE

which are governed by a dynamical system that needs to be solved in conjunction with

the PBE. Frequently, this dynamical system can be deduced from an evolution equa-

tion for a coordinate transformation which maps physical particle property space onto a

transformed particle property space and is kinetically driven by the particle formation

kinetics (moving grid approaches) or the current particle property distribution (adaptive

grid approaches). In Section 2.2, we specifically review those moving and adaptive grid

approaches which have been applied to the numerical solution of the spatially homoge-

neous PBE. The main persisting challenges associated with these solution schemes are

that the size of the semi-discrete system significantly increases and that fixed grid source

terms cannot be accommodated in a standard fashion.

In this chapter, we present an explicit adaptive grid technique which seeks to resolve

these issues. The main idea is to prescribe the future time and space evolution of the coor-

dinate transformation on particle property space explicitly in terms of recent solutions for

the particle property distribution. Based on the prescribed coordinate transformation, the

PBE can be reformulated in transformed particle property space and discretized there on a

uniform reference grid. Formally, the coordinate transformation is constructed such that,

at each spatial location, the current resolution in physical particle property space varies

with, for instance, the gradient or curvature of a recent particle property distribution. In

practice, this measure of variation is specified by a so-called monitor function.

As indicated above, one of the main challenges associated with grid-adaptive discretiza-

tions is related to the resolution of source terms which are localized in particle property

space. If grid nodes move away from the nucleation size in a particle formation process,

for instance, then the nucleation sources may be underresolved or become invisible to the

adaptive grid. In addition, the accuracy and convergence of an adaptive grid scheme often

rely on the grid spacings to change gently in particle property space. In order to address

both of these points, we adopt the notion of a node density in physical particle property

space [43] and impose conditions on the minimum admissible node density and the local

change of node density [88]. In the context of particle formation, these conditions may be

expressed in terms of two physical grid parameters, the minimum node density inside the

nucleation interval and the maximum admissible grid stretching. Both of these values can

be chosen based on experience, much like in the conventional generation of a fixed grid.

The contribution of this chapter is twofold: First, we develop an explicit adaptive

grid technique for discretizing the spatially inhomogeneous and unsteady PBE in particle

property space. Since here the motion of nodes in particle property space is prescribed

explicitly, the system size of the semi-discrete PBE can be maintained. Second, we present

a robust numerical scheme for accommodating localized source terms and preventing grid

distortion by imposing conditions on the node density distribution in physical particle

property space.

This chapter is organized as follows: In Sections 2.2 and 2.3, we review existing mov-

ing and adaptive grid schemes for discretizing the PBE in particle property space and

40

2.2 Review of moving and adaptive grid discretization schemes for the PBE

[104] This work

DPB
Direct discretization

approaches

FEM FDM FVM

Galerkincollocation
Orthogonal

Method of
characteristics

DPB FEM

Galerkin

Static Dynamic

Moving finite element
method MMPDE Explicit

Numerical discretization schemes for the PBE

Adaptive grid schemesMoving grid schemesFixed grid discretization schemes

[9, 34, 96, 105, 177]

[112, 198, 199][6, 121, 138, 177, 178]

[105, 127, 166, 206]

[5, 7, 61, 138, 175]

[44, 45]

[98, 99, 167][20, 74, 94, 108, 114]

Figure 2.1 An overview of numerical schemes for discretizing the PBE in particle property space (DPB: Discretized
Population Balance, FEM: Finite Element Method, FDM: Finite Difference Method, FVM: Finite Volume Method,
MMPDE: Moving Mesh Partial Differential Equation).

contextualize the PBE as a model for particle formation in reacting carrier flows. Subse-

quently, in Section 2.4, a space and time dependent coordinate transformation on particle

property space is introduced and the transformed PBE is presented. In Section 2.5, we

formally construct the coordinate transformation and develop a scheme for adjusting the

node density in physical particle property space. This is followed by Section 2.6 in which

both the adaptive grid technique and its fixed grid counterparts are applied to a step

advection example and a kinetically realistic test case for the precipitation of BaSO4 in a

plug flow reactor. Here, the accuracy, convergence behavior and computational efficiency

of the adaptive grid method are critically assessed. Finally, we draw conclusions in Section

2.7 and embed our findings into the line of future work.

2.2 Review of moving and adaptive grid discretization sche-

mes for the PBE

In the present section, we briefly review existing moving and adaptive1 grid approaches

which have been employed to discretize the spatially homogeneous PBE in particle prop-

erty space. As an aid to the reader, these schemes are summarized and categorized in

Figure 2.1, where, for completeness, we also include fixed grid discretization schemes.

In the context of the PBE, most moving grid approaches are based on a discretized

population balance combined with the method of characteristics (or a slight variation

thereof) which endorses the governing equations with a Lagrangian character. Within the

scope of a discretized population balance, particle property space is partitioned into a finite

number of bins and the particles in each bin are associated with a pivot property. The

discrete equations then describe how the particles associated with one pivot collectively

interact with the particles at other pivots and are often designed so as to exactly reproduce

1For clarity we term the combination of any fixed grid discretization approach with the method
of characteristics a moving grid method, while schemes in which the node positions in particle
property space are determined based on the current solution or its history are referred to as
adaptive grid approaches.

41

2 An explicit adaptive grid approach for solving the PBE

particular moments of the particle property distribution.

One of the first numerical schemes which combined a discretized population balance

with the method of characteristics is due to Kumar and Ramkrishna [96]. Here, the pivots

propagate through particle size space at the local growth rate. Since pivots may naturally

move away from the nuclei size, Kumar and Ramkrishna [96] proposed to frequently add

a bin whose pivot is located at the nuclei size to the left of the leftmost bin. Roussos

et al. [177], however, pointed out that the accuracy of the numerical scheme strongly

depends on the bin addition frequency and that, for large frequencies, the number of bins

quickly increases. As a counter measure, the grid may be coarsened at intervals [96] or,

alternatively, for each bin added to the left, the rightmost bin may be deleted [105]. In

this second technique, however, the conservation of particle mass cannot be guaranteed.

Considering a latex emulsion polymerization process, Crowley et al. [34] combined two

discretized population balances for distinct particulate phases with a prescription for the

motion of the pivots. Here, the velocity at which the largest pivots of the two discretized

populations moved was given by the growth rate associated with one of the two pivots,

while the velocity of the remaining pivots followed linearly. Physically, this approach is

based on the rationale that particle nucleation would cease to be important as particles

grow into larger size ranges and the grid expands.

Tsang and Brock [198] and Tsang and Rao [199] incorporated the method of character-

istics into a combined particle property space and time Galerkin finite element formulation

in which the grid nodes were confined to move along a first order approximation (in par-

ticle property space and time) of the local characteristics. This approach is based on a

method proposed by Varoglu and Finn [201] who pointed out that the total number of

nodes in particle property space may vary if the boundary conditions are such that more

nodes are convected out of/into one boundary than enter/leave the opposite boundary.

By construction, the moving grid approaches reviewed above involve a dynamical sys-

tem in which the pivot locations of the discretized population balance are kinetically

driven by the local particle growth rate. In the absence of a growth mechanism, Kumar

and Ramkrishna [95] showed that a similar system can also be constructed for pure aggre-

gation2 and breakage kinetics. Here, the pivots are allowed to move within the bin which

they characterize, giving an indication of how the number density distribution varies across

the bin as a result of aggregation and breakage events. As with moving grid approaches

for growth dominated problems, however, the grid adaptivity here targets the accurate

representation of one physical mechanism and may not be as well suited for other par-

ticulate processes. A more general approach in which the particle phase kinetics do not

2In line with most authors in the chemical engineering community, we refer to aggregation as an
event in which two particles merge, yielding a particle with the same shape as the parent particles.
In the literature on soot formation, by contrast, this process is more commonly referred to as
coagulation and aggregation is reserved for a process in which the parent particles remain intact,
while combining into a daughter particle with a new shape. (This second concept is adopted in
Chapter 4.)

42

2.2 Review of moving and adaptive grid discretization schemes for the PBE

appear explicitly is that of a solution-adaptive grid to which we turn now.

The main idea underlying a solution-adaptive grid approach is to adjust the number

or spatial distribution of nodes based on information about the shape of the current or

a recent particle property distribution. One of the first forays in this direction is due

to Kumar and Ramkrishna [94] who suggested to selectively refine/split those bins of

a discretized population balance over which the number density varies significantly and

to, conversely, remove/coalesce those bins over which the number density changes only

slightly. If a bin is deleted, then its number density is distributed across the adjacent

bins such that two particular moments are preserved exactly. This approach was adopted,

for instance, by Lee et al. [99] who proposed a criterion for eliminating or refining bins

based on the arc length monitor function. Following a slightly different approach, Lee

et al. [98] enhanced a fixed grid finite difference discretization of the PBE by inserting or

deleting nodes according to the local first and second derivatives of the particle property

distribution.

If the number of grid points is kept constant, then the insertion/deletion schemes involve

periodically redistributing the grid nodes and subsequently interpolating the solution from

the old grid onto the new one. Such a scheme is termed a static adaptive grid method. An

example is the two-step adaptive grid technique developed by Tang and Tang [197] and

applied in the context of the PBE by Qamar et al. [167]. Here, the PBE is first evolved

over a time step on a fixed grid using a high resolution finite volume scheme and a new grid

is computed such that the nodes are equidistributed along a measure of variation of the

particle property distribution. Subsequently, the discrete number densities associated with

the new grid are obtained from the old ones by an interpolation scheme which conserves

the first moment and prevents the creation of unphysical oscillations.

In dynamic adaptive grid schemes, on the other hand, node locations persist as de-

pendent variables and are determined by a dynamical system which contains the particle

property distribution as a kinetic variable. Frequently, this dynamical system is obtained

as the semi-discrete counterpart of a so-called moving mesh partial differential equation

(MMPDE) [76]. MMPDEs are formulated with respect to a transformed particle property

space (sometimes referred to as computational domain) and govern the time evolution of a

coordinate transformation which maps fixed grid points in transformed particle property

space onto variable node locations in physical particle property space. In the context of

the PBE, an MMPDE-based approach was adopted, for instance, by Lim et al. [104] who

investigated the crystallization of potassium sulphate in a batch reactor.

Conceptually different from the dynamic adaptive grid methods based on an MMPDE

is the moving finite element method developed by Miller and Miller [125] and applied to

the numerical solution of the PBE by Duarte and Baptista [44, 45]. Here, both the nodal

number densities and the node locations are considered as time dependent parameters

defining a sufficiently smooth discrete particle property distribution. The time derivatives

of these parameters are then determined such that the square norm of the PBE residual is

43

2 An explicit adaptive grid approach for solving the PBE

minimized. In order to avoid both degeneracies in the parameterization and grid tangling

the formulation is augmented by a penalty term which can be viewed as a source for

viscous forces constraining the relative node movement.

Contrary to the moving and dynamic adaptive grid approaches reviewed above, we

consider, in this chapter, an explicit relation between the coordinate transformation on

particle property space and past solutions for the particle property distribution [37, 48, 49].

Here, the size of the semi-discrete system is maintained and the coordinate transformation

can be modified quasi-statically, for instance, in order to accommodate fixed grid source

terms or to prevent grid distortion.

2.3 The population balance equation

The description of a particulate phase as a continuous medium is often based on the number

density of particles N(l,x, t) per unit of mixture volume and per unit of volume in particle

property space (l-space) at a particular location x in the flow domain Ω and at time t ≥ 0.

From a Eulerian perspective, the evolution of the particle number density N(l,x, t) is

governed by the so-called population balance equation (PBE) which is sometimes also

referred to as the general dynamic equation (GDE). Following Hulburt and Katz [77], the

PBE can be derived from the Lagrangian laws which govern the motion of an individual

particle in a way that is similar to the derivation of scalar conservation laws. In the present

work, we confine the attention to a particle population which is characterized by the scalar

property l ≡ l. Without loss of generality, l can be conceived as a measure of particle size

(characteristic length) such that l ∈ [0,∞).

If the particulate phase is immersed in a fluid with composition Y(x, t) and the fluid

flow is described by the velocity field u(x, t), then the PBE is given by

∂N(l,x, t)

∂t
+

3∑

j=1

∂ (uj(x, t)N(l,x, t))

∂xj
+
∂ (G(l,Y(x, t))N(l,x, t))

∂l

= −
3∑

j=1

∂Kj

∂xj
+ ṡ(l,Y(x, t), N(·,x, t)),

(2.1)

where Kj(x, t) represents the diffusive flux of number density along the jth coordinate

direction in physical space,

Kj(x, t) = −Dp(x, t)
∂N(l,x, t)

∂xj
, (2.2)

G(l,Y(x, t)) denotes the particle growth or shrinkage rate, Dp(x, t) is the common particle

diffusivity and ṡ(l,Y(x, t), N(·,x, t)) represents a source/sink term which accounts for

the processes of particle nucleation, aggregation and breakage. Note that, in general,

ṡ(l,Y(x, t), N(·,x, t)) is a functional in the local particle property distribution N(·,x, t).

44

2.4 A space and time dependent coordinate transformation on particle property space

Physically, the first term on the left hand side of Eq. (2.1) describes particle accumulation

at (l,x, t), while the second and third terms correspond to particle advection in physical

and particle property space and the first term on the right hand side represents diffusion

of particles in physical space.

Eq. (2.1) is complemented by the initial condition

N(l,x, 0) = NΩ(l,x), (2.3)

where NΩ(l,x) represents a prescription of the particle property distribution at each loca-

tion x at time t = 0. Along the spatial boundary of the domain, standard Dirichlet and/or

Neumann boundary conditions (BCs) apply, while a homogeneous Dirichlet boundary con-

dition holds at l = 0 [175],

N(0,x, t) = 0. (2.4)

2.4 A space and time dependent coordinate transformation

on particle property space

In the present section, we formally introduce a space and time dependent coordinate trans-

formation on particle property space and obtain transport equations for the transformed

particle number density within the scope of a fractional steps scheme. For the time being,

we consider the coordinate transformation as given; its explicit construction is addressed

in detail in Section 2.5.

2.4.1 The transformed PBE

In view of the following developments, we restrict the semi-infinite particle property space

[0,∞) to the interval [0, L], where L denotes the maximum attainable value of the particle

property. In particular, we suppose that L is chosen sufficiently large such that the particle

property distribution remains contained in [0, L]. In applications involving aggregation and

breakage, a so-called finite domain error is incurred if the particle property distribution

leaves [0, L], see, for instance, Gelbard and Seinfeld [61] and Attarakih et al. [9].

We begin by introducing a four parameter family of C1-continuous coordinate trans-

formations l = l̄(τ,x, t), l̄ : [0, L] × Ω × R+
0 → [0, L] which map, at each physical location

x and point in time t, a transformed particle size τ onto the physical particle size l and

satisfy
∂l̄(τ,x, t)

∂τ
≡ w(τ,x, t) > 0 ∀x ∈ Ω, t ≥ 0 (2.5)

as well as

l̄(0,x, t) = 0, (2.6)

45

2 An explicit adaptive grid approach for solving the PBE

l̄(L,x, t) =

∫ L

0
w(s,x, t) ds = L ∀x ∈ Ω, t ≥ 0. (2.7)

Jointly, Eqs. (2.5) through (2.7) ensure that l̄(·,x, t) is one-to-one and onto. Associated

with l̄ is an inverse C1-function τ̄ ≡ l̄−1 which may be defined point-wise according to

τ̄(l̄(τ,x, t),x, t) = τ ∀τ ∈ [0, L],x ∈ Ω, t ≥ 0. (2.8)

For future reference, we record the identities3

∂τ̄

∂l

∣∣∣∣
l̄

=
1

w
, (2.9)

∂τ̄

∂t

∣∣∣∣
l̄

= − 1

w

∂l̄

∂t
, (2.10)

∂τ̄

∂xj

∣∣∣∣
l̄

= − 1

w

∂l̄

∂xj
(2.11)

and
∂2τ̄

∂x2
j

∣∣∣∣∣
l̄

=
2

w2

∂2 l̄

∂xj∂τ

∂l̄

∂xj
− 1

w

∂2 l̄

∂x2
j

− 1

w3

∂2 l̄

∂τ2

(
∂l̄

∂xj

)2

(2.12)

with j = 1, . . . , 3 which are readily obtained from Eqs. (2.5) and (2.8).

Defining the particle property distribution f(τ,x, t) in transformed particle property

space by

N(l,x, t) ≡ f(τ̄(l,x, t),x, t) (2.13)

and introducing Eq. (2.13) into Eq. (2.1), we obtain on account of the chain rule and

after evaluation at l = l̄(τ,x, t)

∂f

∂t
+

3∑

j=1

∂(ujf)

∂xj
+ f

∂G

∂l

∣∣∣∣
l̄

+
∂f

∂τ

G ∂τ̄

∂l

∣∣∣∣
l̄

+
∂τ̄

∂t

∣∣∣∣
l̄

+
3∑

j=1

(
uj −

∂Dp

∂xj

)
∂τ̄

∂xj

∣∣∣∣
l̄

−
3∑

j=1

Dp
∂2τ̄

∂x2
j

∣∣∣∣∣
l̄

=

3∑

j=1

∂

∂xj

(
Dp

∂f

∂xj

)
+Dp

3∑

j=1

(
∂2f

∂τ2

∂τ̄

∂xj

∣∣∣∣
2

l̄

+ 2
∂2f

∂τ∂xj

∂τ̄

∂xj

∣∣∣∣
l̄

)
+ ṡ(l̄,Y, f).

(2.14)

In the reacting fluid flow community, it is common to apply the method of fractional

steps in order to isolate the different physical phenomena which affect the evolution of the

transported fields [211]. One advantage of this approach is that different solution schemes

can be applied which are tailored to meet the physical characteristics of each fractional

3Throughout this work, we employ the long vertical line succeeding a function as shorthand
notation for “evaluated at”.

46

2.4 A space and time dependent coordinate transformation on particle property space

step. The particular operator splitting approach applied in the following implements a

first order approximation in time [161].

By collecting the terms with leading spatial derivatives of f(τ,x, t) (the second term on

the left hand side of Eq. (2.14) and the first term on its right hand side) and combining

them with the accumulation term (the first term on the left hand side of Eq. (2.14)), the

prescription for the convection-diffusion fractional step is obtained

∂f

∂t
+

3∑

j=1

∂ (ujf)

∂xj
=

3∑

j=1

∂

∂xj

(
Dp

∂f

∂xj

)
. (2.15)

The remaining terms in Eq. (2.14) combine with the accumulation term to yield the

equation governing the PBE fractional step. Taking into account Eqs. (2.9) through

(2.12), we obtain

∂f

∂t
+ f

∂G

∂l

∣∣∣∣
l̄

+
1

w

∂f

∂τ

G|l̄ −

∂l̄

∂t
−

3∑

j=1

(
uj −

∂Dp

∂xj

)
∂l̄

∂xj
+Dpb

=
Dp

w2

∂

∂τ

∂f
∂τ

3∑

j=1

(
∂l̄

∂xj

)2

− 2Dp

w

3∑

j=1

(
∂2f

∂τ∂xj

∂l̄

∂xj

)
+ ṡ(l̄,Y, f),

(2.16)

where b(τ,x, t) collects the second order derivatives of l̄(τ,x, t),

b(τ,x, t) =
3∑

j=1

∂2 l̄

∂x2
j

+
1

w2

∂2 l̄

∂τ2

3∑

j=1

(
∂l̄

∂xj

)2

. (2.17)

Physically, the terms involving spatial derivatives of l̄(τ,x, t) in Eq. (2.16) induce a re-

distribution of number density in τ -space which compensates for the transport of number

density in physical space along lines of constant τ ∈ [0, L] (Eq. (2.15)) as opposed to lines

of constant l ∈ [0, L] (as in Eq. (2.1)). In this vain, we observe that diffusion in physical

space naturally gives rise to diffusion in particle property space.

By virtue of the coordinate transformation, particle property distributions at different

points in space and time can be endowed with different parameterizations (l = l̄(τ,x, t))

and the individual parameterizations referred to a unique reference coordinate (τ) which

remains consistent across the flow domain. This approach differs from the solution pro-

cedure of Campos and Lage [30], for instance, who applied a moving grid technique to

the PBE fractional step and, subsequently, mapped the particle property distributions at

every spatial grid point onto a common grid in physical particle property space such that

spatial consistency for the convection/diffusion fractional step was restored. Here, the

mapping operation was designed so as to preserve the total particle number and volume

densities.

47

2 An explicit adaptive grid approach for solving the PBE

2.4.2 Semi-discrete representation

In this section, we present the time-continuous equations obtained by discretizing Eqs.

(2.15) and (2.16) both in transformed particle property space (τ ∈ [0, L]) and in physical

space (x ∈ Ω). In view of the numerical experiments in Section 2.6, we specifically apply

a high resolution finite volume scheme in transformed particle property space. More-

over, since many scientific and commercial fluid flow solvers are based on a finite volume

discretization in physical space, the x-discrete formulation is presented for this type of

discretization. Conceptually, however, our explicit adaptive grid approach is independent

of the specific (τ,x) discretization scheme and can be combined with other discretization

schemes than the ones considered here.

As a first step, we introduce a fixed uniform grid in τ -space,

τi = (i− 1)∆τ, ∆τ =
L

np
, i = 1, . . . , np + 1, (2.18)

where np + 1 denotes the number of nodes and ∆τ represents the uniform grid spacing,

and let
nc⋃

j=1

Ωj = Ω (2.19)

denote a partitioning of Ω into nc subdomains Ωj with volume Vj and midpoints xj.

Since our objective is to devise a robust and computationally efficient numerical scheme,

we focus attention on the case in which the coordinate transformation l̄(·,x, t) varies

piecewise linearly on the τ -grid in Eq. (2.18).4 In general, however, l̄(·,x, t) can also take

on the form of a higher order polynomial. This may be beneficial if the τ -discretization

scheme is based on a higher order polynomial approximation of f(·,x, t).
In the context of a finite volume discretization in τ -space, we consider the average

particle number density fi(x, t) on [τi, τi+1] at (x, t),

fi(x, t) =
1

∆τ

∫ τi+1

τi

f(τ,x, t) dτ, i = 1, . . . , np, (2.20)

4For many direct discretization schemes, the τ -discrete representation of Eq. (2.16) does not
require C1-continuity of l̄(·,x, t) at the nodes τi.

48

2.4 A space and time dependent coordinate transformation on particle property space

and deduce by integrating Eq. (2.16) over [τi, τi+1]

∂fi
∂t

+
1

wi∆τ

[
f
(
G(l̄,Y)− g

)]τi+1

τi

=
Dp

w2
i ∆τ2

3∑

k=1

(fi+1 − fi)

(
∂l̄

∂xk

)2
∣∣∣∣∣
τi+1

− (fi − fi−1)

(
∂l̄

∂xk

)2
∣∣∣∣∣
τi

− Dp

wi∆τ

3∑

k=1

(
∂ (fi+1 − fi)

∂xk

∂l̄

∂xk

∣∣∣∣
τi+1

+
∂ (fi − fi−1)

∂xk

∂l̄

∂xk

∣∣∣∣
τi

)

− fi
wi∆τ

[
g|τi+1

− g|τi
]

+
1

∆τ

∫ τi+1

τi

ṡ|l̄ dτ,

(2.21)

where g(τ,x, t) encompasses the contribution of l̄(τ,x, t) to the cumulative growth rate,

g(τ,x, t) =
∂l̄

∂t
+

3∑

k=1

(
uk −

∂Dp

∂xk

)
∂l̄

∂xk
−Dpb, (2.22)

and wi(x, t) denotes the constant value of w(τ,x, t) on [τi, τi+1]. The inter-cell fluxes

f(G(l̄,Y) − g)|τi+1 can, for instance, be computed according to the flux-limited method

of Koren [92]

f
(
G(l̄,Y)− g

)∣∣
τi

=
(
G(l̄,Y)− g

)∣∣
τi

(
fu(τi) +

φ(τi,x, t)

2

(
fu(τi) − fuu(τi)

))
, (2.23)

where u(τi) and uu(τi) indicate the indices of the two cells upstream of node τi and

φ(τi,x, t) denotes the flux limiter at cell face τi [166].

In order to discretize Eq. (2.21) in physical space, we adopt a finite volume discretiza-

tion scheme based on the domain partitioning given in Eq. (2.19). Here, the average

discrete number density Fi,j(t) on cell Ωj is given by

Fi,j(t) ≡ 〈fi(x, t)〉Ωj
≡ 1

Vj

∫

Ωj

fi(x, t) dx, (2.24)

where the angled brackets indicate averaging over cell Ωj . By integrating Eq. (2.21) over

Ωj and approximating fi(x, t) on Ωj by its cell-average Fi,j(t), we obtain the semi-discrete

49

2 An explicit adaptive grid approach for solving the PBE

representation

〈wi〉Ωj

dFi,j

dt
+

1

∆τ

[〈
G(l̄,Y)− g

〉
Ωj

(
Fu(τ),j +

φ(τ,x, t)

2

(
Fu(τ),j − Fuu(τ),j

))]τi+1

τi

=
1

∆τ

[
(Fi+1,j − Fi,j) (ai,j + bi,j)|τi+1

− (Fi,j − Fi−1,j) (ai,j − bi,j)|τi
]

− 1

∆τVj

∫

∂Ωj

3∑

k=1

[
(fi+1 − fi)Dp

∂l̄

∂xk

∣∣∣∣
τi+1

+ (fi − fi−1)Dp
∂l̄

∂xk

∣∣∣∣
τi

]
nk dx

− Fi,j

∆τ

[
〈g〉Ωj

∣∣∣
τi+1

− 〈g〉Ωj

∣∣∣
τi

]
+

1

∆τ

〈
wi

∫ τi+1

τi

ṡ|l̄ dτ
〉

Ωj

(2.25)

for i = 1, . . . , np and j = 1, . . . , nc. In Eq. (2.25), n(x) denotes the outward unit normal

vector on the cell surface ∂Ωj and ai,j and bi,j are, respectively, given by

ai,j|τi =

3∑

k=1

1

∆τ

〈
Dp

wi

(
∂l̄

∂xk

)2
∣∣∣∣∣
τi

〉

Ωj

, (2.26)

bi,j|τi =
3∑

k=1

〈
∂

∂xk

(
Dp

∂l̄

∂xk

∣∣∣∣
τi

)〉

Ωj

. (2.27)

For a particular cell geometry, the surface integral in Eq. (2.25) can be expressed in

terms of Fi−1,j, Fi,j , Fi+1,j and the neighboring cell values. Eq. (2.25) then constitutes a

possibly non-linear system of ODEs for the time evolution of the cell averages Fi,j(t). If

the surface integral term is evaluated at the most recent point in time for which the Fi,j(t)

have been computed, then Eq. (2.25) can be solved independently for each finite volume

cell j. Formally, this corresponds to applying a forward Euler step in time to the surface

integral term.

For completeness, we also record the semi-discrete formulation of the convection-diffu-

sion fractional step in Eq. (2.15),

dFi,j

dt
+

1

Vj

∫

∂Ωj

3∑

k=1

(
ukfi −Dp

∂fi
∂xk

)
nk dx = 0. (2.28)

Figure 2.2 illustrates the main algorithmic workflow of the semi-discrete fractional steps

scheme detailed above.

50

For k = 0, . . . , K − 1

Input: NΩ(l,x), BCs

Initialization

Convection-diffusion fractional step

PBE fractional step

Update

Output: N(l,x, tK) = f(τ̄(l,x, tK),x, tK)

- Based on N0(l) = 〈NΩ(l,x)〉Ωj
compute l̄(τ,xj, t) for t ∈ [t0, t1] (see Figure 2.7)

For each cell Ωj :
Set k = 0, t0 = 0

For each cell Ωj :

- Set N0(l) = 〈f(τ̄(l,xj , tk),x, tk)〉Ωj

- The set {Fi,j(tk)}np

i=1 discretely represents 〈f(τ,x, tk)〉Ωj

- Update k ← k + 1

- Given N0(l) and l̄(τ,xj , tk), compute l̄(τ,xj, t) for t ∈ [tk, tk+1] (see Figure 2.7)

- From 〈f(τ,x, t0)〉Ωj
= 〈NΩ(l̄(τ,xj, t0),x)〉Ωj

obtain {Fi,j(t0)}np

i=1 using Eq. (2.20)

For each cell Ωj :
- Evaluate the surface integral term in Eq. (2.25) at t = tk
- Solve Eq. (2.25) for initial values F ⋆

i,j(tk+1) and t ∈ [tk, tk+1] and obtain Fi,j(tk+1)

Solve Eq. (2.28) for initial values Fi,j(tk) and t ∈ [tk, tk+1] and obtain F ⋆
i,j(tk+1)

Figure 2.2 Schematic illustration of the algorithmic steps for numerically solving the spatially inhomogeneous
PBE using the explicit adaptive grid approach (EAGM). The semi-discrete equations referenced here are detailed
in Section 2.4.2.

51

2 An explicit adaptive grid approach for solving the PBE

2.5 An explicit adaptive grid approach

In the present section, we develop a semi-analytical expression for the coordinate trans-

formation l̄(τ,x, t) on particle property space which is marched in time. To this end, we

first consider the task of computing a space and time independent coordinate transfor-

mation l̄0(τ) or l̄∞(τ), respectively, from a given reference particle property distribution

N0(l) in isolation (Sections 2.5.1 and 2.5.2). Based on the formalism developed here, the

future time evolution of l̄(τ,x, t) for t ∈ [tk, tk+1] can then be prescribed in terms of the

current solution for the transformed number density f(τ,x, tk) and the current coordinate

transformation l̄(τ,x, tk) (Section 2.5.3).

2.5.1 The equidistribution principle

In this section, we consider the coordinate transformation l̄0(τ) for a steady and spatially

homogeneous reactor and develop a kinetic expression for the coordinate transformation

which is based on the equidistribution principle for one-dimensional adaptive grid methods.

The main idea is to vary the parameterization of particle property space in accordance

with the local information content of a given reference particle property distribution N0(l)

as the controlling kinetic variable. To this end, the Jacobian of l̄0(τ) is linked to a monitor

function mN0(l),
dl̄0(τ)

dτ
≡ c

mN0(l̄0(τ))
, (2.29)

where c > 0 represents a normalization constant and mN0(l) > 0 is a functional which

quantifies the information content of N0(l) at l ∈ [0, L].

By setting τ = τ̄0(l) in Eq. (2.29) and taking into account Eqs. (2.6), (2.8) and (2.9),

we obtain upon integration from 0 to l

τ̄0(l) =
1

c

∫ l

0
mN0(u) du. (2.30)

Introducing the boundary condition τ̄0(L) = L into Eq. (2.30) now leads to the following

equation for the normalization constant c

c =
1

L

∫ L

0
mN0(u) du. (2.31)

Eq. (2.30) is frequently referred to as the equidistribution principle which is attributed to

Boor [25]. It ensures that a scalar measure mN0(l) over l-space is uniformly distributed in

τ -space. As an example, we consider the arc length monitor function

mN0(l) =

√

1 +

(
dN0(l)

dl

)2

(2.32)

52

2.5 An explicit adaptive grid approach

for which the differential element c dτ̄0(l) = mN0(l) dl corresponds to ds, the local arc

length increment along the curve (l,N0(l)). For a representative reference particle property

distribution N0(l), Figure 2.3 illustrates a l-grid that equidistributes arc length in τ -space.

One disadvantage associated with the arc length monitor is that transition regions between

sharp and smooth features may be underresolved [24]. As an alternative, we hence propose

the following one-parameter family of monitor functions

mN0(l) =

√
1 + b

∣∣∣∣
1

M0(N0)

dN0(l)

dl

∣∣∣∣, (2.33)

where b > 0 is a regularization constant and M0(N0) represents a normalization factor,

M0(N0) =

{ ∫ L
0 N0(u) du if

∫ L
0 N0(u) du 6= 0

1 otherwise
. (2.34)

The magnitude of b in Eq. (2.33) controls the extent to which regions in l-space over

which dN0(l)/dl vanishes are compressed on a linear scale, while M0(N0) ensures that the

monitor function only depends on the shape of the reference particle property distribution

N0(l) and is independent of its scale.

In comparison to the arc length monitor function, Eq. (2.33) places more emphasis

on low gradient regions which frequently preceed the transition to a sharp feature. While

the arc length monitor function varies approximately linearly in the local gradient, Eq.

(2.33) increases as the square root of the local gradient. This implies that the larger a

local gradient is, the smaller a relative increase of information content is registered. In

a way, Eq. (2.33) aims at imitating the curvature monitor function which is based on

second derivatives of the reference particle property distribution N0(l) [24]. However, if

derivatives of order two or higher are included in a monitor function, then this naturally

leads to the question with which accuracy the discrete representation of N0(l) allows these

higher derivatives to be estimated. For example, if N0(l) varies piecewise linearly in l,

then the accuracy with which second derivatives, as in the curvature monitor function,

can be estimated is limited.

Dorfi and Drury [43] argue that, in general, the monitor function ought to be chosen in

such a way that the discretization error incurred in l-space is uniformly distributed in τ -

space. In particular, if N0(l) is represented in discrete terms by an interpolating piecewise

Lagrange polynomial of order n, then the approximation error scales as [36, Section 8.2.5,

43]

hn+1d
n+1N0(l)

dln+1
, (2.35)

where h represents the local grid spacing. By consequence, monitor functions which

equidistribute a local approximation error generally incur the challenge of approximat-

ing (n + 1)th order derivatives based on a piecewise nth order polynomial. The monitor

53

2 An explicit adaptive grid approach for solving the PBE

∆s

∆s

0 L

∆l12∆l9

l

N0(l)

Figure 2.3 Schematic illustration of an arc length equidistributing grid. Here, ∆s represents a uniform arc length
increment along the graph of N0(l) and ∆li ≡ l̄(τi+1) − l̄(τi), i = 1, . . . , 17, is the variable grid spacing.

function which we propose in Eq. (2.33) represents a compromise that, rather heuristi-

cally, aims at circumventing the shortcomings of the arc length monitor by mimicking the

curvature monitor function, while avoiding the introduction of second order derivatives of

N0(l).

2.5.2 An adjustment scheme for the node density

In many physical processes, the inception of new particles from the carrier fluid phase is

modeled as a localized source term in physical particle property space. In the context

of adaptive grid approaches, the distribution of nodes in particle property space varies

and, by consequence, the nucleation interval in particle property space may not always

contain enough nodes to accurately resolve the source term. Currently, the main strategy

to prevent underresolution of the nucleation source term consists in manually adding nodes

in the nucleation interval [96]. However, if at the same time nodes are removed elsewhere,

then the conservation properties of the adaptive grid scheme may be impaired [105, 177].

In addition to the node distribution in the nucleation interval, the accuracy and conver-

gence properties of an adaptive grid method are also influenced by the spatial smoothness

of the grid in l-space [88]. Frequently, the spatial smoothness of a grid 0 = l1 < . . . <

lnp+1 = L is expressed in terms of the condition of local boundedness [43, 88],

1

r
≤ li+1 − li
li − li−1

≤ r, i = 2, . . . , np, (2.36)

where r > 0 represents the maximum admissible grid stretching in l-space (for example,

≈ 2). In the present section, we develop a scheme by which the equidistributing coordinate

transformation τ̄0(l) of Section 2.5.1 can be modified such that the density of grid nodes

in l-space does not fall below a prescribed minimum node density ρmin(l) at any l ∈ [0, L]

54

2.5 An explicit adaptive grid approach

and the l-grid nodes obey Eq. (2.36).

Since the τ -grid in Eq. (2.18) is uniform, we consider the node density ρ0(l) in l-space

as the image of a uniform node density ρτ in τ -space under the action of τ̄0(l),

ρ0(l) ≡ dτ̄0(l)

dl
ρτ , (2.37)

where

ρτ ≡
np + 1

L
(2.38)

denotes the uniform node density in τ -space. Eq. (2.37) is a generalization of the discrete

point concentration introduced by Dorfi and Drury [43]. Integrating Eq. (2.37) and taking

into account the left boundary condition τ̄0(0) = 0 yields

∫ l

0
ρ0(u) du = τ̄0(l)ρτ . (2.39)

In order to accurately represent source terms which are localized in l-space, we let a

minimum admissible node density ρmin(l) ≥ 0 be prescribed throughout l-space and aim

to find an adjusted coordinate transformation τ̄∞(l) such that

ρ∞(l) =
dτ̄∞(l)

dl
ρτ ≥ ρmin(l) ∀l ∈ [0, L] (2.40)

and the main features of τ̄0(l) are preserved. Here, ρmin is assumed to be at least piecewise

continuous. Following Kautsky and Nichols [88], we additionally introduce the padding

Pρ0(l) of the node density ρ0(l)

Pρ0(l) ≡ max
l′∈[0,L]

Gρ0(l, l′), (2.41)

where, for a given l′, Gρ0(l, l′) represents a function ∼ 1/(|l − l′|) with a tip at (l′, ρ0(l′)),

Gρ0(l, l′) ≡ ρ0(l′)
1 + λ|l − l′|ρ0(l′)

. (2.42)

By Eq. (2.41), the padding Pρ0(l) of ρ0(l) appears as the envelope of all functions Gρ0(·, l′),
l′ ∈ [0, L], whose tips trace the graph of the node density ρ0(l). This is illustrated in Figure

2.4, where a sample node density distribution is shown along with its padding and two

instances of Gρ0(·, l′). The constant λ in Eq. (2.42) can be related to the maximum grid

stretching r according to

λ =
ln r

d
, (2.43)

where d denotes the equidistribution constant of Pρ0(l),

d =
1

np

∫ L

0
Pρ0(l) dl. (2.44)

55

2 An explicit adaptive grid approach for solving the PBE

In practice, we evaluate d using a fixed-point iteration based on Eqs. (2.41) and (2.44)

with initial estimate d ≈ ∆τ . If the adjusted node density ρ∞(l) coincides with its padding

Pρ∞(l),

ρ∞(l) = Pρ∞(l) ∀l ∈ [0, L], (2.45)

then, by Lemma 5 and Theorem 2 of Kautsky and Nichols [88], the grid li = l̄∞(τi),

i = 1, . . . , np + 1, obtained from equidistributing ρ∞(l),

τ̄∞(l) =

∫ l

0

ρ∞(u)

ρτ
du, (2.46)

is locally bounded with ratio r (Eq. (2.36)).

For compatibility with ρτ , the padding of the minimum node density Pρmin
(l) can

distribute at most as much node density as ρτ is able to supply. In view of Eq. (2.39), we

hence have the compatibility condition

∫ L

0
Pρmin

(u) du ≤ ρτL. (2.47)

In order to evolve τ̄0(l) into the adjusted coordinate transformation τ̄∞(l), we postulate

the following initial value problem (IVP) for l ∈ [0, L], s ≥ 0

∂ρ(l, s)

∂s
= Ṙ(l, s)− ρ(l, s)

ρτ

1

L

∫ L

0
Ṙ(u, s) du (2.48)

subject to the initial condition

ρ(l, s = 0) = ρ0(l) =
dτ̄0(l)

dl
ρτ (2.49)

and consider ρ∞(l) = ρτdτ̄∞(l)/dl ≡ ρ(l, s → ∞) as the steady-state node density distri-

bution. Here, the kinetic rate of change Ṙ(l, s),

Ṙ(l, s) =
1

T
max(max(ρmin(l), Pρ(l, s))− ρ(l, s), 0), (2.50)

quantifies the extent to which the current node density ρ(l, s) violates the minimum node

density requirement ρ(l, s) ≥ ρmin(l) or deviates from the padding Pρ(l, s) ≡ Pρ(·,s)(l) in

relation to a time constant T .

From a physical perspective, the idea underlying Eq. (2.48) is to increase the node

density locally commensurate with the node density deficit Ṙ(l, s)T and to reduce the

node density elsewhere by an amount that is proportional to the node density already

present. By integrating Eq. (2.48) over [0, L] and taking into account Eq. (2.39), we

obtain
∂

∂s

∫ L

0
ρ(u, s) du =

∫ L

0
Ṙ(u, s) du

(
1− 1

ρτL

∫ L

0
ρ(u, s) du

)
. (2.51)

56

2.5 An explicit adaptive grid approach

0 l2

Gρ0(l, l2)

L l

ρ0(l)

Pρ0(l)
ρ0(l2)

ρ

0

Gρ0(l, l1)

l1

ρ0(l1)

Figure 2.4 A schematic illustration of the node density ρ0(l) and its padding Pρ0(l) [88]. Here, the padding is
constructed as the envelope of all functions Gρ0 (l, l′), l′ ∈ [0, L].

This shows that if
∫ L

0 ρ(u, 0) du = ρτL holds initially, then the source and sink terms on

the right hand side of Eq. (2.48) balance such that the total amount of node density ρτL

is conserved for all times s ≥ 0. In Appendix A.1, we proof that ρ∞(l) satisfies Eqs. (2.40)

and (2.45) if and only if ρ∞(l) = ρ(l, s∞) is a steady-state solution of Eq. (2.48) for some

s∞ ≥ 0.

Appendix A.2, moreover, details a numerical solution scheme for computing the steady-

state solution ρ∞(l) of Eqs. (2.48) and (2.49). From ρ∞(l), we obtain the adjusted

coordinate transformation τ̄∞(l) by integration (Eq. (2.46)). Inverting τ̄∞(l) then yields

the associated inverse coordinate transformation l̄∞(τ).

2.5.2.1 An example for the node density adjustment

In order to illustrate the node density adjustment scheme, we let [0, L] be the unit interval

[0, 1] and consider the reference particle property distribution N0(l) depicted in Figure

2.5(a). Here, N0(l) varies piecewise linearly on a uniform grid in l-space with 21 nodes

and possesses two sharp peaks at l = 0.25 and l = 0.75. By Eqs. (2.30), (2.31) and (2.33)

with b = 1, N0(l) yields the equidistributing coordinate transformation τ̄0(l) depicted as a

solid line in Figure 2.5(b) and, by Eq. (2.37), the l-space node density distribution shown

in Figure 2.5(c). The inverse coordinate transformation l̄0(τ), moreover, maps a uniform

τ -grid (see Eq. (2.18) with np = 20) onto the l-grid illustrated in the top row of Figure

2.5(d).

By way of example, we set the minimum admissible node density ρmin(l) to 30 nodes per

unit of l on [0.4, 0.45] and to zero elsewhere and apply the node density adjustment scheme

both with (r = 2) and without (r = ∞) the spatial smoothening. The resulting adjusted

coordinate transformations τ̄∞(l) and their corresponding node density distributions ρ∞(l)

are depicted as dotted and dashed lines in Figures 2.5(b) and 2.5(c), respectively, while

57

2 An explicit adaptive grid approach for solving the PBE

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

l

N
u
m

b
e
r

d
e
n
s
it
y

(a) Number density distribution

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

l

τ

τ
0
(l)

τ
∞

(l) (r = ∞)

τ
∞

(l) (r = 2)

(b) Coordinate transformation

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

l

N
o

d
e

 d
e

n
s
it
y

ρ
0
(l)

ρ
∞

(l) (r = ∞)

ρ
∞

(l) (r = 2)

(c) Node density distribution

0 0.2 0.4 0.6 0.8 1

l

Equidistributing

0 0.2 0.4 0.6 0.8 1

l

Adjusted (r = ∞)

0 0.2 0.4 0.6 0.8 1

l

Adjusted (r = 2)

(d) l-images of a uniform τ -grid

Figure 2.5 An example for the node density adjustment scheme. The solid lines in Figures (b) and (c) indicate the
equidistributing coordinate transformation and node density for the reference particle property distribution shown
in Figure (a). The dotted and dashed lines, on the other hand, refer to the adjusted coordinate transformation and
node density both with (r = 2) and without (r = ∞) the spatial smoothening. Figure (d) illustrates the l-grids
obtained by applying the equidistributing and adjusted coordinate transformations, respectively, to a uniform grid
in τ -space.

the middle and bottom rows of Figure 2.5(d) illustrate the adjusted l-space images of the

uniform τ -grid.

2.5.3 Prescribing the coordinate transformation explicitly

In this section, we develop an explicit prescription for the time evolution of the coor-

dinate transformation l̄(τ,x, t) over the upcoming time interval [tk, tk+1] based on the

current transformed number density f(τ,x, tk) and the current coordinate transformation

l̄(τ,x, tk). Following Davis and Flaherty [37], we specifically let l̄(τ,xj , t) vary linearly in

time for t ∈ [tk, tk+1] at each spatial grid point xj

l̄(τ,xj , t) = l̄(τ,xj , tk) +
(
l̄(τ,xj , tk+1)− l̄(τ,xj , tk)

) t− tk
∆tk

, (2.52)

58

2.5 An explicit adaptive grid approach

. . .

l̄(τnp−1, tk) l

t

tk+1

tk

∆
t k

0

. . .

l̄(τi, tk+1)− l̄(τi, tk)ωi

Ll̄(τ2, tk) l̄(τi−1, tk) l̄(τi, tk) l̄(τi+1, tk) l̄(τnp , tk)

Figure 2.6 A schematic illustration of the l-t-mesh formed by the nodes l̄(τi,xj , tk) and l̄(τi,xj , tk+1), i =
1, . . . , np + 1 [37]. For conciseness, we omit the space dependency of l̄ in the figure.

where the new coordinate transformation l̄(τ,xj , tk+1) is given by

l̄(τ,xj , tk+1) =

(
1− exp

(
−∆tk

κ

))
l̄∞(τ) + exp

(
−∆tk

κ

)
l̄(τ,xj , tk) (2.53)

and the coordinate transformation l̄∞(τ) is defined as in Sections 2.5.1 and 2.5.2 based

on N0(l) = 〈N(l,x, tk)〉Ωj
= 〈f(τ̄(l,xj , tk),x, tk)〉Ωj

for k ≥ 1 and based on N0(l) =

〈NΩ(l,x)〉Ωj
for k = 0. In Eqs. (2.52) and (2.53), ∆tk = tk+1− tk represents the upcoming

fractional time step. The initial coordinate transformation is set to

l̄(τ,xj , t0 = 0) = l̄∞(τ) (2.54)

such that l̄(τ,xj , t0) = l̄(τ,xj , t1) = l̄∞(τ). For a piecewise linear coordinate transforma-

tion l̄(·,x, t) (see Section 2.4.2), Figure 2.6 schematically depicts the grid in the l-t-plane

that is formed by the nodes l̄(τi,xj , tk) and l̄(τi,xj , tk+1), i = 1, . . . , np + 1, at a given

cell midpoint xj . As a brief summary, Figure 2.7, moreover, lists the algorithmic steps for

constructing the coordinate transformation l̄(τ,xj , t) at xj over the upcoming time inter-

val [tk, tk+1] from the current coordinate transformation l̄(τ,xj , t) and the local particle

property distribution N0(l).

The exponential prefactors in Eq. (2.53) implement a first order lag element in time

with a time constant of κ > 0. This temporal smoothening is quite common both in explicit

[49] and in dynamic [24, 43] adaptive grid approaches and helps to prevent temporal

oscillations in the evolution of the coordinate transformation if the monitor function is

very sensitive to small perturbations in the defining particle property distribution. As

an alternative, Davis and Flaherty [37] proposed to limit the angles ωi formed by the

lines l̄(τi,xj , t), i = 1, . . . , np + 1, and the positive t-axis in order to prevent the l-t-

quadrilaterals in Figure 2.6 from becoming severely distorted, but we found this criterion

to be inadequate if the l-nodes are distributed over several orders of magnitude.

Further to Eqs. (2.52) through (2.54), l̄(τ,x, t) may be expressed in terms of the

cell midpoint coordinate transformations l̄(τ,xj , t) in a similar way to the formulation of

f(τ,x, t) in terms of 〈f(τ,x, t)〉Ωj
. Within a finite volume cell Ωj, the grid {l̄(τi,xj , t)}np+1

i=1

59

2 An explicit adaptive grid approach for solving the PBE

Input: N0(l), l̄(τ,xj , tk), ∆tk, κ

1. Compute mN0
(l) from Eqs. (2.33) and (2.34)

2. Compute the inverse equidistributing coordinate transformation τ̄0(l) according to Eqs.
(2.30) and (2.31)

3. Node density adjustment scheme:

3.1 Compute the initial node density distribution ρ0(l) from Eqs. (2.37) and (2.38)

3.2 Compute a steady-state solution ρ∞(l) of the IVP in Eqs. (2.48) and (2.49) (also see
Appendix A.2)

3.3 From ρ∞(l) obtain τ̄∞(l) using Eq. (2.46)

3.4 Invert τ̄∞(l) to obtain l̄∞(τ)

4. Obtain l̄(τ,xj , tk+1) from Eq. (2.53)

5. l̄(τ,xj , t) varies piecewise linearly in t on [tk, tk+1] (Eq. (2.52) and Figure 2.6)

Output: l̄(τ,xj , t) for t ∈ [tk, tk+1]

Figure 2.7 Summary of the algorithmic steps for explicitly constructing the coordinate transformation l̄(τ,xj , t)
over the upcoming time interval [tk , tk+1] from the current particle property distribution N0(l) in cell Ωj and the
current coordinate transformation l̄(τ,xj , tk).

is thus matched with the cell-average particle property distribution {Fi,j(t)}np

i=1. For con-

sistency, we found it to be important that the spatial derivatives of l̄(τ,x, t) in the surface

integral term of Eq. (2.25) are continuous across the cell faces. In the case of cuboidal

finite volume cells, this can be ensured, for example, by letting l̄(τ,x, t) vary piecewise

quadratically in each coordinate direction.

Finally, we note that, by slightly adjusting the developments presented above, the x-

discrete formulation of l̄(τ,x, t) may also be obtained for spatial discretization schemes

other than the finite volume discretization considered here.

2.6 Numerical experiments

In this section, we consider three common fixed grid discretization schemes for discretizing

the transformed PBE in Eqs. (2.15) and (2.16) on a uniform grid in τ -space:

(1) The standard Galerkin finite element method (GFEM) using linear finite elements

[138, 178].

(2) A fully upwinded orthogonal collocation finite element method (OCFEM) based on

linear finite elements [175].

(3) The κ = 1/3 high resolution finite volume method (FVM) proposed by Koren [92]

and implemented in the context of the PBE by Qamar et al. [166]. Contrary to these

references, we treat source terms in a standard manner for computational efficiency.

In the numerical experiments, the time constant κ in Eq. (2.53) is set equal to the

fractional time step ∆t = ∆tk, k ≥ 0, and the absolute and relative convergence tolerances

60

2.6 Numerical experiments

for computing steady-state solutions of Eqs. (2.48) and (2.49) (see A.2) are chosen as

10−8 and 10−4, respectively. Additionally, the semi-discrete systems of equations are

integrated in time using the 5th order accurate explicit Runge-Kutta method Dopri5 [68]

with absolute and relative convergence tolerances of 10−10 and 10−4, respectively.

2.6.1 Advection of a unit step

The first example which we consider consists of a step-shaped profile moving at a constant

velocity of g = 0.05 /s in the positive l-direction. Here, the step is represented by a narrow

region over which the number density increases linearly from 0 to 1. Initially, the left edge

of the steep gradient interval is located at l = 0.15 and the profile of N(l, t = 0) is given

by

h(l) ≡ N(l, 0) =

0 for l < 0.15
l−0.15
0.05 for l ∈ [0.15, 0.2]

1 else

(2.55)

for l ∈ [0, 4]. The analytical solution of the pure advection equation

∂N(l, t)

∂t
+ g

∂N(l, t)

∂l
= 0 (2.56)

subject to the left boundary condition N(0, t) = 0 and the initial condition in Eq. (2.55)

can be obtained by the method of characteristics,

N(l, t) = h(l − gt). (2.57)

In the following, we compare the analytical solution in Eq. (2.57) with the numerical

solutions obtained from different direct discretization schemes (OCFEM and FVM) both

stand-alone and as fixed grid solvers within the explicit adaptive grid method (EAGM)

developed in Sections 2.4 and 2.5. Here, the non-adaptive discretization schemes are based

on a uniform grid in physical particle property space which has been slightly modified such

that the initial particle property distribution h(l) can be represented exactly on this grid.

In the EAGM, the time horizon for advancing the coordinate transformation is set

to ∆t = 10−2 s and, with the exception of Figure 2.11, the value for the regularization

constant b amounts to b = 104. The maximum grid stretching is set to r = 2 and,

in the absence of source terms, the minimum node density vanishes identically (ρmin =

0). Additionally, we construct the initial coordinate transformation based on the initial

profile in Eq. (2.55) represented on a modified uniform grid and, subsequently, modify

the coordinate transformation such that two nodes are again located at 0.15 and 0.2,

respectively.

Figure 2.8 depicts the analytical reference solution as well as the numerical solutions

obtained from the FVM and OCFEM both with and without the EAGM using 20 finite

volume cells/finite elements at different points in time. While both the FVM and the

61

2 An explicit adaptive grid approach for solving the PBE

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

l [−]

n
(l
,
t)

 [
−

]

FVM

FVM−EAGM

OCFEM

OCFEM−EAGM

Analytical

(a) t = 0 s

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

l [−]

n
(l
,
t)

 [
−

]

(b) t = 20 s

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

l [−]

n
(l
,
t)

 [
−

]

(c) t = 40 s

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

l [−]

n
(l
,
t)

 [
−

]

(d) t = 60 s

Figure 2.8 Comparing the analytical solution for the time evolution of a step-shaped profile with the numerical
approximations computed from the FVM and OCFEM both with and without the EAGM. Here, the numerical
solutions have been obtained using 20 finite volume cells/finite elements and the b-value in the EAGM monitor
function is set to b = 104. The markers, moreover, indicate the cell face/node locations in physical particle property
space.

OCFEM appear to be very diffusive, the combined FVM-EAGM and OCFEM-EAGM

schemes yield results which agree very well with the analytical solution. Some signs of

numerical diffusion remain (more so in the OCFEM-EAGM solutions than in the FVM-

EAGM solutions), but the increase in accuracy is significant.

For the EAGM solutions, the triangular markers in Figure 2.8 indicate the positions in

physical particle property space of the finite volume cell faces and the finite element nodes,

respectively. Here, most of the finite volume cells/finite elements are located in the vicinity

of the moving step to which the monitor function assigns a high measure of information

content. Away from the steep gradient interval, by contrast, the slope of the profile flattens

out and the node density decays. As the numerical solution evolves and the step moves

to the right, the cells/elements readjust, thus tracking the step profile. In this regard, we

emphasize that the solution adaptivity is independent of the local characteristics.

62

2.6 Numerical experiments

10 20 30 40 50 60 70 80 90 100
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of elements/cells [−]

A
v
e

ra
g

e
 d

e
v
ia

ti
o

n
 f

ro
m

 a
n

a
ly

ti
c
a

l
s
o

lu
ti
o

n
 [

−
]

FVM

FVM−EAGM

OCFEM

OCFEM−EAGM

Figure 2.9 Convergence diagram in terms of the average deviation of the numerical solution from the analytical
reference solution for the step advection example at time t = 45 s. Here, the FVM and OCFEM are applied both
with and without the EAGM (b = 104).

For the four numerical solution schemes investigated in Figure 2.8, Figure 2.9 shows a

convergence diagram in terms of the average deviation e(t) of the numerical approximation

N(l, t) from the analytical reference solution h(l − gt) at time t = 45 s,

e(t) ≡ 1

L

∫ L

0
|N(l, t)− h(l − gt)| dv. (2.58)

The results in Figure 2.9 indicate that the FVM solutions are more accurate than the

OCFEM solutions and that incorporating the EAGM yields an increase in accuracy by

two to three orders of magnitude. Conversely, in order to achieve a given accuracy, the

EAGM-based solution schemes require over an order of magnitude fewer grid points than

the stand-alone FVM and OCFEM solvers.

In order to assess the robustness of the EAGM, we quantify the influence of the time

horizon ∆t on the accuracy of the EAGM-based numerical solutions in Figure 2.10. Here,

the average deviations of the EAGM-FVM and EAGM-OCFEM solutions from the an-

alytical reference solution are plotted over the EAGM time horizon for 20 finite volume

cells/finite elements. Up to ∆t . 5× 10−2 s, the average deviation remains constant at

a minimum value, while it grows notably as ∆t is increased beyond this threshold value.

In practical configurations, particle formation processes are often found to evolve on time

scales which are larger than the time scales governing the spatial transport of number

density. In this case, the threshold value for the EAGM time horizon exceeds the time

step for the fractional steps scheme which is typically chosen based on a CFL condition

for convection or diffusion in physical space.

63

2 An explicit adaptive grid approach for solving the PBE

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

Time horizon [s]

A
v
e
ra

g
e
 d

e
v
ia

ti
o
n
 f
ro

m
 a

n
a
ly

ti
c
a
l
s
o
lu

ti
o
n
 [
−

]

FVM

FVM−EAGM

OCFEM

OCFEM−EAGM

Figure 2.10 Analyzing the influence of the EAGM time horizon on the accuracy of the numerical solutions for the
step advection example at time t = 45 s. Here, the EAGM (b = 104) is combined both with the FVM and OCFEM
using 20 finite elements/finite volume cells. For reference, the horizontal lines indicate the average deviation of the
numerical approximations without the EAGM from the analytical solution.

Finally, we analyze the influence of the regularization constant b in the monitor function

(Eq. (2.33)) on the accuracy of the numerical approximations obtained from the combined

FVM-EAGM and OCFEM-EAGM schemes for 20 finite volume cells/finite elements at

time t = 45 s. In view of Section 2.5.1, b controls the spacing of nodes on a linear scale in

regions of l-space over which the solution vanishes identically. Figure 2.11 indicates that,

for very small b-values, the average deviation approaches a maximum value. Here, b is so

small that solution adaptivity is lost since the monitor function has become insensitive

to the first derivative of the solution. As b becomes very large, by contrast, the average

deviation approaches a minimum limiting value which is one (OCFEM-EAGM) to two

(FVM-EAGM) orders of magnitude smaller than the maximum average deviation at small

b-values. For practical purposes, we thus recommend to choose b moderately large at the

outset and to decrease b if the monitor function seems to loose regularity.

2.6.2 BaSO4 precipitation in a plug flow reactor

In the present section, we consider the precipitation of barium sulphate (BaSO4) parti-

cles from aqueous solutions of sodium sulphate (Na2SO4) and barium chloride (BaCl2)

in a plug flow reactor. In particular, our objective is to validate the accuracy and assess

the convergence behavior and computational cost of the explicit adaptive grid method

(EAGM) for realistic particle formation kinetics and inflow conditions. The kinetic rela-

tions and parameters correspond to those suggested by Ba ldyga and Orciuch [18] and the

inflow conditions are similar to the ones used in their high concentration experiments of

64

2.6 Numerical experiments

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
−4

10
−3

10
−2

10
−1

10
0

b [−]

A
v
e
ra

g
e
 d

e
v
ia

ti
o
n
 f
ro

m
 a

n
a
ly

ti
c
a
l
s
o
lu

ti
o
n
 [
−

]

FVM−EAGM

OCFEM−EAGM

Figure 2.11 Investigating the influence of the regularization constant b in the monitor function (Eq. (2.33)) on
the average deviation of the EAGM solutions from the analytical reference solution for the step advection example
at time t = 45 s. Here, the EAGM is applied in combination with the FVM and OCFEM using 20 finite volume
cells/finite elements.

precipitation in a coaxial pipe mixer at a Reynolds number of Re = 3× 104 and a unity

jet/co-flow velocity ratio, Ru = 1. Since the plug flow model does not resolve the spatial

and temporal flow structures in the mixer, we do not attempt to compare the computed

particle size distributions with the experimental measurements of Ba ldyga and Orciuch

[18]. Rather, our focus lies on the performance of the numerical solution scheme.

The composition of the liquid phase in the reactor can be described by the mass fractions

of H2O and of the ionic species Ba2+, SO 2–
4 , Cl– and Na+,

Y(x, t) =

yH2O(x, t)

yBa(x, t)

ySO4
(x, t)

yCl(x, t)

yNa(x, t)

. (2.59)

At the plug flow inlet, the liquid phase composition is given by

Y0 =

9.969 × 10−1

6.538 × 10−4

1.436 × 10−3

3.375 × 10−4

6.875 × 10−4

. (2.60)

This corresponds to a perfect mixture of the jet and co-flow compositions in the high

65

2 An explicit adaptive grid approach for solving the PBE

Phase Description Variable Value Units

Liquid

Fluid density ρ 103 kg/m3

Kinematic viscosity ν 10−6 m2/s

Diffusivity D 1.43 × 10−6 m2/s

Particles

BaSO4 mass density ρBaSO
4

4480 kg/m3

BaSO4 molecular weight MWBaSO
4

233.4 kg/kmol

BaSO4 volume shape factor kv 58 −
Average nuclei size lnuc 2 × 10−9 m

Maximum particle size L 10−4 m

Diffusivity Dp 1.43 × 10−6 m2/s

Solubility product kS 1.1 × 10−10 kmol2/m6

Surface integration coefficient kg 4.0 × 10−11 m/s

Mass transfer coefficient kD 10−4 m4/kmol − s

Table 2.1 Constitutive, kinetic and transport parameters for the precipitation of BaSO4 in a plug flow reactor [18].

concentration experiments of Ba ldyga and Orciuch [18] at Re = 3× 104 and Ru = 1.

If solid BaSO4 particles precipitate from the solution, then the liquid phase is locally

depleted of both Ba2+ and SO 2–
4 . In the transport equations for yBa and ySO4

, this effect

is accounted for by the sink terms

ṡBa(N(l,x, t)) = ṡSO4
(N(l,x, t)) = −

ρBaSO4

ρMWBaSO4

DV (x, t)

Dt
, (2.61)

where ρBaSO4
and MWBaSO4

denote the mass density and molecular weight, respectively,

of solid BaSO4, ρ is the mixture density of the fluid phase and DV (x, t)/Dt represents

the material time derivative of the total volume density associated with the particulate

phase. If l represents a characteristic particle size such that the volume v of one BaSO4

particle is given by

v = kvl
3, (2.62)

then the total volume density of BaSO4 particles can be computed as the third moment

of the particle size distribution N(l,x, t),

V (x, t) = kv

∫ L

0
l3N(l,x, t) dl, (2.63)

where kv denotes the volume shape factor. For reference, Table 2.1 lists the values of all

physical parameters introduced in this section.

2.6.2.1 BaSO4 formation kinetics

Barium sulphate has been considered as a model substance for precipitation from aqueous

solution by a number of experimental investigators, see, for instance, Aoun et al. [8]

and references therein. One advantage of using BaSO4 is that the suspension can be

eloctrostatically stabilized against aggregation by adding an excess of Ba2+ ions [64]. This

66

2.6 Numerical experiments

is particularly beneficial if the investigation focusses on nucleation and growth processes

only. In addition, BaSO4 particles are not toxic and their precipitation from an aqueous

solution does not involve a liquid phase reaction. Moreover, since the combined solubility

of Ba2+ and SO 2–
4 ions is very low, it is possible to realize high supersaturations (see

below) which are a prerequisite for producing particles in the nanometer size range [183].

Independent of its benefits as a substance for the investigation of precipitation pro-

cesses, BaSO4 is also of practical importance: BaSO4 particles are being used as additives

in coatings or paints to improve brilliancy and as contrast agents in X-ray imaging, for

instance. Following Schwarzer [183], moreover, BaSO4 particles are frequently added to

polymers in order to increase scratch resistency and included in the manufacturing of

specialty inkjet paper to enhance the sharpness of plots.

The nucleation and growth rates of BaSO4 are typically computed from semi-empirical

models which include kinetic parameters that were determined from a set of experimental

data [8]. For comparison purposes and for compatibility with the work of Di Veroli and

Rigopoulos [40], we adopt, in this work, the nucleation and growth kinetics of Ba ldyga

and Orciuch [18].

Conceptually, the BaSO4 kinetic rate expressions are based on supersaturation S(Y(x, t))

as a measure for the deviation of an ionic aqueous solution from chemical equilibrium,

S(Y) = γ±(Y)

√
[Ba2+][SO 2−

4]

kS
. (2.64)

Here, the square brackets indicate the molar concentration of the argument species, kS

denotes the solubility product of BaSO4 and γ±(Y) represents the mean activity coefficient

of Ba2+ and SO 2–
4 in an ionic aqueous solution also containing Cl– and Na+. If the ionic

strength of the solution is low (. 6) and BaSO4 is considered a strong electrolyte, then

γ±(Y) may be approximated by Bromley’s relation [27]. This approach takes into account

the interactions of Ba2+ and SO 2–
4 with unlike charged ions but neglects interactions

between like charged ions and amongst ion triplets.

Following Nielsen [139], the critical radius rnuc of a spherical BaSO4 nucleus can be

computed according to

rnuc =
2σBaSO4

vBaSO4

kBT lnS
, (2.65)

where σBaSO4
denotes the BaSO4 surface tension, kB is Boltzmann’s constant, T represents

the ambient temperature and vBaSO4
denotes the molecular volume

vBaSO4
=
MWBaSO4

NAρBaSO4

. (2.66)

Here, NA is Avogadro’s number. If S = 326.96 (the supersaturation associated with the

initial composition in Eq. (2.60)) and T = 298 K (the ambient temperature at which

67

2 An explicit adaptive grid approach for solving the PBE

700 750 800 850 900
0

1

2

3

4

5

6

7

Supersaturation [−]

N
u

c
le

a
ti
o

n
 r

a
te

 [
1

0
1
6
/s

]

Figure 2.12 The nucleation rate of BaSO4 as a function of supersaturation (Eq. (2.67)).

Ba ldyga and Orciuch [18] conducted their experiments), then the critical radius is found

to be rnuc = lnuc/2 = 9.806 × 10−10 m ≈ 1 nm.

Following Ba ldyga and Orciuch [18], the nucleation rate RN (Y(x, t)) is computed ac-

cording to

RN (Y) = 1.06 × 1012 exp

(
− 44.6

(lnS(Y))2

)
+ 1.50 × 1045 exp

(
− 3020.0

(lnS(Y))2

)
, (2.67)

while the size-independent growth rate G(Y(x, t)) can be obtained from the two-step

model

G(Y) = kD
(
[Ba2+]− [Ba2+]S

)
= kD

(
[SO 2−

4]− [SO 2−
4]S

)
= kg (S(YS)− 1)2 , (2.68)

where kg denotes the surface integration coefficient, kD is the diffusional mass transfer

coefficient and YS represents the liquid composition at the crystal surface. Ba ldyga and

Orciuch [18] point out that the coefficients in Eq. (2.67) have been obtained neglecting

the effect of ion pair complex formation, but that inclusion of this effect is expected

to only slightly change the nucleation rate, if at all. Figure 2.12 depicts the change

in nucleation rate RN over the local supersaturation as given by Eq. (2.67). For the

precipitation of BaSO4 in a steady-state plugflow reactor with the inflow composition Y0

given in Eq. (2.60), Figure 2.13, moreover, shows the evolution of the growth rate G with

supersaturation S(Y) or, equivalently, with the volume density of the particulate phase.

Lastly, the PBE source term ṡ(l,Y) is modeled as a hat function on [0, 2lnuc] with

maximum value RN (Y)/lnuc at the mean nuclei size lnuc. In this regard, the minimum

68

2.6 Numerical experiments

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Supersaturation [−]

G
ro

w
th

 r
a
te

 [
1
0

−
7
m

/s
]

2.48 2.41 2.22 1.91 1.49 0.97 0.36 0

Particle volume density [10
−4

]

Figure 2.13 The BaSO4 growth rate as a function of supersaturation and volume density of the particulate phase
for the precipitation of BaSO4 in a steady-state plug flow reactor with initial composition Y0 (Eq. (2.60)).

node density ρmin(l) is chosen as

ρmin(l) =

{
ρnuc for l ∈ [0, 2lnuc]

0 for l > 2lnuc

, (2.69)

where ρnuc > 0 denotes the constant minimum node density in the nucleation interval

(for instance, 4 nodes/2lnuc). By introducing Eq. (2.69) into Eq. (2.47) and taking into

account Eqs. (2.41) through (2.43), we obtain the following implicit relation between the

nucleation node density ρnuc and the maximum grid stretching r = exp (λd)

1

λ
ln (1 + λ(L− 2lnuc)ρnuc) + 2lnucρnuc ≤ ρτL. (2.70)

For a given value of r, the equality condition in Eq. (2.70) returns the maximum admissible

value for ρnuc.

2.6.2.2 BaSO4 precipitation in a steady-state plug flow reactor

In a steady-state plug flow reactor both the composition of the fluid phase and the particle

size distribution are parameterized by a single spatial coordinate, the axial distance x, and

evolve according to the governing equations

u
dY(x)

dx
= ṡ(N(·, x)) (2.71)

69

2 An explicit adaptive grid approach for solving the PBE

and

u
∂N(l, x)

∂x
+
∂ (G(Y(x))N(l, x))

∂l
= ṡ(l,Y(x)) (2.72)

subject to the boundary conditions

N(0, x) = 0, (2.73)

N(l, 0) = 0, (2.74)

Y(0) = Y0. (2.75)

Here, u = 0.9375 m/s denotes the bulk velocity and ṡ(N(l, x)) = (0, ṡBa(N(l, x)), ṡSO4
(N(l, x)),

0, 0)T represents the composition source term (Eq. (2.61)).

By applying the coordinate transformation x = x̄(t) = ut, t = t̄(x) = x/u, Eqs. (2.71)

and (2.72) can be transformed into the governing equations for a batch reactor. Within

the scope of a fractional steps scheme, both equations are then solved sequentially in a

time step.

In the following, we consider solutions for the particle size distribution N(l, x) down-

stream of the plug flow inlet obtained from different direct discretization approaches

(GFEM, OCFEM and FVM) both with and without the EAGM. In the non-adaptive

case, the discretization is based on an l-grid that is uniformly spaced over the nucle-

ation interval, encompassing max(0.1np, 4) nodes in [0, 2lnuc], and exponentially spaced

over [2lnuc, L]. In the EAGM, the regularization constant b is chosen as unity and, for

the node density adjustment scheme, we set ρnuc = max(0.1np, 4)/(2lnuc) and r = 2.5.

The fractional time step, moreover, coincides with the EAGM time horizon and is set to

∆t̄ = 10−4 s, corresponding to an x-step of ∆x = 9.4× 10−5 m.

Figure 2.14 depicts the particle size distributions at four different cross-sections of

the plug flow reactor computed using the FVM with 30 and 1000 finite volume cells,

respectively, and the combined FVM-EAGM approach with 30 finite volume cells. In the

absence of an analytical solution, we consider the results obtained from the FVM with 1000

cells as reference solution. (Figure 2.19(a) indicates that at this level of mesh refinement

convergence in the 0th moment, the total particle number density, has been attained.)

Close to the inlet, at x = 9.4 mm, the particle size distribution consists of a sharp peak

near the mean nuclei size, indicating that here nucleation is the dominant process for

particle formation. Further downstream, at x = 0.47 m, the right leg of the peak has

moved towards bigger particle sizes forming a steep moving front which propagates at the

local growth rate. In both cross-sections, the particle size distributions from the combined

FVM-EAGM approach using 30 cells almost perfectly reproduce the reference results from

the FVM using 1000 cells. In particular, the FVM-EAGM scheme is able to accurately

resolve the moving near-discontinuity and to correctly predict its location. The FVM-only

results for 30 finite volume cells, on the other hand, display some numerical diffusion which

smears out the moving front over a few cells.

70

2.6 Numerical experiments

By x = 7.0 m, the moving front has advanced into the micrometer range, while nucle-

ation has continued to supply new particles. Immediately to the right of the nucleation

size range this leads to the formation of a heavy number density hump which smoothly

decays towards the moving front. This large-scale structure is significantly over-predicted

by the FVM with 30 cells, while it is reproduced well by the combined FVM-EAGM ap-

proach using 30 cells. Further downstream, at x = 42.2 m, the particle size distribution

has reached a steady-state in x. Here, the agreement between the reference result and the

FVM-EAGM solution for 30 cells remains very good, while the FVM-only scheme with 30

cells fails to resolve the steep front on the far right.

For the EAGM solutions, the filled markers in Figure 2.14 indicate the locations in

physical particle size space of the finite volume cell faces. As in the step advection example

of Section 2.6.1, the markers move towards locations at which the slope of the particle

size distribution is large, automatically adjusting the local l-grid resolution. In addition,

commensurate with the node density constraints, some nodes remain seemingly fixed in

the nucleation interval, while others are placed so as to create a smoothly varying grid.

Complementary to Figure 2.14, Figures 2.15 and 2.16 show the reduction in supersatu-

ration and the evolution of the total particle volume density along the axis of the plug flow

reactor. Here, the combined FVM-EAGM scheme using 30 finite volume cells perfectly

reproduces the reference results computed from the FVM using 1000 finite volume cells. In

the FVM-only solution with 30 finite volume cells, by contrast, supersaturation reduction

sets in too early. This is due to the diffusion of the leading moving front in l-space which

leads to an overprediction of the total particle volume density and, by Eq. (2.61), to an

increased consumption rate of Ba2+ and SO 2–
4 . Additionally, we note that for 30 finite

volume cells the FVM-only solution underestimates the total particle number density (not

shown) in x-steady-state by 7.89 %, while the combined FVM-EAGM approach yields a

value which is accurate to within 0.02 %.

Figure 2.17 depicts the particle size distribution at x = 0.94 m obtained from the FVM-

EAGM scheme with 30 finite volume cells for three different r-values (1.75, 2.5 and 5).

Here, both r = 2.5 and r = 5 yield very similar results, although for r = 5 the node

spacing is larger in l-regions in which the slope of the distribution is close to vanishing. If

r is increased further, then more and more nodes leave the zero-gradient regions and move

towards the steep number density fronts. On the other hand, if r is reduced, for instance

to 1.75, then the moving front begins to widen, displaying signs of numerical diffusion.

This indicates that the moving front is insufficiently resolved and that the node density

constraints in Eqs. (2.40) and (2.45) have led to too many nodes moving away from the

steep gradient region for the purpose of increasing the node density elsewhere.

In Figure 2.18, we compare the BaSO4 particle size distribution at x = 0.19 m computed

from the EAGM in combination with different direct discretization approaches in τ -space

(GFEM, OCFEM and FVM). Here, the number of finite elements/finite volume cells is

set to 30 for all three solution methods and, additionally, the source term in Eq. (2.71)

71

2 An explicit adaptive grid approach for solving the PBE

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

0

1

2

3

4

5

6

7

Particle size [m]

N
u
m

b
e
r

d
e
n
s
it
y
 [
1
0

1
7
/(

m
3
m

)]

FVM (1000 cells)

FVM (30 cells)

FVM−EAGM (30 cells)

(a) x = 9.4 mm

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

0

1

2

3

4

5

6

7

Particle size [m]

N
u
m

b
e
r

d
e
n
s
it
y
 [
1
0

1
7
/(

m
3
m

)]

(b) x = 0.47 m

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

0

5

10

15

20

25

30

35

Particle size [m]

N
u
m

b
e
r

d
e
n
s
it
y
 [
1
0

1
7
/(

m
3
m

)]

(c) x = 7.0 m

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

0

10

20

30

40

50

60

Particle size [m]

N
u
m

b
e
r

d
e
n
s
it
y
 [
1
0

1
7
/(

m
3
m

)]

(d) x = 42.2 m

Figure 2.14 The BaSO4 particle size distributions at four cross-sections of the steady-state plug flow reactor
computed from the FVM both with and without the EAGM.

72

0 10 20 30 40 50
0

50

100

150

200

250

300

350

Axial distance [m]

S
u
p
e
rs

a
tu

ra
ti
o
n
 [
−

]

FVM (1000 cells)

FVM (30 cells)

FVM−EAGM (30 cells)

Figure 2.15 Reduction in supersaturation along the steady-state plug flow reactor for the numerical solutions
depicted in Figure 2.14.

0 10 20 30 40 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Axial distance [m]

T
o

ta
l
p

a
rt

ic
le

 v
o

lu
m

e
 d

e
n

s
it
y
 [

1
0−

4
]

FVM (1000 cells)

FVM (30 cells)

FVM−EAGM (30 cells)

Figure 2.16 Evolution of the total particle volume density along the steady-state plug flow reactor for the numerical
solutions shown in Figure 2.14.

73

2 An explicit adaptive grid approach for solving the PBE

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

0

1

2

3

4

5

6

7

8

Particle size [m]

N
u
m

b
e
r

d
e
n
s
it
y
 [
1
0

1
7
/(

m
3
m

)]

r = 1.75

r = 2.5

r = 5.0

0.35 0.4 0.45
0

2

4

6

8

Particle size [µm]

Figure 2.17 The BaSO4 particle size distribution at x = 0.94 m of the steady-state plug flow reactor computed from
the FVM-EAGM approach using 30 finite volume cells and three different values of the maximum grid stretching r.

is omitted, ṡ(N(·, x)) ≡ 0. For the GFEM, this prevents the high frequency oscillations

which appear in the particle size distribution due to numerical dispersion to feed back into

the fluid composition and, in particular, to affect the nucleation and growth rates.

Figure 2.18 indicates that the resulting particle size distributions mainly differ with

regard to the resolution of the steep moving front which has developed at the right end of

the distribution. The FVM maintains the near-discontinuity very well, while the GFEM

results are severely compromised by spurious oscillations and the OCFEM solution dis-

plays some diffusion of number density in l-space. Despite these differences, Figure 2.18

demonstrates that the EAGM can be combined with any common direct discretization

approach and that viable results are obtained without adjusting the EAGM parameters to

a particular solution method. This corroborates our observation that the EAGM param-

eters either regularize the monitor function (b) or control the extent to which the mesh is

allowed to deform (ρnuc and r).

One of the main factors controlling the computational expense for solving the PBE in

conjunction with a spatially and temporally resolved flow model is the number of grid

points that are required to achieve convergence in particle property space. In Figures 2.19

and 2.20, we hence compare the convergence behavior of the EAGM with that of its fixed

grid counterparts as the number of finite volume cells/finite elements is increased.

Figure 2.19 shows convergence diagrams in terms of the x-steady-state total particle

number density for the FVM and FVM-EAGM as well as the OCFEM and OCFEM-

EAGM schemes. Here, the total particle number density was computed as the zeroth

moment of the particle size distribution taken from a cross-section far downstream of the

74

2.6 Numerical experiments

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

−2

0

2

4

6

8

10

Particle size [m]

N
u
m

b
e
r

d
e
n
s
it
y
 [
1
0

1
7
/(

m
3
m

)]

FVM−EAGM

OCFEM−EAGM

GFEM−EAGM

Figure 2.18 The BaSO4 particle size distribution at x = 0.19 m of the steady-state plug flow reactor obtained
from the EAGM combined with different direct discretization schemes (GFEM, OCFEM and FVM) using 30 finite
elements/finite volume cells.

steady-state plug flow reactor in which the supersaturation has decreased below 1.01. Con-

sidering, for instance, a relative convergence tolerance of 0.05 %, the FVM-EAGM results

converge at 30 to 40 finite volume cells, while the FVM-only scheme requires approximately

1000 finite volume cells to achieve the same accuracy. The combined OCFEM-EAGM

scheme, on the other hand, reaches convergence at about 2500 finite elements, whereas

the OCFEM-only solutions did not converge at a reasonable number of finite elements.

In line with our conclusion in Section 2.6.1, Figure 2.19 thus indicates that, for a given

accuracy in the zeroth moment, incorporating the EAGM reduces the required number of

grid points by more than one order of magnitude.

Complementary to Figure 2.19(a), Figure 2.20 depicts the convergence of the volumetric

particle size distribution in x-steady-state computed from the FVM (Figure 2.20(a)) and

the combined FVM-EAGM approach (Figure 2.20(b)). For the FVM-EAGM scheme,

the volumetric particle size distributions converge much quicker than for the FVM-only

discretization as the number of cells is increased. For instance, the volumetric particle

size distribution computed from the FVM-EAGM scheme using 60 finite volume cells

almost perfectly reproduces the volumetric particle size distribution computed from the

FVM-only approach with 1000 finite volume cells.

Table 2.2 lists the average runtime of a single integration step on an Intel Xeon E5-

2687W processor for the FVM, OCFEM and GFEM discretization approaches both with

and without the EAGM. The time measurements indicate that the FVM and FVM-EAGM

schemes consume approximately the same amount of runtime as the OCFEM and OCFEM-

EAGM methods, respectively, while the GFEM and GFEM-EAGM schemes are computa-

75

2 An explicit adaptive grid approach for solving the PBE

0 100 200 300 400 500 600
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

Number of finite volume cells [−]

T
o

ta
l
p

a
rt

ic
le

 n
u

m
b

e
r

d
e

n
s
it
y
 [

1
01

2
/m

3
]

FVM

FVM−EAGM

(a) κ = 1/3 finite volume method (FVM)

0 100 200 300 400 500 600
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

Number of finite elements [−]

T
o

ta
l
p

a
rt

ic
le

 n
u

m
b

e
r

d
e

n
s
it
y
 [

1
01

2
/m

3
]

OCFEM

OCFEM−EAGM

(b) Orthogonal collocation finite element method
(OCFEM)

Figure 2.19 Convergence diagram for the zeroth moment of the fully developed BaSO4 particle size distribution in
the steady-state plug flow reactor. Here, the particle size distributions were obtained using the FVM and OCFEM
both with and without the EAGM.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Particle size [µm]

V
o

lu
m

e
tr

ic
 d

is
tr

ib
u

ti
o

n
 [

−
]

30

60

100

200

1000

Number of cells

(a) FVM

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Particle size [µm]

V
o
lu

m
e
tr

ic
 d

is
tr

ib
u
ti
o
n
 [
−

]

30

60

200

Number of cells

(b) Combined FVM-EAGM scheme

Figure 2.20 Convergence diagram for the fully developed volumetric BaSO4 particle size distribution in the steady-
state plug flow reactor computed from the FVM both with and without the EAGM.

76

2.6 Numerical experiments

Plug flow Method Adaptivity Elements/cells Average runtime [s]

Steady-state

FVM

1000 6.88 × 10−4

EAGM 60 5.68 × 10−5

30 1.53 × 10−5

EAGM 30 3.65 × 10−5

OCFEM

6000 2.90 × 10−2

EAGM 600 4.59 × 10−4

30 1.37 × 10−5

EAGM 30 3.42 × 10−5

GFEM
30 2.05 × 10−5

EAGM 30 8.68 × 10−5

Unsteady FVM

1000 9.40 × 10−2

30 3.39 × 10−3

EAGM 30 7.74 × 10−3

Table 2.2 Comparing the average runtime per time step (∆t = 10−4 s) of the BaSO4 precipitation example for
different direct discretization methods (GFEM, OCFEM, FVM) both with and without the EAGM.

tionally more expensive. Comparing the EAGM schemes with their fixed grid counterparts,

we find that the FVM and OCFEM solvers slow down by a factor of about 2.5 when the

EAGM is activated and that the GFEM solver runs about 4 times slower with the EAGM.

This increase in runtime is mainly caused by the numerical scheme for computing the new

coordinate transformation for the next time step. In case of the GFEM, the additional

performance loss is due to the fact that the GFEM-EAGM scheme requires two Gauss

points to exactly integrate the growth term matrix, while for the original GFEM one

Gauss point suffices. In view of the convergence diagrams in Figures 2.19 and 2.20, more-

over, we observe that by incorporating the EAGM the runtimes for computing converged

solutions for the BaSO4 particle size distribution in x-steady-state decrease by over an

order of magnitude.

2.6.2.3 BaSO4 precipitation in an unsteady plug flow reactor

In the present section, we consider the precipitation of BaSO4 particles in an unsteady plug

flow reactor. In comparison to Section 2.6.2.2, this introduces the additional complication

that the particle size distribution is parameterized both by a spatial coordinate x ∈ [0,X],

X = 4.7 cm, and time t ≥ 0. The particle number density N(l, x, t) obeys the transport

equation

∂N(l, x, t)

∂t
+ u

∂N(l, x, t)

∂x
+
∂(G(Y(x, t))N(l, x, t))

∂l

=
∂

∂x

(
Dp

∂N(l, x, t)

∂x

)
+ ṡ(l,Y(x, t)),

(2.76)

77

2 An explicit adaptive grid approach for solving the PBE

while the fluid phase composition Y(x, t) evolves according to

∂Y(x, t)

∂t
+ u

∂Y(x, t)

∂x
=

∂

∂x

(
D
∂Y(x, t)

∂x

)
+ ṡ(N(·, x, t)), (2.77)

where Dp represents the particle diffusivity, D denotes the common diffusivity of the

fluid’s constituents into the mixture (see Table 2.1) and the sink term ṡ(N(·, x, t)) is

defined similarly to Section 2.6.2.

Initially, the reactor contains pure water and no BaSO4 particles such that Y(x, t =

0) = (1, 0, 0, 0, 0)T and N(l, x, t = 0) = 0 identically for x ∈ [0,X]. The reactive mixture

enters the domain at the left boundary x = 0, where Y(0, t) coincides with the composition

Y0 in Eq. (2.60) and N(l, 0, t) vanishes identically. At the right boundary x = X, on

the other hand, a zero gradient outflow boundary condition is imposed on all scalar fields,

∂Y(X, t)/∂x = 0 and ∂N(l,X, t)/∂x = 0.

For the unsteady plug flow reactor, the EAGM is configured in the default way of Sec-

tion 2.6.2.2 and the fractional time step amounts to ∆t = 10−4 s. The convection-diffusion

fractional step is solved using a high-resolution finite volume discretization for the convec-

tive terms and a standard finite volume scheme based on second-order central differences

for the diffusion term [87]. Note that, for consistency, the molecular diffusivity Dp in the

PBE fractional step (Eq. (2.16)) needs to be augmented by the artificial diffusivity intro-

duced by the discretization of the spatial convection term in the PBE convection-diffusion

step (Eq. (2.15)). At each spatial cell face xj− 1
2
, this amounts to replacing Dp by an

effective diffusivity D′
p(xj− 1

2
, t),

D′
p(xj− 1

2
, t) = Dp +

u

2
(xj − xj−1)

(
1− r(xj− 1

2
, t)
)
, (2.78)

where r(xj− 1
2
, t) represents a common spatial flux limiter for all discrete number densities

and xj−1 and xj indicate the cell centers on either side of xj− 1
2
. For the discretization in

physical space, we employ a uniform grid with 100 finite volume cells, yielding a spatial

CFL number of 0.2. The time discretization of the convection-diffusion step is based on

the second order accurate Crank-Nicolson scheme.

For the FVM and the combined FVM-EAGM scheme, Figure 2.21 depicts the time

evolution of the BaSO4 particle size distribution, the local supersaturation as well as

the total particle volume density along the plug flow reactor. In the beginning, at time

t = 5× 10−3 s, the precipitation process is dominated by particle nucleation near the

inlet. Here, a moving number density front forms which slightly diffuses along the axial

coordinate and, in this way, communicates the l-grid of the leading particle population to

the flow domain further downstream. By consequence, the l-nodes ahead line up with the

l-grid of the leading particle size distribution during the first few time steps.

At time t = 2.5× 10−2 s, the first BaSO4 particles have progressed halfway through the

reactor. Figure 2.21(b) shows that the particle size distribution associated with the leading

78

2.7 Chapter summary

particles is slightly narrower and taller than the distributions characterizing the particles

which were formed in their wake. This indicates that in the leading particle population

nucleation takes place at a higher rate than in the succeeding ones, while the converse is

true for particle growth. After X/u = 5× 10−2 s, the leading particles have reached the

reactor outlet and the number density peak in the l-x domain begins to disappear (Figure

2.21(c)). Figure 2.21(d), finally, corresponds to a steady-state in time of both the particle

number density and the fluid composition.

For comparison, the solid and dashed lines in columns two and three of Figure 2.21

indicate the results obtained from the FVM-only scheme with 1000 and 30 finite volume

cells, respectively. For supersaturation, the solutions from the three numerical schemes

match very well since, at this early stage, Ba2+ and SO 2–
4 consumption is almost negligible

and the fluid composition is mainly governed by the flow dynamics. As in Figure 2.16,

the total particle volume density, on the other hand, is significantly overestimated by the

FVM-only scheme with 30 finite volume cells, while it is almost perfectly predicted by the

combined FVM-EAGM approach using the same amount of cells.

The bottom part of Table 2.2 shows average runtimes for a single time step of the

unsteady plug flow model. In line with our findings for the steady-state plug flow reac-

tor, activating the EAGM leads to a runtime increase by a factor of approximately 2.5.

However, if we compare the runtimes of the FVM-only implementation using 1000 finite

volume cells with that of the combined FVM-EAGM approach using 30 cells, the latter

shows a speedup of more than one order of magnitude for a comparable degree of accuracy.

2.7 Chapter summary

In this chapter, we presented an explicit solution-adaptive technique for discretizing the

spatially inhomogeneous and unsteady PBE along a one-dimensional particle property

space. Our method is based on a space and time dependent coordinate transformation

which maps physical particle property space onto a transformed particle property space

and is controlled by the shapes of recent particle property distributions. A main feature

of our approach is that the coordinate transformation can be marched in time explicitly

since its evolution over the next time step is prescribed based on the current solution for

the particle number density distribution and the current coordinate transformation. In

comparison to many existing moving or adaptive grid approaches, this has the advantage

that the node locations in physical particle property space do not appear as additional

dependent variables and the size of the semi-discrete system is maintained. Under the

coordinate transformation the PBE is reformulated in transformed particle property space

and discretized there using a standard fixed grid discretization scheme.

In order to accommodate nucleation source terms and to prevent grid distortion, we

adopted the notion of a node density in physical particle property space and developed a

robust numerical scheme by which the coordinate transformation can be adjusted such that

79

2 An explicit adaptive grid approach for solving the PBE

0

0.01

0.02

0.03

0.04
10

−10

10
−8

10
−6

10
−4

0

1

2

3

4

Axial location [m]
Particle size [m]

N
u
m

b
e
r

d
e
n
s
it
y
 [
1
0

1
7
/(

m
3
m

)]

0 0.01 0.02 0.03 0.04 0.05
0

50

100

150

200

250

300

350

400

Axial location [m]
S

u
p
e
rs

a
tu

ra
ti
o
n
 [
−

]

FVM (1000 cells)

FVM (30 cells)

FVM−EAGM (30 cells)

0 0.01 0.02 0.03 0.04 0.05
0

0.5

1

1.5

2

2.5

3

3.5

4

Axial location [m]

T
o
ta

l
p
a
rt

ic
le

 v
o
lu

m
e
 d

e
n
s
it
y
 [
1
0−

1
7
]

FVM (1000 cells)

FVM (30 cells)

FVM−EAGM (30 cells)

(a) Time t = 5 × 10−3 s

0

0.01

0.02

0.03

0.04
10

−10

10
−8

10
−6

10
−4

0

2

4

6

8

Axial location [m]
Particle size [m]

N
u
m

b
e
r

d
e
n
s
it
y
 [
1
0

1
7
/(

m
3
m

)]

0 0.01 0.02 0.03 0.04 0.05
0

50

100

150

200

250

300

350

400

Axial location [m]

S
u
p
e
rs

a
tu

ra
ti
o
n
 [
−

]

0 0.01 0.02 0.03 0.04 0.05
0

0.5

1

1.5

2

2.5

3

Axial location [m]

T
o
ta

l
p
a
rt

ic
le

 v
o
lu

m
e
 d

e
n
s
it
y
 [
1
0−

1
5
]

(b) Time t = 2.5 × 10−2 s

0

0.01

0.02

0.03

0.04
10

−10

10
−8

10
−6

10
−4

0

2

4

6

8

10

Axial location [m]
Particle size [m]

N
u
m

b
e
r

d
e
n
s
it
y
 [
1
0

1
7
/(

m
3
m

)]

0 0.01 0.02 0.03 0.04 0.05
0

50

100

150

200

250

300

350

400

Axial location [m]

S
u
p
e
rs

a
tu

ra
ti
o
n
 [
−

]

0 0.01 0.02 0.03 0.04 0.05
0

0.5

1

1.5

2

2.5

3

3.5

Axial location [m]

T
o
ta

l
p
a
rt

ic
le

 v
o
lu

m
e
 d

e
n
s
it
y
 [
1
0−

1
4
]

(c) Time t = 5 × 10−2 s (= u/X)

0

0.01

0.02

0.03

0.04
10

−10

10
−8

10
−6

10
−4

0

2

4

6

8

Axial location [m]
Particle size [m]

N
u
m

b
e
r

d
e
n
s
it
y
 [
1
0

1
7
/(

m
3
m

)]

0 0.01 0.02 0.03 0.04 0.05
0

50

100

150

200

250

300

350

400

Axial location [m]

S
u
p
e
rs

a
tu

ra
ti
o
n
 [
−

]

0 0.01 0.02 0.03 0.04 0.05
0

1

2

3

4

5

6

7

Axial location [m]

T
o
ta

l
p
a
rt

ic
le

 v
o
lu

m
e
 d

e
n
s
it
y
 [
1
0−

1
4
]

(d) Time t = 10−1 s

Figure 2.21 Time evolution of the BaSO4 particle size distributions (first column), the BaSO4 supersaturation
(second column) and the total particle volume density (third column) along the unsteady plug flow reactor computed
from the FVM-EAGM scheme using 30 finite volume cells (dash-dotted lines). For reference, the solid and dashed
lines in columns two and three indicate the results obtained from an FVM-only scheme with 1000 and 30 finite
volume cells, respectively.

80

2.7 Chapter summary

the node density at a particular particle property value does not fall below a prescribed

minimum node density and the grid stretching does not exceed a given maximum value.

In the BaSO4 precipitation example that we investigated, the adjustment scheme was

controlled by two grid parameters which can be interpreted as the minimum node density

in the nucleation interval and the maximum admissible grid stretching.

In view of general applicability, an advantage of our adaptive solution technique is

that it can be combined with any fixed grid discretization scheme in transformed particle

property space and, similarly, with any time integrator and physical space discretization

scheme. Moreover, owing to its simplicity, the adaptive solution technique is easy to

implement and, in particular, to integrate into existing academic or commercial solution

software.

As examples we considered the advection of a unit step in a constant flow field as well

as the precipitation of BaSO4 particles from an aqueous solution in a plug flow reactor.

In order to demonstrate its flexibility, the explicit adaptive grid method was combined

with three different direct discretization schemes in transformed particle property space:

the Galerkin finite element method, a fully upwinded orthogonal collocation finite element

method and a high resolution finite volume method. For the latter two methods, we

demonstrated that incorporating the explicit adaptive grid approach reduces the number

of grid points necessary to achieve a given accuracy by more than one order of magnitude.

Additionally, runtime measurements confirmed that the explicit adaptive grid scheme is

computationally very efficient.

The developments reported in this chapter are motivated by our objective to incorporate

the PBE as a model for a polydispersed particulate phase into existing spatially and

temporally resolved reacting flow models. Currently, the standard method to this end is

to discretize the PBE on a fixed grid in particle property space and to augment the vector

of fluid phase scalars by the discrete number density fields. The main disadvantage here is

that the fixed grid in particle property space often needs to be very fine in order to represent

all particle property distributions which may be present at any spatial location and any

point in time with comparable accuracy. Our explicit adaptive grid scheme alleviates this

requirement: The distribution of resolution in physical particle property space changes

both across the flow domain and in time, while spatial consistency is maintained with

respect to the transformed discrete number densities.

In future times, we intend to apply the explicit adaptive grid method to problems

also involving particle aggregation and breakage. Furthermore, we wish to extend the

formulation to a higher dimensional particle property space, incorporating, for instance,

particle morphology or inertia (see Section 7.2).

81

82

Chapter 3

An LES-PBE-PDF approach for

modelling turbulent precipitation

and condensation

3.1 Introduction

While the PBE governs the particle property distribution associated with a polydispersed

particulate phase, the carrier fluid is commonly described in terms of reactive scalars which

are often taken as species mass fractions supplemented by a calorific mixture quantity. In

this chapter, we present a comprehensive methodology for incorporating the PBE and

the reactive scalars’ transport equations into the large eddy simulation (LES) framework,

while allowing for a computationally efficient numerical solution procedure. Our approach

for resolving the interaction between turbulence and chemical reactions/particle formation

is based on the formulation of an evolution equation for the filtered joint scalar-number

density probability density function (pdf) associated with a single realization of the scalars

and number density fields [174]. In view of a numerical solution method, we present a

statistically equivalent reformulation of the joint scalar-number density pdf in terms of an

ensemble of Eulerian stochastic fields [71, 179, 200]. The stochastic field equation which is

physically associated with the particle number density is discretized in particle property

space using the explicit adaptive grid scheme developed in Chapter 2.

This brief introduction reflects the three main constituents which a model for polydis-

persed particle formation in a turbulent reacting flow comprises [173]:

1. Representation of the particle property distribution

2. A turbulent flow model

3. Turbulence-chemistry and turbulence-particle formation interaction

In Table 3.1, the current approaches for modelling turbulent reacting flows with polydis-

83

3 An LES-PBE-PDF approach for modelling turbulent precipitation and condensation

persed particle formation are classified according to these three submodels. Here, each

‘class’ encompasses a few representative references. In the following, we briefly review

these approaches, laying emphasis on the physical assumptions they involve as well as on

the computational expense they entail.

The first submodel mentioned above is largely independent of the turbulent nature

of the flow and also plays an important role in laminar flow configurations. Here, the

main question is how the particle property distribution may be represented in terms of a

finite number of ‘particle phase’ scalars. One strategy, in this regard, consists in replacing

the PBE by evolution equations for a few integral properties of the particle property

distribution. This leads to the method of moments which was introduced by Hulburt and

Katz [77] and has, until now, been one of the most popular approaches for characterizing

particulate phases in spatially inhomogeneous flows. Frequently, low order moments are

important from an engineering perspective, for example, the total particle number density

or volume fraction [168], or directly accessible by measurement techniques [56]. On the

minus side, the moment transport equations are only closed for certain functional forms

of the particle growth, coagulation and breakage rates [18, 46] and, in general, require

an assumption on the shape of the particle property distribution to be closed. In the

context of droplet condensation in a turbulent jet, Garmory and Mastorakos [59] assumed

a log-normal droplet size distribution [164], for instance.

Marchisio et al. [117] applied an alternative closure scheme, the quadrature method of

moments (QMOM) [120]. Here, integrals with respect to the particle property distribution

are computed using a quadrature approximation whose weights and abscissas are expressed

in terms of a finite number of moments. The direct quadrature method of moments

(DQMOM), moreover, is a variant of the QMOM in which evolution equations for the

quadrature weights and abscissas are solved in place of the moment equations [214]. One

difficulty associated with quadrature-based moment methods is related to the conservation

of moment realizability during spatial convection/diffusion and specially designed spatial

discretization schemes may become necessary [202, 203]. Only in passing we mention

the formulation of other moment-based methods such as MOMIC [55] and HMOM [130],

also see Rigopoulos [173] and Marchisio and Fox [115]. Following Raman and Fox [168],

moment-based methods are computationally very economical, in particular, if the particle

property space comprises more than one dimension.

In recent years, researchers have also investigated approaches for directly discretizing

the spatially inhomogeneous PBE in particle property space. Albeit more expensive, these

schemes have, by now, become a computationally viable alternative to moment-based

methods. Cheng et al. [31] applied the discretized population balance (DPB) scheme

of Kumar and Ramkrishna [94] to investigate the precipitation of BaSO4 crystals in a

stirred tank. Within the scope of a DPB, particle property space is divided into bins

and the particles in each bin collectively interact with the particles in other bins such

that particular moments of the particle property distribution are conserved. Campos

84

3.1 Introduction

and Lage [30] pointed out that, strictly, DPBs are not function approximation methods

and that the particle size distribution hence converges slower than its moments as the

number of bins is increased. This is at variance with direct discretization approaches

such as finite volume [209] or finite element methods [39, 40]. Here, however, both the

particle property distribution and all of its moments are affected by a discretization error

[175]. In the present work, we combine a high resolution finite volume method with the

explicit adaptive grid approach detailed in Chapter 2 for discretizing the stochastic field

counterpart (see below) of the inhomogeneous PBE in particle property space [186].

The second submodel indicated above refers to the physical concept which underlies

the representation of the turbulent carrier flow. Most of the investigations listed in Table

3.1 employ a description based on the Reynolds averaging formalism (RANS). Recently,

however, researchers have also invoked LES in order to analyze polydispersed particle

formation in turbulent flows. Makowski et al. [113], for example, investigated BaSO4

precipitation in an impingement T-mixer, while Neuber et al. [137] predicted the evolution

of droplet size distributions in a turbulent jet. Although LES is considered in this work,

we emphasize that our adaptive discretization scheme for the PBE as well as the PBE-

PDF model for the turbulence-chemistry/particle formation interaction (see below) are

not limited in validity to LES, but can similarly be applied in the context of RANS-based

flow models.

From a physical perspective, the third submodel for the turbulence-chemistry and

turbulence-particle formation interaction quantifies how spatial and temporal inhomo-

geneities that are not resolved by the turbulence model affect chemical reactions in the

fluid phase along with particle formation. One of the simplest models for the turbulence-

chemistry/particle formation interaction is the perfect micromixing hypothesis [31, 113,

117, 145, 208]. Physically, this model is based on the assumption that mixing of reactants

on a molecular scale takes place instantaneously and that chemical reactions and particle

formation are the rate-controlling steps. In the past, the perfect micromixing model has

been applied also to fast precipitation reactions [31, 208], although it is difficult to justify

its validity in this case.

Presumed pdf methods, on the other hand, are models for the turbulence-chemistry/-

particle formation interaction which leverage physical insight and computational expense.

In general, they may be categorized into presumed pdf methods based on ‘tracking’ scalars

[154] and multi-environment/DQMOM-IEM approaches. In the first class, the reaction

and particle formation kinetics are described in terms of a small number of scalars such as

mixture fraction or a reaction progress variable whose joint pdf is assumed to take on a

particular functional form. Commonly, the resulting presumed joint pdf is parameterized

by a few statistical properties, for instance, mean and covariance, which obey modelled

evolution equations. In the context of precipitation, Ba ldyga and Orciuch [14] and Ba ldyga

and Orciuch [18] combined a presumed pdf method based on a β-pdf for mixture fraction

with an interpolation scheme for relating the reactant concentrations and the moments of

85

3 An LES-PBE-PDF approach for modelling turbulent precipitation and condensation

the particle size distribution to mixture fraction. Considering soot formation in a turbulent

jet flame, Zucca et al. [214], applied a β-pdf approach based on mixture fraction [17] to the

gas phase chemistry and, adopting a DQMOM approximation of the PBE, assumed that

the weights and abscissas are statistically independent and perfectly micromixed. This

idea was taken further by Mueller and Pitsch [128] who described the thermochemical

state of a gas in terms of three variables and applied the HMOM in order to close the

moment equations associated with a bivariate soot property distribution. Based on an

assumption of statistical independence, these authors let the thermochemical variables

and moments obey a marginal β-pdf or be perfectly micromixed.

Drawing on early Lagrangian micromixing models, multi-environment methods were

first rationalized by Fox [51] who later developed the DQMOM-IEM method [50]. Here, the

joint pdf of the fluid and particle phase scalars is represented as a linear combination of the

pdfs associated with several model flow realizations (or environments) which may exchange

likelihood (or volume fraction) with each other according to a micromixing model. In the

DQMOM-IEM approach, this interaction is formalized by imposing the condition that the

evolution equations for the mean scalars in each environment as well as the associated

volume fractions exactly reproduce the evolution of the first few unmixed moments of the

joint scalar pdf. In the context of BaSO4 precipitation in a tubular reactor, Marchisio et al.

[116] and Marchisio et al. [118] formulated a three-environment model in terms of mixture

fraction, a reaction progress variable as well as the first few moments of the particle size

distribution. Woo et al. [209] also considered a three-environment model, but combined

it with a discrete finite volume-based representation of the particle size distribution in

order to analyze an antisolvent crystallization process in a semibatch stirred reactor. The

DQMOM-IEM method, on the other hand, was applied by Gavi et al. [60] in conjunction

with the QMOM and by Akroyd et al. [4] in combination with the MOMIC.

Finally, transported pdf approaches rank amongst the most comprehensive, albeit com-

putationally expensive closure schemes for the turbulence-chemistry interaction. These

methods are based on a modelled evolution equation for the one-point, one-time joint

scalar pdf. Since their formulation is independent of tracking variables, transported pdf

methods may be applied to different flow configurations (premixed, non-premixed, par-

tially premixed) without adjustment. Considering the precipitation of silica particles in

a tubular reactor, Falk and Schaer [46] seem to have been the first to formulate a joint

scalar-moment pdf transport equation. A similar approach was adopted by Garmory and

Mastorakos [59] who investigated the nucleation and growth of an aerosol in a turbulent

jet.

While joint scalar-moment transported pdf methods are well-established by now, in-

corporating the complete PBE into a transported pdf approach is not yet widely adopted.

This idea was originally put forward by Rigopoulos [174] who showed how the discrete

number densities resulting from a discretization of the PBE in particle property space

may be accounted for in an evolution equation for the joint scalar-discrete number den-

86

3.1 Introduction

sity pdf. The main advantage of the so-called PBE-PDF method is that it allows for

the prediction of the particle property distribution and is able to accommodate any fluid

or particle phase kinetics without approximation. The only remaining closure which the

PBE-PDF methods requires is related to the two-point process of molecular diffusion.

Di Veroli and Rigopoulos [38–40] first demonstrated the effectiveness of the PBE-PDF

method in the context of RANS by validating PBE-PDF predictions for a finite element

discretization of the particle size distribution in two experimental test cases. Additionally,

they were able to show that a numerical solution of the joint scalar-discrete number den-

sity pdf transport equation is computationally viable and can be achieved in reasonable

computing times by using a Lagrangian stochastic particle solver [161]. Recently, Neuber

et al. [137] applied the PBE-PDF method based on a DPB in the context of LES and

obtained predictions of droplet size distributions in a turbulent jet. Specifically, these

authors combined a Lagrangian stochastic particle scheme based on the modified Curl

micromixing model with a generalized multiple mapping conditioning (MMC) approach

in order to localize micromixing in composition space. Upon deemphasizing the proximity

of stochastic particles in physical space, this led to a so-called sparse particle MMC-LES

approach which was found to not only achieve a similar accuracy as a dense stochastic

particle solver without MMC localization, but also yield a reduction in runtime of one

order of magnitude.

By design, the PBE-PDF model accounts for the influence of turbulence on particle

growth and particle-particle interactions via the particle number density. In an early work,

Warshaw [207] suspected that these effects are important in laboratory scale systems, but

may be negligible in large-scale volumes with many particles such as clouds. Subsequently,

only few authors have addressed the number density correlations which appear in a tur-

bulent flow model. In the context of nucleation and growth of BaSO4 particles, Di Veroli

and Rigopoulos [38] demonstrated that omitting the influence of turbulence on the num-

ber density can lead to noticeable differences in the predicted particle mean diameter, in

particular, if micromixing is the rate-controlling step. Interestingly, both Rigopoulos [174]

and Di Veroli and Rigopoulos [38] observed that for some mixing conditions the modelling

errors in kinetic rates computed using the perfect micromixing assumption and the errors

due to omission of growth rate-number density correlations compensate each other.

The contribution of this chapter to our overall objective is threefold: First, we formulate

an LES-based evolution equation for the filtered joint scalar-number density pdf that is

independent of a particular particle property discretization. Second, a Eulerian stochastic

field formulation is presented which, in a statistical sense, reproduces the evolution of

the joint scalar-number density pdf and is compatible with both fixed and adaptive grid

discretizations of particle property space. Finally, we consider the precipitation of BaSO4

in an industrial precipitator and the condensation of an aerosol in a developed turbulent

mixing layer as test cases and compare predictions of the LES-PBE-PDF model with

experimental measurements or direct numerical simulation (DNS) results, respectively.

87

3 An LES-PBE-PDF approach for modelling turbulent precipitation and condensation

Representation of the particle
property distribution

Turbulence-chemistry/particle formation interaction

Presumed pdf

Perfect
β-pdf

Multi- DQMOM- Transported

micromixing environment IEM pdf

Moments
MOM [145, 208] [113]⋆ [14, 18, 113] [16, 116, 118] [46, 59]

XMOMY [117] [214] [128]⋆ [4, 60]

Fixed grid
DPB [31] [137]⋆

FVM/FEM [209] [38–40]

Adaptive grid FVM This work⋆

Table 3.1 An overview of different approaches for modelling polydispersed particle formation in turbulent reacting
flows (DPB: Discretized Population Balance, FEM: Finite Element Method, FVM: Finite Volume Method, MOM:
Method of Moments, XMOMY: Quadrature-based Method of Moments, for example, QMOM, DQMOM, HMOM,
MOMIC). From a modelling perspective, the main challenges are concerned with (i) the representation of the particle
property distribution (rows), (ii) the description of the turbulent carrier flow (⋆ LES, otherwise RANS) and (iii) the
interaction between turbulence and chemical reactions/particle formation (columns).

Here, it is demonstrated that, based on our numerical solution scheme, model solutions

can be efficiently and accurately obtained on a modern computing system.

This chapter is structured as follows: In Section 3.2, we first record the governing equa-

tions and briefly review the LES concept. Subsequently, the evolution equation for the

joint scalar-number density pdf is derived and the statistically equivalent stochastic field

equations are developed. In Sections 3.3 and 3.4, we provide details on the implementation

of the numerical solution scheme and assess the predictive quality and computational via-

bility of the LES-PBE-PDF approach in two test cases. This is followed by our conclusions

in Section 3.5.

3.2 The LES-PBE-PDF framework for turbulent reacting

flows with particle formation

In this section, we present the LES-PBE-PDF approach for modelling the evolution of a

particle property distribution in a turbulent carrier flow. Figure 3.1 schematically illus-

trates the main constituents of the model as well as the interconnecting rationale which

leads to the final model formulation. The remaining part of this section can be seen as a

guide through this diagram, leading from left to right.

3.2.1 Governing equations

Following the motivation in Section 2.3, we consider a particulate phase that is poly-

dispersed with respect to a characteristic particle property l, l ∈ [0, L]. From a Eule-

rian perspective, the evolution of the number density N(l,x, t) associated with the par-

ticulate phase can be described by the PBE in Eq. (2.1). The carrier fluid mixture,

88

3.2 The LES-PBE-PDF framework for turbulent reacting flows with particle formation

F
lu

id

Stochastic

fields

LES

F
lo

w
P

ar
ti

cl
es

PBE

Scalars TE

pdf TE

Flow LES

LES-PBE-PDF

Navier-Stokes

Equations

Figure 3.1 An overview of the LES-PBE-PDF framework for modelling turbulent reacting flows with particle
formation (TE: Transport Equation).

on the other hand, is commonly characterized in terms of reactive scalars Y(x, t) =

(Y1(x, t), . . . , Yns(x, t))
T which may represent species mass fractions and temperature,

for instance. If the fluid density ρ(x, t) is constant, then the reactive scalars Yi(x, t),

i = 1, . . . , ns, evolve according to

∂Yi(x, t)

∂t
+

3∑

j=1

∂ (uj(x, t)Yi(x, t))

∂xj

=

3∑

j=1

∂

∂xj

(
D(x, t)

∂Yi(x, t)

∂xj

)
+ ω̇i(Y(x, t), N(·,x, t))

(3.1)

in the ambient velocity field u(x, t), where ω̇i(Y(x, t), N(·,x, t)) represents the rate at

which scalar i is produced or depleted, respectively. Note that, owing to the consumption

of fluid phase species on account of particle formation, ω̇ is, in general, a functional of the

local particle property distribution N(·,x, t).
In Eq. (3.1), D(x, t) denotes a mixture averaged diffusivity that is common to all

scalars. Strictly, this presents an approximation of the more general case of fluid phase

differential diffusion, whereby each scalar is characterized by a different mixture averaged

diffusion coefficient. In turbulent flows, differential diffusion is frequently omitted, al-

though it may affect the location of reaction zones in mixture fraction space. In part,

the simplification of considering a single diffusion coefficient D(x, t) may be owed to the

fact that micromixing models based on the IEM-concept (Interaction by Exchange with

the Mean; see Sections 3.2.4 and 4.3.4) have not yet been extended to include differential

micromixing rates. In line with References [84, 85], we thus do not consider differential

diffusion within the fluid phase in this work, although it is emphasized that our LES-PBE-

PDF framework does not inherently prevent its inclusion.

89

3 An LES-PBE-PDF approach for modelling turbulent precipitation and condensation

For future reference, we also record the continuity equation for a constant density flow,

3∑

i=1

∂ui(x, t)

∂xi
= 0. (3.2)

Initially, at time t = t0, the fluid mixture in the flow domain possesses the composition

Y0(x), while the number density is given by N0(l,x),

Y(x, t0) = Y0(x), (3.3)

N(l,x, t0) = N0(l,x). (3.4)

Additionally, both the reactive scalars Y(x, t) and the number density N(l,x, t) obey

standard Dirichlet and/or Neumann boundary conditions along the boundary of the flow

domain. If l represents a measure of particle size, we also have the boundary condition in

Eq. 2.4 at l = 0.

3.2.2 Large eddy simulation

The main idea in LES is to resolve the large energy-containing scales of a single realization

of the flow field and, in this way, to reduce the sensitivity of predictions with respect

to the closure approximations for turbulent transport. Conceptually, this approach is

very different from RANS-based turbulence models in which an expectation over a large

number of realizations is computed. In LES, the fields describing a single realization are

formally subjected to a linear operator which (in an abstract fashion) reduces the contained

information without affecting the representation of large scale flow structures (eddies).

Following Sagaut [180], we introduce the LES-operator · as a linear operator on the set of

admissible fields φ(x, t) obeying two properties: First, a constant field φ(x, t) = a ∈ R is

mapped onto itself,

φ(x, t) = a = a = φ(x, t). (3.5)

Second, differentiation of a field φ(x, t) with respect to x or t and application of the

LES-operator commute,

∂φ(x, t)

∂xi
=
∂φ(x, t)

∂xi
, i = 1, . . . , 3, (3.6)

∂φ(x, t)

∂t
=
∂φ(x, t)

∂t
. (3.7)

In addition, we assume that, formally, the LES-operation on φ(x, t) can be expressed in

terms of a scalar function G(x,x′) ≥ 0 in the following way

φ(x, t) =

∫

Ω
G(x,x′)φ(x′, t) dx′. (3.8)

90

3.2 The LES-PBE-PDF framework for turbulent reacting flows with particle formation

Since G(x,x′) is non-negative and by the property in Eq. (3.5), G(x,x′) possesses all

properties of a pdf. Frequently, G(x,x′) is referred to as a spatial filter kernel. For our

developments, however, this interpretation is not necessary and, apart from the existence

of a kernel G(x,x′), its precise definition is immaterial at this point. Ultimately, the

kernel G(x,x′) is defined implicitly through the closure approximations for the turbulent

transport term and the molecular mixing in Sections 3.2.3 and 3.2.4 [162, Section 13.4.3].

Introducing the identity

φ(x, t) =

∫
ψδ(ψ − φ(x, t)) dψ (3.9)

into Eq. (3.8) leads to

φ(x, t) =

∫
ψfφ(ψ;x, t) dψ, (3.10)

where ψ indicates the sample space variable associated with φ(x, t) and fφ(ψ;x, t) defined

by

fφ(ψ;x, t) ≡
∫

Ω
G(x,x′)δ(ψ − φ(x′, t)) dx′ (3.11)

represents the LES-filtered pdf characterizing the instantaneous field φ(x, t). Eq. (3.10)

shows that the LES-operation on a scalar field can be computed as an expectation of this

field with respect to its filtered instantaneous pdf.

3.2.3 The LES-PBE-PDF framework

In the present section, we conceive the governing fields as random variables and derive a

transport equation for the joint filtered pdf f(y, n(·);x, t) of the reactive scalars Y(x, t)

and the particle property distribution N(·,x, t). Here, y = (y1, . . . , yns) denotes the

sample space vector associated with Y(x, t) and, similarly, n(·) represents the sample space

function indicating an element of the set of all admissible particle property distributions

N(·,x, t) for a given pair (x, t). By construction, f(y, n(·);x, t) uniquely characterizes

all multi-l statistics of N(·,x, t) including, for instance, the LES-filtered values of the

moments of the particle property distribution. Although the evolution of the governing

fields is described by deterministic transport equations, randomness may enter the physical

description via the initial and boundary conditions or the material properties [162, Section

3.1].

In order to obtain a governing equation for f(y, n(·);x, t), we follow the standard

practice of first considering the fine-grained density

g(y, n(·);x, t) = δ (y −Y(x, t)) δ (n(·)−N(·,x, t)) , (3.12)

where δ represents Dirac’s delta distribution, and, subsequently, computing its expectation

91

3 An LES-PBE-PDF approach for modelling turbulent precipitation and condensation

with respect to f(y, n(·);x, t),

f(y, n(·);x, t) = g(y, n(·);x, t)

=

∫
δ
(
y − y′) δ

(
n(·)− n′(·)

)
f(y′, n′(·);x, t) dy′dn′(·).

(3.13)

This approach was first pioneered by Lundgren [111] in the context of RANS and later

generalized to LES by Pope [159].

If we consider, as an auxiliary vehicle, a grid li = iL/m, i = 0, . . . ,m, in particle

property space, then the Dirac delta expression involving the sample space function n(·)
in Eq. (3.12) may be understood, formally, as the limit

δ (n(·)−N(·,x, t)) = lim
m→∞

m∏

i=0

δ (n(li)−N(li,x, t)) (3.14)

such that the fine grained density g(y, n(·);x, t) appears as a functional in n(·).
The derivatives of g(y, n(·);x, t) with respect to x and t are given by

∂g

∂xj
= −

ns∑

i=1

∂g

∂yi

∂Yi
∂xj
− ∂g

∂n

∂N

∂xj
, j = 1, . . . , 3, (3.15)

∂g

∂t
= −

ns∑

i=1

∂g

∂yi

∂Yi
∂t
− ∂g

∂n

∂N

∂t
, (3.16)

respectively, where, for conciseness, the arguments (y, n(·);x, t), (x, t) and (·,x, t) of g, Y

and N have been omitted. By introducing Eqs. (2.1) and (3.1) into Eq. (3.16) and taking

into account Eqs. (3.2) and (3.15), we obtain the following evolution equation for the fine

grained density g(y, n(·);x, t)

∂g

∂t
+

3∑

j=1

uj(x, t)
∂g

∂xj
= −

ns∑

i=1

∂g

∂yi

3∑

j=1

∂

∂xj

(
D(x, t)

∂Yi
∂xj

)
+ ω̇i(Y, N(·,x, t))

− ∂g

∂n

3∑

j=1

∂

∂xj

(
Dp(x, t)

∂N

∂xj

)
− ∂ (G(·,Y)N(·,x, t))

∂l
+ ṡ(·,Y, N(·,x, t))

 .

(3.17)

For any functional F (Y, N, ∂Y/∂xj , ∂N/∂xj , . . .) of Y(x, t), N(·,x, t) and their spatial

derivatives, we have the identity

gF

(
Y, N,

∂Y

∂xj
,
∂N

∂xj
, . . .

)

= f

[
F

(
Y, N,

∂Y

∂xj
,
∂N

∂xj
, . . .

)∣∣∣∣Y(x, t) = y, N(·,x, t) = n(·)
]
,

(3.18)

where the vertical bar under the LES-operator represents conditioning of the expectation

92

3.2 The LES-PBE-PDF framework for turbulent reacting flows with particle formation

on the entities specified to the right of the bar. As an aid to the reader, we include a proof

of Eq. (3.18) in Appendix B.1. Applying the LES-operator to Eq. (3.17) and taking into

account Eqs. (3.2), (3.6), (3.7) and (3.18) leads to an evolution equation for f(y, n(·);x, t),

∂f

∂t
+

3∑

j=1

uj(x, t)
∂f

∂xj
= −

ns∑

i=1

∂

∂yi
fω̇i(y, n(·))

− ∂

∂n
f

(
ṡ(·,y, n(·)) − ∂ (G(·,y)n(·))

∂l

)
−

3∑

j=1

∂

∂xj

(
uj(x, t)g − ujf

)

−
ns∑

i=1

∂

∂yi
f

3∑

j=1

∂

∂xj

(
D(x, t)

∂Yi
∂xj

)∣∣∣∣∣∣
y, n(·)

− ∂

∂n
f

3∑

j=1

∂

∂xj

(
Dp(x, t)

∂N

∂xj

)∣∣∣∣∣∣
y, n(·)

.

(3.19)

Here, the third term on the right hand side corresponds to transport in physical space by

the residual velocities. In analogy to the closure of the turbulent transport term in the

momentum equation, we adopt an eddy viscosity model to close this term [57, 72],

uj(x, t)g − uj(x, t)f = −Γ(x, t)
∂f

∂xj
. (3.20)

In Eq. (3.20), Γ(x, t) = Γ′(x, t)/Sc denotes a scaled eddy viscosity which can be related

to the eddy viscosity Γ′(x, t) obtained from the standard Smagorinsky model [103] via a

turbulent Schmidt/Prandtl number, Sc = 0.7. For the turbulent pipe flow analyzed in

Section 3.4.1, we specifically employ a dynamic Germano-type procedure for evaluating

the Smagorinsky constant [62, 155]. In the context of the turbulent mixing layer which

we discuss in Section 3.4.2, by contrast, the Smagorinsky constant remains fixed at 0.1.

Physically, the final two terms in Eq. (3.19) correspond to mixing on a molecular

scale. The closure of these terms under the viewpoint of the one-point, one-time pdf

f(y, n(·);x, t) is addressed in Section 3.2.4. For generality, we suppose at this point that

the micromixing terms can be modelled by expressions of the form

f

3∑

j=1

∂

∂xj

(
D(x, t)

∂Yi
∂xj

)∣∣∣∣∣∣
y, n(·)

 =Mif, (3.21)

f

3∑

j=1

∂

∂xj

(
Dp(x, t)

∂N

∂xj

)∣∣∣∣∣∣
y, n(·)

 =Mpf, (3.22)

whereMi, i = 1, . . . , ns, andMp denote operators on f(y, n(·);x, t) [179]. By introducing

Eqs. (3.20) through (3.22) into Eq. (3.19), we obtain the following modelled pdf transport

93

3 An LES-PBE-PDF approach for modelling turbulent precipitation and condensation

equation

∂f

∂t
+

3∑

j=1

uj(x, t)
∂f

∂xj
=

3∑

j=1

∂

∂xj

(
Γ(x, t)

∂f

∂xj

)
−

ns∑

i=1

∂

∂yi
(fω̇i(y, n(·)) +Mif)

− ∂

∂n

(
f ṡ(·,y, n(·)) − f ∂ (G(·,y)n(·))

∂l
+Mpf

)
.

(3.23)

To slightly abbreviate the notation, we next define nφ ≡ ns + 1, z ≡ (yT , n(·))T and

Mnφ
≡Mp as well as

s(·, z) ≡
(

ω̇(y, n(·))
ṡ(·,y, n(·)) − ∂(G(·,y)n(·))

∂l

)
(3.24)

such that Eq. (3.23) reduces to

∂f

∂t
+

3∑

j=1

uj(x, t)
∂f

∂xj
=

3∑

j=1

∂

∂xj

(
Γ(x, t)

∂f

∂xj

)
−

nφ∑

i=1

∂

∂zi
(fsi(·, z) +Mif) . (3.25)

In Eq. (3.25), the sample space function n(·) persists as an independent coordinate.

This is at variance with the original PBE-PDF formulation by Rigopoulos [174] who

discretized the PBE on a fixed grid in particle property space first and, subsequently,

obtained an evolution equation for the joint pdf of the reactive scalars and the discrete

number densities. However, we found that deferring the discretization in particle property

space enables a distinct separation between physical modelling and numerical solution

and, in particular, allows for both fixed and adaptive grid discretization schemes to be

consistently applied in particle property space.

3.2.4 Mixing on the molecular scale

In this section, we address the closure of the molecular mixing term in the transport

equation of the one-point, one-time joint scalar-number density pdf f(z;x, t) (Eq. (3.25)),

−
nφ∑

i=1

∂

∂zi
(Mif) , (3.26)

where Mif , i = 1, . . . , nφ − 1, and Mnφ
f = Mpf are given by Eqs. (3.21) and (3.22),

respectively. In an extension of the IEM-related model proposed by McDermott and Pope

[119], we adopt the representation

Mif = fmi(x, t, z), i = 1, . . . , nφ, (3.27)

94

3.2 The LES-PBE-PDF framework for turbulent reacting flows with particle formation

where

mi(x, t, z) = κ(x, t)
(
Y i(x, t)− yi

)
+

3∑

j=1

∂

∂xj

(
D(x, t)

∂Y i(x, t)

∂xj

)
(3.28)

for i = 1, . . . , nφ − 1,

mnφ
(x, t, z) = κ(x, t)

(
N(·,x, t) − n(·)

)
+

3∑

j=1

∂

∂xj

(
Dp(x, t)

∂N (·,x, t)
∂xj

)
(3.29)

and κ(x, t) denotes the IEM mixing frequency. This frequency is often expressed in terms

of the scaled eddy viscosity Γ(x, t),

κ(x, t) =
Cκ

2

Γ(x, t)

∆2
, (3.30)

where Cκ = 2 represents a micromixing constant and ∆ is computed as the cubic root of

the local cell volume in a finite volume partitioning of the flow domain [163]. In practice,

it is common to replace the current LES-filtered fields Y(x, t) and N(·,x, t) in Eq. (3.29)

by the LES-filtered fields at the previous point in time as this avoids introducing integrals

of f(z;x, t) in the pdf transport equation.

The final terms in Eq. (3.29) account for differential diffusion between the fluid and

particulate phases; these may also be extended to account for differential diffusion among

fluid phase scalars as well as to the case in which the diffusivities D and Dp are specified

functions of Y(x, t) and N(·,x, t) [119]. By invoking an argument similar to the one

of McDermott and Pope [119], it can be shown that a pdf formulation based on the

micromixing model in Eq. (3.29) is consistent with the governing equations (Eqs. (2.1),

(3.1) and (3.2)) in the DNS limit.

For the test cases which we investigate in Sections 3.4.1, 3.4.2 and 4.5, the particle

diffusivity Dp is set to zero identically. Strictly, by Eq. (3.22), this implies Mnφ
f =

0 which is at variance with the modelled micromixing term Mnφ
f = fmnφ

= κ(x, t)(
N(·,x, t) − n(·)

)
obtained from Eqs. (3.27) and (3.29). Thus, even in the absence of

molecular particle diffusion, the present micromixing model accounts for mixing of number

density towards the mean at a rate that is proportional to the local scaled eddy viscosity

Γ(x, t). One possible approach to resolve this contradiction would be to choose different

micromixing frequencies (variants of Eq. (3.30)) for the scalars and number density and to

express the individual micromixing frequencies in terms of both Γ(x, t) and the respective

molecular diffusivity such that the right hand side of Eq. (3.29) consistently reduces to

zero in the limit of vanishing molecular diffusion. This extension may also yield differential

micromixing frequencies among the gas phase scalars. In view of the scope of this work,

we defer such a model enhancement to future times, keeping, however, the limitations of

the present micromixing closure in mind.

Introducing Eq. (3.27) into Eq. (3.25) leads to the following modelled joint scalar-

95

3 An LES-PBE-PDF approach for modelling turbulent precipitation and condensation

number density pdf transport equation

∂f

∂t
+

3∑

j=1

uj(x, t)
∂f

∂xj
=

3∑

j=1

∂

∂xj

(
Γ(x, t)

∂f

∂xj

)
−

nφ∑

i=1

∂

∂zi
(fsi(·, z) + fmi(x, t, z)) . (3.31)

3.2.5 The statistical significance of the pdf in the context of LES

The filtered pdf associated with a single realization of the governing fields which we in-

troduced in Section 3.2.3 is sometimes referred to as a filtered density function (fdf).5

Our label of pdf reflects that the fdf possesses, formally, all properties of a pdf and is in

keeping with the terminology put forward by Jones [83]. At the same time, this is not to

imply that the pdf also possesses the meaning of a pdf in the physical sense as in RANS,

where the considered pdfs encompass all statistical properties of the governing random

fields.

Instead, in the context of LES, the pdf remains a random quantity as it is naturally

linked to one realization of the instantaneous governing fields. Concomitantly, also the

statistics of the pdf are random variables [72], in particular, the filtered composition

or particle property distribution. The unclosed terms which remain in the transport

equations for the pdf and its statistics represent the influence of the residual fluctuations

on the filtered quantities for one particular realization of the flow. Since there may be little

generality in attempting to provide a closure based on a single realization, the closures

which are commonly applied in LES, possess some statistical quality in the sense that

they represent the expected influence of the residual scales conditioned on the current

realization of the filtered fields [157]. At least in part, this is corroborated by the fact that

many closures are adopted from RANS turbulence models. By consequence, as Pitsch

[157] argues, we ought to consider instead a pdf associated with the governing random

fields that is conditioned on one realization of the filtered fields (which are, themselves,

random by nature).

These considerations seem to indicate that, thus far, the pdf evolution equations were

commonly obtained in the sense of an fdf and endowed, somehow coincidentally, with

some statistical quality by applying closures which actually pertained to a pdf of the

governing fields that is conditioned on one realization of the filtered fields. If the evolution

equation for the conditional pdf differed from the usual pdf evolution equations, then the

present modelling would be, in the least, conceptually inconsistent. However, in response

to this seeming disparity, we argue, in line with Pitsch [157], that if the closures which

are commonly applied introduce statistical meaning into the pdf transport equation, then

this meaning is also transferred to the pdf as the governing variable. In the same vain,

the terms which would be different in a transport equation for a conditional pdf are then

5Note that the pdf associated with a single realization of the governing fields can be viewed as
the pdf of the random governing fields (that is, in the sense of RANS) conditioned on a particular
realization [72].

96

3.2 The LES-PBE-PDF framework for turbulent reacting flows with particle formation

accounted for by the applied closure schemes, such that, ultimately, the original pdf is

converted to its conditional counterpart.

It is in this sense, that the term pdf which we adopt throughout this work may extend

beyond the purely formal meaning mentioned in the beginning of this section. While the

pdf could be viewed in the strict sense of an fdf, reflecting the nature of its definition, it

may also hint at a statistical quality in a sense that is particularized by the closures for

turbulent transport and micromixing and may shift the physical meaning of the pdf to

one that is conditioned on a specific realization of the filtered fields.

3.2.6 A stochastic field approach for solving the joint scalar-number

density pdf transport equation

Owing to the large dimensionality of f(z;x, t), the application of direct discretization

schemes to Eq. (3.31) can lead to an enormous computational expense. From a physi-

cal viewpoint, however, our primary objective is not to accurately compute f(z;x, t) but

rather to estimate expectations with respect to f(z;x, t). Within the combustion commu-

nity, these observations have motivated the development of different stochastic solution

approaches such as the Eulerian method of stochastic particles [158], its Lagrangian coun-

terpart [161] or the method of Eulerian stochastic fields [71, 179, 200]. Here, the main idea

is to construct an independent stochastic system whose transition pdf evolves according

to the pdf transport equation in Eq. (3.31). If different realizations of this indepen-

dent stochastic system are computed, then expectations with respect to f(z;x, t) can be

approximated by Monte Carlo estimates. One advantage of this strategy is that the com-

putational effort is naturally channelled towards the estimation of low order statistics of

f(z;x, t) such as the LES-filtered reactive scalars Y(x, t) or particle property distribution

N(·,x, t), while approximation errors are shifted onto higher order statistics.

In this work, we specifically apply the method of Eulerian stochastic fields which was

pioneered by Valiño [200] and Hauke and Valiño [71] and later rationalized by Sabel’nikov

and Soulard [179]. By design, this method preserves the Eulerian character of the pdf

transport equation. In view of LES applications, its spatial resolution is independent of

the characteristic flow structures which can be technically challenging to achieve with a

Lagrangian stochastic particle solver if the flow pattern is complicated [72]. Furthermore,

the evolution equations for one realization of the stochastic fields can be reduced quite

naturally (with minor modifications) to the deterministic transport equations for Y(x, t)

and N(l,x, t) associated with the perfect micromixing hypothesis. This may be helpful for

software development purposes, in order to verify that the implementation yields physically

sensible results, or to assess the influence of finite-rate mixing effects with the same solution

software.

In the stochastic field approach, we consider a vector-valued stochastic process θ(t; l,x)

which is smoothly parameterized by (l,x) and constructed such that the transition pdf

97

3 An LES-PBE-PDF approach for modelling turbulent precipitation and condensation

h(z, t|z0(·,x), t0;x) associated with θ(t; ·,x) obeys Eq. (3.31) subject to the initial condi-

tion

h(z, t0|z0(·,x), t0;x) = δ(z − z0(·,x)). (3.32)

Since z0(·,x) = (Y0(x), N0(·,x)) is deterministic and t0 is given, we drop the conditioning

on z0(·,x) and t0 from the notation for brevity. In Appendix B.2.1 it is shown that if

the stochastic process θ(t; l,x) evolves according to the Itô stochastic differential equation

(SDE)

∂θi
∂t

+

3∑

j=1

uj(x, t)
∂θi
∂xj

=

3∑

j=1

∂

∂xj

(
Γ(x, t)

∂θi
∂xj

)
−

3∑

j=1

√
2Γ(x, t)

∂θi
∂xj

Ẇj(t)

+ si(l,θ) +mi(x, t,θ), i = 1, . . . , nφ,

(3.33)

then the transition pdf h(z, t;x) satisfies Eq. (3.31) subject to the initial condition in

Eq. (3.32). At this point, we recall that an SDE only holds in a time-integral sense [151,

Section 3]; Eq. (3.33) is thus shorthand for

θi(t; l,x) = θi(t0; l,x)−
3∑

j=1

∫ t

t0

uj
∂θi
∂xj

dt+ . . .−
3∑

j=1

∫ t

t0

√
2Γ(x, t)

∂θi
∂xj

dWj(t) + . . . , (3.34)

where the stochastic integral is computed in Itô’s sense with respect to Brownian motion

Wj(t).

Apart from conceptual differences between LES and RANS, Eq. (3.33) differs from the

joint scalar stochastic field equations presented by Hauke and Valiño [71, Eq. (9)] mainly

in two respects. First, our stochastic process θ(t; l,x) features the particle property l as an

additional independent coordinate and, second, it encompasses a component (index nφ)

which physically represents the particle number density. Yet, since the stochastic processes

θi(t; l,x), i = 1, . . . , nφ − 1, corresponding to the fluid phase scalars are independent of

l initially and since the corresponding source terms and initial/boundary conditions are

independent of l, the scalars θi, i = 1, . . . , nφ − 1, remain independent of l for all times

t ≥ t0. This shows that, apart from a different choice of micromixing model, the SDEs

for θi(t; l,x), i = 1, . . . , nφ − 1, in Eq. (3.33) are consistent with the fluid phase SDE in

Reference [71, Eq. (9)]. By contrast, the stochastic particle number density θnφ
(t; l,x) in

Eq. (3.33) is distributed in particle property space and may be created and removed, or

convected along l at the local growth rate (Eq. (3.24)).

Commonly, evolution equations of the type of Eq. (3.33) are solved numerically using

the method of fractional steps. While this introduces an approximation in time, it offers

the advantage that the numerical solution procedures can be tailored to the physical

characteristics of each fractional step. For a first-order accurate fractional time stepping

98

3.2 The LES-PBE-PDF framework for turbulent reacting flows with particle formation

[161], the convection-diffusion fractional step encompasses the SDE

∂θi
∂t

+

3∑

j=1

(
uj(x, t) +

√
2Γ(x, t)Ẇj(t)

) ∂θi
∂xj

=

3∑

j=1

∂

∂xj

(
Γ(x, t)

∂θi
∂xj

)
,

i = 1, . . . , nφ,

(3.35)

while the micromixing fractional step is based on

∂θi
∂t

= mi(x, t,θ), i = 1, . . . , nφ, (3.36)

and the fluid reaction and PBE fractional steps are, respectively, given by

∂θi
∂t

= ω̇i(θ), i = 1, . . . , nφ − 1, (3.37)

∂θnφ

∂t
+
∂
(
G(l,θ)θnφ

)

∂l
= ṡ(l,θ), (3.38)

where, with a slight abuse of notation, G(l, ·) is evaluated at θ. In Eqs. (3.37) and (3.38),

the source terms si(l,θ) have been recast in terms of ω̇i(θ) and ṡ(l,θ) by introducing Eq.

(3.24).

Considering nf realizations θ(i)(t; l,x), i = 1, . . . , nf , of the stochastic process θ(t; l,x),

we approximate expectations with respect to h(z, t;x) by Monte Carlo estimates,

H(Y(x, t), N(·,x, t)) =

∫
H(y, n(·))f(y, n(·);x, t) dydn(·) =

∫
H(z)h(z, t;x) dz

≈ 1

nf

nf∑

i=1

H(θ(i)(t; ·,x)),

(3.39)

where the observable H(Y(x, t), N(·,x, t)) is a function of the fluid phase composition and

a functional of the particle property distribution. Formally, we requireH(Y(x, t), N(·,x, t))
to be such that the integrals in Eq. (3.39) exist [161]. If H is given by the identity, then Eq.

(3.39) yields the LES-filtered values Y(x, t) and N(·,x, t). By the central limit theorem,

the distribution associated with the Monte Carlo error

ǫ(·,x, t) ≡
∣∣∣∣∣

1

nf

nf∑

i=1

H(θ(i)(t; ·,x)) −H(Y(x, t), N(·,x, t))
∣∣∣∣∣ (3.40)

converges as nf → ∞ to a normal distribution with mean 0 and standard deviation

σ(·,x, t)/√nf , where σ(·,x, t) denotes the standard deviation of H(Y(x, t), N(·,x, t)) [151,

161].

In practice, we apply the explicit adaptive grid method (EAGM) developed in Chapter

2 to discretize the stochastic number density equation (Eq. (3.33) for i = nφ) in par-

ticle property space. This method is based on a time- and space-dependent coordinate

99

3 An LES-PBE-PDF approach for modelling turbulent precipitation and condensation

transformation on particle property space which is explicitly advanced in time. Applying

the coordinate transformation to Eq. (3.33) yields an SDE that is expressed in terms

of so-called transformed stochastic fields. Since the fractional steps corresponding to the

transformed stochastic field equations differ, in part, from Eqs. (3.35) through (3.38), we

present a brief formal derivation in Appendix B.3.

3.3 Numerical solution scheme

The evolution equations for the stochastic fields (Eqs. (B.27) through (B.30) in Appendix

B.3) are solved in conjunction with the momentum and continuity equations for the fluid

flow in our in-house research software LES-BOFFIN [87]. Here, the spatial discretization

is based on a finite volume scheme on a rectilinear grid. The convective derivatives in

the momentum equation are evaluated using an energy-conserving discretization scheme,

whereas a TVD scheme is applied to the convective derivatives in the stochastic scalars’

convection-diffusion step (Eq. (B.27)). The remaining spatial derivatives are approxi-

mated by second order accurate central differences. In order to avoid the velocity-pressure

decoupling, the velocity components are stored on a staggered grid. The flow solver, more-

over, is based on the iterative SIMPLE scheme [149]. For the discretization in particle

property space, we combine the EAGM of Section 2 with the κ = 1/3 high resolution finite

volume scheme of Koren [92], also see Qamar et al. [166, 167].

Both the continuity/momentum equations and the deterministic terms in the convec-

tion-diffusion fractional step (Eq. (B.27)) are discretized in time using the second order

accurate Crank-Nicolson scheme. On the other hand, for consistency with the Itô inter-

pretation of the stochastic integral, we apply an Euler-Maruyama discretization to the

stochastic terms in Eqs. (B.27) and (B.30) [151]. The micromixing fractional step (Eq.

(B.28)) is integrated in time using a backward Euler scheme. For the deterministic terms

in the PBE fractional step (Eq. (B.30)), we either invoke the 5th order accurate Runge-

Kutta scheme Dopri5 [68] (Section 3.4.1) or combine the Crank-Nicolson method with a

modified Newton-Raphson non-linear system solver (Section 3.4.2). If no reaction takes

place in the fluid phase, then the fluid reaction fractional step (Eq. (B.29)) reduces to

species consumption by particle formation and can be solved analytically.

In the stochastic solution scheme for the joint scalar-number density pdf, we invoke eight

realizations of the stochastic field process [85, 86]. Considering a turbulent diffusion flame,

Mustata et al. [133] computed results also using sixteen stochastic fields, but found that

the changes in the temporal averages and the temporal root mean square (rms) deviations

of the major scalars are very small. Similarly, Jones and Navarro-Martinez [84] modelled a

lifted turbulent H2-air diffusion flame and observed that eight and sixteen stochastic fields

yielded very similar results for the time averaged scalars, while the predicted temporal rms

results slightly improved by using sixteen stochastic fields. These authors also quantified

the finite sampling error (about 11% for eight stochastic fields) for the instantaneous

100

3.4 Applications

mixture fraction, but argued that this error significantly decreases if temporal statistics

are considered.

The LES-filtered values which appear as coefficients in Eq. (3.33), for example, Y(x, t)

and N(·,x, t), are computed from the stochastic fields based on the Monte Carlo estimator

in Eq. (3.39). Since, for a finite number of stochastic fields, these estimates are not exact,

but rather also influenced by randomness, the numerical solution of the stochastic field

equations incurs an additional so-called bias error [72]. Pope [160] showed that this bias

error decreases as n−1
f and may thus be dominated by the statistical Monte Carlo error

which reduces as
√
nf

−1. For the stochastic field method, however, and, in particular, in

view of the small number of fields that are commonly computed in practice, the relative

importance of these two sources of error does not yet seem to have been assessed, at least

to our awareness.

Contrary to the stochastic field method, numerical solution schemes based on stochastic

particles usually invoke many more realizations of the underlying stochastic process, typ-

ically on the order of 100 stochastic particles per finite volume cell [189]. In this light, we

may hence raise the question as to why such small a number of fields as 8 may be expected

to yield sufficiently accurate estimates of statistics of the joint scalar-number density pdf.

However, in response, recall that the main conceptual difference between solution schemes

based on stochastic fields and particles is that, in the latter, the spatial coordinates are

conceived as random variables exhibiting certain correlations with the stochastic variables

corresponding to the composition and particle number density. Within the scope of the

stochastic field method, by contrast, the random variables, now spatially distributed, are

directly discretized in physical space, thus accounting for spatial correlations in a deter-

ministic manner. While we cannot, with certainty and in the absence of a convergence

analysis, affirm that this difference is powerful enough to reduce the number of stochastic

entities so drastically, it seems conceivable that the superior convergence rate of a direct

discretization approach over Monte Carlo schemes with respect to the spatial coordinates

accounts for much of the difference in computed stochastic entities, at least as far as

practical experience suggests.

3.4 Applications

3.4.1 BaSO4 precipitation in a coaxial pipe mixer

As a first test case, we consider the coaxial pipe mixer of Ba ldyga and Orciuch [18] for

the precipitation of BaSO4 from aqueous solutions of Na2SO4 and BaCl2. The pipe mixer

is schematically depicted in Figure 3.2 and consists of a long straight pipe with radius

d/2 = 16 mm which contains a concentric injector tube with inner radius ri = 0.9 mm and

outer radius ro = 1.25 mm. Measured from the nozzle exit plane to the reactor outlet, the

pipe mixer is 125d = 4 m long [15]. Out of the series of experiments conducted by Ba ldyga

101

3 An LES-PBE-PDF approach for modelling turbulent precipitation and condensation

Plug flow d

Na2SO4

BaCl2

Na2SO4

26d2d 99d

x

r

r i r o

Figure 3.2 Schematic illustration of the coaxial pipe mixer considered by Ba ldyga and Orciuch [18]. In the initial
part of the pipe mixer (white) the full LES-PBE-PDF approach is applied, while the flow through the remaining
part is modelled as a steady-state plug flow (grey).

and Orciuch [18], we specifically investigate the high concentration experiment with unity

bulk velocity ratio between the central jet and the co-flow. Here, an aqueous solution

with a BaCl2 concentration of [BaCl2] = 1.5 kmol/m3 is introduced through the nozzle,

while an aqueous Na2SO4 solution with [Na2SO4] = 0.015 kmol/m3 flows through the

main pipe. The co-flow and jet bulk velocities amount to U = 0.9375 m/s, corresponding

to a Reynolds number based on the main pipe diameter of Re = 3× 104. At the outlet

of the pipe mixer, Ba ldyga and Orciuch [18] extracted samples of the product suspension

and determined particle size distributions using a Coulter counter. Additionally, they

confirmed by examining BaSO4 crystals microscopically that no aggregation had taken

place. This is due to the excess of Ba2+ ions which stabilizes the suspension against

aggregation.

In the past, the experimental series of Ba ldyga and Orciuch [18] has been investigated

mainly using RANS-based approaches. Ba ldyga and Orciuch [18] combined the method

of moments with a β-pdf for mixture fraction and an interpolation scheme which related

the fluid phase composition and particle phase moments to mixture fraction. By consider-

ing the statistically most likely distribution, they additionally reconstructed the product

particle size distribution from the moments. The Sauter mean diameter was very well re-

produced and the predicted particle size distributions agreed quite well with the measured

ones. Later, Di Veroli and Rigopoulos [38] and Di Veroli and Rigopoulos [40] applied the

RANS-PBE-PDF method in combination with a finite element discretization of the par-

ticle size distribution. In addition to a physical analysis of the precipitation process, they

also quantified the impact of composition and composition-number density correlations

on the course of the precipitation. Safe for small uncertainties in the BaSO4 kinetics, Di

Veroli and Rigopoulos [40] obtained very good predictions for the particle size distribution

at the reactor outlet.

In this section, we present a similar comparison based on results obtained from the

LES-PBE-PDF method and an adaptive finite volume discretization of the particle size

distribution. The computational domain for the LES-PBE-PDF model commences 2d

upstream of the nozzle exit plane and extends for 26d downstream. Subsequently, both

102

3.4 Applications

the fluid composition and the particle size distribution are largely homogenized across

the pipe cross-section and we continue, for computational efficiency, with a steady-state

plug flow model. The spatial grid encompasses 360 cells in the axial direction, 64 in the

radial direction and 36 cells circumferentially. Additionally, the grid is slightly contracted

radially towards the nozzle rim. The global time step size is set to ∆t = 10−5 s. For the

velocity inflow boundary conditions, we conducted a separate simulation of a developing

turbulent flow in the main pipe upstream of the nozzle exit plane and sampled fully

turbulent velocity profiles at the outlet of this domain. The EAGM is configured in a

similar way as in Section 2.6.2 using np = 30 finite volume cells and setting the minimum

number of nodes in the nucleation interval to 4 and the maximum grid stretching to 2.5.

As in Section 2.6.2, the carrier fluid composition encompasses the mass fractions of

H2O, Ba2+, SO 2–
4 , Cl– and Na+,

Y(x, t) =
(
YH2O(x, t), YBa2+(x, t), YSO 2−

4
(x, t), YCl−(x, t), YNa+(x, t)

)T
. (3.41)

The characteristic particle size l can be related to the particle volume v according to

v = kvl
3, (3.42)

where kv = 58 denotes the experimentally determined particle volume shape factor.

The kinetic expressions for the BaSO4 supersaturation S(Y(x, t)), the nucleation rate

RN (Y(x, t)) and the size-independent surface growth rate G(Y(x, t)) are given in Eqs.

(2.64) through (2.68). Similar to the setup in Section 2.6.2, the PBE nucleation source

term s(l,Y(x, t)) is taken as a symmetric hat function on [0, 2lnuc] with a maximum value

of RN (Y(x, t))/lnuc and a mean nuclei size lnuc = 2× 10−9 m. The transport and consti-

tutive/kinetic parameters take on the values listed in Table 2.1 except for the molecular

particle diffusivity Dp which is set to zero identically.

Figure 3.3 shows instantaneous6 contour plots of the main kinetic variables control-

ling the precipitation of BaSO4. While particle nucleation and growth seem to commence

simultaneously, the nucleation rate attains its maximum in the mixing layer near the

injector, decreasing rapidly as we move downstream. By contrast, BaSO4 growth per-

sists throughout the reactor and slowly decays as supersaturation reduces due to species

consumption and turbulent mixing. Both the instantaneous supersaturation and the nucle-

ation/growth rates reflect the strong intermittency of the resolved scalar fields, displaying

isolated pockets in which nucleation or growth are dominant.

Figure 3.4, moreover, depicts the time averaged supersaturation both along the cen-

terline of the coaxial pipe mixer and along the radial coordinate at x = d, 10d and 25d.

Additionally, the shaded areas indicate the temporal rms deviation about the time aver-

6For brevity, we omit the term ‘LES-filtered’ when referring to an LES-filtered instantaneous
field or its temporal statistics.

103

3 An LES-PBE-PDF approach for modelling turbulent precipitation and condensation

16

-16r
[m

m
]

6000 500400300200100-64
x [mm]

16

-16r
[m

m
]

0 13.42.5 5 7.5

Growth rate [10−6 m/s]

16

-16r
[m

m
]

0 11.65 7.5 10

Nucleation rate [1014 /m3 − s]

2.5

10

0 735200 400 600

Supersaturation [-]

Figure 3.3 Contour plots of the instantaneous fields for BaSO4 supersaturation (top), nucleation rate (center) and
growth rate (bottom) in the initial part of the coaxial pipe mixer.

aged values. In the turbulent mixing layer near the nozzle exit plane, very high values

of supersaturation are generated. Here, nucleation is dominant and the maximum nucle-

ation rate occurs. Further downstream, supersaturation rapidly decays since the solution

is diluted by turbulent mixing with the co-flow and since the fast nucleation and growth

of BaSO4 particles deplete Ba2+ and SO 2–
4 ions. The particle growth rate attains its

maximum value on the centerline at x = 0.1245 m and, similar to the supersaturation,

slowly decays towards the reactor outlet.

For x & 25d, the composition is largely homogenized over the cross-sections of the pipe

mixer and turbulent mixing becomes much faster than particle nucleation or growth such

that G(Y(x, t)) ≈ G(Y(x, t)) and RN (Y(x, t)) ≈ RN (Y(x, t)). Following Di Veroli and

Rigopoulos [38, 40], this indicates that it may be permissible to continue with a steady-

state plug flow model. The small gap in the time averaged supersaturation profile at

the interface between the LES-PBE-PDF prediction and the steady-state plug flow result

in Figure 3.4(a) measures the difference between the time average of the LES-filtered

supersaturation computed from the stochastic fields and the supersaturation computed

based on the time averaged LES-filtered composition. Since this difference is very small,

perfect micromixing may be a valid assumption this far downstream of the reactor. In

order to further check the validity of the steady-state plug flow model for x & 25d, we have

varied the axial location from which onwards the steady-state plug flow model is used and

found the downstream results to be independent of the exact axial location at which the

transition takes place.

Figure 3.5 shows the evolution of the instantaneous and time averaged particle size

distribution along the centerline of the reactor. Near the inlet nozzle, many nuclei are

104

3.4 Applications

0 0.5 1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

500

600

700

800

Axial distance [m]

S
u
p
e
rs

a
tu

ra
ti
o
n
 [
−

]

Rms

Mean

(a) Axial profile

0 2 4 6 8 10 12 14 16
0

100

200

300

400

500

600

700

800

Radius [mm]

S
u
p
e
rs

a
tu

ra
ti
o
n
 [
−

]

x = 1d

x = 10d

x = 25d

(b) Radial profiles

Figure 3.4 Axial and radial profiles of the time averaged supersaturation and its rms in the coaxial pipe mixer.

created in a confined region about the centerline. This leads to unimodal particle size

distributions situated over the nucleation size range. As we move further downstream, the

particle size distributions are convected towards larger particle sizes by the local growth

rate. (In Figure 3.5, the particle size distributions seem to become narrower on account of

the logarithmic particle size scale.) Simultaneously, turbulent motion distributes number

density over the pipe cross-section such that the maximum of the particle size distribution

on the centerline decays. By x ≈ 2.75 m, nucleation has subsided and most of the nuclei

have grown out of the nucleation size range.

The grid lines in Figure 3.5(a) illustrate the adaptivity of the grid in particle size space.

Here, most of the nodes are located in the steep gradient regions, thus accurately resolving

the legs of the unimodal particle size distribution. As the particle size distribution moves

towards larger particle sizes, the grid nodes readjust and track the steep edges of the

particle size distribution. The nodes which seem to remain fixed in particle size space obey

the minimum node density conditions of Section 2.5.2 and prevent the grid stretching from

exceeding the maximum admissible value r. For the time averages in Figure 3.5(b), by

contrast, the instantaneous particle size distributions were interpolated piece-wise linearly

onto a fixed exponential reference grid with 100 nodes.

Complementary to Figure 3.5, Figure 3.6 depicts the total particle number and volume

densities computed as the zeroth and third moments, respectively, of the time averaged

and rms particle size distributions along the centerline. Here, the temporal rms deviations

from the time averages follow a similar profile as their corresponding time averages. For

instance, the rms about the total particle number density initially increases sharply, peaks

at the axial location of maximum average total number density and subsequently decays.

The maximum occurs about 0.074 m downstream of the centerline maximum of the average

supersaturation and the average nucleation rate. This separation between the two maxima

105

3 An LES-PBE-PDF approach for modelling turbulent precipitation and condensation

0

0.2

0.4

0.6

0.810
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

0

2

4

6

8

10

Axial coordinate [m]
Particle size [m]

N
u
m

b
e
r

d
e
n
s
it
y
 [
1
0

2
0
/(

m
3
m

)]

(a) Instantaneous

0

0.2

0.4

0.6

0.810
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

0

1

2

3

4

5

6

Axial coordinate [m]
Particle size [m]

N
u

m
b

e
r

d
e

n
s
it
y
 [

1
0

2
0
/(

m
3
m

)]

(b) Time average

Figure 3.5 Evolution of the instantaneous and time averaged particle size distribution along the centerline of the
reactor.

is a result of the competition between accumulation of nuclei along the centerline and the

redistribution of number density over a cross-section by turbulent mixing. By contrast,

both the time averaged particle volume density and its temporal rms increase along the

centerline of the reactor.

Figure 3.7 depicts the evolution of the reaction yield in terms of the radially integrated

BaSO4 volume fraction along the reactor. In the mixing layer region near the nozzle exit

plane where nucleation is dominant, the precipitated particle volume remains very small,

slowly increasing until x ≈ 0.4 m. At this point, the recently nucleated BaSO4 particles

have reached sufficiently large a size for the growth mechanism to contribute noticeably

to the precipitated BaSO4 volume. Interestingly, the reduction in supersaturation along

the reactor interacts with the size independence of the growth rate in such a way that the

time average of the precipitated BaSO4 volume increases linearly in x for x & 0.4 m.

In Figure 3.8, we compare predictions for the time averaged volumetric particle size

distribution sampled at the outlet of the reactor with predictions in References [18, 40]

and the measured volumetric particle size distribution of Ba ldyga and Orciuch [18]. Since

the BaSO4 formation kinetics are expressed in terms of the characteristic particle size

l, the modelled volumetric distributions are adapted to the experimental size measure

d by setting l = φd, where φ = 3
√

6π/kv denotes the particle sphericity.7 Figure 3.8

indicates that the volumetric particle size distribution obtained from the LES-PBE-PDF

model corresponds well in shape to the measured distribution and the RANS-PBE-PDF

prediction of Di Veroli and Rigopoulos [40], but is notably shifted towards larger particle

sizes.

7The characteristic particle size l represents an average of the particle extent in three orthogonal
directions [118], while the particle size d determined by a Coulter counter is proportional to the
largest dimension of the particle.

106

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Axial location [m]

T
o
ta

l
p
a
rt

ic
le

 n
u
m

b
e
r

d
e
n
s
it
y
 [
1
01

3
/m

3
]

RMS

Mean

(a) Total particle number density

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

Axial location [m]

T
o
ta

l
p
a
rt

ic
le

 v
o
lu

m
e
 d

e
n
s
it
y
 [
1
0−

4
]

RMS

Mean

(b) Total particle volume density

Figure 3.6 Time average and rms of the total particle number and volume densities along the centerline of the
coaxial pipe mixer.

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Axial distance from nozzle exit plane [m]

R
a
d
ia

lly
 i
n
te

g
ra

te
d
 B

a
S

O
4
 v

o
lu

m
e
 f
ra

c
ti
o
n
 [
p
p
m

−
m

2
]

Instantaneous

Time averaged

Figure 3.7 Instantaneous and time averaged radially integrated particle volume fraction along the reactor axis.

107

3 An LES-PBE-PDF approach for modelling turbulent precipitation and condensation

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Particle diameter [µm]

N
o

rm
a

liz
e

d
 v

o
lu

m
e

tr
ic

 d
is

tr
ib

u
ti
o

n
 [

−
]

RANS−PBE−PDF [36]
RANS−presumed
pdf−MOM [17]
Measurements [17]

LES−PBE−PDF

Figure 3.8 Comparing predictions for the mean volumetric particle size distribution at the outlet of the coaxial
pipe mixer with measurements.

Quantitatively, this is corroborated by the values for integral properties of the predicted

and measured volumetric particle size distributions listed in Table 3.2. Here, the standard

deviation of the measured volumetric particle size distribution is accurately reproduced

by the LES-PBE-PDF model, while the mean particle size is overpredicted by a factor

of approximately 2. Our investigations into this misprediction did not allow for definite

conclusions as to its main cause, but suggest an influence of the inflow boundary conditions

combined with an insufficient spatial resolution of the mixing layer downstream of the

nozzle exit plane. As a consequence, the produced eddy viscosity field may not correspond

to fully developed turbulence.

Finally, we present runtime measurements of the numerical solution scheme in LES-

BOFFIN for a time step of ∆tk = 10−5 s on a HP Z820 Workstation (two Intel Xeon

CPU E5-2660 v2 processors) in Table 3.3. The runtime values have been averaged over

500 consecutive time steps and are listed separately for each fractional step (Eqs. (3.35)

through (3.38)) and for the flow field solution scheme. Table 3.3 indicates that the PBE

fractional step (encompassing particle formation, species consumption and PBE-grid adap-

tation) consumes slightly less time than the scalar convection/diffusion step and the flow

solver take jointly. In comparison, the micromixing fractional step adds only little to the

computational expense. We may hence conclude that in combination with an adaptive

grid discretization along particle size space our comprehensive LES-PBE-PDF model can

be solved very efficiently even for an industrial-scale application on a desktop computer

system.

108

3.4 Applications

Measurements RANS-MOM- RANS-PBE-
This work

[18] presumed pdf [18] PDF [40]

Sauter mean diameter [µm] 3.301 3.472 3.14 5.799

Mean of VSD [µm] 3.176 3.466 3.133 5.798

Standard deviation of VSD [µm] 0.809 0.552 0.792 0.764

Mean crystal volume [10−17 m3] − 1.75 − 7.631

Table 3.2 Comparing different model predictions for the integral properties of the particle size distribution and
the volumetric size distribution (VSD, Figure 3.7) with measured values.

3.4.2 Droplet condensation in a turbulent mixing layer

In the present section, we consider the nucleation and growth of dibutyl phtalate (DBP)

droplets in the fully developed region of a spatially developing turbulent mixing layer.

The flow configuration is the same as the one that was recently investigated by Zhou

et al. [213]. In the context of a flow DNS, these authors specifically considered a moment

transformation of the PBE and attained closure by invoking the quadrature method of

moments (QMOM). Contrary to Zhou et al. [213], we confine the attention to the down-

stream part of the flow domain in which turbulence is fully developed, retrieving inflow

conditions from the DNS database. Although the DNS-QMOM results of Zhou et al.

[213] serve as a reference for comparison with our LES-PBE-PDF predictions below, some

reservations as to the significance of this comparison remain, in particular, owing to the

QMOM approximation in the DNS and the choice of inflow boundary conditions on part

of the LES. However, it is emphasized that our primary objective is less to provide a

comprehensive validation of the LES-PBE-PDF approach (including the physical closure

schemes on micromixing and turbulent transport), but rather to demonstrate the effec-

tiveness of the LES-PBE-PDF method, to indicate its predictive capabilities and to show

that our numerical solution scheme based on the method of Eulerian stochastic fields and

an explicit adaptive grid discretization in droplet size space is computationally efficient.

In place of an experimental test case, we selected the DNS-QMOM investigation by

Zhou et al. [213] as reference mainly since it allowed for the adoption of the same kinetic

expressions for the droplet nucleation and growth rates in the LES-PBE-PDF model as

Zhou et al. [213] had used for the DNS-QMOM analysis. In this way, any uncertainties

regarding the droplet formation kinetics could be eliminated. Considering an experimental

configuration of DBP condensation in a turbulent jet [101, 102], Garmory and Mastorakos

[59] found predictions obtained from a transported joint scalar-moment pdf method to

be much more sensitive to the kinetic expression for the DBP droplet surface tension

than to the closure for the interaction of turbulence and particle formation. For the same

experimental campaign, Di Veroli and Rigopoulos [39] argued that, in the course of the

measurements, droplet formation may have continued in the sampling tube, accounting, in

part, for the mismatch between measured droplet size distributions and RANS-PBE-PDF

predictions. Recently, Neuber et al. [137] concluded that, in the presence of kinetic and

109

3 An LES-PBE-PDF approach for modelling turbulent precipitation and condensation

Average runtime [s]

Flow field 3.34

Convection/diffusion 9.38

Micromixing 1.62

Fluid phase reaction −
Particle phase reaction 11.94

One time step 30.26

Table 3.3 Average runtime per time step (∆tk = 10−5 s) for each fractional step on a HP Z820 Workstation using
20 MPI processes.

experimental uncertainties, a quantitative model validation may instead be based on a

series of experiments covering different operating conditions. In this light, our comparison

with reference DNS-QMOM results has the advantage that both kinetic and measurement

uncertainties are excluded and that, although definitive conclusions regarding the primary

source of a discrepancy may be difficult to draw, potential sources of such discrepancies

either on part of the LES-PBE-PDF method or the DNS-QMOM are well-defined.

The flow configuration is schematically illustrated in Figure 3.9. Here, a hot nitrogen

stream at temperature 410 K that is laden with a DBP mass fraction of 5× 10−3 (top)

mixes with a cold stream of pure nitrogen at temperature 290 K (bottom). The flow

domain for the LES-PBE-PDF calculation is cuboidal and extends for l1 = 6.43 × 10−2 m,

l2 = 10.29 × 10−2 m and l3 = 4.30 × 10−2 m in the streamwise, crosswise and spanwise

directions. The inflow x1-coordinate, moreover, is offset from the origin by l1, indicating

the streamwise distance over which the mixing layer transitions from a laminar to a fully

developed turbulent flow regime. As a result of mixing with the cold bottom stream, DBP

supersaturation occurs, driving droplet nucleation and growth. The free stream velocities

of the top and bottom streams amount to U1 = 15 m/s and U2 = 5 m/s, respectively, such

that the convective velocity Uc = (U1 + U2)/2 = 10 m/s and the velocity difference across

the mixing layer ∆U = U2 − U1 = 10 m/s are equal. In an a posteriori analysis, Zhou et

al. [213] concluded that vapour consumption due to droplet formation only plays a minor

role and that, owing to the small values of droplet number density, droplet coagulation is

negligible. The kinetic expressions for the DBP nucleation and growth rates are listed in

Table 3.4 [213].

As briefly indicated above, the LES-PBE-PDF model is restricted to the fully devel-

oped turbulent region of the mixing layer. In this regard, the inflow profiles for velocity,

temperature and mass fractions of DBP and N2 are obtained from the DNS results of Zhou

et al. [213] by spatially averaging the DNS profiles sampled at x1 = l1 every 5× 10−4 s

over the cross-section of each finite volume cell in the inflow plane. From the cell aver-

aged DNS-QMOM predictions of the zeroth, first and third moments of the droplet size

110

3.4 Applications

LES-PBE-PDF

l1 l1

l 2

Developing
mixing layer0

100.1 116.8

x3

83.4 x1 [mm]

x2

Bottom stream
(cold, slow)

(hot, fast, DBP-laden)
Top stream

T̂ (x2)

û1(x2)

64.3

Figure 3.9 Schematic illustration of a spatially developing mixing layer with DBP droplet condensation. Here,
û1(x2) and T̂ (x2) indicate the mean inflow profiles of axial velocity and temperature, respectively, which Zhou et al.
[213] applied in the context of a DNS of the present mixing layer. The mean DBP mass fraction inflow profile is

similar in shape to T̂ (x2). The LES which we consider in this section is offset by l1 in the streamwise direction and
commences at a cross-section beyond which Zhou et al. [213] observed fully developed turbulence.

distribution, a lognormal distribution [100]

N(l,x, t) =
M0(x, t)

3l
√

2π lnσ(x, t)
exp

−

ln2
(

l
λ(x,t)

)

18 ln2 σ(x, t)

 (3.43)

is analytically reconstructed for each cell in the inflow cross-section. The coefficients λ(x, t)

and σ(x, t) can be computed from the cell-averaged DNS-QMOM results according to

λ(x, t) =
M2

1 (x, t)√
M3

0 (x, t)M̂2(x, t)
, (3.44)

ln2 σ(x, t) =
1

9
ln

(
M0(x, t)M̂2(x, t)

M2
1 (x, t)

)
, (3.45)

where the second moment M̂2(x, t) is given by

M̂2(x, t) = M1(x, t) 3

√
M3(x, t)

M0(x, t)
(3.46)

and Mi(x, t), i = 0, . . . , 3, indicate the cell-averaged DNS-QMOM moments. During the

reconstruction, we found the values for the second moments M̂2(x, t) computed according

to Eq. (3.46) to deviate from the second moments M2(x, t) obtained as cell-averages from

the DNS-QMOM predictions by 2.8 % on average and by 99.9 % (in a single instance) at

most.

At the outlet, the velocity is subjected to a convective outflow boundary condition [87],

111

3 An LES-PBE-PDF approach for modelling turbulent precipitation and condensation

Physical quantity Symbol Value or kinetic expression Units

Gas mixture density ρ 1 kg/m3

Gas diffusivity D 1.8 × 10−5 m2/s

Particle diffusivity Dp 0 m2/s

Mass of a DBP molecule mDBP 4.62 × 10−25 kg

Density of liquid DBP ρDBP 1063 − 0.826 (T − 273.16) kg/m3

Volume of a DBP molecule vm
mDBP

ρDBP

m3

Saturation pressure psat 133.1 exp
(

16.27 − 3836
T

− 1261126
T2

)

N/m2

Surface tension σ 3.53 × 10−2 − 8.63 × 10−5(T − 273.16) N/m

Saturation ratio S(Y) pXDBP

psat
−

Nucleation rate RN (Y) Spsat
kBT

√

2σ
πmDBP

exp

(

− 16
3

πσ3v2

m

(kBT)3 ln(S)2

)

1/m3 − s

Growth rate G(l,Y)
(

G1(Y)−1 + G2(l,Y)−1
)−1

m/s

Free molecular regime G1(Y) (S − 1) psat
2vm√

2πmDBPkBT
m/s

Continuum regime G2(l,Y) (S − 1) psat
4vmD
kBTl

m/s

Consumption ω̇DBP(Y, N(·,x, t)) −π
6

ρDBP

ρ
D
Dt

∫ V
0 N(l,x, t)l3 dl 1/s

Table 3.4 Transport parameters, constitutive properties of liquid DBP and kinetic expressions for the DBP nucle-
ation and growth rates [213]. In the bottom part of the table, XDBP refers to the DBP mole fraction and D/Dt
represents the material time derivative.

while the stochastic scalars obey a zero gradient boundary condition. For both the velocity

and the stochastic scalars, free slip boundary conditions apply on the lateral domain faces

in the cross-wise direction and periodic boundary conditions are imposed on the lateral

boundaries in the spanwise direction.

In the LES, we employ a spatial grid of 96× 100× 64 finite volume cells which is four

times coarser in each coordinate direction than the reference DNS grid. Similar to the

DNS grid, the LES grid is uniform in the streamwise and spanwise directions as well as

in the cross-stream direction inside the core mixing layer for |x2| ≤ 2.5× 10−2 m. Further

outwards, the grid is slightly expanded by a factor of 1.05 towards the top and bottom

boundaries. The fractional time step amounts to 10−5 s. Finally, the droplet size domain

extends over [0, L = 10−4 m] and the mean nuclei size is given by lnuc = 2.5× 10−9 m. For

the EAGM, the total number of finite volume cells is set to 30 and the maximum grid

stretching and the minimum number of nodes in the nucleation interval [0, 2lnuc] are given

by 2.0 and 4, respectively. Temporal statistics were collected over a time interval of 220 ms

and, additionally, averaged along the spanwise direction.

Conceptually, the DNS investigation of Zhou et al. [213] differs from our LES-PBE-

PDF approach in two ways: On the one hand, all turbulent length and time scales that are

characteristic of the instantaneous flow field are resolved. On the other hand, the dispersed

phase is described in terms of the first four moments of the droplet size distribution

and closure is attained using the QMOM methodology. This second point complicates

a comparison between the LES-PBE-PDF and the reference DNS-QMOM results since

potential discrepancies may be due to either the turbulent transport model (Smagorinsky

submodel) and the model for the interaction between turbulence and droplet formation

112

3.4 Applications

−15 −10 −5 0 5 10 15

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
2

+
 [−]

S
c
a
le

d
 m

e
a
n
 a

x
ia

l
v
e
lo

c
it
y
 [
−

]

Attili and Bisetti (2012)
x

1
 = 83.4 mm

x
1
 = 100.1 mm

x
1
 = 116.8 mm

Figure 3.10 Crosswise profiles of the scaled mean axial velocity in the fully developed turbulent region of the
mixing layer.

(micromixing closure) on part of the LES-PBE-PDF predictions or the QMOM scheme on

part of the DNS-QMOM results. Although definitive conclusions are therefore difficult to

draw, our following analyses on the temporal statistics of the flow field, the moments of

the droplet size distribution and the nucleation and growth rates admit an indication of

the effects of LES-PBE-PDF and DNS-QMOM closures. In order to assess the validity of

an assumed shape of the droplet size distribution, we further analyze the change in shape

of the size distribution as droplet populations evolve throughout the mixing layer.

Figure 3.10 shows the time average of the scaled axial velocity (u1(x, t) − Uc) /∆U

over the normalized crosswise coordinate x+
2 = x2/δθ(x1), where δθ(x1) represents the

momentum thickness of the mixing layer [10] computed based on the DNS results of Zhou

et al. [213]. In the fully developed region of a turbulent mixing layer, the momentum

thickness increases linearly along the axial coordinate. For comparison, the solid line in

Figure 3.10 indicates the limit mean scaled axial velocity profile reported by Attili and

Bisetti [10]. Since the LES-PBE-PDF profiles in Figure 3.10 collapse onto a single curve,

this indicates that the LES-flow reproduces well the self-similar nature of the mean axial

velocity downstream [162].

In Figures 3.11 and 3.12, the crosswise profiles of the time averaged total droplet number

density and volume fraction computed from the LES-PBE-PDF approach are compared

with the DNS-QMOM results at two axial measurement stations in the turbulent mixing

layer. The shaded areas in the figures indicate the temporal rms deviations about the mean

for the LES-PBE-PDF predictions. At the first measurement station, the LES-PBE-PDF

and DNS-QMOM profiles of mean total number density agree almost perfectly. Also,

the droplet volume fraction profile obtained from the LES-PBE-PDF model reproduces

113

3 An LES-PBE-PDF approach for modelling turbulent precipitation and condensation

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

x
2

+
 [−]

T
o

ta
l
p

a
rt

ic
le

 n
u

m
b

e
r

d
e

n
s
it
y
 [

1
05

/c
m

3
]

x
1
 = 83.4 mm

x
1
 = 83.4 mm

x
1
 = 116.8 mm

x
1
 = 116.8 mm

Figure 3.11 Comparing crosswise profiles of the time averaged total droplet number density for the LES-PBE-
PDF approach (lines) and the DNS-QMOM reference results (symbols). The shaded areas, moreover, indicate the
temporal rms about the mean droplet number density obtained from the LES-PBE-PDF model.

well the DNS-QMOM profile, although the maximum mean volume fraction is slightly

underpredicted by about 12 %. Further downstream, at x1 = 116.8 mm, the agreement

remains very good in terms of shape; however, the maximum value of the mean total

number density is overpredicted by approximately 21 %, while the maximum mean droplet

volume fraction is underpredicted by about 18 %. In the absence of coagulation, this

adverse deviation indicates that nucleation in the LES-PBE-PDF model outweighs the

DNS-QMOM nucleation, while the opposite may hold for droplet growth. Furthermore,

Figures 3.11 and 3.12 indicate that, on average, the total droplet number density peaks on

the cold side of the mixing layer, while the maximum volume fraction is attained closer to

the center. Recall that, as the mixing layer progresses downstream, the center of the mixing

layer shifts towards the low speed (cold) side linearly in x1. Since, concomitantly, the

momentum thickness in the self-similar region of a developed turbulent mixing layer also

grows linearly [10], the shift in cross-wise position of the mixing layer center is absorbed in

the normalization of x+
2 = x2/δθ(x1) such that the center is always located near x+

2 ≈ −0.5

[213].

Figures 3.13 and 3.14 additionally depict the crosswise profiles of the time averaged

nucleation and growth rates at the same axial distances as in Figures 3.11 and 3.12. Here,

the growth rates are computed in the limit of the free molecular regime. Nucleation mainly

occurs on the cold side of the mixing layer and decays similarly towards the cold and

hot sides. At both measurement stations, the wings of the mean nucleation rate profile

are well reproduced by the LES-PBE-PDF predictions, although the maximum mean

nucleation rate at x+
2 ≈ −2 is overpredicted by up to 66 %. However, similar to the DNS-

114

3.4 Applications

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

x
2

+
 [−]

P
a

rt
ic

le
 v

o
lu

m
e

 f
ra

c
ti
o

n
 [

1
0

−
8
]

x = 83.4 mm

x = 83.4 mm

x = 116.8 mm

x = 116.8 mm

Figure 3.12 Comparing crosswise profiles of the time averaged droplet volume fraction for the LES-PBE-PDF
approach (lines) and the DNS-QMOM reference results (symbols). Similar to Figure 3.11, the shaded areas indicate
the temporal rms about the mean droplet volume fraction for the LES-PBE-PDF model.

QMOM reference results, the nucleation rate profile appears to be self-similar along the

developed turbulent mixing layer. The slightly too vigorous nucleation is commensurate

with our previous observation on the downstream deviation of the mean droplet number

density. Since the volume fractions produced by droplet nucleation are very low and since

supersaturation is not notably reduced by nucleation, the slight underprediction in droplet

volume fraction does not seem to be related to the overprediction of nucleation. Indeed, if

it were, then we would expect the opposite, an overprediction of droplet volume fraction,

at least in the absence of significant vapour scavenging. Based on the DNS-QMOM results,

Zhou et al. [213] compared the time averaged nucleation rates with the nucleation rates

computed from the time averaged scalar fields and found that the latter exceed the true

mean nucleation rate by up to one order of magnitude.

Contrary to the nucleation rate, the mean droplet growth rate peaks close to the center

of the mixing layer, albeit on its warm side. Figure 3.14 shows that the cross-wise profiles

of the mean growth rate obtained from the LES-PBE-PDF approach agree well with the

DNS-QMOM reference results. A minor difference is that, on the side of the hot stream

(x+
2 > 0), the LES-PBE-PDF profiles are slightly wider than the DNS-QMOM ones.

Zhou et al. [213] pointed out that droplets nucleate on the cold side of the mixing layer

and, subsequently, drift towards the warm side, where droplet growth takes place. Since

the mean droplet growth rate in Figure 3.14 is well reproduced, the slight underprediction

of mean droplet volume fraction in Figure 3.12 does not seem to be related to a defi-

ciency in droplet growth, at least for droplets in the free molecular regime. Furthermore,

as argued above, the deviations of the nucleation rate are also not accountable for the

115

3 An LES-PBE-PDF approach for modelling turbulent precipitation and condensation

−5 −4 −3 −2 −1 0 1 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x
2

+
 [−]

M
e

a
n

 d
ro

p
le

t
n

u
c
le

a
ti
o

n
 r

a
te

 [
1

0
8
/c

m
3
s
]

x
1
 = 83.4 mm

x
1
 = 83.4 mm

x
1
 = 116.8 mm

x
1
 = 116.8 mm

Figure 3.13 Comparing crosswise profiles of the time averaged droplet nucleation rate for the LES-PBE-PDF
approach (lines) and the DNS-QMOM reference results (symbols).

deviations in droplet volume fraction. Instead, we suspect that the turbulent and molec-

ular transport mechanisms which are responsible for the movement of recently nucleated

droplets from the cold side of the mixing lower towards the warm side are less well devel-

oped or not as accurately represented in the current LES-PBE-PDF model. The molecular

transport is accounted for by the micromixing model and influenced, to a large extend,

by differential diffusion between droplets and fluid phase species [23, 213]. Although our

micromixing model encompasses a contribution due to differential fluid-droplet diffusion,

both the fluid and droplet phases mix according to the same micromixing rate at present.

Turbulent transport, by contrast, is reflected in the eddy viscosity and, possibly owing to

our procedure for constructing LES inflow profiles based on the DNS database, the eddy

viscosity field in the LES may not be representative of the turbulence levels that persist

in the DNS. At the same time, we cannot strictly exclude a contribution of the QMOM

closure to the deviations in the maximum mean droplet volume fraction.

Figure 3.15(a) depicts the evolution of the instantaneous droplet size distribution along

the center of the mixing layer at x+
2 = −0.5 in the spanwise midplane. Spatially, the

droplet size distributions vary largely in shape and magnitude and, thus, evidence the

intermittency of droplet formation in a turbulent mixing layer. The grid lines emanating

from the droplet size axis in Figure 3.15(a), reflect the adaptation of resolution in droplet

size space to the shapes of the local droplet size distributions. In particular, nodes are

clustered in the vicinity of the leading growth front, contributing to an accurate resolution

of the steep number density gradient.

Complementary to Figure 3.15(a), the droplet size distributions at the inflow and out-

flow ends of the mixing layer are compared with the lognormal size distributions recon-

116

3.4 Applications

−6 −4 −2 0 2 4 6
0

20

40

60

80

100

120

140

160

180

200

x
2

+
 [−]

M
e
a
n
 d

ro
p
le

t
g
ro

w
th

 r
a
te

 [
µ

m
/s

]

x
1
 = 83.4 mm

x
1
 = 83.4 mm

x
1
 = 116.8 mm

x
1
 = 116.8 mm

Figure 3.14 Comparing crosswise profiles of the time averaged droplet growth rate for the LES-PBE-PDF approach
(lines) and the DNS-QMOM reference results (symbols).

structed from their respective zeroth, first and third moments in Figure 3.15(b). In the

inflow cross-section, both droplet size distributions correspond well except for a local

maximum in the predicted droplet size distribution which may be caused by a rapid local

nucleation event or by transport of nuclei from a neighbouring location. By design, many

presumed-shape approaches cannot account for such bimodality in the local droplet size

distribution. At the domain outlet, by contrast, the shape of the droplet size distribu-

tion deviates quite significantly from a lognormal shape. Here, the current droplet size

distribution is characterized by a sharp growth front that yields to a small population

of larger droplets in the micrometer size range. Additionally, the maximum value of the

droplet number density distribution is smaller than that of the corresponding lognormal

distribution and the number density extends smoothly from the sharp front across all in-

termediate droplet sizes towards the nucleation interval. This indicates that, in a turbulent

mixing layer, droplet size distributions may locally encompass droplets which originated

from distinct nucleation events and underwent separate growth histories. As a result, the

lognormal shape of a droplet size distribution is not conserved along the turbulent mixing

layer in general, although some resemblance remains. Based on our observations, some

doubt is thus cast on the practice of characterizing experimentally measured droplet size

distributions by the parameters of a lognormal droplet size distribution [164].

In order to assess the efficiency of the numerical solution scheme, we examine aver-

age runtime measurements obtained on one node (two 12-core Intel Xeon E5-2697 v2

processors) of a Cray XC30 Supercomputer (ARCHER UK) in Table 3.5. The time mea-

surements were averaged over 100 time steps of ∆t = 10−5 s and are listed separately for

117

3 An LES-PBE-PDF approach for modelling turbulent precipitation and condensation

0

0.02

0.04

0.0610
−10

10
−8

10
−6

10
−4

0

2

4

6

8

10

x
1
 [m]

Particle size [m]

N
u
m

b
e
r

d
e
n
s
it
y
 [
1
0

1
7
/(

m
3
m

)]

(a) Instantaneous droplet size distributions along the
center of the mixing layer (x+

2 = −0.5, x3 = 0)

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

0

0.5

1

1.5

2

2.5

Particle size [m]

N
u

m
b

e
r

d
e

n
s
it
y
 [

1
0

1
7
/(

m
3
m

)]

Inflow

Inflow (lognormal)

Outflow

Outflow (lognormal)

(b) Droplet size distributions at the inflow and outflow
ends of the mixing layer center

Figure 3.15 Evolution of the instantaneous DBP droplet size distribution along the center of the mixing layer at
x+
2 = −0.5 in the spanwise midplane (Figure (a)). In Figure (b), the instantaneous droplet size distributions at

the inflow and outflow ends of the line x+
2 = −0.5, x3 = 0 are compared with lognormal distributions (Eq. (3.43))

reconstructed from the zeroth, first and third moments.

each fractional step. In particular, the computational expense mainly divides between

the scalar convection-diffusion fractional step and the PBE fractional step, although the

latter takes approximately 2.5 times longer to execute than the convection-diffusion step.

Owing to grid adaptation, the PBE fractional step is executed for all grid points and we

found that localized nucleation and growth combined with a comparatively large time step

entail varying degrees of stiffness in the PBE fractional step across the mixing layer. By

consequence, the computational effort is not well balanced across the MPI processes such

that the measured runtime of the PBE step may rather be understood as an upper bound.

This load imbalance can be remedied with the aid of an apt load balancing scheme which

we intend to incorporate in future times. Although the PBE fractional step thus accounts

for most of the runtime in Table 3.5, our time measurements indicate that a direct resolu-

tion of the droplet size distribution in a turbulent flow based on the PBE-PDF closure for

turbulence-droplet formation interaction is feasible and even computationally efficient.

3.5 Chapter summary

Based on the concept of LES, we proposed a comprehensive framework for modelling tur-

bulent reacting flows in which the formation of polydispersed particles takes place. Here,

the immersed particulate phase is described in a Eulerian fashion by the PBE governing

the spatial and temporal evolution of the particle property distribution. In regard to the

turbulence-chemistry and turbulence-particle formation interaction, we augmented the ex-

isting joint scalar transported pdf approach by the particle number density and obtained a

modelled joint scalar-number density pdf transport equation. Following common practice,

118

3.5 Chapter summary

Fractional steps Average runtime [s]

Flow field 0.42

Convection/diffusion 6.17

Micromixing 0.67

Fluid phase reaction −
Particle phase reaction 15.12

One time step 24.11

Table 3.5 Average runtime per time step (∆t = 10−5 s) for each fractional step on one nodes of a Cray XC30
Supercomputer (ARCHER UK) using 24 MPI processes.

transport by the residual velocities was closed using a gradient diffusion-type model, while

micromixing was represented by a recent extension of the IEM model that accounts for

differential diffusion effects.

Our physical model combines the LES conservation laws for fluid phase mass and

momentum with the modelled joint scalar-number density pdf transport equation. In

view of a numerical solution, we applied the method of Eulerian stochastic fields. Here,

the stochastic field equation governing the particle number density was discretized in

particle property space using an explicit adaptive grid scheme. As indicated in Chapter 2,

this technique allows for the resolution in particle property space to change commensurate

with the shape of the local particle property distribution; in particular, sharp peaks and

steep moving fronts which often occur in nucleation-growth problems can be resolved with

significantly fewer grid points in particle property space than are required by a fixed grid

discretization scheme. For the discretization in physical space and time, on the other

hand, standard Eulerian solution schemes were applied.

One advantage of the LES-PBE-PDF model is that it is able to predict the instan-

taneous LES-filtered composition along with the particle property distribution at any

location in the flow domain and any point in time irrespective of the particular functional

forms of the fluid and particle phase kinetics. Moreover, since our stochastic solution

scheme for the pdf transport equation preserves the Eulerian nature of the model, it can

be readily included into existing academic or commercial fluid dynamics software.

As an application, we considered the precipitation of BaSO4 particles from an ionic

aqueous solution of BaCl2 and Na2SO4 in a coaxial pipe mixing device. Analysis of the

model results provided insight into the competing influence of nucleation and growth on

the shape of the particle size distribution and into the effects of species consumption by

particle formation and turbulent dispersion. The predicted mean particle size distribution

at the outlet of the reactor corresponded well in shape to the experimentally measured one,

but was shifted towards larger particle sizes. While we were not able to ascertain the cause

for this discrepancy, it may be related to the choice of inflow boundary conditions and the

eddy viscosity field produced in the LES. With regard to computational efficiency, we found

the PBE fractional step to consume approximately as much runtime as the convection-

119

3 An LES-PBE-PDF approach for modelling turbulent precipitation and condensation

diffusion fractional step and the solution of the complete LES-PBE-PDF model to be

feasible in reasonable computational times on a desktop computer system.

In a test case, we investigated the nucleation and condensation of aerosol droplets in

a fully developed, turbulent mixing layer and compared predictions obtained from the

LES-PBE-PDF model with reference DNS-QMOM results. Despite an overprediction of

the mean nucleation rate, we registered good quantitative agreement for the temporal

statistics of the total droplet number density and volume fraction upstream, while further

downstream the number density was slightly overpredicted and the volume fraction under-

predicted. Potentially, these deviations are due to limitations of the current micromixing

model or may relate to the specific choice of inflow boundary conditions. Analyzing the

change in shape of droplet size distributions, we observed that the shape assumed for

reconstructing droplet size distributions from DNS-QMOM moments in the inflow cross-

section was not preserved in general as the droplet populations underwent nucleation and

growth throughout the turbulent mixing layer.

In conclusion, our LES-PBE-PDF model is well-suited for resolving particle property

distributions in turbulent reacting flows, while allowing for arbitrary chemical and particle

formation kinetics and supporting a computationally efficient numerical solution scheme.

120

Chapter 4

An LES-PBE-PDF approach for

modelling soot formation

4.1 Introduction

Soot particles form in hydrocarbon combustion devices and are typically created in fuel-

rich regions of high temperature. From an engineering perspective, soot particles con-

tribute a heat sink through thermal radiation, but may also pollute a combustor if de-

posited on its walls. On the other hand, soot particles are known to be harmful to both

the environment, acting as greenhouse agents, and to the human body as they may cause

respiratory diseases [79] or act as carcinogens. By consequence, many of the recent mod-

elling efforts in the combustion community have targeted the prediction of soot formation

in hydrocarbon combustion, taking into account the effect of soot on the flame structure.

Typically, soot is considered as a particulate phase that is polydispersed with respect to

particle size and behaves non-inertially, that is, the individual soot particles are assumed

to be small enough such that they respond instantaneously to changes in the carrier flow

field. From a Eulerian perspective, the soot phase can be described by the PBE governing

the evolution of the soot particle size distribution throughout the flow domain.

In this chapter, we hence generalize the LES-PBE-PDF approach presented in Chapter

3 to variable density flows with polydispersed particle formation at low Mach numbers.

Here, LES is combined with an evolution equation for the LES-filtered one-point, one-

time joint probability density function (pdf) associated with a single realization of the

reactive scalars characterizing the gas phase and the particle number density. Following

the argument in Chapter 3, this formulation has the advantage that the physical processes

related to chemical reactions, soot particle inception, soot growth and coagulation appear

in closed form, while velocity and two-point correlations require modelling. For these,

we adopt a standard gradient diffusion hypothesis as well as an IEM-based micromixing

model. As in Chapter 3, the joint scalar-number density pdf transport equation is solved

numerically by the method of Eulerian stochastic fields [71, 179, 200]. Moreover, for

121

4 An LES-PBE-PDF approach for modelling soot formation

the discretization in particle size space of the stochastic field equation associated with

the particle size distribution, we apply the explicit adaptive grid technique developed in

Chapter 2.

By construction, the PBE-PDF approach achieves a direct resolution of the particle

size distribution. This is different from moment-based approaches [168] in which the

particle size distribution is described in terms of a small number of low order statistical

moments such as the particle number or volume density. Moment-based methods are well-

established by now and are not only computationally very economical, but also readily

generalize to situations in which the particulate phase is characterized by more than one

characteristic property. However, the main challenge associated with these formulations is

that the moment equations are closed only for particular functional forms of the particle

growth rate and the coagulation kernel. Common closure schemes such as the quadrature

method of moments involve an assumption on the shape of the particle size distribution

which allows for truncated moments to be expressed in terms of the first few resolved

moments.

While moment-based approaches are very common in models for soot formation in

turbulent flames (see Section 4.2), the direct resolution of soot particle size distributions

has only been considered by few authors. In some approaches, the soot particle size

distribution is calculated in a post-processing step [65, 136], omitting the influence of

soot formation on the gas phase composition through species consumption and radiation.

Recently, Akridis [1] and Akridis and Rigopoulos [2] combined the PBE-PDF concept with

RANS [39, 40] in order to model the evolution of the soot particle size distribution in two

turbulent diffusion flames.

Further to the developments in these references and in our Chapter 3, the present

chapter details three main contributions: First, we develop an LES-PBE-PDF model for

predicting the evolution of the soot particle size distribution in a turbulent combusting flow

at low Mach number. In particular, this approach allows for the incorporation of arbitrary

gas phase and soot kinetics without approximation. Second, we present a stochastic field

formulation that reproduces, in a statistical sense, the evolution of the joint scalar-number

density pdf and can be combined with both fixed and adaptive grid discretization schemes

along the particle size coordinate. Finally, the computational viability and predictive

capabilities of the combined LES-PBE-PDF approach are demonstrated in the context of

the Delft III turbulent diffusion flame. In particular, we show that a detailed resolution

of the soot particle size distribution hardly increases the computational cost and that the

overall model is computationally feasible on modern computing devices. Furthermore, to

our awareness, the present modelling effort constitutes the first attempt to directly predict

soot particle size distributions within the scope of LES.

This chapter is organized as follows: In Section 4.2, we first review existing modelling

strategies for predicting soot formation in turbulent non-premixed flames. Subsequently,

in Section 4.3, the PBE and the LES concept are formally introduced and an evolution

122

4.2 Approaches for modelling soot formation in turbulent non-premixed flames

equation for the joint scalar-number density pdf is obtained. Here, we also discuss the

micromixing closure and formulate the stochastic field equations. This is followed by

Section 4.4, where the gas phase and soot kinetics and the radiation model are detailed. In

Sections 4.5 and 4.5.3, we summarize details on the Delft III flame as well as the computer

implementation used in this work. Model predictions are compared with experimental

measurements from the Delft III database in Section 4.5.4 and discussed in the light of

previous modelling attempts. Finally, we offer conclusions in Section 4.6 and provide a

view towards further model enhancements.

4.2 Approaches for modelling soot formation in turbulent

non-premixed flames

In the present section, we briefly review existing approaches for modelling soot formation

in turbulent non-premixed flames. As an aid to the reader, the references discussed here

are classified in Table 4.1.

From a modelling perspective, incorporating the formation of soot into models for tur-

bulent reacting flows has been challenging for several main reasons. On the one hand, soot

particles contribute significantly to radiative heat emission and, potentially, reabsorption,

thus influencing the distribution of temperature and density in the carrier gas. On the

other hand, the synthesis of soot precursors, the inception of soot and soot surface growth

(both by PAH condensation and surface reactions) are characterized by much longer time

scales than the mixing of reactants [11, 22, 212]. Attili et al. [11] argued that, as a con-

sequence, the soot formation kinetics react only slowly to changes in the local turbulent

mixing (scalar dissipation) rate. Furthermore, soot particles are characterized by a very

low mass diffusivity and, contrary to light gas phase species, are mainly convected along

by the ambient velocity field without significant dispersion [22].

Since RANS-based conserved scalar/presumed pdf approaches are computationally very

economical, an early idea for accommodating the first challenge mentioned above was to

introduce an indicator for radiative heat losses into such a model. Following Gore et al.

[63], Young and Moss [212] augmented a steady-state flamelet representation of the gas

composition by a heat loss parameter such that the reactive scalars could formally be

parameterized by a mixture fraction, the scalar dissipation rate and a heat loss coefficient.

As a criterion for determining the heat loss coefficient, Young and Moss [212] proposed the

condition that, locally, the Favre-averaged enthalpy computed from the extended flamelet

library and the presumed mixture fraction pdf coincides with the value obtained by solving

a transport equation for the Favre-averaged mixture enthalpy with radiative heat losses.

For the description of the soot particulate phase, Young and Moss [212] adopted the

semi-empirical model of Moss et al. [126] based on two evolution equations for the Favre-

averaged soot number density and volume fraction.

123

4 An LES-PBE-PDF approach for modelling soot formation

Conceptually, this approach is based on the premise that the carbon content of the gas

phase (represented by the conserved mixture fraction) and the carbon represented by the

soot-related scalars evolve independently. In heavily sooting flames, however, this may

lead to an overprediction of the carbon content near soot pockets and, thus, to increased

soot nucleation/growth rates. Furthermore, researchers have pointed out that the slow

reaction rates associated with soot precursors entail a delayed response to changes in the

scalar dissipation rate such that concentrations of soot precursors cannot be uniquely pa-

rameterized by mixture fraction and scalar dissipation rate as in a steady-state flamelet

[128, 212]. Despite these concerns, the extended flamelet approach has been very influ-

ential in the past decades and motivated both model enhancement as well as application

to several turbulent non-premixed flames. Bressloff et al. [26] incorporated the discrete

transfer radiation model into the approach of Young and Moss [212] and assessed pre-

dictions of soot volume fraction in a confined turbulent methane-air diffusion flame. Bai

et al. [13], on the other hand, adopted a one-equation semi-empirical soot model along

with the hypothesis of optical thinness in order to investigate soot formation in a turbulent

ethylene diffusion flame. Further to previous efforts, these authors considered the joint pdf

of mixture fraction and scalar dissipation rate and proposed a presumed pdf model based

on the product of a β-pdf for mixture fraction and a lognormal pdf for the scalar dissipa-

tion rate. The extended flamelet approach combined with a presumed β-pdf method for

mixture fraction was also adopted by Reddy et al. [172] who included non-gray radiation

effects and considered the semi-empirical model by Brookes and Moss [28] for describing

the evolution of the instantaneous soot number density and volume fraction. In order to

obtain Favre-averages of these two quantities, Reddy et al. [172] computed expectations

with respect to an additional presumed pdf for temperature.

Formally, the evolution of the soot particle size (or, more generally, soot particle prop-

erty) distribution through a flame can be described by the PBE which accounts for the

physical processes by which soot particles interact both with the ambient gas phase (nucle-

ation, surface growth, oxidation) and among each other (coagulation, aggregation). The

semi-empirical one- and two-equation models referred to above are based on a moment

reduction of the PBE for a monodisperse particle size distribution and include kinetic

rate parameters that were estimated based on measurements in laminar flames [28, 212].

Conceptually, moment transformations of the PBE remain valid independent of the as-

sumption of monodispersity, and for some functional forms of the soot growth/oxidation

and coagulation rates, the moment equations are naturally closed at any order. For general

kinetics, several approximate closure schemes have been developed [115, 168] and tailored

to the characteristics of soot formation [130]. Physically, these closures represent an as-

sumption on the shape of the particle size distribution, but maintain the kinetic details of

the PBE and generalize to any number of moments.

Zucca et al. [214] applied the direct quadrature method of moments (DQMOM) and

combined chemical equilibrium kinetics with a presumed β-pdf method for mixture frac-

124

4.2 Approaches for modelling soot formation in turbulent non-premixed flames

tion. Based on a moment reformulation of the bivariate PBE, Mueller and Pitsch [128]

recently presented an LES-presumed pdf model which resolves the limitations of the orig-

inal extended flamelet/presumed pdf approach, while maintaining its computational effi-

ciency. Specifically, these authors augmented the evolution equations for the gas phase

scalars by source terms for radiative heat losses and species/element absorption and ac-

commodated the slow chemistry of soot precursors by adding a separate transport equation

for a ‘lumped’ PAH mass fraction.

Considering the same representation of the gas composition and soot as Mueller and

Pitsch [128], Donde et al. [42] explored a transported pdf approach based on the IEM

micromixing model to resolve the turbulence-chemistry/particle formation interaction as

compared to a presumed pdf closure. In a subsequent investigation, Xuan and Blan-

quart [210] replaced the lumped PAH evolution equation in the original LES-presumed

pdf model of Mueller and Pitsch [128] by evolution equations for benzene and naphtal-

ene and proposed a relaxation model to close the associated source terms under the LES

viewpoint.

In transported pdf methods, the scalar source terms appear naturally closed, while

turbulent transport and molecular mixing of the gas phase and soot scalars require phe-

nomenological closures [83]. In the context of soot formation in turbulent flames, trans-

ported pdf methods seem to have first been introduced by Metternich et al. [124] who

formulated a joint scalar-soot volume fraction pdf transport equation based on a con-

strained equilibrium model of the thermochemistry and a semi-empirical model for the

evolution of soot volume fraction. Subsequently, this approach was taken further by Lind-

stedt and Louloudi [106] who developed a kinetically detailed model for soot formation

based on a moment-reformulation of the PBE and solved a transport equation for the joint

scalar-moment pdf.

Intermediate in computational expense between presumed and transported pdf methods

for the turbulence-chemistry/soot formation interaction are multi-environment presumed

pdf methods [50, 51]. Here, the joint scalar pdf is represented by a linear combination

of the instantaneous pdfs associated with several model flow realizations which exchange

likelihood/volume fraction according to a particular micromixing prescription. In the

so-called DQMOM-IEM approach, this micromixing model is determined such that the

evolution and interaction of the model flow representations preserve the first unmixed

moments of the joint scalar pdf. In the context of RANS, Reddy and De [171] combined

the DQMOM-IEM approach for modelling the interaction of turbulence and gas phase

chemistry with the semi-empirical soot model of Brookes and Moss [28] and analyzed

the influence of several radiation models on predictions of soot volume fraction in two

turbulent diffusion flames. Following their previous investigations [170, 172], these authors

introduced a separate presumed pdf for temperature and evaluated expectations of the

temperature-dependent soot source terms with respect to this pdf.

In turbulent flames which do not experience extinction or reignition, the conditional

125

4 An LES-PBE-PDF approach for modelling soot formation

moment closure approach (CMC) can be a computationally economical alternative to

transported pdf methods. In the context of soot formation, Kronenburg et al. [93] seemed

to have been the first to incorporate a semi-empirical soot model into a RANS-CMC ap-

proach. Commensurate with the third challenge mentioned above, these authors demon-

strated the importance of accounting for differential diffusion between the gas- and soot-

describing scalars. Combining the same soot model with an LES-CMC approach, Navarro-

Martinez and Rigopoulos [135] similarly concluded that differential diffusion between the

gas phase scalars and soot leads to more intermittent and locally intense soot volume

fraction predictions.

Contrary to moment-based reductions of the PBE, only few researchers have attempted

to resolve the soot particle size distribution in turbulent flames. An impending challenge,

in this regard, is that mature primary soot particles tend to assemble in the form of

chain-like aggregates. In order to describe these, the particle size coordinate needs to be

complemented by an additional particle property such as a fractal dimension or the number

of primary particles per aggregate. While a univariate description in terms of particle size

is well-suited for tracing the evolution of primary soot particles or of aggregates with a

fixed fractal shape, it is limited to shape-preserving particle formation and interaction

processes.

In an a posteriori approach, soot particle size distributions are sometimes estimated by

solving the PBE along specific paths through the flame, taking into account mean field in-

formation from a calculation without soot formation or with a moment-based soot model.

Grosschmidt et al. [65], for instance, computed solutions to the PBE along streamlines of a

reacting flow field obtained from a flamelet/presumed pdf model of the gas phase combus-

tion. A slightly different approach was followed by Netzell et al. [136] who reformulated

the PBE in mixture fraction space and solved a series of unsteady flamelet problems for

scalar dissipation rates sampled from the flame field predictions of Bai et al. [13].

The PBE-PDF concept which we adopt here achieves a direct resolution of the particle

size distribution within the scope of a transported pdf closure for the turbulence-chemistry

and particle formation interaction [174]. In the context of RANS, this approach was

recently applied to soot formation by Akridis and Rigopoulos [2] and Akridis [1] who

investigated turbulent, non-premixed flames at atmospheric and elevated pressure. In

the present chapter, the PBE-PDF paradigm is incorporated into an LES framework for

combusting variable density flows at low Mach number. Our developments are guided by

the objective to devise an efficient numerical solution scheme based on the stochastic field

method and the explicit adaptive grid approach proposed in Chapter 2.

126

4.3 Physical model

Representation of
the number density

distribution

Turbulence-chemistry/particle formation interaction

Presumed pdf

Perfect β-/δ-/log- DQMOM-
CMC

Transported

micromixing normal-pdf IEM pdf

Semi-empirical [13, 26, 170, 172, 212] [171] [93] [135]⋆ [124]

XMOMY [214] [91, 128, 210]⋆ [106] [42]⋆

DPB [65, 136]

(Adaptive) FVM [1, 2] This work⋆

Table 4.1 Overview of different approaches for modelling soot formation in turbulent non-premixed flames (DPB:
Discretized Population Balance, FVM: Finite Volume Method, XMOMY: Quadrature based Method of Moments,
e.g., MOMIC, DQMOM, HMOM). The references marked by a superscript ⋆ indicate LES-based modelling ap-
proaches, while unmarked references adopted the RANS turbulence model. (In the classification, we associate
approaches in which the soot size distribution was computed in a post-processing step based on mean field informa-
tion with the ‘perfect micromixing’ assumption.)

4.3 Physical model

4.3.1 Governing equations

In this section, we briefly review the conservation laws that are relevant to the contin-

uum mechanical description of a fluid flow with an immersed particulate phase. In view

of a Eulerian formulation, we consider the flow through a domain Ω and introduce the

instantaneous velocity field u(x, t), the pressure field p(x, t) and the fluid density ρ(x, t),

where x represents a location in Ω and t ≥ t0 indicates time. In Cartesian coordinates,

the continuity and momentum balance laws can be written in the following form

∂ρ

∂t
+

3∑

j=1

∂ρuj
∂xj

= 0, (4.1)

∂ρui
∂t

+

3∑

j=1

∂ρuiuj
∂xj

= − ∂p

∂xi
+

3∑

j=1

∂τij
∂xj

+ ρgi, i = 1, . . . , 3, (4.2)

where τij denotes the viscous stress tensor of a Newtonian fluid and g is the gravitational

acceleration.

Commonly, the carrier fluid is described in terms of reactive scalars Y(x, t) which evolve

according to

∂ρYi
∂t

+
3∑

j=1

∂ρujYi
∂xj

= −
3∑

j=1

∂Jij
∂xj

+ ρω̇i(Y, N), i = 1, . . . , ns, (4.3)

where Jij(x, t) denotes the diffusive flux of scalar i along the jth coordinate direction,

Jij(x, t) = −ρ(x, t)D(Y(x, t))
∂Yi(x, t)

∂xj
, (4.4)

127

4 An LES-PBE-PDF approach for modelling soot formation

D(Y(x, t)) is the kinematic diffusivity of any scalar into the mixture and ω̇i(Y(x, t),

N(·,x, t)) represent the scalar production/destruction terms. The diffusivity D(Y(x, t))

can be related to the kinematic viscosity ν(Y(x, t)) via a molecular Schmidt/Prandtl

number Sc = 0.7, D(Y(x, t)) = ν(Y(x, t))/Sc [84, 85]. Frequently, the reactive scalars

are taken as species mass fractions complemented by a calorific variable such as enthalpy.

In the argument list of ω̇i, the dependency on N(·,x, t) indicates that the scalar source

terms may be functionals of the particle size distribution (see below), for instance, owing

to species consumption or release on account of particle formation.

In combusting flows at low Mach numbers, the mixture density ρ(x, t) is often computed

in terms of the reactive scalars Y(x, t),

ρ(x, t) = ρ̂(Y(x, t)). (4.5)

Physically, this implies that the impact of local pressure deviations from the nominal

ambient pressure on the density is comparably small. With regard to its constitutive

relations, moreover, the carrier fluid is considered as a multicomponent ideal gas.

Adopting the viewpoint of Sections 2.3 and 3.2.1, soot can be described in terms of the

particle number density N(l,x, t), where l ∈ [0,∞) indicates a measure of particle size.

Physically the particle number density is governed by the PBE in Eq. (2.1). With regard

to the conclusions in References [11, 93, 135], we set the kinematic diffusivity of soot that

appears in the PBE to zero, Dp(x, t) ≡ 0.

Similar to the developments in Section 3.2.1, the feed-back of particle formation on

the continuity and momentum equations of the carrier fluid phase is neglected. On

the one hand, the applications we consider feature rather low particle mass fractions

(. 10−5 kg/m3 for soot formation in the Delft III flame) such that the cumulative density

ρ(x, t) of the carrier fluid is not notably affected by mass exchange with a particulate phase

[173]. On the other hand, since the particles are very small, the exchange of momentum

between the fluid and particulate phases can be well approximated as taking place on an

instantaneous basis [173].

Frequently, the release or depletion of gas phase species briefly mentioned above is

quantified with the aid of the moments of the particle size distribution N(·,x, t),

Mk(N(·,x, t)) =

∫ ∞

0
lkN(l,x, t) dl. (4.6)

In view of subsequent developments, we restrict the semi-infinite particle size space [0,∞)

to the finite domain [ll, L], where ll and L represent, respectively, the minimum and

maximum attainable particle diameters.

In variable density flows, it is advantageous to switch to a mass-based definition of the

number density [11] and to consider the number of particles Nρ(l,x, t) per unit of mixture

128

4.3 Physical model

mass and unit of length in particle size space,

Nρ(l,x, t) ≡ N(l,x, t)

ρ(x, t)
. (4.7)

For future reference, we record the initial conditions on the fluid composition and the

mass-based particle number density,

Y(x, t0) = Y0(x), (4.8)

Nρ(l,x, t0) = Nρ,0(l,x). (4.9)

4.3.2 Large eddy simulation

Frequently, the LES-operator is introduced as a spatial filter acting on the governing

fields, see, for instance, Section 3.2.2. Since, for our developments, the precise definition

(or construction) of such a filter is immaterial, we first recall that the LES-operator, ·,
implements an expectation operation and can thus be formulated in the following way

[159]

Φ(u(x, t), p(x, t),Y(x, t), Nρ(·,x, t))

=

∫
Φ(v, q,y, n(·))fu,p,Y,Nρ(v, q,y, n(·);x, t) dvdqdydn(·),

(4.10)

where Φ(u(x, t), p(x, t),Y(x, t), Nρ(·,x, t)) denotes a general observable that appears, for-

mally, as a function of the local velocity, pressure and fluid composition and as a functional

of the particle size distribution Nρ(·,x, t). fu,p,Y,Nρ(v, q,y, n(·);x, t) is termed the LES-

filtered pdf associated with a single realization of the governing fields and may be related

to a filter kernel G(x,x′) according to

fu,p,Y,Nρ(v, q,y, n(·);x, t) = δ (v − u(x, t)) δ (q − p(x, t))
×δ (y −Y(x, t)) δ (n(·)−Nρ(·,x, t))

=

∫

Ω
G(x,x′)δ

(
v − u(x′, t)

)
δ
(
q − p(x′, t)

)

× δ
(
y −Y(x′, t)

)
δ
(
n(·)−Nρ(·,x′, t)

)
dx′,

(4.11)

where δ(·) indicates the Dirac delta distribution andG(x, ·) ≥ 0 integrates to unity. In Eqs.

(4.10) and (4.11), v, q and y represent the sample space variables related to u(x, t), p(x, t)

and Y(x, t), respectively, while n(·) indicates the sample space function associated with

the particle size distribution Nρ(·,x, t) at (x, t). Specifically, n(·) indicates a particular

function drawn from the space of admissible particle size distributions. For notational

clarity and to distinguish the nature of n(·) from that of the remaining sample space

variables, we maintain the parenthesis-notation n(·) in the following developments. The

integral in Eq. (4.10) is written over the combined sample space (v, q,y, n(·)).

129

4 An LES-PBE-PDF approach for modelling soot formation

Conceptually, the marginal number density pdf fNρ(n(·);x, t) may be obtained as the

limit functional

fNρ(n(·);x, t) = lim
m→∞

m∏

i=0

δ (n(li)−Nρ(li,x, t)), (4.12)

where li = ll + i(L− ll)/m, i = 0, . . . ,m, represents an auxiliary grid in particle size space

and n(li) are auxiliary sample space variables associated with Nρ(li,x, t). Eq. (4.12)

emphasizes that fNρ can be viewed as a multi-size, albeit one-point, one-time pdf [174].

For subsequent developments, we record the following commutation property of the

LES-operator

∂u(x, t)

∂t
=
∂u(x, t)

∂t
, (4.13)

∂u(x, t)

∂xi
=
∂u(x, t)

∂xi
, i = 1, . . . , 3, (4.14)

and similarly for the remaining governing fields p(x, t), Y(x, t) and Nρ(l,x, t).

Based on Eqs. (4.5) and (4.10), the LES-filtered density field is given by

ρ(x, t) = ρ̂(Y(x, t)) =

∫
ρ̂(y)fY(y;x, t) dy, (4.15)

where fY(y;x, t) represents the marginal filtered pdf associated with a single realization

of the reactive scalar fields. With the aid of Eq. (4.15), we further introduce the density

weighted Favre-filter

Φ̃(u(x, t), p(x, t),Y(x, t), Nρ(·,x, t))

=
ρ(x, t)Φ(u(x, t), p(x, t),Y(x, t), Nρ(·,x, t))

ρ(x, t)
.

(4.16)

Applying the LES-operator · to the continuity and momentum equations (Eqs. (3.2)

and (4.2)) and taking into account Eq. (4.16) leads to the following governing LES equa-

tions [86]

∂ρ

∂t
+

3∑

j=1

∂ρũj
∂xj

= 0, (4.17)

∂ρũi
∂t

+
3∑

j=1

∂ρũiũj
∂xj

= − ∂p

∂xi
+

3∑

j=1

∂(τ̃ij − τ∗ij)
∂xj

+ ρgi, i = 1, . . . , 3, (4.18)

where τ̃ij denotes the viscous stress tensor associated with the Favre-filtered velocity field

ũ(x, t) and τ∗ij = ρ(ũiuj − ũiũj) is the residual stress tensor. Following common practice,

we adopt the standard Smagorinsky model for the deviatoric component of τ∗ij [85], while

its spherical component is absorbed into the LES-filtered pressure p(x, t).

130

4.3 Physical model

4.3.3 The joint scalar-number density pdf

As a basis for modelling the evolution of the gas phase composition and the particle size

distribution in the context of LES, we obtain, in this section, a transport equation for the

joint scalar-number density pdf,8

f(y, n(·);x, t) = g(y, n(·);x, t) = δ (y −Y(x, t)) δ (n(·)−Nρ(·,x, t)), (4.19)

in which the physical processes of chemical reactions and particle formation appear natu-

rally closed. The analysis leading to this transport equation is analogous to the develop-

ment in Section 3.2.3, albeit based on the governing equations for variable density flows

at low Mach number (Section 4.3.1).

In Eq. (4.19), g(y, n(·);x, t) = δ (y −Y(x, t)) δ (n(·)−Nρ(·,x, t)) represents the fine-

grained density associated with f(y, n(·);x, t). For future reference, we also introduce the

density weighted pdf f̃(y, n(·);x, t),

ρ(x, t)f̃ (y, n(·);x, t) ≡ ρ̂(y)f(y, n(·);x, t). (4.20)

By following a standard procedure, we obtain on account of Eqs. (2.1), (4.1), (4.3) and

(4.7) the following evolution equation for the density weighted fine-grained pdf ρg

∂ρg

∂t
+

3∑

j=1

∂ρujg

∂xj
= −

ns∑

i=1

∂g

∂yi

ρω̇i −

3∑

j=1

∂Jij
∂xj

− ∂g

∂n

ṡ− ∂G(·,Y)ρNρ

∂l
−

3∑

j=1

∂Kj

∂xj

 ,

(4.21)

where arguments have been omitted for brevity. Recall, at this point, that any scalar

functional Ψ(u, p,Y, Nρ, ∂Y/∂x, . . .) of u(x, t), p(x, t), Y(x, t), Nρ(·,x, t) and their spatial

derivatives obeys the identity (also see Eq. (3.18))

gΨ

(
u, p,Y, Nρ,

∂Y

∂x
, . . .

)
= f

(
Ψ

(
u, p,Y, Nρ,

∂Y

∂x
, . . .

)∣∣∣∣y, n(·)
)
, (4.22)

where the vertical bar indicates conditioning on the events Y(x, t) = y and Nρ(·,x, t) =

n(·).
With the aid of Eq. (4.22), the LES-filtered value of (ρujg) can be reformulated ac-

8If instead we based the definition of f(y, n(·);x, t) on the volumetric number density
N(·,x, t), then the transport equation for f̃ would include an additional unclosed term involv-

ing
(∑3

j=1

∂uj

∂xj

∣∣∣y, n(·)
)

.

131

4 An LES-PBE-PDF approach for modelling soot formation

cording to

(ρujg) = ρ̂(y)(uj |y, n(·))f = ρ̂(y)ũjf − ρ̂(y)
(
ũj − (uj |y, n(·))

)
f. (4.23)

The turbulent transport term in Eq. (4.23) is commonly modelled by adopting a gradient

diffusion hypothesis

ρ̂(y)
(
ũj − (uj |y, n(·))

)
f = ρ(x, t)Γ(x, t)

∂f̃

∂xj
. (4.24)

Here, Γ(x, t) = Γ′(x, t)/Sc′ represents a scaled eddy viscosity, Γ′(x, t) denotes the eddy

viscosity computed from the standard Smagorinsky model [103] and Sc′ = 0.7 is a constant

turbulent Schmidt/Prandtl number.

By applying the LES operator to Eq. (4.21) and taking into account Eqs. (4.17),

(4.20), (4.22) and (4.24) as well as the commutation property in Eqs. (4.13) and (4.14),

we arrive at the following transport equation for the joint scalar-number density pdf

ρ
∂f̃

∂t
+

3∑

j=1

ρũj
∂f̃

∂xj
=

3∑

j=1

∂

∂xj

(
ρΓ

∂f̃

∂xj

)
−

nφ∑

i=1

∂

∂zi

(
ρsi(·, z)f̃ + ρMif̃

)
, (4.25)

where nφ = ns + 1, z = (yT , n(·))T represents the joint scalar-number density sample

space vector, Mif̃ encompasses the (unclosed) micromixing contribution

Mif̃ = − f̃

ρ̂(y)

∑3
j=1

(
∂Jij
∂xj

∣∣∣y, n(·)
)

for i = 1, . . . , nφ − 1

∑3
j=1

(
∂Kj

∂xj

∣∣∣y, n(·)
)

otherwise

, (4.26)

and the vector-valued source term s(·, z) is given by

s(·, z) =

(
ω̇(y, ρ̂(y)n(·))

1
ρ̂(y)

(
ṡ(·,y, ρ̂(y)n(·)) − ∂(G(·,y)ρ̂(y)n(·))

∂l

)
)
. (4.27)

4.3.4 Micromixing model

As in Section 3.2.4, we adopt the model proposed by McDermott and Pope [119] in order

to close the molecular mixing term in Eq. (4.26)1. Specifically, these authors augmented

the IEM micromixing model for relaxing a scalar Yi(x, t), i = 1, . . . , nφ − 1, towards its

Favre-filtered counterpart Ỹi(x, t) by a spatially diffusive transport of Ỹi(x, t),

Mif̃ ≡ mi(x, t, z)f̃ =

κ(x, t)

(
Ỹi − yi

)
+

1

ρ

3∑

j=1

∂

∂xj

(
ρD̃

∂Ỹi
∂xj

)
 f̃ , (4.28)

132

4.3 Physical model

where κ(x, t) represents a micromixing frequency common to all scalars,

κ(x, t) =
Cκ

2

Γ(x, t)

∆2
, (4.29)

and ∆ is obtained as the cubic root of the local cell volume for a finite volume based

spatial discretization scheme. The micromixing model in Eq. (4.28) may similarly be

formulated for differential diffusion among gas phase scalars and consistently reduces to a

pure diffusion term in the limit as the LES operator approaches the identity and a direct

numerical simulation (DNS) is recovered. By adapting Eq. (4.28) to the number density

micromixing term in Eq. (4.26)2, we further obtain the following expression for Mnφ
f̃

Mnφ
f̃ ≡ mnφ

(x, t, z)f̃ =

κ(x, t)

(
Ñρ − n(·)

)
+

1

ρ

3∑

j=1

∂

∂xj

(
D̃p

∂ρÑρ

∂xj

)
 f̃ . (4.30)

Jointly, the final terms in Eqs. (4.28) and (4.30) account for differential diffusion between

the gas and particulate phases. Concomitantly, the micromixing frequency κ(x, t) (or the

micromixing constant Cκ in Eq. (4.29)) may be adjusted separately for each scalar i,

i = 1, . . . , nφ, but we do not explore this model enhancement here (see Section 3.2.4).

For the turbulent, non-premixed flame analyzed in Sections 4.5 through 4.5.4, the particle

diffusivity is specifically set zero, Dp(x, t) = 0.

4.3.5 The stochastic field equations

In Sections 4.3.3 and 4.3.4, we obtained the joint scalar-number density pdf transport

equation (Eq. (4.25) and Eqs. (4.28), (4.30)) as a model for the evolution of a fluid and an

immersed particulate phase in a given flow field ũ(x, t). In view of the motivation in Section

3.2.6, we develop, in the present section, a stochastic numerical solution approach based

on a stochastic process θ(t; l,x) which is constructed in such a way that the transition

pdf h(z, t|Y0(x), Nρ,0(·,x), t0;x) associated with θ(t; ·,x) obeys Eq. (4.25) subject to the

initial condition

h(z, t0|Y0(x), Nρ,0(·,x), t0;x) = δ(y −Y0(x))δ(n(·) −Nρ,0(·,x)). (4.31)

Since both the initial time t0 and the initial fields Y0(x) and Nρ,0(·,x) are deterministic,

we drop the conditioning on (Y0(x), Nρ,0(·,x), t0) from the argument list of h for clarity

and write h = h(z, t;x). In a Monte Carlo-type solution method, several realizations

(samples) θ(1)(t; l,x), . . . ,θ(nf)(t; l,x) of such a stochastic process θ(t; l,x) are computed

and expectations are approximated by Monte Carlo estimates,

F̃ (Y(x, t), Nρ(·,x, t)) ≈ 1

nf

nf∑

i=1

F (θ(i)(t; ·,x)), (4.32)

133

4 An LES-PBE-PDF approach for modelling soot formation

where F (Y, Nρ) represents a sufficiently smooth observable expressed in terms of Y(x, t)

and Nρ(·,x, t). This approach channels the computational effort towards the accurate

computation of low order moments of h(z, t;x) = f̃(z;x, t), while the statistical error is

accumulated on higher order moments.

As in Section 3.2, we specifically invoke the method of stochastic fields to construct the

stochastic process θ(t; l,x). This approach preserves the Eulerian nature of the physical

model; it was originally developed by Valiño [200] and Hauke and Valiño [71] and later

rationalized by Sabel’nikov and Soulard [179]. Formally, the stochastic field equations are

given by

ρ
∂θi
∂t

+

3∑

j=1

ρũj
∂θi
∂xj

=

3∑

j=1

∂

∂xj

(
ρΓ(x, t)

∂θi
∂xj

)
− ρ
√

2Γ(x, t)

3∑

j=1

Ẇj(t)
∂θi
∂xj

+ ρ (si(l,θ) +mi(x, t,θ)) , i = 1, . . . , nφ,

(4.33)

and correspond to continuous-time stochastic processes which are smoothly parameterized

by (l,x). In Eq. (4.33), W(t) denotes a three-dimensional temporal Wiener process with

(formal) time derivative Ẇ(t). Strictly, Eq. (4.33) is only formally valid, holding in a

time-integral sense

∫ t

t0

dθi(t; l,x) =

∫ t

t0

∂θi
∂t

dt

= −
3∑

j=1

∫ t

t0

ũj
∂θi
∂xj

dt + . . .−
3∑

j=1

∫ t

t0

√
2Γ(x, t)

∂θi
∂xj

dWj(t) + . . . ,

(4.34)

where the stochastic integral with respect to W(t) is interpreted in Itô’s sense.

In Appendix B.2.2 we show that if the stochastic fields θ(t; l,x) evolve according to Eq.

(4.33) subject to the deterministic initial condition θ(t0; l,x) = (Y0(x), Nρ,0(l,x)), then

the transition pdf h(z, t;x) associated with the stochastic fields evolves according to Eq.

(4.25). (The proof here generalizes the derivation in Appendix B.2.1 to variable density

flows at low Mach number.)

4.4 Gas phase and soot kinetics

4.4.1 Gas phase kinetics and radiation

The gas phase chemical kinetics for methane combustion are based on the GRI 1.2 reaction

mechanism [53, 54]. In order to model radiation, we adopt the hypothesis of optical

thinness. Following Lindstedt and Louloudi [106], the loss in enthalpy H(Y, N) due to

radiation from gas phase H2O, CO2, CH4 and CO as well as from soot can be computed

134

4.4 Gas phase and soot kinetics

according to

ω̇H(Y, N) = − 4σ

ρ̂(Y)

(
T (Y)4 − T 4

b

) 4∑

i=1

ap,i(T (Y))pi(Y)

− 4σ

ρ̂(Y)
Csfv(N)

(
T (Y)5 − T 5

b

)
,

(4.35)

where σ denotes the Stefan-Boltzmann constant, T (Y) indicates temperature, i = H2O,

CO2,CH4,CO represents an index running through the major radiating species, pi(Y) is

the partial pressure of species i (in [atm]) and ap,i(T) denotes its corresponding Planck

mean absorption coefficient. The latter is computed in terms of temperature from poly-

nomial curve fit expressions of the RADCAL model [66, 75]. Furthermore, Tb ≡ 295 K

denotes the ambient background temperature, Cs ≡ 1307 /m −K [106] and fv(N) =

π/6M3(N) is the soot particle volume fraction.

One implication of the optical thinness hypothesis is that no reabsorption of thermal

radiation occurs within the flame. In heavily sooting flames this may lead to an over-

prediction of the radiative heat loss and, by consequence, to a local underprediction of

temperature [194]. The Delft III flame, however, is only lightly sooting with measured

soot volume fractions below 2.5 ppb.

4.4.2 Soot kinetics

In the present work, we focus on the kinetic processes of soot nucleation, growth and

oxidation and invoke kinetic rate expressions which have previously been employed in the

context of laminar methane and ethylene diffusion flames [3, 69, 109, 193]. Since the

coalescent growth of a soot particle from two parent particles may only be important in

the initial stages of particle creation and since aggregation preserves the number density

of primary soot particles [109], we omit both coalescence and aggregation and interpret

N(l,x, t) as the primary soot particle number density. Formally, however, the univariate

PBE is able to accommodate coagulation.

Following Liu et al. [109], the nucleation rate is controlled by the molar concentration

of acetylene and can be computed from

sN (Y) =
2NA

Cmin
[C2H2]k1(T), (4.36)

where NA denotes Avogadro’s number, Cmin = 700 is the number of carbon atoms in

a soot nucleus, k1(T) = 1.7 exp(−7548 K/T)(1/s), and square brackets indicate molar

concentrations. The specific surface growth rate (in [kg/m2 − s]) of primary soot particles,

on the other hand, is given by

sC2H2
(Y) = 2pC2H2

(Y)k2(T), (4.37)

135

4 An LES-PBE-PDF approach for modelling soot formation

where pC2H2
(Y) represents the acetylene partial pressure (in [atm]) and k2(T) = 470

exp(−16 004 K/T)(s/m) [69, 193]. The leading factor of 2 in Eq. (4.37) is purely empirical;

it has been introduced by Smooke et al. [193] in order to bring the growth rate which has

originally been determined based on measurements in a laminar premixed ethylene flame

[70] closer to measurements taken in laminar diffusion flames. The mean soot nuclei size

amounts to lnuc = 2.5× 10−9 m and the minimum and maximum attainable particle sizes

are set to ll = 2.5× 10−10 m and L = 10−5 m, respectively.

Additionally, primary soot particles may shrink on account of oxidative surface reac-

tions with hydroxyl or molecular oxygen [69, 134]. Expressed in terms of the primary

particle mass, the respective specific shrinkage rates (in [kg/m2 − s]) are computed ac-

cording to

sOH(Y) = 167
pOH(Y)√

T
, (4.38)

sO2
(Y) = 1200pO2

(Y)

(
KA(T)χ

1 +Kz(T)pO2

+KB(T)χ′
)
, (4.39)

where pOH(Y) and pO2
(Y) denote the partial pressures (in [atm]) of hydroxyl and molec-

ular oxygen, respectively, χ and χ′ represent fractions defined by

χ =

(
1 +

KT (T)

KB(T)pO2

)−1

, (4.40)

χ′ = 1− χ, (4.41)

and KA(T), KB(T), KT (T) and Kz(T) are the temperature dependent parameters intro-

duced by Nagle and Strickland-Constable [134, p. 162]. Finally, the cumulative primary

particle growth/oxidation rate G(Y) can be computed by summing Eqs. (4.37) through

(4.39) and converting from a mass-based to a diameter-based rate expression

G(Y) =
2

ρs

(
sC2H2

(Y)− sOH(Y)− sO2
(Y)

)
, (4.42)

where ρs = 1900 kg/m3 denotes the density of soot [109].

If primary soot particles are created and grow or, conversely, shrink due to oxidation,

then gas phase species are consumed or released. This can be taken into account by

augmenting the source terms due to chemical reactions by rate expressions based on the

soot formation and oxidation stoichiometry as well as Eqs. (4.36) through (4.39). For

acetylene and molecular hydrogen, for instance, we have

1

MWC2H2

ω̇⋆
C2H2

(Y, N) = − 1

MWH2

ω̇⋆
H2

(Y, N) = −
sC2H2

(Y)fa(N)

2ρ̂(Y)MWs
− sN (Y)Cmin

2ρ̂(Y)NA
, (4.43)

where the superscript ⋆ indicates that the respective scalar sink/source terms exclude

136

4.5 Delft III flame

contributions from the gas phase reaction mechanism. MWi denotes the molecular weight

of species i, MWs ≡ 12.011 kg/kmol represents the molecular weight of solid soot and

fa(N) = πM2(N) denotes the local soot particle surface fraction.

In view of the findings of References [11, 93, 135], we set the kinematic diffusivity of

soot in Eq. (4.30) to zero, Dp(x, t) ≡ 0 (also see Section 4.3.4).

4.5 Delft III flame

4.5.1 Flame configuration

The Delft III flame consists of a central fuel jet (Dutch natural gas) surrounded by two

concentric co-flows of air at atmospheric pressure and an ambient temperature of 295 K

[152]. The nozzle encompasses a wide cylindrical ring with inner diameter d = 6 mm

and outer diameter 15 mm featuring twelve equidistant holes of diameter 0.5 mm on a

circle with diameter 7 mm from which the pilot flames emanate. The nozzle is embraced

by an annulus of outer diameter 45 mm for the primary air co-flow which is, in turn,

surrounded by a secondary air co-flow. The jet flows at a bulk velocity of 21.9 m/s (Re ≈
8370), while the bulk velocities of the primary and secondary air co-flows amount to

4.4 m/s and 0.3 m/s, respectively. The Delft III flame is characterized by strong extinction

and reignition in the nearfield and possesses a lightly sooting flame head. Figure 4.1

schematically illustrates the geometry of the Delft burner tip as well as our computational

domain.

Following Merci et al. [122, 123], we take the fuel composition as a mixture of methane

and nitrogen with the same calorific value as Dutch natural gas (85.3 % CH4 and 14.7 %

N2 by volume). The pilot flames, moreover, burn a mixture of hydrogen, acetylene and

air with a H to C ratio of 4 and an equivalence ratio of 1.4 (16.936 % H2, 5.682 % C2H2,

16.258 % O2 and 61.124 % N2 by volume). Here, air is assumed to consist of 21 % O2 and

79 % N2 by volume. For simplicity, the twelve pilot flames are replaced by a concentric

inflow through an annulus in the nozzle rim with inner diameter 8 mm and outer diameter

9 mm at the experimental pilot flame mass flow rate of 2.3× 10−5 kg/s. Note that contrary

to Ayache and Mastorakos [12] and Dodoulas and Navarro-Martinez [41] the pilot stream

is separated from the fuel jet by a wall of 1 mm thickness in order to avoid the pilot

gases from diffusing into the fuel mixture upstream of the nozzle exit plane. Although

this representation of the pilot underestimates the experimental pilot flames’ momentum

flow rate, we found it to be sufficient to ignite the flame and lead to flame attachment at

the nozzle rim (as observed in the experiment). The pilot inflow composition is taken as

the chemical equilibrium composition corresponding to the unburned pilot pre-mixture at

295 K and the pilot inflow temperature is set to 1900 K.

Experimentally, the Delft III flame was first investigated by Peeters et al. [152] who re-

ported measurements of velocity statistics, mean temperature as well as concentrations of

137

4 An LES-PBE-PDF approach for modelling soot formation

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

A
ir

A
ir

J
et

A
ir

A
ir

69
0
m
m

15
m
m

100mm

9.81m/s

15mm

d = 6mm

8mm

0.5mm

45mm

Figure 4.1 Schematic illustration of the Delft burner nozzle and the computational domain for the Delft III flame
calculation.

OH and a passive scalar. Subsequently, additional measurements of the velocity field, con-

centrations of the major species and temperature statistics were obtained, see Nooren et

al. [143] and references therein. Recently, Qamar et al. [165] augmented the experimental

database of the Delft III flame by measurements of mean soot volume fraction, inter-

mittency and centerline pdfs of instantaneous soot volume fraction. These measurements

were obtained in the downstream region of the flame (x/d & 50), where unfortunately no

velocity, temperature or scalar measurements are available. As Mueller and Raman [129]

pointed out, this may render drawing definitive conclusions from a comparison of model

predictions with measured soot-related quantities difficult.

4.5.2 Previous investigations of the nearfield

One of the first modelling investigations of the Delft III flame is due to Peeters et al. [152]

who combined a k-ǫ turbulence model including a round jet correction with a constrained

equilibrium chemistry model and a four flux radiation model. Here, the reactive scalars

were uniquely related to the mixture fraction whose one-point, one-time pdf was taken

as a β-function pdf parameterized by mixture fraction mean and variance. Peeters et al.

[152] achieved very good quantitative predictions of the mean velocity and temperature

fields and qualitatively accurate representations of turbulence quantities, but concluded

that, at least for radical predictions, the conserved scalars/constrained equilibrium model

138

4.5 Delft III flame

was invalid. Subsequently, Nooren et al. [142] reconsidered the Delft III flame in the

context of a round jet corrected k-ǫ model matched with a two dimensional stochastic

particle based Monte Carlo solver for the joint velocity-scalar pdf. These authors employed

both the constrained equilibrium chemistry model of Peeters et al. [152] and a reduced

chemical kinetics ILDM model in which all reactive scalars were expressed in terms of

the mixture fraction as well as the H2O and CO2 mass fractions as the kinematically

controlling variables. Their results indicated a strong dependency of temperature standard

deviation on the micromixing model. For the ILDM chemistry, moreover, Nooren et al.

[142] achieved significantly improved OH predictions.

Revisiting the results of Peeters et al. [152], Merci et al. [122] compared predictions

obtained from a nonlinear k-ǫ model combined with an assumed β-function pdf for mix-

ture fraction and a laminar flamelet or equilibrium chemistry model against an updated

experimental database. In a second approach [122, 123], they combined the nonlinear k-ǫ

model with a transported joint scalar pdf method and a C1 skeletal reaction mechanism.

Like Nooren et al. [142], Merci et al. [123] observed a strong dependency of flame ignition

and stabilization on the micromixing model. In fact, their predictions of the flow, mixing

and temperature fields as well as of the CO mass fractions conditioned on mixture fraction

were compared to those of Nooren et al. [142] by Roekaerts et al. [176]. In line with the

findings of Merci et al. [123] and Nooren et al. [142], Roekaerts et al. [176] emphasized

the importance of the pilot flame model and, focussing on the C/D micromixing model,

the choice of model constant. Also, they noted that CO was unsatisfactorily predicted by

both models, potentially due to the pilot flame models and/or inherent limitations of the

chemical reaction mechanisms.

In the context of LES, the Delft III flame has recently been considered as a test case for

capturing and analyzing local extinction and reignition events. Ayache and Mastorakos

[12], for instance, validated an LES-CMC approach combined with the GRI 3.0 reaction

mechanism against the Delft III database. They obtained very good predictions for the

temporal statistics of velocity, mixture fraction, temperature and CO mass fraction (with

a slight deterioration of the predictions towards the domain outlet). NO, on the other

hand, was overpredicted which might have been due to the omission of radiation (leading

to a slight temperature overprediction) or to inherent limitations of the GRI 3.0 mecha-

nism to capture NO formation. Dodoulas and Navarro-Martinez [41], moreover, analyzed

the near-field of the Delft III flame in order to identify the flame structure and gain insight

into the formation of extinction pockets by postprocessing results obtained from an LES

augmented by a transport equation for the joint scalar pdf. Here, the modelled pdf trans-

port equation (IEM micromixing model) was solved using the method of stochastic fields

and the chemical kinetics were obtained from a 15 step augmented reduced mechanism

derived from GRI 3.0. The time averages of the flow and mixing fields as well as of temper-

ature and the major species were well predicted, while NO was overpredicted downstream.

Contrary to the RANS-based modelling approaches reviewed above, the representation of

139

4 An LES-PBE-PDF approach for modelling soot formation

the pilot flames seemed to be much less crucial for the fully Eulerian LES-based models.

4.5.3 Numerical solution scheme and implementational aspects

Following our developments in the present chapter, the implementation of a stochastic

field based numerical solution scheme in LES-BOFFIN (see Section 3.3) is generalized to

variable density flows at low Mach numbers. Similar to Section 3.3, the stochastic field

equation associated with the particle size distribution is discretized in particle size space

using the explicit adaptive grid method of Chapter 2 in combination with a high resolution

finite volume method [92], also see Appendix B.3. Here, the total number of nodes, the

minimum node density in the nucleation interval and the maximum grid stretching are

set to 30, 4 nodes/4.75 nm and 2, respectively. Furthermore, in line with Section 3.3, we

invoke eight realizations of the stochastic fields.

For efficiency, the gas-phase reaction fractional step is only executed for fluid cells whose

temperature exceeds 800 K, while the particle reaction step is solved for all fluid cells. In

order to further accelerate the solver for the reaction fractional step, we hard-coded the

instructions for evaluating the reaction rates of the GRI 1.2 reaction mechanism, imple-

mented a facility for computing the temperature-dependent kinetic coefficients only once

per time step and grid point, and adopted a modified Newton-Raphson scheme for solving

the backward Euler non-linear system. Cumulatively, these measures yield a reduction in

runtime of the reaction step by about one order of magnitude.

The computational domain is cylindrical in shape and spans 16.67 d in the radial direc-

tion and 115 d in the axial direction, where d = 6 mm denotes the nozzle diameter (Figure

4.1). Since the wide nozzle rim of the Delft III burner head acts as a bluff body enhancing

the mixing and reinforcing the shear layer in the near-field, we include a representation of

the burner nozzle which extends by 2.5 d into the domain. The finite volume grid encom-

passes 672, 70 and 36 cells in the axial, radial and circumferential directions, respectively.

Axially, the grid is stretched by a factor of 1.002 and, radially, cells are thinner near the

inner and outer nozzle diameter and stretch by a factor of 1.04 towards the lateral domain

boundaries. In the circumferential direction, by contrast, a uniform grid is employed.

The mean axial velocity inflow profiles of both the fuel jet and the primary air co-flow

are taken as power law profiles with exponents 1/6 and 1/2, respectively. The secondary

air co-flow, on the other hand, features a constant mean axial velocity inflow profile. The

velocity turbulence intensities for the jet and primary air co-flow, moreover, are set to

10 %, while the turbulence intensity in the secondary co-flow amounts to 1 %. The axial

and radial root mean square (rms) inflow velocities vary quadratically within the jet (at

the nozzle rim, they exceed the nominal centerline value by a factor of four) and reduce to

constant profiles in the primary and secondary air co-flows, respectively. Along the lateral

boundaries of the domain, both the stochastic scalars and the velocity field are subject to

Dirichlet boundary conditions based on nominal values in the secondary co-flow. Finally,

140

4.5 Delft III flame

at the domain outlet, zero-gradient and convective outflow boundary conditions apply,

respectively, to the stochastic scalars and the velocity field.

In order to assess the validity of our inflow boundary conditions, the mean and rms

profiles of axial velocity were compared with the experimentally measured profiles at

3 mm above the nozzle exit plane (not shown). Except for a slight overprediction on the

centerline, our choice of inflow boundary conditions approximates well the experimental

mean axial velocity profile, including the weak recirculation zone above the nozzle rim.

The rms of axial velocity are also well reproduced in the jet, except near the burner rim,

but fall below the measured values in the primary co-flow, very similar to the rms profile

obtained by Ayache and Mastorakos [12].

Temporal statistics were computed over a time period of approximately 250 × 10−3 s

and complemented by circumferential averaging. The time measurements which we provide

were obtained on 4 nodes of a Cray XC30 Supercomputer (ARCHER UK) and averaged

over 100 time steps of 1.2× 10−6 s at a point in time at which the temporal statistics of

temperature had become time invariant.

4.5.4 Results and discussion

In Figure 4.2 the radial profiles of the time averaged (mean) axial velocity and temper-

ature9 at 50 mm, 150 mm and 250 mm above the nozzle exit plane are compared with

measurements from the Delft III database [143, 152]. At the first two measurement sta-

tions, the mean axial velocity agrees well with the measured values, while it is slightly

underpredicted further downstream, indicating that the jet spreads rather too rapidly.

The mean temperature, moreover, is slightly overpredicted on the lean side of the reac-

tion zone and the maximum mean temperature exceeds the measured maximum value

by approximately 300 K. Since this overprediction is passed downstream, its main cause

seems to persist in the near-nozzle region and may be related to the spatial resolution of

our LES in the nearfield as well as the effectiveness or accuracy of the eddy viscosity and

micromixing closures. Indeed, other LES-based investigations of the Delft III flame [12,

41, 128] reported much better agreement for the nearfield predictions using grids whose

radial mesh spacing was smaller than the one in our grid by up to a factor of three.

For the same axial measurement stations as in Figure 4.2, Figure 4.3 depicts both pre-

dicted and measured radial profiles of the mean mass fractions of CO2, H2O, H2 and CO.

The agreement here reflects the discrepancy which we observed above for the temperature

profiles: At the first measurement station, the gas composition is well reproduced on the

rich side, while the maximum mass fractions and the values on the lean side are slightly

overpredicted. The centerline value of CO2 is slightly underpredicted at x = 150 mm,

while the CO mass fraction is overpredicted near the centerline, the overprediction per-

9For conciseness, we omit the term ‘Favre-filtered’ when referring to both instantaneous and
time averaged Favre-filtered variables.

141

4 An LES-PBE-PDF approach for modelling soot formation

0

5

10

15

20

25

M
e

a
n

 a
x
ia

l
v
e

lo
c
it
y
 [

m
/s

]

x = 50 mm x = 150 mm x = 250 mm

0 10 20 30
0

500

1000

1500

2000

Radius [mm]

M
e

a
n

 t
e

m
p

e
ra

tu
re

 [
K

]

0 10 20 30
Radius [mm]

0 10 20 30
Radius [mm]

Figure 4.2 Comparing radial profiles of the mean axial velocity and temperature (lines) with experimental mea-
surements (symbols) at 50 mm, 150 mm and 250 mm above the nozzle exit plane.

sisting throughout the radial profile. In general, the species profiles seem to be shifted

radially outwards, reflecting the slightly excessive jet spreading. This is even more severe

at the furthest measurement station, where the species profiles appear to be very diffusive.

Here, the mass fractions of H2O and CO are overpredicted throughout and the H2 mass

fraction is notably underpredicted in the jet core.

Figure 4.4 depicts contour plots of the mean temperature, soot number density and soot

volume fraction. The superimposed contour in the left panel indicates the stoichiometric

mixture fraction iso-line. For the center and right panels, the soot number and volume

densities were computed as the zeroth and third moments, respectively, of the LES-filtered

soot size distributions. At least qualitatively, the contours of the mean soot number density

and volume fraction are in line with those reported by Mueller and Pitsch [128]. Both

fields attain their maximum values on the centerline and the soot number density peaks

slightly earlier, at x ≈ 350 mm, than the soot volume density (x ≈ 475 mm). These

observations indicate that nucleation is more vigorous at distances closer to the nozzle,

yielding to soot surface growth further downstream. Furthermore, soot oxidation appears

to act more effectively on the number density, while soot volume fraction shows a slightly

delayed response. In view of the soot particle size distributions analyzed below (Figure

4.7), this may be the case because most soot particles persist in the nuclei size range

and are, hence, rapidly removed by oxidation. By contrast, the larger soot particles which

contribute significantly to the soot volume fraction can resist an oxidative gas composition

for longer. Beyond the stoichiometric mixture fraction contour most soot has been oxidized

and both the soot number density and volume fraction are close to vanishing.

In Figure 4.5, the centerline profiles of the predicted and experimentally measured [165]

mean soot volume fraction are compared. Here, the LES-PBE-PDF results indicate that

142

4.5 Delft III flame

soot formation commences much further upstream than was observed experimentally and,

quantitatively, the mean soot volume fraction is underpredicted by one order of magnitude.

A similar early onset and decay of soot formation was observed by Mueller and Pitsch [128]

and Donde et al. [42], albeit for a soot model based on the hybrid method of moments

and gas phase/soot kinetics which differed from the ones we employ here. These authors

attributed the early onset to uncertainties in the soot formation kinetics.

In the context of a RANS-presumed pdf approach based on the semi-empirical soot

model of Brookes and Moss [28], Reddy et al. [172] found that the upstream shift of

the centerline soot volume fraction profile can be remedied by computing the OH and

O radical concentrations from equilibrium and partial equilibrium relations independent

of the governing gas phase reaction mechanism and the turbulence-chemistry interaction

model. Since the semi-empirical model of Brookes and Moss [28] is based on C2H2, this

is, possibly, related to the strong dependency of the C2H2 yield on the concentrations of

OH and O which may be increased by the equilibrium and partial equilibrium chemistry

in the nearfield. Reddy and De [171] and Reddy et al. [170] and Reddy et al. [172] further

assessed the influence of different radiation models, but found that, while the peak soot

volume fraction on the centerline can vary significantly, its location changes only slightly.

If we set aside the assumption of (partial) equilibrium OH and O concentrations, then

both the present and previous modelling attempts of the Delft III flame predict an early

onset and termination of soot formation. Since the modification employed by Reddy and

De [171] and Reddy et al. [172] affects both the gas phase chemistry and overrides the

turbulence-chemistry submodel, this indicates that either aspect may be held accountable.

On the other hand, comparing our prediction and previous results for the soot volume

fraction indicates that closures of the turbulence-soot formation interaction and the soot

kinetics do not have as large an influence on the location of maximum soot volume fraction,

albeit being important for quantitative differences. Consequently, it seems possible that

there is a physical effect which is relevant for soot formation in methane-air combustion at

moderate Reynolds numbers, but which both our attempt and previous investigations of

soot formation in the Delft III flame omitted. Such an effect could be related to differential

diffusion within the gas phase or differential micromixing between gas phase scalars and

soot. For sooting ethylene flames at larger Reynolds numbers, Xuan and Blanquart [210]

and Koo et al. [91] obtained very good predictions of soot volume fraction using LES-

models similar to the one proposed by Mueller and Pitsch [128]. In this light the ‘missing’

physical effect, may turn less important under these conditions.

Apart from the upstream shift of the maximum soot volume fraction, our results in Fig-

ure 4.5 are characterized by an almost immediate onset of soot formation in the nearfield

and a rather abrupt termination about 500 mm above the nozzle. The early onset of soot

formation reflects the abundance of C2H2 and the large underprediction of soot volume

fraction as well as the rapid decline in the vicinity of stoichiometric conditions indicates

that soot oxidation is rather vigorous, potentially catalyzed by the temperature overpre-

143

4 An LES-PBE-PDF approach for modelling soot formation

diction. Attili et al. [11] pointed out that soot surface growth takes place on much larger

time scales than soot oxidation; in this light, it is possible that the residence time of

soot pockets in flame regions which favour surface growth is too short, perhaps owing to

limitations in the spatial LES resolution.

In order to elucidate the preferential location of soot relative to the flame front, we an-

alyze the conditional soot number density and volume fraction in mixture fraction space

for three different flame cross-sections in Figure 4.6. Here, the scatter represents instan-

taneous values sampled at several different time points, while the solid lines indicate time

averages. The vertical dashed lines, furthermore, indicate the stoichiometric mixture frac-

tion value of 0.0705. In terms of both instantaneous scatter and mean values the soot

number density and volume fraction correlate well in mixture fraction space, reflecting the

dominance of nucleation mentioned above. The instantaneous scatter covers a wide range

of number density and volume fraction values on the rich side of the flame, emphasizing

that soot number density and soot volume fraction may not be uniquely related to mix-

ture fraction. On the lean side, by contrast, some scatter remains, but the number density

and volume fraction values here are significantly reduced. Possibly, oxidation is enhanced

by the micromixing model whose rate applies, at the moment, equally to the gas phase

scalars and to soot. Further downstream, both soot number density and volume fraction

shift towards leaner mixture fraction values as the flame tip is approached. The soot that

persists here at low mixture fraction values is completely oxidized away by x = 550 mm.

Figure 4.7 depicts the instantaneous soot particle size distributions along the centerline

of the flame and across the flame at the axial distance of maximum soot number density

(x = 350 mm). The grid lines which emanate from the particle size axis illustrate the

grid adaptivity in particle size space. While the grid nodes are rather evenly spaced on

a logarithmic scale at large particle sizes, the majority of nodes have been drawn into

the vicinity of the mean nuclei size at 2.5 nm and maintain an accurate resolution of the

sharp rise and decline in particle number density. Both along and across the flame, the

soot particle size distributions do not vary significantly in shape such that the grid nodes

in particle size space display only very little spatial variability here. Throughout, the

soot particle size distribution remains unimodal and, at the largest values of total soot

number density and volume fraction, remains dominated by nucleation. In line with our

observations for Figure 4.4, the particle number density per unit of length in particle size

space takes on maximum values near the centerline and rapidly decreases further outwards.

In Table 4.2, we compare the average runtimes of the fractional steps for the stochastic

scalars and the flow solver on 4 nodes of a Cray XC30 Supercomputer (ARCHER UK).

Here, the reaction fractional step for approximately 35.0 % of reacting fluid cells takes

slightly longer to execute than the PBE fractional step (including radiation, species con-

sumption/release and particle size grid adaptation) which is called on all finite volume

cells due to grid adaptivity. The PBE fractional step thus consumes about 27.2 % of the

overall runtime per time step, approximately matching the time fraction of 26.3 % jointly

144

4.6 Chapter summary

Physical process Average runtime [s]

Flow field 1.94

Scalar convection/diffusion 6.89

Mixing 1.017

Gas phase reaction 10.85

Particle phase reaction 9.11

All processes 33.54

Table 4.2 Average runtimes for advancing the LES-PBE-PDF model by one time step (∆t = 1.2 × 10−6 s) on 4
nodes (96 MPI processes) of a Cray XC30 Supercomputer (ARCHER UK).

required by scalar convection/diffusion and the flow solver.

The time measurements in Table 4.2 indicate that the combined LES-PBE-PDF ap-

proach is computationally feasible on modest resources of a modern computing system

and that, compared to the gas phase reaction step, the PBE step does not significantly

increase the overall runtime. Our observations thus demonstrate that a detailed resolution

of particle size space within each fluid cell is viable and even computationally efficient.

By contrast, the majority of studies investigating soot formation in turbulent flames have

favoured moment based methods, at least in part, due to the concern that a detailed PBE

model would incur excessive computational costs.

4.6 Chapter summary

In the present chapter, we incorporated the PBE as a Eulerian description for the evo-

lution of a polydispersed particulate phase into an LES model of a turbulent reacting

flow with variable density. An important application of our approach is the prediction

of soot particle size distributions in turbulent hydrocarbon flames. In order to resolve

the turbulence-chemistry/particle formation interaction, we obtained an evolution equa-

tion for the filtered one-point, one-time joint pdf of the instantaneous reactive scalars

and particle number density. Here, turbulent transport was closed by a gradient diffusion

hypothesis, while two-point correlations of the reactive scalars and number density were

replaced by a micromixing model that accounts for differential diffusion between the gas

and particle phases.

Numerically, the joint scalar-number density pdf transport equation was solved using

the method of Eulerian stochastic fields. In the context of LES, this approach has the

advantage that its spatial resolution is independent of the large-scale flow structures – as

opposed to stochastic particle based solvers, for instance. The stochastic process governing

the stochastic fields is constructed such that, in a statistical sense, the evolution of the

joint scalar-number density pdf is reproduced. An important feature of our numerical

solution scheme is the adaptive grid discretization of particle size space (see Chapter 2).

This technique allows particle size distributions which vary largely in shape and width

145

4 An LES-PBE-PDF approach for modelling soot formation

across the flow domain, potentially including sharp peaks or near-discontinuities, to be

represented with similar accuracy, while keeping the number of grid points low.

The combined LES-PBE-PDF model was applied to model soot formation in the Delft

III diffusion flame. Here, kinetic rate expressions for soot nucleation and growth were

adopted from previous laminar diffusion flame calculations and both species depletion as

well as radiation based on the hypothesis of optical thinness were included. At present,

the formation of chain-like soot aggregates is not considered such that our soot phase

is described solely in terms of spherical primary particles. Similarly, the coagulation

of nascent soot particles is omitted, although we intend to incorporate coagulation in

future times. The gas phase kinetics were represented by the detailed GRI 1.2 reaction

mechanism.

In the nearfield of the Delft III flame both the mean velocity and gas phase scalars agree

reasonably well with measurements. The overprediction on the lean side here seems to be

due to limitations of the spatial resolution which may render the turbulence closures less

accurate. Similar to previous LES investigations of the Delft III flame, the soot volume

fraction peaks further upstream than in the experimental observations. Additionally, soot

volume fractions are notably underpredicted. However, except for the upstream shift

and a slightly early onset of soot formation, the centerline soot volume fraction profile

compares well qualitatively with the experimental data. Predictions of the soot particle

size distribution reflect the dominance of soot nucleation and oxidation and their influence

on the shape of the local particle size distribution. In terms of performance, we found

the solver for the PBE fractional step to only consume a modest fraction of the average

runtime per time step.

Since most of the computational cost remains concentrated in the gas phase reaction

step, we aim at incorporating an apt tabulation technique in the near future [52]. Addi-

tionally, the more recently proposed soot kinetics are based on PAH chemistry and, hence,

require a more comprehensive gas phase reaction mechanism. By applying a mechanism

reduction technique, see, for example, Reference [90], the number of gas phase scalars may

be manageably reduced. On part of the soot formation processes, the present LES-PBE-

PDF framework is also suited for accommodating coagulation of incipient soot particles.

As a final model enhancement we mention the inclusion of gas phase differential diffusion

as well as the prescription of a different micromixing frequency for each gas phase scalar

and for soot.

In conclusion, our investigation has demonstrated that modelling soot formation in a

turbulent flame based on a detailed PBE-PDF approach is not only advantageous seeing

as any soot kinetics can be accommodated without approximation and the entire particle

size distribution is predicted, but also computationally efficient.

146

0

0.02

0.04

0.06

0.08

0.1

M
e

a
n

 C
O

2
 m

a
s
s
 f

ra
c
ti
o

n
 [

−
]

x = 50 mm x = 150 mm x = 250 mm

0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

Radius [mm]

M
e

a
n

 H
2
O

 m
a

s
s
 f

ra
c
ti
o

n
 [

−
]

0 10 20 30
Radius [mm]

0 10 20 30
Radius [mm]

(a) CO2 and H2O

0

0.5

1

1.5

2

2.5

M
e

a
n

 H
2
 m

a
s
s
 f

ra
c
ti
o

n
 [

1
0

−
3
]

x = 50 mm x = 150 mm x = 250 mm

0 10 20 30
0

0.01

0.02

0.03

0.04

Radius [mm]

M
e

a
n

 C
O

 m
a

s
s
 f

ra
c
ti
o

n
 [

−
]

0 10 20 30
Radius [mm]

0 10 20 30
Radius [mm]

(b) H2 and CO

Figure 4.3 Comparing radial profiles of selected mean species mass fractions (lines) with experimental measure-
ments (symbols) at 50 mm, 150 mm and 250 mm above the nozzle exit plane.

147

4 An LES-PBE-PDF approach for modelling soot formation

x
[m

m
]

0

0-50 50
r [mm]

100-100

100

200

300

400

500

600

10000 2003 0 1.91.40.77.90 2.5 5.0

0-50 50
r [mm]

100-1000-50 50
r [mm]

100-100

Temperature [K] Volume fraction [10−10]Number density [1015 /m3]

Figure 4.4 Contour plots of the mean temperature (left), soot number density (center) and soot volume fraction
(right) computed from the LES-PBE-PDF model. The white contour in the left panel indicates stoichiometric
mixture fraction values and the horizontal white lines show the near-field measurement stations at 50 mm, 150 mm
and 250 mm above the nozzle. In the center panel, the white horizontal and vertical lines indicate the locations for
which the instantaneous soot size distributions are shown in Figure 4.6.

0 100 200 300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

× 10

Axial distance [mm]

M
e
a
n
 s

o
o
t
v
o
lu

m
e
 f
ra

c
ti
o
n
 [
p
p
b
]

Figure 4.5 Comparing the mean soot volume fraction along the centerline (solid line) with the experimentally
determined values (dashed line). Here, the LES-PBE-PDF predictions are scaled by a factor of 10.

148

0

5

10

C
o

n
d

it
io

n
a

l
s
o

o
t

n
u

m
b

e
r

d
e

n
s
it
y
 [

1
0

1
5
/m

3
]

x = 250 mm x = 300 mm x = 350 mm

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

Mixture fraction [−]

C
o

n
d

it
io

n
a

l
s
o

o
t

v
o

lu
m

e
 f

ra
c
ti
o

n
 [

p
p

b
]

0 0.1 0.2 0.3
Mixture fraction [−]

0 0.05 0.1 0.15 0.2
Mixture fraction [−]

Figure 4.6 Instantaneous (scatter) and mean (solid lines) values of soot number density (top) and soot volume
fraction (bottom) conditioned on mixture fraction at 250 mm, 300 mm and 350 mm above the nozzle. The vertical
dashed lines indicate the stoichiometric mixture fraction of 0.0705.

0

0.1

0.2

0.3

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

0

0.5

1

1.5

2

2.5

3

Axial distance [m]
Particle size [m]

N
u
m

b
e
r

d
e
n
s
it
y
 [
1
0

2
4
/(

m
3
m

)]

(a) Along the flame centerline

−0.04

−0.02

0

0.02

0.0410
−10

10
−9

10
−8

10
−7

10
−6

10
−5

0

0.5

1

1.5

2

Radial location [m]
Particle size [m]

N
u
m

b
e
r

d
e
n
s
it
y
 [
1
0

2
4
/(

m
3
m

)]

(b) Across the flame at x = 350 mm

Figure 4.7 Instantaneous soot particle size distributions both along the flame centerline and across the flame at
the axial distance of maximum mean soot number density. The spatial coordinate in the left panel runs along
the vertical white line depicted in the central panel of Figure 4.4, while the spatial coordinate in the right panel
corresponds to the horizontal white line.

149

150

Chapter 5

A methodology for the integration

of stiff chemical kinetics on GPUs

5.1 Introduction

Graphics processing units (GPUs) were originally designed for quickly rendering images

in special-purpose hardware. However, by now they have been developed into fully pro-

grammable compute devices for applications in which both data- and task-parallelism are

nested. In recent times, researchers have hence begun to accelerate scientific programs by

reimplementing apt subroutines for the execution on a GPU. In the context of non-reactive

flows, a number of GPU-based fluid mechanics solvers have thus been developed and ex-

pertise with regard to efficient GPU programming techniques has been gained [141]. In

this chapter, we focus on the related models for reactive flows and explore the capabilities

of a GPU as an accelerator for including source terms and chemical kinetics.

Modern solution schemes for reactive flows often invoke an operator splitting technique

in order to isolate the chemical kinetics model from diffusion/convection phenomena. Here,

the main part of the computational effort is concentrated in the so-called reaction fractional

step which requires the solution of one system of ordinary differential equations (ODEs) for

each spatial grid point. Physically, these ODE systems describe the temporal evolution

of the local composition and a calorific quantity like enthalpy in a constant pressure

system. In view of the law of mass action, the species production and destruction rates

are governed by the local concentrations of the reactants and products as well as the local

thermodynamic state of the mixture and, thus, the ODE systems are spatially independent.

The problem of solving such a collection of independent ODE systems is sometimes

termed embarrassingly parallel. Indeed, without the need for communication, each ODE

system may be placed on a different processing thread and scheduled individually. On the

other hand, each ODE system also features an inherent low level of parallelism since the

reaction progress variables, the species production rates and the species’ thermodynamic

properties, for example, can be computed independently.

151

5 A methodology for the integration of stiff chemical kinetics on GPUs

Although these two nested levels of parallelism correspond well with the concurrency

exposed by modern GPU-computing APIs (Application Programming Interfaces),10 initial

efforts for accelerating the reaction fractional step concentrated on a single level of paral-

lelism and outsourced the most time consuming operations such as the evaluation of the

species production rates [195] or the finite difference approximation of the Jacobian matrix

[21]. Following a similar approach as these two references, Shi et al. [191] invoked the GPU

for evaluating the forward/reverse reaction rates and computing the LU decomposition of

the Jacobian.

The main drawback of these approaches was the heavy data traffic between main mem-

ory and the GPU’s memory which is limited by the bandwidth of the PCIe bus,11 thus

requiring large reaction mechanisms (& 250 species) for the GPU acceleration to take

effect. On the plus side, conventional linear algebra subroutines could simply be replaced

by their counterparts from GPU libraries such as CULA or CUBLAS [35, 78] and the

software engineer did not need to be familiar with the GPU’s hardware architecture or

the API’s programming model.

In order to reduce both the number of data transfers and the amount of data transferred

between main memory and GPU memory, researchers have recently begun to reimplement

the time stepping method and entire integration algorithms (including the step size adjust-

ment scheme) for execution on the GPU. Here, the main focus lay on explicit integration

algorithms of the Runge-Kutta type, while implicit integration schemes have received only

little attention, see Table 5.1.

The first self-contained GPU implementation of a chemical kinetics integration scheme

seems to be due to Niemeyer et al. [140] who implemented a 4th order explicit Runge-

Kutta method in combination with the species rate expressions for a hydrogen reaction

mechanism in CUDA C. Subsequently, Niemeyer and Sung [141] implemented an embedded

4th order Runge-Kutta-type method and a 2nd order stabilized Runge-Kutta-Chebyshev

method in CUDA C and tested the implementation on a range of initial conditions sampled

from solutions of a constant pressure homogeneous ignition problem. Similarly, Stone and

Davis [196] included in their investigations an embedded 4th order Runge-Kutta-Fehlberg

method which was also implemented using the CUDA API. As sample problem these

authors considered a counter-flow linear eddy model.

Shi et al. [190], on the other hand, devised a hybrid explicit/implicit approach by pairing

the implicit solver DVODE with a CUDA-based 2nd order accurate α-quasi steady state

method. For this, each ODE system was assigned a degree of stiffness based upon the

number of integration steps which the ODE system required in the previous global time

10Nvidia provides the proprietary CUDA API for developing general purpose software on Nvidia
GPUs. OpenCL, on the other hand, is an API standard that targets different processor types and
is jointly developed by the Khronos group, an industry consortium. Currently, an implementation
of the OpenCL standard is available for most GPU brands (Nvidia, AMD, Intel).

11PCIe (Peripheral Component Interconnect Express) is a standardized design for connections
between the main processor of a computer system and peripheral devices such as a GPU.

152

5.1 Introduction

step. The ODE systems with a high number of integration steps were classified as stiff

and integrated by DVODE on the CPU, while the less stiff ones were integrated using the

explicit GPU solver.

In practice, however, explicit integration algorithms are rarely used on chemical kinetics

ODE systems since the reactions may take place on time scales that differ by orders of

magnitude, thus forcing prohibitively small time steps. Such stiffness proves difficult to

estimate a priori ; indeed, while explicit integrators may suffice in one situation (fuel,

composition, temperature regime), they may fail in another.

In engineering applications, moreover, the flow is often turbulent and, therefore, the

global time stepping is inherently linked with the size of the smallest resolved flow scales. A

direct numerical simulation (DNS), for instance, attempts to resolve the turbulent fluctu-

ations and, hence, time steps below the Kolmogorov time scale [32] are required, rendering

explicit integration schemes for the reaction fractional step viable. In RANS and LES ap-

proaches, on the other hand, the fluctuating fields are subjected to a global averaging or

filtering operation and the influence of the small scale fluctuations is modelled. Here, the

time step sizes for the convection and diffusion fractional steps are typically on the order

of 10−6 s. From the perspective of the mean or filtered flow fields, the reaction dynamics

may thus appear severely stiff, warranting the application of implicit integration schemes.

In more general terms, stiffness can be encountered whenever the global time step size

is controlled by a time scale that is bigger than the fastest reaction time. An example

is the common case where the global time step size is governed by a CFL condition and,

thus, by the characteristic convection/diffusion time scale. Here, the mixture may locally

react on time scales which are much smaller than the global one, thus exhibiting severe

stiffness.

By consequence, implicit integration schemes have shifted into the focus of GPU com-

puting. Le et al. [97], for instance, included a first order accurate backward Euler scheme

in a CUDA-based high order finite volume solver for the reactive Euler equations. As

applications, these authors considered supersonic reactive flows such as detonations. Lin-

ford et al. [107], on the other hand, implemented an embedded 2nd order accurate 3-stage

Rosenbrock method in CUDA C and assessed its performance in the context of chemical

kinetics for the evolution of pollutants and trace gases in the earth’s atmosphere. Rosen-

brock algorithms are sometimes termed linearly implicit (or semi-implicit) methods and

have been found to be very efficient for stiff ODE systems if the accuracy requirements

are low [67, 181, 182].

To our awareness, a fully implicit, high order integration algorithm for chemical ki-

netics has only been implemented in a GPU API by Stone and Davis [196]. Specifically,

these authors ported the 5th order accurate variable coefficient BDF-solver DVODE onto

the CUDA framework and compared its performance to that of an explicit Runge-Kutta-

Fehlberg method (see above) for the special case of a 19 species ethylene reaction mecha-

nism.

153

5 A methodology for the integration of stiff chemical kinetics on GPUs

In spite of the recent progress in the GPU acceleration of chemical kinetics integrators,

certain questions which we believe are of paramount practical interest remain unanswered.

Firstly, it is not yet clear whether the viability of a GPU-based implicit higher order

integration scheme extends to common reaction mechanisms whose sizes range between 20

and about 200 species [141]. In this regard, it also remains to be investigated in which way

the performance of such an implementation changes as the problem size is increased and

as the time step size or the convergence tolerances are varied. Furthermore, we are not yet

able to infer from the available GPU-CPU comparisons of implicit integration algorithms

a recommendation on the most profitable acceleration strategies that do not inflict severe

restrictions upon the mechanism size.

In view of these questions, we have carefully reimplemented the Fortran 77 program of

the 5th order accurate implicit Runge-Kutta method Radau5 by Hairer and Wanner [67]

in combination with the Chemkin III subroutines for evaluating the species production

rates [89] in OpenCL C. Radau5 is suitable for our purposes since (i) it has been tested on

a large number of reaction mechanisms within our group; (ii) it implements an A-stable

method; and (iii) it is based upon a single step, multiple points integration algorithm for

which the step size adjustment scheme is quite simple and, in particular, does not involve

the interpolation of past solution vectors or additional right-hand-side evaluations.

As sample problem we consider a transient equilibrium scheme for the flamelet model

based upon a uniform grid in mixture fraction space. Each chemical kinetics ODE system

is thus associated with a different mixture fraction, reflecting the heterogeneous conditions

in a real-life flow. The comparison between the GPU implementation and the original CPU

version is based upon measurements of the runtime (and the data transfer time in the case

of the GPU implementation) for an increasing number of ODE systems and mechanism

sizes and for both a consumer-level and a high-end GPU/CPU. Here, the CPU version

is equipped with an Open MPI parallelization which distributes the ODE systems across

all threads available on the processor. In view of the cost-effectiveness, moreover, the

number of ODE systems which can be solved on a given processor for a chosen reaction

mechanism is determined per unit of time and per Pound Sterling invested into the device.

Also, we quantify the influence of the time step size and of the convergence tolerances on

the performance of the GPU implementation as compared to that of the CPU version.

This chapter is structured as follows: In Section 5.2, we briefly review the transient

flamelet model and apply the method of fractional steps in order to isolate the chemical

kinetics model from the diffusion in mixture fraction space. Subsequently, the class of

implicit Runge-Kutta methods is formulated in Section 5.3 and the algorithmic structure

of Radau5 is outlined. In Section 5.4, we present the architecture of a modern GPU

from the perspective of the OpenCL execution and memory models. Section 5.5 then

details aspects of the OpenCL reimplementation of Radau5. Among others, we discuss an

asynchronous scheme for overlapping data transfers between main memory and the GPU’s

154

5.2 Sample problem

Name Algorithm Implicit? Order
Mechanisms Maximum

References
(nsp/nr) speedups

RK4 Runge-Kutta No 4 9/38 75/ −× [140]

RKCK Runge-Kutta-Cash-Karp No 4 9/38 126/25× [141]

RKC Runge-Kutta-Chebyshev No 2 13/27 59/10× [141]

53/325 69/13×
111/784 −/18×

RKF45 Runge-Kutta-Fehlberg No 4 19/167 20.2/10.7×∗ [196]

CHEMEQ2 α-Quasi-steady-state No 2 39/131 12.8/−× [190]

117/499 13.2/−×
– Backward Euler Yes 1 9/38 ≈ 42/−× [97]

36/308 ≈ 32/−×
ROS3 3-stage Rosenbrock Yes 2 61/156 3.0/0.45×‡ [107, 182]

DVODE Variable step/order BDF Yes ≤ 5 19/167 7.3/7.7×∗ [196]

Radau5 3-stage implicit Runge-Kutta Yes 5 53/325 4.8/0.54×† This work

(Radau IIA)

Table 5.1 GPU implementations of explicit/implicit integration schemes (double precision) for chemical kinetics
ODE systems. Here, the speedups relate a one-thread GPU implementation to a single core/six cores CPU imple-
mentation, except when a ∗, † or ‡ is specified. In the case of ∗, the speedups are given for a one-block/one-thread
GPU implementation relative to a single core CPU version, while † indicates a one-block GPU implementation that
is compared with a single core/8 core CPU version (hyper-threading enabled). If a ‡ is specified, on the other hand,
the speedup is computed for a one-thread GPU implementation relative to a single core/8 core CPU version (two
4 core CPUs). (For more details on the one-thread/one-block strategies we refer to Section 5.5.2.) Moreover, nsp

and nr denote the numbers of species and reactions of the reaction mechanisms for which the speedups are given.

memory with multiple kernel12 invocations and provide a careful analysis of the kernel’s

memory requirements. Runtime measurements are presented in Section 5.6, where the

performance of the OpenCL-GPU implementation is compared with that of an MPI-CPU

version on a per-processor basis. Finally, findings are summarized in Section 5.7 and future

steps are set into the perspective of our conclusions.

5.2 Sample problem

As sample diffusion-reaction problem we consider a transient equilibrium scheme for the

flamelet model

∂Y(z, t)

∂t
=
χ(z)

2

∂2Y(z, t)

∂z2
+
ω̇

ρ
(Y(z, t)), (5.1)

Y(z, 0) = Y0(z), (5.2)

Y(0, t) = YO, (5.3)

Y(1, t) = YF , (5.4)

where z ∈ [0, 1] denotes the mixture fraction, t ≥ 0 represents time and the vector Y(z, t) =

(Y1, . . . , Yns−1, T) ∈ Rns contains the species mass fractions Yi and temperature T . χ,

12In GPU terms, a kernel defines a function of which an instance executes for each processing
thread launched on the GPU.

155

5 A methodology for the integration of stiff chemical kinetics on GPUs

moreover, denotes the scalar dissipation rate which may be taken as a measure for the

inhomogeneity of the convecting flow. It is often computed in terms of the strain rate

s > 0 according to

χ(z) =
s

π

(
exp(−2(erf−1(2z))2)

)2
. (5.5)

The boundary conditions in Eqs. (5.3) and (5.4) are formulated in terms of the com-

positions YO and YF of the oxidizer and fuel, respectively. Constitutively, both reactant

mixtures are assumed to behave as multicomponent ideal gases.

For the investigations in Section 5.6, we determined the initial conditions Y0(z) in Eq.

(5.2) from the chemical equilibrium composition and temperature which jointly minimize

Gibbs’ free energy in a constant enthalpy, constant pressure system.

The source term ω̇ on the right-hand-side of Eq. (5.1) provides the link to the chemical

kinetics model. Here, the species production rates are computed from the reaction progress

variables qj, j = 1, . . . , nr,

ω̇i(Y) =

nr∑

j=1

νijqj(Y), i = 1, . . . , nsp, (5.6)

where ν ∈ Rnsp×nr denotes the (sparse) matrix of stoichiometric coefficients and nsp =

ns − 1 and nr indicate the numbers of species and reactions, respectively. The reaction

progress variables are expressive of the law of mass action and include Arrhenius-type

expressions for the forward rate coefficients. While the reverse rate coefficients may also

be computed from an Arrhenius-type expression, more than often the reverse Arrhenius

parameters are not available. In this case, they can be determined from the equilibrium

constant.

The final entry in ω̇ corresponds to the source term in the calorific T -equation and is

given by

ω̇T (Y) = −
∑nsp

i=1 Hi(T)ω̇i(Y)

C̄p(Y)
, (5.7)

where Hi(T) denotes the molar enthalpy of species i at temperature T and C̄p(Y) denotes

the mixture’s molar specific heat at constant pressure.

If a reaction requires the presence of inert species, then an enhanced equation similar

to Eq. (5.6) applies which accounts for so-called third-body efficiencies. Furthermore, the

reaction rates may be pressure-dependent in which case the Arrhenius expressions include

pressure correction terms. These different reaction characteristics are accounted for by the

Chemkin library, for instance. For conciseness, we omit further details on the complete

chemical kinetics model and refer to the comprehensive Chemkin manual [89] instead.

By applying the method of fractional steps, Eq. (5.1) can be split into a passive diffusion

problem (·(1)) and a pure reaction problem (·(2)) over a (sufficiently small) time interval

156

5.2 Sample problem

[ti, ti+1]

∂Y(1)(z, t)

∂t
=
χ(z)

2

∂2Y(1)(z, t)

∂z2
, Y(1)(z, ti) = Y(z, ti), (5.8)

∂Y(2)(z, t)

∂t
=
ω̇

ρ
(Y(2)(z, t)), Y(2)(z, ti) = Y(1)(z, ti+1), (5.9)

Y(z, ti+1) = Y(2)(z, ti+1), (5.10)

where Y(z, ti) and Y(z, ti+1) indicate an (approximate) solution to Eq. (5.1) at the

beginning and the end of a time step.

Eqs. (5.8) through (5.10) implement a first order approximation in time [161, 211].

Since the source terms ω̇i/ρ at a point z only depend upon the composition at this point,

Eq. (5.9) can be solved for each point in mixture fraction space independently. In combi-

nation with a spatial discretization scheme encompassing n+ 1 ≥ 1 intervals

[0, 1] =
n+1⋃

i=1

[zi−1, zi] (5.11)

(for example, zi = i/(n + 1)), Eq. (5.9) leads to

dY
(2)
i (t)

dt
=
ω̇

ρ
(Y

(2)
i (t)) (5.12)

for Y
(2)
i (t) = Y(2)(zi, t) and i = 1, . . . , n (excluding the boundaries i = 0, n+ 1 of mixture

fraction space). This equation forms a so-called embarrassingly parallel problem. It is the

main point of attack for most modern parallel implementations of the reaction fractional

step and, indeed, justifies the leading order time approximation.

Although we have considered the flamelet Eq. (5.1) in the above, the reaction fractional

step in Eq. (5.12) is not particular to this model, but can be constructed similarly for

any scalar or vector-valued diffusion-convection-reaction transport problem. Specifically,

the OpenCL-GPU solver for the reaction fractional step which we present is applicable to

turbulent flow problems and can be readily incorporated into an existing RANS or LES

reactive flow solver. In the present chapter, focus is laid on the flamelet model because it

constitutes a lightweight framework for generating a range of initial conditions with which

the GPU-based integration scheme may be tested.

For future reference, the numbers characterizing the problem and reaction mechanism

sizes (such as nsp, ns and nr) are summarized in Table 5.2.

157

5 A methodology for the integration of stiff chemical kinetics on GPUs

Variable Explanation

nsp # Species

ns = nsp + 1 # Scalars

nr # Reactions

n # ODE systems

np # ODE systems per t/p-cycle

ntb # Reactions involving third body efficiencies

nfo # Reactions including pressure-dependence (fall-off reactions)

msp = 6, 7 Maximum # species per reaction

mtb = 10 Maximum # third bodies per reaction

mfo = 10 Maximum # fall-off parameters per reaction

l OpenCL work group size (see Eq. (5.24))

Table 5.2 Numbers characterizing the spatial discretization and the reaction mechanisms.

5.3 Radau5 II

By integrating Eq. (5.12) over the time interval [tj, tj+1] we obtain

Y(tj+1) = Y(tj) +

∫ tj+1

tj

f(t,Y(t)) dt, Y(tj) = Yj , (5.13)

where Y ≡ Y
(2)
i and f(·,Y(·)) ≡ ω̇/ρ(Y(·)) have been set and Yj denotes the vector of

initial conditions.

In a Runge-Kutta method, the main idea for advancing the (exact) solution Y(t) of

Eq. (5.13) by one time step h = tj+1 − tj consists in approximating the integral on the

right-hand-side by a Gauss-type quadrature formula

∫ tj+1

tj

f(t,Y(t)) dt = h

∫ 1

0
f(tj + ht′,Y(tj + ht′)) dt′

≈ h
m∑

l=1

γlf(tj + αlh,Y(tj + αlh)), (5.14)

where

t′ =
t− tj
h

(5.15)

and αl ∈ [0, 1]. Since, here, f(·,Y(·)) is evaluated at times tj + αlh ∈ [tj, tj+1], Runge-

Kutta methods are classified as single step, multiple points integration schemes.

For the Radau II integration rule, the weights γl and mid-points αl in Eq. (5.14) are

chosen such that the quadrature formula includes the right boundary (αm = 1) and is

exact for polynomials of order 2m− 2 (m ≥ 1),

f(tj + ht′,Y(tj + ht′)) =

2m−2∑

k=0

gkt
′k. (5.16)

158

5.3 Radau5 II

Here, t′ ∈ [0, 1] and gk ∈ Rn are 2m− 1 linearly independent vectors.

Combining Eqs. (5.13) and (5.14) leads to

Y(tj + 1h) ≈ Yj + h

m∑

l=1

γlf(tj + αlh,Y(tj + αlh)). (5.17)

If tj+1 in Eq. (5.14) is replaced by t̃j+1 ∈ [tj, tj+1], then the upper bound 1 of the

integral on the right-hand-side of Eq. (5.14) becomes (t̃j+1 − tj)/h = α̃. By keeping the

mid-points αl fixed, we may deduce from this substitution a slightly more general (but

less accurate) version of Eq. (5.17),

Y(tj + α̃h) ≈ Yj + h

m∑

l=1

γ̃lf(tj + αlh,Y(tj + αlh)). (5.18)

For α̃ = α1, . . . , αm−1 and αm = 1, Eq. (5.18) establishes a system of nm non-linear

equations for the m unknown auxiliary points

kl = Y(tj + αlh), l = 1, . . . ,m. (5.19)

By substituting Eq. (5.19) into Eqs. (5.17) and (5.18) and taking γ̃l = βil for a given

α̃ = αi, we now obtain the following numerical scheme

kl = Yj + h

m∑

k=1

βlkf(tj + αkh,kk), l = 1, . . . ,m, (5.20)

Yj+1 = Yj + h

m∑

k=1

γkf(tj + αkh,kk). (5.21)

Here, the ≈-signs have been replaced by =-signs, while the (exact) solution at tj+1 has

been substituted by the approximation Yj+1 ≈ Y(tj+1).

If the weights γk and βlk, k, l = 1, . . . ,m, and the mid-points αj, j = 1, . . . ,m − 1, in

Eqs. (5.20) and (5.21) satisfy

m∑

l=1

γlα
k−1
l =

1

k
, k = 1, . . . , 2m− 1, (5.22)

m∑

l=1

βilα
k−1
l =

αk
i

k
, i, k = 1, . . . ,m, (5.23)

then the Radau II approximations of the integrals in Eqs. (5.14) and (5.18) are exact

for polynomials (see Eq. (5.16)) of order 2m − 2 and m, respectively. In this case, the

(implicit) Runge-Kutta method is of order 2m− 1 [67, Theorem 5.3].

As basis for a GPU reimplementation we chose the m = 3-stage/5th order implicit

Runge-Kutta algorithm Radau5 which has been developed by Hairer and Wanner [67].

159

5 A methodology for the integration of stiff chemical kinetics on GPUs

Since these authors provide a thorough discussion of the implementational aspects (solving

the non-linear system in Eq. (5.20)/step size adaptation/error control), we refer the

interested reader to their monograph. However, an important aspect to note at this point

is that the Newton-type solution scheme for Eq. (5.20) may be subjected to a special

transformation and, in this way, the linear system matrix of size 3n split into a real and

a complex linear system of size n.

Figures C.1 and C.2 in Appendix C.1 depict a flow chart of the Radau5 algorithm

including the step size adjustment scheme.

5.4 GPU computing

In the present section, we review conceptual differences in the architectures of a CPU

and a modern GPU (Section 5.4.1) and describe both the execution and memory models

of a GPU from the viewpoint of the OpenCL standard (Section 5.4.2).13 Moreover, the

portability of OpenCL applications in relation to device-specific optimizations is addressed

(Section 5.4.3). Finally, the notion of an SIMD unit is introduced (Section 5.4.4) as a basis

for the discussion of GPU programming techniques in Section 5.5.

For a more comprehensive introduction into the architecture of a GPU and aspects of

GPU computing which lie beyond the presentation in this section, we refer to the textbooks

by Hennessy and Patterson [73, 150].

5.4.1 Characteristics of CPU and GPU architectures

Originally, GPUs have been developed for graphics applications which encompassed an

instruction sequence that was applied to a large number of data sets. Since these data sets

(vertices, fragments) could be manipulated independently of each other, the instructions

were organized in a graphics pipeline in which different stages of the rendering process

operated concurrently on distinct data sets and each stage could process several data

sets simultaneously. The individual stages could be configured, but they were not pro-

grammable in a way that would make the GPU accessible to non-graphics applications

[148].

By now, GPU vendors have lifted this restriction and GPU’s have evolved into fully

programmable processors, targeting massively data-parallel applications with a simple

control flow. Here, a large number of processing elements (PEs) are orchestrated by a

few instruction units which are reminiscent of the stages in the original graphics pipeline.

A CPU, on the other hand, encompasses only few processing elements which operate

independently and mainly targets task-parallel applications in which each task may contain

an elaborate control flow.

13Although we adopt the perspective of the OpenCL API and its terminology in this work, this
does not present a limitation to the validity of the concepts or programming techniques presented.

160

5.4 GPU computing

A major difference in the operation of both GPUs and CPUs is the way in which

memory access latency is hidden. The CPU encompasses, to this end, an on-chip hierarchy

of fast, small memory buffers (caches) through which data and instructions proceed to

the processing elements. Modern GPUs, by contrast, instantly switch from processing

instructions that are waiting for memory accesses to complete to invoking instructions

which are ready to execute. This requires a large pool of independent (but possibly

identical) instruction sequences between which the processing elements can arbitrate.

5.4.2 GPU architecture and the OpenCL standard

OpenCL is shorthand for Open Computing Language, a standardized API for developing

software on heterogeneous systems that is administered by the Khronos Group. In recent

times an OpenCL implementation has become available for most processors like Intel CPUs

or Nvidia and AMD GPUs. The main idea which propelled the development of OpenCL

was to be able to devise portable software that can explore the system on which it executes

and invoke the processors that are available in the system for specific computational tasks.

The scope of OpenCL is thus very modern, reflecting the heterogeneity of both personal

computers and high-performance workstations.

An OpenCL application consists of a host program which dispatches both memory

buffers and function evaluations on these buffers to a device. Functions which execute on

the device are termed kernels. These are written in OpenCL C, an API-specific language

extension to the C99 standard. Typically the host code is compiled for execution on

a CPU. In this way, the OpenCL application can be launched in a manner similar to

standard applications or the host code may be incorporated into an existing program.

The kernel functions, by contrast, are compiled at runtime by a specific device compiler

which is contacted through the OpenCL API.

From the perspective of a software engineer, an OpenCL application (i) first explores

the platform on which it executes, (ii) chooses appropriate devices, (iii) builds the kernel

source code for the selected devices, (iv) allocates memory buffers on the devices and

(v) finally enqueues the kernels for execution. Typically, steps (i) through (iv) can be

accomplished during an initialization phase. The communication (and synchronization)

between the host and the device is channelled through a command queue which may

execute in-order or out-of-order. In the latter case, the order of the commands can be

structured using event objects which constitute a top-level synchronization mechanism.

As an aid to the reader we include a brief outline of the OpenCL memory and execution

model. Further details can be found in the OpenCL specification [132] or the OpenCL

Programming Guide [131].

The OpenCL execution model employs a rectilinear one, two or three-dimensional in-

teger index grid as a basis for labelling execution paths. For each vertex in this index grid

an instance of a kernel is executed. This instance is called a work item which executes

161

5 A methodology for the integration of stiff chemical kinetics on GPUs

on a processing element. Work items, moreover, can be clustered into work groups which

execute on compute units. Typically, a GPU consists of several compute units (about 6 to

14) each of which comprises a large number of processing elements (32 on Nvidia GPUs),

where, conceptually, a processing element may be compared with a single CPU core, see

Figure 5.1. One difference between both is that a processing element on the GPU executes

instructions in orchestration with the other processing elements within the same compute

unit, while the CPU cores operate independently. Moreover, the processing elements can-

not take advantage of a complete cache hierarchy (L3 through L1i/d caches in Figure 5.1)

in the way that a CPU core does.

Work groups play an important role in the management of OpenCL local memory.

While all work items can access global memory buffers, local memory is private to a

work group and can only be read from or written to by the work items from this work

group. Registers, moreover, are classified as private memory storage which cannot be

shared among different work items. The last address space qualifier designates constant

or read-only memory for which dedicated caches may exist on a device.

In the context of GPUs, global memory corresponds to DRAM (Dynamic Random

Access Memory) which is a large off-chip memory. Local memory,14 on the other hand, is

located on-chip whence memory access latencies are much smaller than for global memory.

On Nvidia GPUs, OpenCL local memory coincides with CUDA shared memory.

Finally, the work items inside a work group can be synchronized using barriers either

on the local or the global memory level. By contrast, OpenCL does not supply a syn-

chronization mechanism between work groups. Thus, communication between work items

that belong to different work groups is not supported.

5.4.3 Portability

Although the OpenCL standard promotes software portability across a wide range of

different computing devices, the hardware independence of an OpenCL program does not

imply that one OpenCL kernel performs well on all OpenCL-enabled devices. Quite on

the contrary, optimizations for improving the performance of an OpenCL kernel on a

specific OpenCL device often require an understanding of the device’s architecture and, in

particular, of how this architecture maps onto the OpenCL execution and memory models.

While some of these optimizations can be expressed in terms of kernel parameters (such as

the number of work groups or the work group size) or memory space qualifiers (global vs.

constant memory buffers, for example), other optimization techniques transcend through

the entire kernel implementation and are not easily adapted for a different device. As an

14Although the names are identical, the OpenCL local memory space is different from CUDA’s
local memory which maps onto a portion of DRAM and, hence, is located off-chip. CUDA employs
this memory space to accommodate variables or arrays that have been spilled out of the registers
of a specific work item, but there is no OpenCL equivalent. In the following, we therefore do not
reference CUDA local memory.

162

5.4 GPU computing

Local L1

Local L1 Local L1

Local L1

G
lo
b
al

m
em

or
y

PE

‘waiting’

‘active’

...
Barrier

Work group 0

Barrier

...

Work group 160

PE

PE

PE

PE

L3 cache

L2

L1d

L1i L1i L1iL1i

L1d L1dL1d

L2 L2 L2

PE

PE

PE

PE

Private memory

Constant memory

(b)(a)

. . .

Work items (an SIMD unit)

PCIe bus

Figure 5.1 Architectures of a modern CPU (a) and a GPU (b). Here, the terminology refers to the OpenCL
execution and memory models (except for the cache labels L1i/d through L3 and the term ‘SIMD unit’ which
indicates a collection of work items that are being issued instructions simultaneously).

example, we may consider the memory access patterns which are reflected in the structure

of parallel loops inside the kernel. The block access that is common for a shared memory

CPU (each work item processes a consecutive block-subset of a data array) has a negative

impact on the performance of the same kernel on a GPU since it inhibits the coalescence of

global memory accesses, see Section 5.5.1. Thus, although an OpenCL kernel is portable

across different OpenCL devices, its inherent low-level optimizations may not carry over

to a different OpenCL device.

Currently, the main advantage of developing software using the OpenCL API is that

OpenCL (unlike Nvidia’s CUDA framework) is a non-proprietary industry standard for

which most GPU vendors supply an implementation. Therefore and since modern personal

computers encompass both a CPU and a GPU, the OpenCL chemical kinetics solver which

we have developed can be invoked on any such system regardless of the GPU’s brand.

5.4.4 SIMD architecture

The OpenCL execution model which has been reviewed in Section 5.4.2 implements both

task- and data-parallelism on the level of work items. Since work items can be clustered

into work groups, there is an optional superior level of task-parallelism. In the architecture

of a GPU, by contrast, the capabilities for task- and data-parallelism are realized hier-

archically such that a task is required to be inherent data-parallel and task-parallelism

involves several such data-parallel tasks. Although this is not explicated by the OpenCL

model, the OpenCL abstractions are transparent for the implications which the inherent

data-parallelism of a GPU has on how the work items execute on processing elements. In

the present section, we analyse these implications and deduce recommendations on the

control flow within an OpenCL kernel.

As indicated in Section 5.4.2, a compute unit encompasses a number of processing

163

5 A methodology for the integration of stiff chemical kinetics on GPUs

elements. On GPUs, these processing elements are grouped into batches each of which

is controlled by a single instruction unit. This unit issues instructions sequentially such

that all processing elements within a batch are serviced the same instruction, possibly

with different operands. The work items which are processed by a batch of processing

elements are termed an SIMD (Single Instruction stream, Multiple Data streams) unit (or

SIMD thread). In Nvidia CUDA terminology, an SIMD unit is called a warp and consists

of 32 work items, while on AMD GPUs the SIMD unit is referred to as a wavefront and

encompasses 64 work items.

If the work items within an SIMD unit follow diverging instruction paths (for example,

on account of an if-else or switch statement), then the instruction unit proceeds through

these instruction paths in a sequential manner. Here, the processing elements whose work

items do not fulfill the condition for the current instruction path are masked off and remain

idle until the instruction unit issues the instructions for their instruction path.

This implies that branch conditions for the work items within an SIMD unit lead to

a serialization of the control flow. In other words, task-parallelism within a work group

is supported only among SIMD units, but serialized within an SIMD unit. For high

performance of an OpenCL kernel on a GPU, it is thus recommended to order the work

items such that conditionals, if possible, evaluate identically for all work items within an

SIMD unit and that the work group size equals a multiple of the number of SIMD units

in order to avoid incomplete SIMD units. In keeping with the terminology used by other

authors, we refer to the event that work items proceed along different instruction paths

as thread divergence.

SIMD units also play an important role in the latency hiding strategy of a GPU. If the

work items within an SIMD unit are waiting on a synchronization barrier or for memory

accesses to complete, then the SIMD unit scheduler swaps the current SIMD unit for

another SIMD unit in which the work items are ready to execute. In this way, the batch

of processing elements on which the first SIMD unit was stalled remains busy.

A GPU thus implements a single level of data-parallelism which is nested inside two

levels of task-parallelism: Multiple SIMD units (data-parallelism) execute on a batch of

processing elements in an interleaved fashion (task-parallelism), while SIMD units which

reside on different batches are processed simultaneously (task-parallelism).

5.5 GPU parallelization strategy

In the present section, we address the implementation in OpenCL of a GPU solver for

the reaction fractional step based upon the implicit integration algorithm Radau5. In this

regard, we first review specific programming techniques which exploit the architecture

of a modern GPU (Section 5.5.1). In view of these techniques, strategies for mapping

the reaction fractional step onto the OpenCL execution model are then presented and a

scheme for sorting the chemical reactions in order to mitigate thread divergence is pro-

164

5.5 GPU parallelization strategy

posed (Section 5.5.2). Subsequently, the memory layout of the OpenCL implementation

is analysed (Section 5.5.3) and an efficient implementation of the standard LU decom-

position algorithm is detailed (Section 5.5.4). Moreover, we present a cyclic scheme for

splitting the reaction fractional step across multiple kernel invocations which overlap with

data transfers between the host CPU and the GPU (Section 5.5.5). Finally, the potential

use of other implicit integration algorithms is discussed and it is shown how the concepts

and OpenCL functions developed as part of the current implementation may be included

in the implementation of an integration scheme that is different from Radau5 (Section

5.5.6).

5.5.1 Techniques for improving performance on a GPU

Since in this work an OpenCL kernel is designed for execution on a GPU, special pro-

gramming techniques which take into account the architecture of a GPU can be applied in

order to increase the kernel’s performance. These strategies are in fact much different from

their CPU counterparts where high-level, single-thread optimizations mainly concentrate

on cache lines and instruction vectorization [80, 81]:

Coalesced memory accesses. If all work items in a work group access adjacent global

memory addresses, then these accesses can be coalesced into a single (or a few) memory

transaction(s). Since global memory accesses incur one of the highest latencies on a GPU,

an apt data storage scheme and a compatible orchestration of the work items’ read/write

instructions may result in significant performance gains [141, Table 1]. On Nvidia GPUs,

memory coalescing is performed on the level of a half warp.

Avoiding thread divergence. If two or more work items in an SIMD unit follow different

instruction paths, then the instruction unit proceeds through these diverging instruction

paths in a sequential manner. This leaves work items idle while their instruction paths

have already or not yet been processed.

Using local memory. OpenCL local memory can be considered as a cache which the

kernel function manages explicitly. A common programming pattern which exploits this

cache consists in copying data from global memory to local memory (coalescing read

instructions), operating on the data in local memory per work group and, finally, writing

the results back to global memory in a coalesced fashion. Such a pattern embraces, for

example, the implementation of a parallel reduction operation which has been devised in

Reference [147]. On Nvidia GPUs, OpenCL local memory is organized in so-called banks

which can service data to different work items simultaneously, but may serialize accesses

to the same bank.

165

5 A methodology for the integration of stiff chemical kinetics on GPUs

Avoiding register spilling. If a work item operates on large arrays or structures in private

memory, then the OpenCL compiler may decide to expel these variables to OpenCL local

or global memory, thus incurring a severe performance penalty. In practice, however, it is

often very difficult to determine whether or when in particular this happens.

Occupancy. During the execution of a kernel, several work groups may reside on the

same compute unit. Thus, whenever an SIMD unit is idle or waits for memory accesses

to complete, the SIMD unit scheduler can switch to another SIMD unit which is ready to

execute, possibly from a different work group. However, since local memory is particular to

a compute unit and each work group’s local memory maps to one portion of the compute

unit’s local memory, it may happen that the work groups allocate more local memory than

there would be available if the maximum number of resident work groups per compute unit

were present. In this case, the number of resident work groups is limited by the GPU’s

resources. Similarly, the registers on a compute unit are shared among work groups.

Host to device memory transfers. Before a kernel can be scheduled for execution on a

GPU, the data on which the kernel operates needs to be transferred from the host CPU

to the memory buffers that have been allocated on the GPU. Similarly, once the kernel

terminates, the results of the computation are copied back to the host CPU’s memory.

The rate at which these data transfers happen is limited by the bandwidth of the PCIe bus

that connects the host CPU and the GPU, and is often much smaller (by about an order of

magnitude) than the bandwidths of GPU-internal global memory read/write instructions.

Furthermore, there is an overhead associated with submitting a host to device memory

transfer instruction to the OpenCL runtime. These invocation overheads may add up to

a significant amount of time if many data transfers are scheduled repeatedly.

In order to mitigate the time consumed by memory transfers and invocation overheads,

it is recommended that the overall computational task (the solution of the reaction frac-

tional step) be split between the host CPU and the GPU such that the interface requires

only a few small data transfers. Sometimes, in this regard, it is possible to store distinct

data arrays in the same memory buffer and, hence, avoid repeated invocation overheads.

Alternatively, if the computational scheme permits, the data transfers for the next kernel

invocation can be overlapped with the execution of the current kernel. This leads to the

overlapping compute-copy-compute cycles which we examine in detail in Section 5.5.5.

5.5.2 Mapping the reaction fractional step onto the GPU’s execution

model

The reaction fractional step which we formulated in Section 5.2, Eq. (5.12), encompasses

two nested levels of concurrency: On the one hand, the ODE systems associated with

the spatial grid points can be solved independently of each other. On the other hand,

166

5.5 GPU parallelization strategy

the innermost loops which appear both within the integration algorithm (vector updates,

LU decompositions, forward/backward substitutions) and the evaluation of the chemical

kinetics source terms (evaluating the species’ thermodynamic properties, computing the

reaction progress variables, Eq. (5.6)) involve independent iterations. In a computer im-

plementation, these independent iterations translate into concurrent data streams to which

a sequence of instructions is applied. If a loop contains conditionals, then the instruction

sequence is split into branches which service subsets of data streams concurrently.

In a similar fashion, the OpenCL execution model also embraces two levels of concur-

rency: On the upper level, work groups operate independently, while, on the lower level,

the work items within a work group collaborate. In this collaboration, the work items exe-

cute instructions concurrently, but can communicate by exchanging data through OpenCL

global and local memory buffers and waiting at barrier synchronization points. In view of

the reaction fractional step, the task for solving an ODE system can thus be mapped onto

a work group such that the work items within this work group jointly integrate the ODE

system over a global time step t ∈ [tj , tj+1] (Eqs. (5.20) through (5.23)) and many work

groups cover all ODE systems. This implementation strategy has first been advocated by

Stone and Davis [196] who termed it the ‘one-block’ approach.

An alternative strategy is the so-called ‘one-thread’ approach in which one ODE-system

is assigned to each work item. The main drawback, here, is that thread divergence is

incurred whenever work items in the same work group disagree on the level of the step-

size adjustment scheme and, therefore, take different numbers of step size refinements. The

amount of thread divergence which thus occurs was quantified by Niemeyer and Sung [141]

and Stone and Davis [196] who demonstrated a significant increase in performance when

the work items in a work group operated on ODE systems which corresponded to adjacent

grid points and, therefore, featured similar initial conditions and an identical step size

adjustment path. Linford et al. [107], on the other hand, mitigated the impact of thread

divergence by moving the top level conditionals within the integration scheme (time loop,

integration step loop, error control) back onto the CPU host thread and invoking separate

CUDA kernels for vector/matrix operations and right-hand-side evaluations. Despite the

repeated memory transfers (time, step sizes) and kernel invocation overheads, this yielded

a speed up of 1.56 (double precision) relative to the single-kernel implementation for an

atmospheric chemical kinetics problem.

A second shortcoming of the one-thread approach is related to the usage of OpenCL

local memory. Since the local memory buffer accessible to a work group is shared among

a large number of work items and local memory is limited in size, only a small portion

of local memory is available for the integration of one ODE system. However, in GPU

programming it is common to store arrays whose size is & ns in local memory in order

to accelerate scattered or repeated memory accesses. For the one-thread approach, this

implies that one work group requires a local memory buffer of size lns which may be

incompatible with the maximum allocatable local memory buffer size or may impact the

167

5 A methodology for the integration of stiff chemical kinetics on GPUs

compute unit’s occupancy. Le et al. [97] discussed this issue in more detail and quantified

limits on the reaction mechanism size for the case where the array that one work item

stores in local memory is of the order of ns or larger. On the plus side, implementing

the one-thread approach does not require any change in the serial implementation of the

integration scheme or the chemical kinetics source term evaluation.

Among the existing GPU implementations of chemical kinetics integration schemes

(Table 5.1), the one-thread approach is the most common. A direct comparison with the

one-block approach has been presented by Stone and Davis [196] who considered both

an explicit 4th order Runge-Kutta-Fehlberg scheme and the implicit 5th order accurate

DVODE algorithm in the context of a 19 species/167 reactions mechanism. For both

algorithms, the one-block approach proved to be superior if the number of ODE systems n

was smaller than about 104, while the one-thread approach produced a higher maximum

speedup relative to a single thread DVODE-CPU implementation. The difference in the

maximum speedups between the one-thread and the one-block approach was significant

for the explicit integration scheme, but only marginal for the implicit one.

In view of the shortcomings of the one-thread approach, we adopted the one-block

strategy in this work. Specifically, the work group size l is related to the mechanism size

ns,

l = 32
{

floor
(ns

32

)
+ 1
}
, (5.24)

where 32 denotes the warp size on Nvidia GPUs and floor(·) returns the biggest integer

that is smaller than or equal to the argument value.

Within the scope of the one-block approach all work items within a work group jointly

operate on one ODE system and, hence, proceed through the time stepping scheme (Fig-

ures C.1 and C.2 in Appendix C.1) collectively. Here, the parallelization takes place on

the level of the innermost loops whose numbers of iterations are of the order of the work

group size. If the iterations of these loops are independent, then they are assigned to the

individual work items in a strided way. As an example, we consider the computation of

the reaction progress variables which encompasses nr independent iterations. In this case,

the first work item computes the first, the (l + 1)th, the (2l + 1)th, . . ., the (K1l + 1)th

reaction progress variables, where K1 is the biggest integer such that (K1l + 1) ≤ nr.

Similarly, the second work item computes the second, the (l + 2)th, . . ., reaction progress

variables. If the reaction progress variables are written in-order to a global memory ar-

ray, then the memory accesses are fully coalesced since all work items access consecutive

memory addresses (0, . . . , l− 1; l, . . . , 2l− 1; . . .) during a single iteration k (k = 1, . . . ,Kj

for work item j).

This fine-grained parallelism appears throughout the OpenCL kernel and, in particular,

in the following computations:

(1) Evaluation of the species’ thermodynamic properties (ns)

168

5.5 GPU parallelization strategy

(2) Evaluation of the reaction progress variables (nr)

(3) Sparse matrix-vector multiplication to compute the species production/destruction

rates, see Eq. (5.6) (row-wise parallel reduction, 2ns)

(4) LU-decompositions (L-update/pivot search, 1, . . . , ns; elimination submatrix update,

1, . . . , n2
s)

(5) Forward/backward substitutions (1, . . . , ns)

(6) Computing the density or ω̇T , see Eq. (5.7) (parallel reduction, 1, . . . , ns)

Here, the numbers in the trailing brackets indicate the number of iterations in the corre-

sponding loops.

In the current one-block implementation, thread divergence may occur on account of

work item conditionals inside a loop that is parallelized across all work items. Thus, if the

loop body (or part of it) differs for work items of the same SIMD unit (for example, the

first 32 work items on an Nvidia GPU), then the instruction unit proceeds through these

differing instruction paths sequentially. At present, this effect only arises within the loop

for the evaluation of the species production rates, where reactions may feature different

characteristics. In the context of the Chemkin library, for example, a reaction may involve

third body efficiencies (or not); its reaction rates may be pressure dependent (or not)

and the approximation scheme for the pressure dependence in the fall-off region between

the low-pressure and the high-pressure limit may differ from one reaction to another.

Sometimes, moreover, Arrhenius parameters for the reverse reaction rates are available,

while usually the reverse reaction rates are computed from the equilibrium constant. If

the reaction is irreversible, on the other hand, then its reverse reaction rate vanishes.

Since thread divergence is limited to the level of an SIMD unit, we are able to reduce

its negative performance impact by sorting the reactions according to their characteristics.

To illustrate this point, we consider the three properties of the previous paragraph (third

bodies, pressure dependence, reversibility), where each property may attain a number of

values. Formally, the three properties are labelled p1, p2 and p3, respectively, and their

values are numbered consecutively beginning at 0. If a reaction is pressure dependent

(p2 > 0), for example, the fall-off region may be approximated using the Lindemann form

(p2 = 1), the SRI form (p2 = 2) or the TROE scheme with 6 (p2 = 3) or 7 (p2 = 4)

parameters. Similarly, the characteristics of the third body and reversibility properties

are associated with p1 and p3, say p1 ∈ {0, 1} and p3 ∈ {0, 1, 2}.
As a specific example, we consider a reaction mechanism with four reactions and, based

169

5 A methodology for the integration of stiff chemical kinetics on GPUs

upon the property indexing scheme, establish a reaction property matrix

P =

rT1

rT2

rT3

rT4

=

0 3 0

1 0 0

0 3 1

0 3 2

. (5.25)

Here, each row rTi , i = 1, . . . , 4, is associated with a reaction, while the columns correspond

to the properties p1 through p3. By sorting the reaction matrix column-wise, we obtain

P̃ =

rT1

rT3

rT4

rT2

=

0 3 0

0 3 1

0 3 2

1 0 0

, x =

1

3

4

2

, (5.26)

where x denotes the permutation vector. If, in this example, the SIMD unit size was two,

then the number of divergence roots in the first SIMD unit would be reduced from two

to one, while in the second SIMD unit it would increase from one to three. In practice,

however, there exist many reactions with identical properties and we found that grouping

these together by the above sorting scheme proves beneficial, see Section 5.6.3.

5.5.3 Memory layout

During the reimplementation of Radau5 in OpenCL C we have taken care in order to

ensure that global memory accesses are coalesced. Scattered memory accesses, on the

other hand, are deferred to temporary arrays in OpenCL local memory. In this regard,

Table 5.3 summarizes the memory requirements in bytes (B) of the OpenCL kernel.

In a preliminary study, we tested storing the integration control variables (8 integers,

12 doubles) in private memory for register-speed access, but found this to induce im-

mense redundancy since each work item keeps private copies of values that all work items

share. Consequently, the control variables have been moved to local memory and are being

updated by the first work item in each work group.

Furthermore, each work group allocates two double arrays of length ns and one integer

array of length l in local memory. This local memory layout is motivated by two reasons.

First, since Radau5 requires solving a complex linear system in each Newton iteration, one

column of this linear system or the complex right hand side vector (which is being succes-

sively overwritten by the complex solution vector in the forward/backward substitution

algorithm) can be stored in local memory. Also, the two double local memory arrays are

employed during the chemical kinetics source term evaluation in order to accelerate reduc-

tion operations as well as scattered memory accesses. Such accesses occur, for instance,

when the work items read the species concentrations which appear in the law of mass

170

5.5 GPU parallelization strategy

action. The integer local memory array, on the other hand, is used to store indices into

the current column in the parallel pivot search which is part of the LU decompositions.

Second, the above choice of local memory buffers entails only moderate restrictions on

ns without inflicting upon the occupancy of a compute unit. To elaborate on this point,

we consider the properties of the Nvidia Quadro 6000 which is one of the candidate GPUs

in Section 5.6. On this device, each compute unit supplies 48 kB local memory, while

admitting at most 8 work groups with 6 · 32 work items each to a compute unit (compute

capability 2.0). If we assume that the kernel’s register requirements are such that 8 work

groups can be resident on the compute unit without violating register restrictions, then

based upon the local memory usage we employ, ns is limited above by 327. Thus, for

a reaction mechanism with more than 326 species, fewer than the maximum number of

resident work groups may be admitted to the compute unit.

A second memory limitation is due to the OpenCL constant memory space, where the

maximum size of a single buffer can be device-constrained. Currently, the implementation

allocates only one constant memory buffer of size

8 · 14 · (ns − 1) B. (5.27)

On the Nvidia Quadro 6000, this memory buffer is limited to a maximum size of 64

kB, whence Eq. (5.27) implies ns ≤ 506. Contrary to the first limitation on ns above,

this restriction is strong, that is, the buffer cannot be created if ns exceeds the limit.

In practice, however, reaction mechanisms encompassing more than 505 species appear

very rarely and, in particular, in the context of reactive flow simulations are far beyond

the largest reaction mechanisms currently employed. For a different GPU, on the other

hand, it may happen that the constant memory buffers are restricted to a smaller size

than 64 kB and that the limitation on ns is hence stricter. In this case, the constant

buffer size limitation on ns can be removed by declaring the respective constant memory

buffer as global. As shown in Section 5.6.4, this has only a marginal (if any) effect on the

performance of the OpenCL-GPU implementation.

Finally, there may be restrictions on the total size of global GPU memory that is acces-

sible to the host program15 and the maximum size of a global memory buffer. However,

since the sizes of the biggest global memory buffers which Radau5 employs for temporary

storage grow with the number of ODE systems per kernel invocation np (see Table 5.3), the

global memory limitations can be mitigated by the overlapping kernel invocation scheme

which is presented in the following section.

For the practical reaction mechanisms which we have tested as part of this work (ns ≤

15The OpenCL implementation of the Nvidia GPU Computing Toolkit 5.5 does not seem to
allow a single host thread to access all of global memory whose size can be retrieved by querying
CL DEVICE GLOBAL MEM SIZE. In order to estimate the size of the accessible portion of global
memory, we perform a binary search on the size of allocatable memory buffers modulo a memory
allocation granularity and a resolution (256 B, for example).

171

5 A methodology for the integration of stiff chemical kinetics on GPUs

Resource Requirement Nvidia Quadro 600(0)

Global memory 8B {2ns +np[2+ns(13+4ns)+nrmsp] 1024 MB

+nfomfo + ntbmtb}+ (6143 MB)

4B {2npns + nfo + ntbmtb}
Constant memory 8B {14nsp + 6nr}+ 64 kB

4B {nr(5 + 4msp) + nsp}
Local memory 8B {12 + 2ns}+ 48 kB

4B {8 + l}
Work group size l ≥ 1 ≤ 1024

Table 5.3 Resources (in bytes, B) required by the OpenCL implementation. The final column indicates the
limitations that are present when executing the kernel on two different GPUs.

118), the memory management scheme did not encounter the restrictions on constant or

local memory buffer sizes mentioned above. The very detailed Jetsurf 2.0 mechanism

(ns = 349, nr = 2163), by contrast, surpassed both the limitation on the amount of local

memory per work group (for 8 resident work groups on a compute unit) and the GPU’s

limit on the maximum number of resident warps (for l = 11 · 32 by Eq. (5.24) and 8

resident work groups). In this case, the number of resident work groups automatically

reduces such that the constraints on the total number of resident warps per compute unit

and the local memory and register limitations are obeyed. On the other hand, we could

attempt to reduce the number of warps per compute unit, reckoning that this may increase

the number of resident work groups, subject to the local memory and register constraints.

We return to this point in Section 5.6.4, where the impact of the GPU’s constraints on the

integration of huge reaction mechanisms (such as the Jetsurf 2.0 mechanism) is assessed.

5.5.4 Solving the linear systems

In an implicit integration scheme, the computational effort is mainly concentrated in the

subroutines which construct the Jacobian and solve the (dense) linear systems. Within the

scope of Radau5, the Jacobian is approximated by forward differences and, thus, involves

ns evaluations of the chemical kinetics source terms.

The dense linear systems (one real and one complex system) are solved by standard LU

decomposition with partial pivoting and subsequent forward/backward substitutions. As

mentioned in Section 5.5.2, the loops which appear herein are parallelized across the work

items in a work group. This made the introduction of synchronization points within the

parallel pivot search, after the row permutation as well as after the L-column update and

the elimination submatrix update necessary. In the course of this work, we have tested

different schemes for computing the L- and elimination submatrix updates and found the

best scheme/loop layout to be the following: The current column is stored in OpenCL local

memory and, after the pivot search and row permutation, jointly updated by the active

work items to obtain the new L-entries. Subsequently, all work items collectively update

the remaining elimination submatrix in a column-wise manner, reading the L-entry corre-

172

5.5 GPU parallelization strategy

sponding to the current row from local memory and the pivot row element corresponding

to the current column from global memory. If we examplarily consider the kth elimination

step, then the L-update corresponds to a parallel (ns − k)-loop, while the submatrix up-

date involves a parallel (ns − k)2-loop without necessitating intermediate synchronization

points. In this way, it is possible to directly map the O((ns − k)2) operations of each

submatrix update onto the GPU’s lower level of concurrency. On an Nvidia GPU, for

example, the number of instructions that are being issued sequentially during a submatrix

update then reduces by one order of magnitude to O((ns − k)2/32).

Furthermore, the left-hand-side matrices and the Jacobian are stored as one-dimen-

sional arrays in a major column format. This enables the efficient coalescence of memory

accesses since almost all of the parallel loops operating on these matrices are column-based.

The only exception, here, is the pivot row permutation for which the memory accesses are

row-based.

Finally, we point out that the above approach is at variance with the shared memory

(reduced storage pattern) scheme tested by Le et al. [97]. In the context of a one-block

approach, these authors suggested to store the pivot row and the row which is currently

being updated in CUDA shared memory. Here, the update of the first element in the

current row (encompassing columns k through n in the kth elimination step) corresponds

to the evaluation of the L-entry, while the update of the remaining entries corresponds

to updating one row of the elimination submatrix. As pointed out by the authors, the

main shortcoming of this scheme is that there are two memory transfers from global to

shared memory and vice versa for updating the jth row (j = 1, . . . , n− k) within the kth

elimination step, requiring three synchronization points inside an (n − k)-loop. Le et al.

[97] found that this shared memory-based approach is only effective for large reaction

mechanisms with & 100 species and, hence, reverted to a one-thread implementation in

which the LU decomposition only operates on global memory buffers.

5.5.5 Overlapping kernel invocation and data transfer

If the number of ODE systems which can be integrated on the GPU is limited by a device

resource (such as the available amount of global memory or the maximum allocatable buffer

size) or if the data movement between host and device consumes a considerable amount

of time, then the ODEs may be distributed across several kernel invocations. Although

Nvidia GPUs are currently restricted to a single resident kernel at a time and the kernel

invocations are therefore serialized, most professional GPUs (Nvidia Tesla and Quadro

series) encompass so-called dual copy engines which enable sending data to the GPU and

reading data from the GPU simultaneously or transferring data while a kernel executes.

Following Reference [144], this allows the design of overlapping copy-compute-copy cycles.

Schematically, such cycles are depicted in Figure 5.2. Here, one p-cycle encompasses

two t-cycles and a t-cycle corresponds to the conventional copy-compute-copy sequence.

173

5 A methodology for the integration of stiff chemical kinetics on GPUs

The top line represents the commands submitted to the first command queue, while the

bottom line indicates those submitted to the second command queue (to the same device).

Based upon the observations in Section 5.6, we outline a scheme for splitting the total

number of ODEs n into r groups of size np = n/r, r ≥ 0 (or smaller, for the last group)

each of which requires a single t-cycle. As noted above, this splitting may be triggered, for

instance, by the event that n exceeds the maximum number of ODE systems nmax whose

data can simultaneously be stored in device memory.

If we take the time for copying data from host to device memory (thd) and vice versa

(tdh) as being independent of the direction in which the data moves (host to device or

device to host), then the total runtime t can be computed from

t(r) =
[
2tdd

(n
r

)
+ tdh

(n
r

)] r
2

+

(
1 +

mod(r, 2)

2

)
thd

(n
r

)
, (5.28)

where r ≥ 1 denotes the number of t-cycles in Figure 5.2, mod(·, ·) represents the modulo-

operator and tdd and thd = tdh indicate the times for executing a kernel on a device and

for copying data to/from the device as functions of the number of ODE systems per kernel

invocation np = n/r, respectively.

Figures 5.3 through 5.5 of Section 5.6 indicate that there exists a threshold n0 that is

both device and mechanism dependent and beyond which the kernel execution time tdd

grows linearly with the number of ODE systems np. For np ≥ n0, moreover, the time for

packaging and moving data to the device either remains constant (np < nhd) or increases

linearly as well (np ≥ nhd). In the first case, we have tdd = a0(n/r), thd = bhd and, hence,

t(r) = a0n+ bhd

(
1 +

r + mod(r, 2)

2

)
, (5.29)

where a0 and bhd are positive constants.

The trailing term in Eq. (5.29) indicates that t(r+ 1) = t(r) if r is odd. Consequently,

we can restrict the consideration to even r and set r = 2s, s ≥ 1. t in Eq. (5.29) then

increases linearly with s and, hence, s ought to be chosen as small as possible but such

that np ∈ [n0,min(nhd, nmax)],

s1 ≡ s = max

(
1, ceil

(
n

2 min(nhd, nmax)

))
, (5.30)

where ceil(·) returns the smallest integer that is greater than or equal to the argument

value.

For np ≥ nhd and nmax ≥ nhd, on the other hand, we may set tdd = a0(n/r) and

thd = ahd(n/r), where a0 and ahd > 0 are constants. Introducing these approximations

174

5.5 GPU parallelization strategy

into Eq. (5.28) yields

t(r) = n

{
a0 +

ahd
2

[
1 +

2 + mod(r, 2)

r

]}
. (5.31)

If r is even, then the difference between t(r) and the time for r+ 1 t-cycles is given by

t(r)− t(r + 1) = n
ahd
2

2− r
r(r + 1)

{
= 0 if r = 2

< 0 if r = 4, 6, . . .
(5.32)

and, hence, t(r + 1) ≥ t(r). Therefore, we may again concentrate on the case where r is

even and set r = 2s, s ≥ 1. By consequence, the modulo-term in Eq. (5.31) drops out and

the total time t decreases hyperbolically with the number of p-cycles. Contrary to the first

case, this suggests that s be chosen as big as possible, yet such that np = n/(2s) ≥ nhd,

s2 ≡ s = max

(
1, ceil

(
n

2nhd

))
. (5.33)

The pseudo-code for the scheme which determines s and hence np based upon the above

developments is summarized in Appendix C.2, Figure C.3. Note that since, for r > 1 and

n ≥ min(nhd, nmax), there is no benefit from considering the smaller t-cycles or from

allowing a sequence of p-cycles to be terminated by a t-cycle, this scheme only involves

even numbers of splittings, except for the case where n is small and a single t-cycle is

taken.

Apart from the total number of ODE systems which, in the context of a fluid dynamics

analysis is given by the number of grid points/finite volume cells, the above scheme requires

that nmax and nhd be specified. Here, nmax denotes the limiting number of ODE systems

which can be integrated during a single kernel invocation on the given device and may be

computed from the maximum allocatable buffer size or the maximum remaining memory

on the device, depending on which one is smaller.

The threshold nhd, on the other hand, depends upon the amount of data to be copied

to the device as well as the memory transfer rates. Taking the overhead for submitting a

read/write command to the device as a constant t̄hd = 10−3 s, an estimate for thd in terms

of both n and the mechanism size ns can be obtained from

thd(n) = t̄hd +
ng(ns + 2)8 B

BW
, (5.34)

where BW denotes the unidirectional effective bandwidth of the PCIe bus. The numerator

in Eq. (5.34) indicates the size of a package comprising an n × (ns + 2) double matrix of

which the first ns columns contain the species mass fractions and enthalpy/temperature

and the final two columns are reserved for density and error reporting, respectively. If nhd

175

5 A methodology for the integration of stiff chemical kinetics on GPUs

Command
queue 2

Command
queue 1

Kernel 2 Kernel 2

Kernel 1

t-cycle

Time

d → hh → d

d → hh → d d → h

d → hKernel 1

p-cycle

Figure 5.2 t- and p-cycles for executing multiple kernels successively and overlapping the computation with data
transfers from the host (h) to the device (d) and vice versa [146].

is defined as thd(nhd) = 2t̄hd, then Eq. (5.34) yields, for BW = 8 GB/s,

nhd = t̄hd
BW

(ns + 2)8 B
=

3.2× 104 (GRI 1.2)

1.9× 104 (GRI 3.0)

8.8× 103 (Curran)

(5.35)

which agrees well with the measurements in Figures 5.3 through 5.5 in Section 5.6.

5.5.6 Employing a different integration scheme

The OpenCL reimplementation of Radau5 which we have developed in this work is mod-

ular in structure and encompasses a top-level function implementing the core integration

scheme as well as a collection of auxiliary functions for the evaluation of the right hand

side (species production/destruction rates and temperature source term), the real/complex

LU decompositions, the real/complex forward/backward substitutions, the error estima-

tion and parallel reductions. The one-block approach which has been introduced in Section

5.5.2 transcends through the hierarchy of function calls inside the OpenCL kernel; in par-

ticular, it entails a parallelization of the innermost loops across the work items within a

work group.

In this modular setup, the integration algorithm can be changed at a reduced effort since

many of the individual components of a complete integrator are shared among implicit

integration schemes. In particular, only the top-level integration scheme and the function

which returns the current error estimate have to be replaced, while the remaining auxiliary

functions can be kept. This is further aided by the convention that only the first work item

updates the integration control variables (Section 5.5.3), whence the top-level integration

function remains serial in part.

176

5.6 Numerical experiments

5.6 Numerical experiments

In the present section, we assess the proposed OpenCL-GPU implementation in compari-

son with a standard MPI-CPU program. In particular, considerations of relative speedup

and time complexity (problem and mechanism size) are complemented with an analysis of

the influence of the time step size and the convergence tolerances.

As test-bed for generating initial conditions which cover a wide range of compositions

and temperatures, we consider a transient equilibrium scheme for the flamelet model with

a strain rate of s = 4× 102 s−1, see Section 5.2. In this way, the results presented in the

following may be viewed as representative of a real-world reactive flow analysis.

Both the average and the minimum/maximum values of the runtime and the data

transfer time given below apply to a single time step of size ∆t = 10−6 s (except for Figures

5.9 and 5.10, where ∆t varies) and have been obtained from time measurements on the

first 10 time steps. During a reaction fractional step one ODE system is solved for each

node of a uniform spatial discretization in mixture fraction space (excluding the boundary

points z = 0, 1). For the Radau5 integration scheme, the absolute/relative convergence

tolerances for species mass fractions and temperature have been set to 10−8/10−5 and

10−5/10−5, respectively.

The OpenCL-GPU implementation is compared with a top-level MPI-parallelization

of the original Radau5 CPU implementation. Here, one MPI process is invoked for each

processing thread on the CPU (hyper-threading enabled) and the chemical kinetics ODE

systems are assigned to the MPI processes in a strided fashion. The comparison between

both implementations involves a consumer level GPU (Nvidia Quadro 600) and a high-

end GPU (Nvidia Quadro 6000) alongside a standard CPU (Intel i5-520M) and a scientific

workstation CPU (Intel Xeon E5-2687W). The MPI-CPU implementation was compiled

by the Intel Fortran compiler 14.0.0 in combination with Open MPI 1.6.5, all optimizations

enabled. With regard to the OpenCL-GPU implementation, the “-cl-fast-relaxed-math”

optimization flag was passed to the OpenCL compiler (Nvidia CUDA Toolkit 5.5). Finally,

both implementations employ double-precision for all floating point operations.

The size properties of the reaction mechanisms which we tested and the fuels for which

the time measurements have been taken are detailed in Table 5.4.

The analyses in the following sections are based upon measurements of the runtime t

of the reaction fractional step for the OpenCL-GPU and the MPI-CPU implementation

on a given device. In general, t depends upon 5 input parameters

t = t(n, ns,∆t, tol, {Y(1)
0 , . . . ,Y

(n)
0 }). (5.36)

Here, tol symbolizes the absolute/relative convergence tolerances and {Y(1)
0 , . . . ,Y

(n)
0 }

summarize the initial conditions for a collection of n ODE systems. As indicated above, we

account for a whole range of initial conditions by uniformly distributing in mixture fraction

177

5 A methodology for the integration of stiff chemical kinetics on GPUs

Name # Species # Reactions
Fall-off # Third-body

Fuel References
reactions reactions

GRI 1.2 31 175 20 27 CH4 [53, 54]

GRI 3.0 53 325 29 41 CH4 [192]

USC II 75 529 51 59 C2H4 [205]

Luche 89 680 42 47 C10H22 [110]

Curran 118 665 28 27 C3H8 [153]

Jetsurf 2.0 348 2163 387 393 CH4 [204]

Table 5.4 Size properties of the tested reaction mechanisms. Here, the second to last column lists the fuels for
which the mechanisms are applied.

space the z-values that are associated with the ODE systems inside such a collection. In

this way, the impact of stiffness on the runtime is reduced since the stiff ODE systems

whose z-values lie in the vicinity of the stoichiometric mixture fraction value z̄ are solved

concurrently with a number of less stiff ODE systems whose associated z-values are located

further away from z̄ in mixture fraction space.

In Sections 5.6.1 through 5.6.4 we first quantify the dependence of t upon the problem

size n and the mechanism size ns for a given time step size ∆t and convergence tolerances

tol. Here, the values for ∆t and tol chosen above are such that for the reaction mechanisms

in Table 5.4 all ODE systems require one integration step independent of their associated

mixture fractions. Subsequently, the influence of larger time step sizes for which the

numbers of integration steps vary across mixture fraction space is examined in Section

5.6.5. The results presented in this section also apply to the influence of the convergence

tolerances tol if the time step size ∆t is held fixed. Finally, we collect concluding remarks

in Section 5.6.6.

5.6.1 Varying the problem size

Figures 5.3 through 5.5 depict both the total runtime (including the time for assembling

and moving data to and from the GPU) and the data transfer time over the total number

of ODE systems for given reaction mechanisms. Here, the solid lines indicate the runtime

averaged over 10 global time steps, while the top and bottom boundaries of the shaded

areas show the minimum and maximum values, respectively. The broken lines, on the

other hand, correspond to the data transfer time and have been obtained as the mean, for

a single t-cycle, of the time consumed by allocating parcel memory on the CPU, assembling

data and moving the parcel from the host to the device before the kernel is invoked and

of the time for sending data back from the device to the host and distributing the results

to host variables after the kernel terminated. As above, these time measurements are

averaged over 10 consecutive global time steps.

If the total number of ODE systems n exceeds a small device-dependent threshold value

n0, then the kernel execution time increases linearly with n for the selected devices. In

Figures 5.3 through 5.5, this is indicated by the fact that the slope of the log-log-lines

178

5.6 Numerical experiments

equals 1 identically for n ≥ n0. Note that this is in contrast to the findings of Shi et al.

[190] who reported a sub-linear scaling for the GPU implementation of an explicit solver.

For n < n0, on the other hand, the computing time of the GPU implementation tends

towards a constant value as n approaches 1 from above. In view of the GPU architecture,

we can attribute this saturation effect to the following three points:

(1) Low occupancy. For a small number of ODE systems, there are only few resident

SIMD units on each compute unit such that the time intervals during which SIMD

units wait on a barrier or for memory accesses to complete cannot be completely

hidden by switching to another SIMD unit which is ready to execute, possibly from

a different work group (as there may not be one). (Since the number of SIMD units

per work group is determined by the mechanism size ns, the number of resident

SIMD units on a compute unit increases with ns for a given number of ODE systems

n. This explains why n0 in Figure 5.5 is slightly smaller than in Figures 5.3 and

5.4.)

(2) Idle compute units. If some compute units remain idle while a small number of

ODE systems are being integrated, then these compute units appear as additional

resources as n increases. Thus, the additional work does not add to the total kernel

execution time.

(3) Kernel invocation overhead.

In terms of the overall runtime, we may infer from Figures 5.3 through 5.5 that for

n & 20 the professional level devices (Intel Xeon E5-2687W and Nvidia Quadro 6000)

are more efficient than the user-end processors (Intel i5-520M and Nvidia Quadro 600)

and that for both pairs of devices the MPI-CPU reference implementation outperforms

the OpenCL-GPU implementation. For n . 20, on the other hand, the MPI-CPU solver

performs better on both the professional and the user-end CPU than its OpenCL-GPU

counterpart on either GPU.

As noted above, the dashed lines in Figures 5.3 through 5.5 indicate the average time

for packing/unpacking and moving the grid point dependent data to/from the GPU before

and after the kernel executes. Qualitatively, these graphs are very similar to those for the

total runtime: Below a threshold nhd, the time for packaging and moving data is governed

by the overhead that is associated with issuing a read/write command to the GPU, while,

for n ≥ nhd, the time for data packaging and movement is limited by the bandwidth of the

PCIe bus. Indeed, if the data communication time were plotted over nns, the dashed lines

in Figures 5.3 through 5.5 would coincide for each device and the slope of the linear part

of the graphs would correspond to the PCIe bandwidth. In Section 5.5.5, this relation was

used to estimate nhd (Eq. (5.35)).

By comparing the solid and dashed lines in Figures 5.3 through 5.5, it can be seen that

for n ≥ nhd the computing time exceeds the time for packaging/moving data by about

179

5 A methodology for the integration of stiff chemical kinetics on GPUs

10
1

10
2

10
3

10
4

10
5

10
6

10
−3

10
−2

10
−1

10
0

10
1

10
2

GRI 1.2, ∆t = 10
−6

 s

Number of ODE systems [−]

R
u

n
ti
m

e
 [

s
]

←

Nvidia Quadro 600

Intel i5−520M (4)

Nvidia Quadro 6000

Intel Xeon E5−2687W (16)

10
−4

10
−3

10
−2

10
−1

10
0

10
1

→

T
im

e
 (

p
a

c
k
a

g
in

g
/m

o
v
in

g
 d

a
ta

)
[s

]

Figure 5.3 Comparing the runtime (measured on the host CPU) of the MPI-CPU and the OpenCL-GPU imple-
mentation for the GRI 1.2 mechanism and an increasing number of ODE systems. The bottom graphs, furthermore,
depict the time consumed by packaging and transferring data between the host and the device in the case of the
GPU implementation. The solid or dashed lines represent mean values, while the shaded areas indicate maxi-
mum/minimum values from a sample of 10 consecutive time steps.

three orders of magnitude for the selected reaction mechanisms. This suggests that there

is only little practical benefit in scheduling the kernel invocations and memory transfers

in the form of p-cycles as opposed to serially executing a t-cycle for each group of ODE

systems.

5.6.2 Speedup compared to an MPI-CPU implementation

Complementary to Figures 5.3 through 5.5, Figure 5.6 depicts the relative speedup of the

OpenCL-GPU implementation as compared to the MPI-CPU implementation for selected

reaction mechanisms. Here, the high-end GPU performs at best 1.8 times slower than the

workstation CPU (16 threads), while the consumer level GPU is at best 5.5 times slower

than its CPU counterpart (4 threads). As above, this comparison is processor-based. (By

contrast, the speedups reported in References [21, 97, 140, 190, 191, 195, 196] have been

computed with respect to a serial CPU implementation.)

Moreover, Figure 5.6 indicates that the runtime of the OpenCL-GPU implementation

relative to the MPI-CPU reference implementation is largely (although not completely)

independent of the reaction mechanism size on the high-end devices. Here, the relative

runtime varies between 1.8 for the GRI 1.2 reaction mechanism and 2.1 for the Curran

mechanism. For the user-end devices, on the other hand, these values show a much

larger spread, ranging from 8.2 for the GRI 1.2 reaction mechanism to 5.4 for the Curran

mechanism. Also, we observe that the relative OpenCL-GPU/MPI-CPU performance on

the user-end devices improves as the reaction mechanism size is increased, while the reverse

180

5.6 Numerical experiments

10
1

10
2

10
3

10
4

10
5

10
6

10
−3

10
−2

10
−1

10
0

10
1

10
2

GRI 3.0, ∆t = 10
−6

 s

Number of ODE systems [−]

R
u

n
ti
m

e
 [

s
]

←

Nvidia Quadro 600

Intel i5−520M (4)

Nvidia Quadro 6000

Intel Xeon E5−2687W (16)

10
−4

10
−3

10
−2

10
−1

10
0

10
1

→

T
im

e
 (

p
a

c
k
a

g
in

g
/m

o
v
in

g
 d

a
ta

)
[s

]

Figure 5.4 Comparing the runtime of the MPI-CPU and the OpenCL-GPU implementation for the GRI 3.0
mechanism and an increasing number of ODE systems. (Also see Figure 5.3.)

is true for the professional level devices. This may be compared with the results presented

by Niemeyer and Sung [141] and Shi et al. [190] (also, see Table 5.1, rows 3 − 5 and

7− 8) which suggest that the relative performance of explicit one-thread GPU integrators

increase with growing reaction mechanism sizes.

Finally, we infer from Figure 5.6 that the OpenCL-GPU implementation attains its limit

speedup at a small problem size of ≈ 500 ODE systems. This is in line with the conclusions

of Stone and Davis [196] and constitutes a major advantage over existing explicit/implicit

one-thread GPU implementations which have been reported to reach their limit speedups

at large problem sizes on the order of 105 ODE systems.

5.6.3 A performance measure

Since the computing time varies linearly with the number of ODE systems n beyond a

small threshold n0, the t-n-dependence can be collapsed into a single number: the slope of

the linear curves in Figures 5.3 through 5.5 measured in a linear-linear plot. By inverting

this slope, we obtain ṅ, the number of ODE systems which the implementation on a device

can solve per unit of time for a given reaction mechanism, a given time step size and fixed

convergence tolerances. For the GRI 1.2, GRI 3.0 and Curran mechanisms, these data

are summarized in Table 5.5. From a cost-effectiveness perspective, moreover, the bottom

part of Table 5.5 shows the number of ODE systems per time unit normalized by the

investment cost of the respective device. Here, the user-end CPU promises the highest

performance per investment, while in terms of time only the MPI-CPU implementation

on the workstation CPU is the most efficient.

181

5 A methodology for the integration of stiff chemical kinetics on GPUs

10
1

10
2

10
3

10
4

10
5

10
6

10
−2

10
−1

10
0

10
1

10
2

10
3

Curran, ∆t = 10
−6

 s

Number of ODE systems [−]

R
u

n
ti
m

e
 [

s
]

←

Nvidia Quadro 600

Intel i5−520M (4)

Nvidia Quadro 6000

Intel Xeon E5−2687W (16)

10
−4

10
−3

10
−2

10
−1

10
0

10
1

→

T
im

e
 (

p
a

c
k
a

g
in

g
/m

o
v
in

g
 d

a
ta

)
[s

]

Figure 5.5 Comparing the runtime of the MPI-CPU and the OpenCL-GPU implementation for the Curran mech-
anism and an increasing number of ODE systems. (Also see Figure 5.3.)

If the sorting procedure we described in Section 5.4.2 is omitted, then the numbers of

ODE systems per time unit in Table 5.5 drop by 10.2 % (GRI 1.2), 7.5 % (GRI 3.0) and

5.4 % (Curran), respectively, for the Nvidia Quadro 6000. These reductions suggest that

the performance penalty due to thread divergence subsides inverse proportionally as the

number of warps increases.

5.6.4 Varying the mechanism size

Figure 5.7 depicts the total runtime (including both the kernel execution time and the

time for packaging/moving data to the device and back) over the mechanism size ns for

a given number of ODE systems. As above, the data lines represent the average elapsed

time of a single reaction fractional step computed from 10 consecutive time steps and

the top and bottom boundaries of the shaded areas indicate the minimum and maximum

times, respectively. Here, the slopes of the graphs are approximately equal to 2.0 such

that the computational cost grows quadratically as the reaction mechanism size increases.

While, at first sight, this result seems to be at odds with the time complexity O(n3
s/3)

of the LU decomposition, we may take it as an indication for the dominance of the for-

ward/backward substitution algorithm which scales as O(n2
s/2). Indeed, the Jacobian and

its LU decomposition are not recomputed during a single Newton-type integration step

unless the scheme tends to diverge.

Figure 5.8, on the other hand, shows how the number of ODE systems which can be

integrated on a given device per time unit varies as the reaction mechanism size increases.

For moderately sized reaction mechanisms (ns . 200), the results depicted here suggest

182

5.6 Numerical experiments

Number of ODE systems [−]

R
e
la

ti
v
e
 r

u
n
ti
m

e
 [
s
]

∆t = 10
−6

 s

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

Intel i5−520M (4) / Nvidia Quadro 600

Intel Xeon E5−2687W (16) / Nvidia Quadro 6000

Figure 5.6 Total runtime of the OpenCL-GPU implementation on an Nvidia Quadro 600 and Nvidia Quadro 6000
relative to the reference runtime on an Intel i5-520M and an Intel Xeon E5-2687W processor, respectively, over the
number of ODE systems. The solid lines indicate the results for the GRI 1.2 mechanism, the dashed lines those for
the GRI 3.0 mechanism and the dash-dotted lines show the relative runtime for the Curran mechanism.

that the number of ODE systems per time unit decreases as 1/n2
s. This is indicated by

the dotted regression lines in Figure 5.8. Also, the result ṅ ∼ 1/n2
s for ns . 200 is

commensurate with the relation t ∼ n2
s of Figure 5.7.

The far right hand side of Figure 5.8 includes data points for the Jetsurf 2.0 mecha-

nism which encompasses 348 species and 2163 reactions. Although this mechanism is very

detailed and may hence be computationally not feasible for practical reactive flow simu-

lations, we include it here in order to assess the effects of local memory limitations and

device-related constraints. In this respect, Figure 5.8 depicts a shaded threshold interval

above which the occupancy of the Nvidia Quadro 600(0) significantly decreases on account

of the resources that a single work group allocates. Here, the left interval boundary indi-

cates the value for ns at which the work group size times the maximum number of resident

work groups reaches the total number of work items that can simultaneously reside on a

compute unit. On the Nvidia Quadro 600(0), a compute unit can accommodate at most

48 · 32 work items being distributed across ≤ 8 work groups. In combination with Eq.

(5.24), this leads to a threshold above which the work groups encompass so many work

items that less than 8 work groups are admitted to the compute unit. The right boundary

of the shaded interval, on the other hand, indicates the reaction mechanism size above

which less than 8 work groups are admitted to a compute unit on account of OpenCL

local memory restrictions. Here, Eq. (5.24) has been replaced by a constant work group

size of 6 · 32 such that within the shaded interval 8 work groups may reside on a compute

183

5 A methodology for the integration of stiff chemical kinetics on GPUs

Intel i5- Nvidia Intel Nvidia
520M Quadro Xeon E5- Quadro

600 2687W 6000

Price £222 £170 £2681 ≈ £3600

#
O

D
E

sy
s-

te
m

s
/
s

GRI 1.2 2032 249 11 683 6538

GRI 3.0 743 113 4334 2344

Curran 152 28 902 439
#

O
D

E
sy

s-
te

m
s

/
s
−

£ GRI 1.2 9.15 1.46 4.36 1.82

GRI 3.0 3.35 0.67 1.62 0.65

Curran 0.68 0.17 0.34 0.12

Table 5.5 Numbers of ODE systems per second of runtime and Pound Sterling invested into the device for selected
reaction mechanisms (∆t = 10−6).

unit.

This last point is closely related to the question of whether, for large reaction mecha-

nisms, it is more efficient to increase the number of work items per work group according

to Eq. (5.24) and let the number of resident work groups decrease or to limit the work

group size so as to retain as many resident work groups as possible. For the Jetsurf 2.0

mechanism, we have tested both options and found that the second option leads to an

increase in the number of ODE systems per time unit by 42.1% and 50.0% for the Nvidia

Quadro 6000 and Quadro 600, respectively, as compared to the first policy. In Figure 5.8,

the measurement point for the second option is shown.

In order to quantify the change in performance for large reaction mechanisms, the ṅ

value that is predicted by extrapolating the dotted regression line for the medium sized

reaction mechanisms to ns = 349 for the Jetsurf 2.0 mechanism can be compared with

the measured values. For the second option above (6 · 32 work items per work group), the

measured number of Jetsurf 2.0 ODE systems that are being solved on the Nvidia Quadro

600 and Quadro 6000 per second are 25.0% and 37.0% smaller than the extrapolated

values, respectively. This may be taken as an indication for the estimate that, beyond the

shaded interval, the efficiency of the GPU integrator decreases by about one third.

The MPI-CPU implementation suffers from a similar deterioration in performance.

Here, the measured ṅ values for the Jetsurf 2.0 mechanism deviate from the extrapolated

values by 27.7% and 27.2% on the Intel Xeon i5-520M and Intel E5-2687W CPUs, respec-

tively. Thus, both implementations degrade significantly in efficiency when the Jetsurf 2.0

mechanism is applied in place of a medium sized reaction mechanism. In our opinion, this

indicates that the reduction in occupancy of the GPU is paralleled by a counterpart-effect

of resource limitations on the CPU. Although the deterioration in performance may be

attributed entirely to these device-related constraints, we believe that, at least in part, it

is also due to the O(n3
s/3) complexity of the LU-decomposition which may only take effect

184

5.6 Numerical experiments

20 40 60 80 100 120 160 200
10

−1

10
0

10
1

10
2

2048 ODE systems, ∆t = 10
−6

 s

Reaction mechanism size [−]

R
u

n
ti
m

e
 [

s
]

Nvidia Quadro 600

Intel i5−520M (4)

Nvidia Quadro 6000

Intel Xeon E5−2687W (16)

Figure 5.7 Comparing the runtime of the MPI-CPU and the OpenCL-GPU implementation for 2048 ODE systems
and different reaction mechanism sizes (ns).

for such large reaction mechanism sizes as ns ≈ 350.

The above analysis on occupancy does not take into account, however, that for a

given work group size the number of resident work groups is constrained by the register

availability. On a compute unit, registers are allocated by work groups and the number of

registers which a work group requires is determined from the number of registers per work

item, the work group size and the register allocation granularity. Here, the number of

registers allocated by a work item of a particular kernel function is difficult to determine,

in practice, unless a profiling software is available. Nevertheless we can assess the influence

of the register limitation in a qualitative sense since, for a given work group size and a

number of registers per thread, the register count constraint yields an upper limit on the

number of resident work groups. In the above, this upper limit can be used to replace

the 8 maximally resident work groups. As a result, the boundaries of the shaded interval

slightly shift to the left, possibly by unequal amounts. Therefore, the limits in Figure 5.8

are rather approximative and subject to a left-shift which is smaller for a larger number

of available registers.

Furthermore, we investigated the effect of declaring all OpenCL constant memory

buffers as global. This might be necessary for GPUs which supply only a very limited

amount of constant memory such that the constant memory buffer which the OpenCL im-

plementation allocates would exceed the admissible size. For the user-end Nvidia Quadro

600, we found this redeclaration not to have any effect on the number of ODE systems that

were solved per unit time, while, on the Nvidia Quadro 6000, ṅ decreased very slightly

(by less than 1%) for all reaction mechanisms.

185

5 A methodology for the integration of stiff chemical kinetics on GPUs

(6
 w

a
rp

s
/w

o
rk

 g
ro

u
p

)

Reaction mechanism size [−]

N
u

m
b

e
r

o
f

O
D

E
 s

y
s
te

m
s
 /

 t
im

e
 [

1
/s

]

∆t = 10
−6

 s

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

Nvidia Quadro 600

Intel i5−520M (4)

Nvidia Quadro 6000

Intel Xeon E5−2687W (16)

 L
o

c
a

l
m

e
m

o
ry

 l
im

it

 8
 w

o
rk

 g
ro

u
p

s
 ×

 6
 w

a
rp

s
,

E
q

.
(5

.2
4

)

Figure 5.8 Number of ODE systems that are integrated on different devices per unit of time over the reaction
mechanism size (ns). Here, the dotted lines indicate linear regression approximations for ns . 200. Further-
more, the shaded area indicates an estimate for the ns interval above which the performance of the OpenCL-GPU
implementation severely degrades on account of resource limitations.

5.6.5 Varying the time step size

Both the global time step size ∆t and the absolute/relative convergence tolerances have a

similar, albeit converse impact on the total runtime: If ∆t is increased or the convergence

tolerances are decreased, then the number of step size refinements (that is, the number of

integration steps per global time step) increases for those ODE systems whose associated

z-values are close to the stoichiometric value z̄, while the number of integration steps

remains small for those ODE systems which are far away from z̄ in mixture fraction space.

Thus, the number of integration steps is more inhomogeneously distributed in mixture

fraction space and dynamic load balancing by the work group scheduler may not be able

to hide the very stiff systems entirely. In order to quantify the stiffness inhomogeneity

across mixture fraction space, we consider the ratio of the maximum number of integration

steps which an ODE system requires per global time step and the minimum such number.

In Figures 5.9 and 5.10, this ratio (solid lines) is depicted along with the number of GRI

3.0 ODE systems which are solved on a given device per time unit (bars) for an increasing

time step size. Here, the values for the stiffness inhomogeneity have been computed as

averages across a number of problem sizes ranging from n = 22 to 217. In both Figures,

the numbers on top of two adjacent bars compare the height of the left bar with that

of the right one; they thus indicate the speedup of the MPI-CPU as compared to the

OpenCL-GPU implementation. The results suggest that this speedup is invariant for the

professional level devices, while, for the user-end devices, it shifts slightly towards the

186

5.6 Numerical experiments

1 2 4 8 16 32 64 128
0

100

200

300

400

500

600

700

800

900

1000

6.6

7.0

7.1

7.8

7.2
7.7

7.3 8.0

GRI 3.0

Time step [10
−6

 s]

N
u
m

b
e
r

o
f
O

D
E

 s
y
s
te

m
s
 /
 t
im

e
 [
1
/s

]

Intel i5−520M (4)

Nvidia Quadro 600

0

100

200

300

400

500

600

700

800

900

1000

→

S
ti
ff
n
e
s
s
 i
n
h
o
m

o
g
e
n
e
it
y
 [
−

]

Figure 5.9 Number of ODE systems which can be solved per second on a user-end device (bars) and stiffness
inhomogeneity (solid line) for different time step sizes. The numbers on top of two adjacent bars indicate the ratio
of the bars’ heights and correspond to the speedups of the baseline MPI-CPU implementation as compared to the
OpenCL-GPU implementation for a number of ODE systems n ≥ n0.

CPU as the global time step size and, hence, the stiffness inhomogeneity increase.

5.6.6 Concluding remarks

In view of the benchmark Table 5.1, it may appear that the implementation which we

developed in this work competes with the DVODE reimplementation by Stone and Davis

[196] and, in this comparison, falls short. However, both implementations pursued differ-

ent objectives: While we aimed at an implementation that is general by nature, allowing

for the user to specify any Chemkin-format reaction mechanism, Stone and Davis [196]

concentrated on a 19-species ethylene reaction mechanism and optimized their implemen-

tation accordingly. In particular, the authors were able to store, for each ODE system or

thread block, the LU factors of the Newton iteration matrix, its pivot array, the current

right-hand-side vector and temporary arrays in CUDA shared memory without inflicting

upon the number of resident thread blocks. We believe that this strategy accounts for the

main performance difference in comparison with the present OpenCL implementation in

which local memory usage is restricted to two double ns-arrays and one integer l-array

(plus 128 B of control variables) per work group. Since the reaction mechanism data in

Reference [196] is small, moreover, it may completely fit into the GPU’s constant memory

cache, allowing register-speed access.

At the same time, we can rule out that the performance difference is incurred by using

the OpenCL API as opposed to the CUDA API (which has been employed by all references

in Table 5.1), see Fang et al. [47].

Further to the local memory layout detailed in Section 5.5.3, we have tested comple-

187

5 A methodology for the integration of stiff chemical kinetics on GPUs

1 2 4 8 16 32 64 128
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1.9

1.9

2.0

1.7

1.9
2.0

2.0 1.8

GRI 3.0

Time step [10
−6

 s]

N
u
m

b
e
r

o
f
O

D
E

 s
y
s
te

m
s
 /
 t
im

e
 [
1
/s

]

Intel Xeon E5−2687W (16)

Nvidia Quadro 6000

0

100

200

300

400

500

600

700

800

900

1000

→

S
ti
ff
n
e
s
s
 i
n
h
o
m

o
g
e
n
e
it
y
 [
−

]

Figure 5.10 Number of ODE systems which can be solved per second on a professional level device (bars) and
stiffness inhomogeneity (solid line) for different time step sizes. (Also see Figure 5.9.)

menting the two ns-arrays by a third one. This proves advantageous in that both the real

and the complex LU decompositions and forward/backward substitutions, respectively,

may be merged into single subroutines, where either share the loop control schemes as

well as the synchronization points. In addition, a third ns-array can be incorporated into

the source term evaluation subroutine in order to reduce the number of global memory

accesses. For the reaction mechanisms in Table 5.4, the three ns-local memory arrays

implementation on an Nvidia Quadro 6000 GPU achieved a maximum speedup of 4.9 and

0.56 over a single and 16 thread CPU implementation, respectively. This slight increase in

performance, however, trades against a stricter limit on the number of species (nsp ≤ 213,

neglecting register limitations) which can be accommodated before occupancy reduces.

This emphasizes that the implementation seeks a compromise between mechanism restric-

tions and performance through the way in which it manages the GPU resources.

Finally, we believe that the performance of the present implementation may benefit

from an analytical subroutine for computing the source term Jacobian. In this way, the

total number of global and constant memory accesses within the Jacobian computation

may reduce considerably since the reaction mechanism data would only have to be read

a few times. On the part of the CPU implementation, this might not have as large an

impact since, for the finite difference approximation, the CPU already benefits from its

large caches through which the mechanism data are being kept readily available.

On the minus side, the latter approach is hardly realizable if a reduced chemistry scheme

replaces the current source term evaluation scheme. For this reason we have abstained

from exploring it.

188

5.7 Chapter summary

5.7 Chapter summary

Based upon the 5th order implicit integration scheme Radau5 [67], we have developed

a novel OpenCL implementation for solving the reaction fractional step on a GPU.16

The implementation follows the one-block approach advocated by Stone and Davis [196]

and attains its limit speedup at a small problem size of ≈ 500 ODE systems. Also, the

constant and local memory buffer layout is such that the implementation can accommodate

Chemkin-format reaction mechanisms with . 200 species without encountering resource

limitations.

In view of the architecture of a GPU, the implementation exploits GPU-specific utilities:

Scattered or repeated array accesses are deferred to temporary arrays in OpenCL local

memory; the number of registers per work item is reduced by storing the integration control

variables in local memory; and (with a single exception) all global memory accesses are

coalesced.

For large problems, moreover, the ODE systems are distributed across several kernel

invocations which overlap with data transfers from the host CPU to the GPU and back.

For this scheme, we developed a first model on the total runtime t and, based upon an

analysis of the model, derived a strategy for determining the number of ODE systems per

kernel invocation which minimizes t.

Finally, thread divergence within the source term evaluation subroutine is mitigated by

sorting the reactions for properties on which they disagree. This yielded a performance

benefit of up to 10.2 % for the Nvidia Quadro 6000 and the GRI 1.2 mechanism.

A thorough performance analysis was based upon runtime measurements of the re-

action fractional step within a transient equilibrium scheme for the flamelet model. As

reference implementation for a comparison we considered a top-level MPI-parallelization

of the original Fortran 77 subroutine Radau5 by Hairer and Wanner [67]. Here, a range

of initial conditions was accounted for by distributing the ODE systems uniformly in mix-

ture fraction space. The analyses included performance assessments for varying problem

sizes, reaction mechanisms, time steps and convergence tolerances. The latter two were

demonstrated to exert a strong influence upon the homogeneity of the distribution of the

number of step size refinements in mixture fraction space. In particular, we found that in

the case of the user-end devices the performance ratio slightly shifts towards the CPU for

increasing time step sizes or decreasing convergence tolerances.

Furthermore, the numerical tests demonstrated that the performance of the OpenCL-

GPU implementation relative to the MPI-CPU reference implementation on high-end

devices is largely independent of the reaction mechanism size. This is at variance with

explicit GPU integrators based on the one-thread approach for which the performance on

comparable devices depends upon the mechanism size [140, 190].

16If you wish to obtain the current OpenCL-GPU implementation, then please email us.

189

5 A methodology for the integration of stiff chemical kinetics on GPUs

However, in comparison with the baseline MPI-CPU implementation we conclude that

the present implementation falls short. For a comparison on a per-processor level, the

OpenCL-GPU implementation performs at best 1.8 (professional level) and 5.5 (user-end)

times slower than its MPI-CPU counterpart. If we compare the performance of the GPU

against a single CPU thread, on the other hand, a maximum speedup of 4.8 can be

demonstrated for the professional level devices. This result is in contrast to the speedup

of 7.3 reported by Stone and Davis [196] for a CUDA DVODE reimplementation which

has been specialized to a 19 species reaction mechanism. The mismatch between both

implementations demonstrates the potential performance improvement for small reaction

mechanisms at the sacrifice of general applicability.

Although the OpenCL-GPU implementation is thus outperformed by its MPI-CPU

counterpart, both implementations may operate concurrently. In this regard, the ODE

systems can be distributed across the CPU and the GPU such that the runtimes on both

processors match. This idea is explored further in Chapter 6.

Finally, we point out that recent generations of Intel processors include a GPU on the

same die as the CPU. Here, both the CPU and the accompanying GPU access the same

main memory. This renders OpenCL’s capability for mapping data arrays allocated in the

host CPU’s main memory onto OpenCL buffers very efficient [82]. Thus, the combined

CPU-GPU architecture is able to mitigate the time consumed by host to device and

device to host memory transfers via the PCIe bus which a standard CPU/external GPU

pair requires. The line of development which these processor types outline favours a close

cooperation between the CPU and the GPU in modern personal computers and, hence,

corroborates both the importance and the potential of GPU acceleration.

190

Chapter 6

Chemical kinetics integration on a

CPU-GPU pair

6.1 Introduction

In the previous chapter, we presented a GPU reimplementation of the high order implicit

integration scheme Radau5, but found that, in a comparison on a per-processor basis,

solving a representative reaction fractional step on the GPU is significantly slower than

a conventional MPI parallelization of Radau5 on a CPU. However, since most desktop

computer systems possess both a CPU and a GPU, there may be some benefit in combining

the CPU and GPU implementations and parallelizing the reaction fractional step across

both devices.

In the present chapter, we thus device such a combined CPU/GPU implementation

for solving the reaction fractional step and quantitatively assess the gain in performance.

The parallelization strategies which we explore involve an on-the-fly determination of the

relative CPU/GPU performance and automatically balance the work loads such that idle

times on either processor are mitigated. Furthermore, the implementation is modularized

and can readily be incorporated into an established reactive flow solver. As a realistic

test case, we consider the Sandia D flame and compare the performance of the combined

CPU/GPU implementation with that of one GPU-only and two CPU-only implementa-

tions in order to identify the most profitable parallelization strategy.

This chapter is organized as follows: In Section 6.2 we briefly review the formulation of

the reaction fractional step, before different strategies for parallelizing the reaction frac-

tional step across a CPU-GPU pair are analyzed in Section 6.3. Subsequently, in Section

6.4, the performance of the CPU/GPU implementation is quantitatively assessed in terms

of time measurements of the reaction step in an LES of the Sandia D flame and compared

with both CPU and GPU-only implementations. Our findings and recommendations re-

garding the most profitable strategy are summarized in Section 6.5.

191

6 Chemical kinetics integration on a CPU-GPU pair

6.2 Reaction fractional step

Numerical solution schemes for reacting flows frequently involve an operator splitting

technique which allows treating diffusion, convection and reaction phenomena sequentially.

Typically most of the computational effort is concentrated in the reaction fractional step

which involves solving one ODE system for each spatial grid point xi, i = 1, . . . , n,

dY(xi, t)

dt
=
ω̇

ρ
(Y(xi, t)), Y(xi, t0) = Y

(i)
0 , t ∈ [t0, tE]. (6.1)

Here, Y = (Y1, . . . , Ynsp , T)T denotes the vector of reactive scalars, Yj are the species mass

fractions, T represents temperature and ρ is the mixture density. The first nsp entries of

the source term vector on the right hand side of Eq. (6.1) represent the species conversion

rates, while the final entry corresponds to the calorific temperature source term. For more

details on the complete chemical kinetics model which is employed in this work, we refer

to the comprehensive Chemkin manual [89].

The reaction fractional step in Eq. (6.1) is sometimes referred to as an ‘embarrassingly

parallel’ problem since the individual ODE systems can be solved independently of each

other. This partly justifies the application of the operator splitting technique which for-

mally introduces an error proportional to the fractional time step ∆t = tE − t0. A second

merit of the fractional step formulation is that different solution techniques can be applied

during each fractional step and, hence, the solution algorithms are tailored to meet the

characteristics of the fractional step submodels.

In the context of RANS/LES schemes, the global time step ∆t is commonly chosen

according to a CFL condition which links ∆t to a characteristics convection time scale

of the mean or filtered flow field. Chemical reactions, however, often take place on time

scales which are much smaller than ∆t, thus introducing stiffness into the ODE systems

in Eq. (6.1). In such circumstances, implicit integration schemes are preferred due to

their stability properties. The order of the integration scheme, on the other hand, is

mainly determined by the required accuracy. In engineering applications for reactive

flows, schemes up to order 5 are commonly used.

In the present investigation, we combine an MPI parallelization of the original Radau5

CPU implementation by Hairer and Wanner [67] with the GPU reimplementation pre-

sented in Chapter 5. Here, the CPU constitutes the host for the block-structured fluid

dynamics software and each MPI process is assigned one block of the spatially decomposed

flow domain. During the reaction fractional step, each MPI process first determines the

flammable cells in its subdomain based on a temperature criterion (e.g., T > Tr = 800 K).

As standard CPU implementation we consider a program in which each MPI process solves

the chemical kinetics ODE systems which are associated with the flammable cells in its

own subdomain. Since this may lead to an imbalance in the number of ODE systems solved

by each MPI process if the reacting parts of the flame do not occupy equal volumes in each

192

6.3 Distribution strategies

MPI process’ subdomain, we consider different runtime-efficient strategies for distributing

a number of ODE systems across the MPI processes in the following section.

6.3 Distribution strategies

The main questions which we encounter in the context of parallelizing the reaction frac-

tional step across a CPU-GPU pair are, first, how many ODE systems ought to be as-

signed to either processor and, second, in which way the CPU’s ODE systems should be

distributed across its MPI processes. These questions are related to the task of load bal-

ancing, that is, the distribution of work across a number of workers such that the time

span between the point in time at which the quickest worker finishes and the one at which

the slowest worker finishes is minimized.

In the present section, such load balancing strategies are devised based on estimates

for the amount of work associated with each ODE system. In a first approach, we assume

that all ODE systems require the same amount of work. This is the basis for the strategies

proposed in the next section. Subsequently, the developed approaches are generalized to

the case, where each ODE system may involve a different amount of work and this amount

of work can be reliably estimated.

6.3.1 ODE systems which behave similarly stiff

In general, the degree of stiffness of a chemical kinetics ODE system is difficult to predict

a priori and to quantify in absolute terms. However, a posteriori, the number of step

size refinements which an integration scheme required to solve an ODE system can be

employed to construct a relative measure for stiffness. That is, by comparing the numbers

of step size refinements for two ODE systems, one ODE system is said to behave stiffer

than the other one if it required more step size refinements.

Although, step size refinements thus provide an accessible, relative measure for evalu-

ating stiffness after the integration completed, its quality as an indicator for the amount

of work required by an integration scheme varies from integration scheme to integration

scheme. In particular, in an implicit integration algorithm, not all integration steps are

identical since some involve a reevaluation of the Jacobian or of the left-hand-side matri-

ces of the linear systems while other integration steps skip these tasks. Nevertheless, such

tasks often reappear periodically and, thus, the amount of work increases monotonically

with the number of step size refinements.

The developments in this section are based on the assumption that all ODE systems be-

have similarly stiff and, hence, require the same number of step size refinements. Although

this assumption may not always hold, in particular for practical applications, it signifi-

cantly facilitates the design and analysis of load balancing schemes. In the subsequent

section, a mapping is introduced which generalizes the strategies developed here to the

193

6 Chemical kinetics integration on a CPU-GPU pair

case in which ODE systems are expected to take varying numbers of step size refinements.

Ideally, the ODE systems are distributed across both the CPU and the GPU such that

the runtimes on both processors balance and the resources on each processor are fully

utilized. Thus, for a given number of ODE systems N , the task consists in determining

n ≤ N ODE systems which are to be solved on the CPU such that

|tgpu(N − n)− tcpu(n)|2 = Min!
n
, (6.2)

where tgpu(N − n) and tcpu(n) denote the times consumed by integrating N − n ODE

systems on the GPU and n ODE systems on the CPU, respectively.

In Eq. (6.2), both tgpu and tcpu need to be estimated. For the runtime on the GPU, we

found in Sections 5.5.5 and 5.6.1 that tgpu is well approximated by the following functional

form

tgpu(n) =

{
bgpu for n ∈ [0, n0)

agpun else
(6.3)

if all ODE systems require the same number of step size refinements. In Eq. (6.3), bgpu

and agpu are two positive constants which represent the times that it takes to integrate

one out of n ODE systems on the GPU for n < n0 and n ≥ n0, respectively. For the

OpenCL-GPU implementation, the threshold value n0 slightly decreases as the reaction

mechanism size is increased.

In practice, agpu can be determined from past runtime measurements of the GPU

integrator on a collection of n ODE systems. Although, for n ≥ n0 one time measurement

would be sufficient, we found that collecting up to 10 past time measurements with n ≥ n0

and computing agpu by a linear regression yields a more accurate and less fluctuating

estimate for agpu. If at start up an estimate for n0 is not available, then the implementation

might have to wait until the slope predicted by a linear regression in log(tgpu)-log(n)-space

of the two past sample measurements (or more) with the biggest n-values is sufficiently

close to 1. On the other hand, if this slope is small, then n0 can be updated for the

smallest n-value of the stored tgpu-n-pairs. Based on estimates for agpu and n0, bgpu is

finally computed from agpun0.

On the GPU, the ODE systems are assigned automatically to the individual compute

units. For a collection in which each ODE system takes the same number of step size

refinements, this yields a well-balanced utilization of the compute units such that Eq.

(6.3) holds. In the case of the CPU, on the other hand, the ODE systems are manually

distributed across the MPI processes. Hence, the runtime on the CPU, tcpu, is equal to

the runtime of the MPI process which has been assigned the most ODE systems

tcpu(n) = max
i=1,...,np

tmpi(ni) = ampi max
i=1,...,np

ni, (6.4)

where ni indicates the number of ODE systems assigned to MPI process i, n =
∑np

i=1 ni

194

6.3 Distribution strategies

and np denotes the number of MPI processes. In Eq. (6.4), tmpi has been taken as a

linear function of ni with slope ampi > 0. This follows from the premise that the work

associated with each ODE system is identical and the fact that, on an MPI process, the

computation is serialized. Similar to the case of the GPU, ampi can be determined from

runtime measurements.

In order to close Eqs. (6.2), (6.3) and (6.4), the values for ni, i = 1, . . . , np, in Eq. (6.4)

need to be expressed in terms of n. This is tantamount to specifying a strategy in which

the n ODE systems which have been assigned to the CPU are distributed across the MPI

processes. The strategy which is ideal in terms of load balancing in the present context is

to distribute the ODE systems uniformly by setting

ni = floor

(
n

np

)
+

{
1 if mod (n, np) ≤ i
0 else

, (6.5)

where mod (·, ·) denotes the modulo-operator and floor(·) returns the biggest integer

that is smaller than or equal to the argument value. However, in practice, this might not

to be the best strategy since it potentially involves significant communication between the

MPI processes on account of the redistribution. At the end of this section, an alternative

strategy is proposed which requires less communication, but also attempts to balance the

number of ODE systems that are integrated on each MPI process. Although the ni(n)

relationship for this second strategy is recursive and not straightforward to explicate, Eq.

(6.5) provides a good estimate for n . N/2. Hence, in this case, Eq. (6.5) can be adopted

for both strategies. In the combined CPU/GPU implementation, however, the values for

maxi=1,...,np ni(n) are computed exactly and the minimization problem for strategy 2 (Eq.

(6.2)) is solved numerically.

By combining Eqs. (6.3), (6.4) and (6.5) with Eq. (6.2), we obtain for the optimal

number of ODE systems n that are integrated on the CPU

n =

floor
(
bgpunp

ampi

)
for N − n < n0

floor
(

agpu
agpu+ampi/np

)
N else

. (6.6)

Here, the condition N − n < n0 is tested after one of the two formulas has been applied

and if it is not satisfied, then the other formula is used.

Since during the first time steps, estimates for agpu, bgpu, ampi and n0 are not yet avail-

able, the strategy for determining n is replaced by a non-adaptive one. For the numerical

experiments, n = floor(N/2) has been set, for instance.

As noted above, there exist different strategies for distributing the CPU’s n ODE

systems across the MPI processes. Figure 6.1 depicts two such schemes which have been

investigated as part of this work. In the first scheme (Figure 6.1(a)), all MPI processes

send their ODE systems to the master process which dispatches N − n ODE systems to

195

6 Chemical kinetics integration on a CPU-GPU pair

the GPU and distributes the remaining n ODE systems equally across the MPI processes.

After the integration is complete, the master retrieves the results from the GPU and the

MPI processes and redistributes the results such that each MPI process receives the results

for its own ODE systems. The main drawback of this strategy is that the master process

gathers and distributes all ODE systems twice (once before and once after the integration).

On the one hand, this involves transferring a large of amount of data repeatedly which may

lead to a significant performance loss. On the other hand, the first processor must be able

to supply a large enough memory buffer to store all ODE systems for the gather/scatter

operations.

Figure 6.1(b) depicts an alternative strategy which seeks to overcome the shortcomings

of the first one while maintaining a balanced split of the CPU’s ODE systems across the

MPI processes. Here, each MPI process only sends a subset of its ODE systems to a

master process (MPI process 0) which forwards all the ODE systems that it receives to

the GPU. In this strategy, the ODE systems which an MPI process keeps are determined

in the following way: The master process marks n ODE systems which are owned by the

MPI processes in a round-robin fashion, where an MPI process is skipped if all its ODE

systems have been marked. The marked ODE systems then remain on the MPI processes

while the unmarked ones are send to the master process.

��������������������������������

1

2a

4a

5

3b

3a

2b
4b

#
O
D
E
sy
st
em

s

3 2 1 0
MPI processes (CPU)

GPU

(a) Strategy 1

1
3b

4

5
2

3a

#
O
D
E
sy
st
em

s

3 2 1 0
MPI processes (CPU)

GPU

(b) Strategy 2

Figure 6.1 Strategies for distributing the chemical kinetics ODE systems across the GPU and the MPI processes.
(1: Send data to process 0, 2/2a: Send data to GPU, 2b: Distribute data across MPI processes, 3a/b: Solve, 4/4a:
Retrieve data from GPU, 4b: Send data to process 0, 5: Redistribute results)

Both of these distribution strategies are illustrated in Figure 6.2(a) for the case of 8 MPI

processes and n = floor(N/2). Here, the number of ODE systems which each MPI process

owns is determined by sampling from a normal distribution with mean and variance 10.

Although the initial distribution is thus very inhomogeneous, the second strategy achieves

a homogenization of the ODE systems on the MPI processes which comes very close to

the one resulting from the first strategy. Figure 6.2(b), on the other hand, depicts the

situation for the Sandia D flame in a temporally statistically stationary state and for a

196

6.3 Distribution strategies

domain decomposition involving 16 MPI processes. Here, the scheme for balancing the

GPU/CPU runtimes leads to dispatching 40.0 % of the total number of ODE systems to

the GPU. However, since some MPI processes do not own any flammable cells in the first

place, they remain idle throughout the reaction fractional step.

−1 0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18
49.2 % ODE systems distributed

MPI process id [−]

N
u
m

b
e
r

o
f
O

D
E

 s
y
s
te

m
s
 [
−

]

Original distribution

Strategy 1

Strategy 2

(a) Normal distribution (mean and variance 10)

−2 0 2 4 6 8 10 12 14 16
0

1000

2000

3000

4000

5000

6000

7000

8000
60.0 % ODE systems distributed

MPI process id [−]

N
u
m

b
e
r

o
f
O

D
E

 s
y
s
te

m
s
 [
−

]

Original distribution

Strategy 1

Strategy 2

(b) Sandia D

Figure 6.2 Sample distributions of ODE systems across 8 and 16 MPI processes (light grey bars) and redistributions
for CPU integration resulting from strategy 1 (medium gray bars) and strategy 2 (dark gray bars), respectively.

For the same initial distribution of ODE systems as in Figure 6.2(a), Figure 6.3 depicts

the values of maxi=1,...,np ni (Eq. (6.4)) which result from either strategy over the ratio

n/N . Since both graphs remain within a distance of ±1 for n/N . 1/2, this lends some

justification to the above analysis in which Eq. (6.5) has been adopted for both strategies.

Finally, we note that other strategies for distributing the CPU’s ODE systems across

the MPI processes can be conceived of. In particular, it is possible to apply the redistri-

bution strategies to subsets of MPI processes and dispatch one set of ODE systems for

GPU integration from each such subset. This would imply, however, that the GPU in-

tegration involves multiple kernel invocations on smaller numbers of ODE systems which

may potentially result in a loss in occupancy and hence performance on the GPU.

Remark 6.1 (Implementation on Nvidia GPUs). The current Nvidia implementation of

the OpenCL function for reading data from the GPU’s memory after a kernel invocation

blocks until both the kernel execution and the read command completed. Hence, the

master process is stalled until the GPU returns. For this reason, we have had to augment

the above strategies by the convention that the master process sends all its ODE systems

to the GPU whenever N − n > 0. Although the master thus remains idle, the impact on

the overall performance may be small if the CPU accommodates many hardware threads.

197

6 Chemical kinetics integration on a CPU-GPU pair

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18
59 ODE systems

Percentage of ODE systems to distribute across MPI processes [%]

M
a

x
im

u
m

 n
u

m
b

e
r

o
f

O
D

E
 s

y
s
te

m
s
 p

e
r

M
P

I
p

ro
c
e

s
s
 [

−
]

Strategy 1

Strategy 2

Figure 6.3 Maximum number of ODE systems on an MPI process, maxi=1,...,np ni, over the fraction of ODE

systems n/N , n =
∑np

i=1 ni, that are integrated on the CPU for distribution strategies 1 and 2. Here, the dashed
line corresponds to the relation n/np.

6.3.2 Accounting for stiffness

In practice, the initial conditions for the chemical kinetics ODE systems encompass a

range of compositions which vary with regard to flammability and stiffness. As noted in

the beginning of the previous section, a relative, a posteriori measure for stiffness is the

number of step size refinements in a given integration algorithm. If an estimate for this

number is available, then the amount of work that is associated with an ODE system

(relative to a different one) can be predicted. In the present section, we show how this

information can be employed within the scope of the distribution strategies introduced in

the previous section.

The main idea consists in conceptually replacing one ODE system with k estimated

step size refinements by k ODE systems with a single integration step. This replacement

might not be accurate since individual integration steps may involve a varying amount

of work, but it can be taken as a good estimate for integration schemes in which the

work per integration step varies at least periodically. The distribution strategies above

are then based upon numbers of integration steps rather than ODE systems. However,

when integration steps are transferred between MPI processes or between the CPU and

the GPU, these integration steps are moved in blocks, each block corresponding to one

ODE system. This can be aided by sorting the ODE systems on each MPI process for

the numbers of integration steps. For the first strategy, the sorted ODE systems are then

assigned to the MPI processes in a round-robin fashion, while for the second strategy each

MPI process transfers the ODE systems with the smallest numbers of step size refinements

198

6.4 Numerical experiments

Dirichlet BC

Convective outflow BC

25
d

40 d

d
=
6.
4
m
m

r

φ x
7.
6
m
m

18
.2
m
m

Figure 6.4 Schematic illustration of the computational domain and the boundary conditions for the Sandia D
flame.

to the master process. In this way, it might be possible to obtain a closer match with the

number of integration steps to be transferred since the size of the blocks in which the

integration steps are grouped (i.e., the number of integration steps for the current ODE

system) remains close to one, ideally.

One way to estimate the expected number of step size refinements is to store the

number of step size refinements which an ODE system associated with a specific grid

point required in the previous time step and to employ this number as an estimate for the

current time step. This is akin to the criterion devised by Shi et al. [190] who assigned

a degree of stiffness to the ODE systems based upon the number of step size refinements

in the previous time step. However, the reliability of this estimate does not seem to have

been assessed yet.

In this chapter, we focus on the CPU/GPU and CPU/MPI distribution strategies

proposed in the previous section and quantify the performance benefits for a realistic test

case. The extension of these strategies to account for varying degrees of stiffness is left for

future work.

6.4 Numerical experiments

In the present section, the combined CPU/GPU implementation for solving the reaction

fractional step is applied to an LES of the Sandia D flame. This flame has been consid-

ered by a number of research groups for model validation [85, 133, 156]. It encompasses

a methane-air jet and a surrounding annular pilot flow which issue into co-flowing air.

The composition of the pilot flame mixture is taken identical to that of a burnt laminar

methane-air mixture at equivalence ratio 0.77 [19]. Schematically, the flow geometry and

the initial and boundary conditions are depicted in Figure 6.4.

Since our focus lies on assessing the performance of different implementations of a

solution scheme for the reaction fractional step, we adopt the simplifying assumption of

perfect micromixing for the turbulence-chemistry interaction. The chemical reactions,

199

6 Chemical kinetics integration on a CPU-GPU pair

moreover, are represented by the GRI 1.2 mechanism (ns = 32).

The computations were performed in double precision on an Intel Xeon E5-2687W

processor and an Nvidia Quadro 6000 GPU. This is the same pair of high-end devices which

we already considered in Section 5.6. The Intel Xeon processor possesses 16 hardware

threads (hyperthreading enabled) each of which hosts one MPI process. Accordingly,

the flow domain (56 × 64 × 36 cells) is decomposed into 16 blocks of equal size (8/2

equidistant splits in the axial/radial direction), each block being assigned to one MPI

process. The CPU source code was compiled by the Intel Fortran compiler 14.0.0 (“-O 3”)

in combination with Open MPI 1.6.5, while the OpenCL kernel functions were compiled

by the OpenCL compiler that is part of the NVIDIA CUDA Toolkit 5.5 (“-cl-fast-relaxed-

math”).

Figure 6.5(a) depicts the instantaneous temperature field and the iso-contour of the

stoichiometric mixture fraction at a point in time at which the temporal statistics of

the flow fields have reached a steady state. For the same time instance, Figure 6.5(b),

moreover, shows the instantaneous flammability indicator (= 0 for T < Tr = 800 K, = 1

otherwise).

400

800

1200

1600

2000

291.0

2162.8
T [K]

(a) Instantaneous temperature field and contour of
stoichiometric mixture fraction

0.25

0.5

0.75

 0

 1
Flammability [-]

(b) Instantaneous flammability indicator

Figure 6.5 Instantaneous temperature field (figure (a)) and flammability indicator (figure (b); 0 non-reacting, 1
reacting) for the Sandia D flame in a temporally statistically stationary state. The white line in figure (a) indicates
the stoichiometric mixture fraction contour.

In Table 6.1, the average runtime of the reaction fractional step is compared for the

reference CPU implementation and the combined CPU/GPU implementations based on

the two load balancing strategies proposed in Section 6.3.1. Also, a CPU implementation

in which the ODE systems are uniformly distributed across the MPI processes and a

GPU-only implementation are included here. The final column of Table 6.1 indicates the

speedup of an implementation relative to the reference CPU implementation in which each

200

6.5 Chapter summary

Processor(s) Strategy Average runtime [s] Speedup

CPU – 8.890 1.000

GPU – 6.607 1.346

CPU Redistribute 3.401 2.614

CPU, GPU Strategy 1 2.471 3.598

CPU, GPU Strategy 2 4.277 2.078

Table 6.1 Comparing the runtimes of the reaction fractional step for CPU-only, GPU-only and combined CPU/GPU
implementations. Here, the average runtime values were computed from time measurements on 10 consecutive time
steps (∆t = 10−6 s).

MPI process solves its own ODE systems (see Section 6.2).

The runtime measurements in Table 6.1 indicate that redistributing the ODE systems

uniformly across the MPI processes is a profitable acceleration strategy. For the CPU-

only implementation, this yields a speedup of 2.6, while for the combined CPU/GPU

implementation a speedup of 3.6 is obtained. Regarding the second distribution strategy,

we observe that although it requires significantly less MPI communication and memory

allocation/deallocation, it is slightly less efficient than a CPU-only implementation in

which the ODE systems are uniformly distributed.

6.5 Chapter summary

In this chapter, we presented a combined CPU/GPU implementation for solving the reac-

tion fractional step using the 5th order accurate implicit Runge-Kutta algorithm Radau5

and assessed the performance of this implementation in the context of an LES of the San-

dia D flame. The combined CPU/GPU implementation involves a scheme for measuring

the runtimes on both the GPU and the CPU and adjusting the distribution of the chem-

ical kinetics ODE systems across the GPU and the CPU’s MPI processes such that the

runtimes on both processors match.

In this regard, we investigated two distribution strategies. In the first one, all MPI

processes communicate their proprietary ODE systems to a master process which sends a

fraction to the GPU and distributes the remaining ODE systems equally across the MPI

processes. This strategy has the disadvantage that the master process requires a large

amount of memory in order to store the flammable ODE systems for the whole domain.

In the case of the Sandia D flame, the number of reacting cells amounts to about 35 %

of the total number of cells, such that for the GRI 1.2 reaction mechanism (32 scalars)

and the finite volume mesh employed above (129,024 cells) the master process allocates

11.7 MB of memory. Furthermore, this strategy involves repeated all-to-one and one-to-all

MPI communication. At present, we are therefore devising an implementation in which

the communication among the MPI processes is pairwise, that is, given an average number

of ODE systems per MPI process, surplus ODE systems are communicated either directly

201

6 Chemical kinetics integration on a CPU-GPU pair

to another MPI process with free capacity or to the master for forwarding to the GPU.

In the second distribution strategy, the MPI processes solve a fraction (or all) of the

ODE systems which they own and dispatch surplus ODE systems to the master process

which sends them to the GPU. In this way, the disadvantages of the first strategy are

mitigated, although a balanced distribution only results when the fraction of ODE systems

which is dispatched to the GPU is large.

For a reaction step in a temporally statistically steady state, we found the first strat-

egy to perform 1.7 times better than the second one. In comparison to a standard CPU

implementation in which each MPI process solves its own ODE systems, the combined

CPU/GPU implementations showed a speedup of 3.6 and 2.1 for strategies one and two,

respectively. On the other hand, if the performance is compared with a CPU implementa-

tion in which all ODE systems are equally distributed across the MPI processes, then only

the first strategy leads to a speedup (1.4), while the second strategy is 1.3 times slower.

In the above, we confined the attention to the case in which all ODE systems exhibit

a similar degree of stiffness. However, the formalism on which the current distribution

strategies are based can be extended to a collection of ODE systems which behave differ-

ently stiff. Although we have outlined the procedure for this, the implementation is left

for future work.

202

Chapter 7

Conclusions

7.1 Summary

In this work, we presented a comprehensive modelling approach and an efficient numerical

solution strategy for predicting the formation of a polydispersed particulate phase in a

turbulent reacting carrier flow. For particles which are polydispersed with respect to a

measure of particle size, our focus lay on resolving the change in the particle size distri-

bution through the flow domain and over time due to the physical processes of spatial

transport, turbulent mixing, nucleation and growth. The applications which we consid-

ered as validation test cases in the previous chapters ranged from turbulent precipitation

and droplet condensation in a turbulent mixing layer to soot formation in a turbulent hy-

drocarbon flame. For these examples, we demonstrated the predictive capabilities of our

model and assessed the accuracy and computational efficiency of the numerical solution

scheme.

In line with recent progress in the development of LES, we adopted the LES concept as

underlying model for a turbulent flow. The immersed particulate phase was described in

terms of the particle number density whose Eulerian evolution in both physical and particle

size space is governed by the PBE. The scalars characterizing the carrier fluid, moreover,

obey convection/diffusion/reaction equations. Incorporating the PBE and the reactive

scalars transport equations into an LES-framework engenders three main challenges which

we addressed in this work. First, a difficulty in the numerical solution of the PBE by direct

discretization approaches is caused by the observations that the particle size distribution

frequently evolves over several orders of magnitude and may develop sharp features since

there is no physical mechanism for diffusion in particle size space. Second, applying the

LES operator to the PBE and the reactive scalars transport equations leads to unclosed

number density-scalars correlations which, physically, represent the influence of turbulence

on chemical reactions and particle formation. Finally, the chemical kinetics often exhibit

severe stiffness, requiring computationally expensive implicit time integration schemes of

higher order. In the following, we briefly summarize the methods that have been developed

203

7 Conclusions

within the scope of the present work to address these issues.

With regard to the first challenge, we devised a novel explicit adaptive grid approach

for solving the PBE. This technique is based on a space- and time-dependent coordinate

transformation on particle size space that is explicitly marched in time. Here, the evolution

of the coordinate transformation during the upcoming time step is controlled by the current

coordinate transformation and the current solution for the number density distribution.

The coordinate transformation can be viewed as a redistributor in physical particle size

space of the available resolution (supplied via a uniform reference grid in transformed

particle size space) such that, for example, sharp features of the particle size distribution

are allocated a larger measure of resolution than smooth features. For the construction of

the coordinate transformation, we augmented the established equidistribution principle by

a novel approach for controlling the node density distribution in the presence of conditions

on the minimum admissible resolution and a maximum grid stretching. The combined

scheme allows for the generation of high quality adaptive grids, while adhering to grid

parameters that similarly occur in the characterization of fixed grids.

The convergence, accuracy and computational efficiency of our adaptive grid scheme

were thoroughly assessed in the context of a pure advection problem and a kinetically

realistic example describing the nucleation and growth of BaSO4 in a plug flow reactor.

For a prescribed accuracy, we observed that the explicit adaptive grid approach requires

significantly (more than an order of magnitude) fewer grid points than comparable fixed

grid solution schemes. This also affected the solver runtime which we found to decrease

by approximately one order of magnitude when grid adaptivity was active.

The second part of this work focussed on the LES-PBE-PDF framework for modelling

turbulent reacting flows with polydispersed particle formation. Conceptually, the main

idea consisted in obtaining from the PBE and the reactive scalars transport equations

an evolution equation for the LES-filtered one-point, one-time pdf associated with a sin-

gle realization of the fluid composition and particle number density distribution. Here,

turbulent transport effects were closed by invoking a gradient diffusion hypothesis and,

for molecular mixing, we adapted a recently proposed model to account for differential

diffusion between the fluid and the particle phases. Contrary to many existing modelling

approaches, the LES-PBE-PDF formulation is independent of tracking scalars such as a

mixture fraction or a reaction progress variable which are often linked to particular flow

configurations, and can thus be applied without modification to very general flow devices

and reactors. Moreover, the LES-filtered particle size distribution is predicted at each lo-

cation in the flow domain and every time instant and both chemical and particle formation

kinetics are accommodated without approximation.

Based on the joint scalar-number density pdf, a statistically equivalent system of Eule-

rian stochastic fields was presented, forming the basis for a Monte-Carlo type numerical

solution scheme. By this scheme, we were able to concentrate the computational effort

towards the accurate estimation of low order moments of the pdf such as the LES-filtered

204

7.1 Summary

fluid composition or particle size distribution, while accounting for the dynamic evolution

in physical and particle size space of the entire pdf. The evolution equation for the stochas-

tic number density field was discretized using the explicit adaptive grid scheme introduced

above.

In Chapter 3, the LES-PBE-PDF approach and the corresponding stochastic field re-

formulation were first presented for incompressible, constant density flows. The examples

we considered here encompassed the precipitation of BaSO4 particles from ionic aque-

ous solutions in a coaxial pipe mixing device and the condensation of DBP droplets in the

fully turbulent part of a spatially developing mixing layer. Subsequently, in Chapter 4, the

LES-PBE-PDF approach was extended to low Mach number, variable density flows and

applied to model soot formation in a turbulent hydrocarbon flame. Although our physical

description was confined to nucleation and growth of primary soot particles, quantitatively

reasonable predictions of soot volume fraction were obtained.

In the third part of this work, we addressed the question whether the chemical kinetics

integration using a high order implicit Runge-Kutta scheme can be accelerated by imple-

menting such an integration scheme for execution on a graphics card (GPU). In contrast

to a CPU, a GPU consists of several blocks of processing elements which are orchestrated,

on each block, by a single instruction unit; also, large memory buffers are located off-chip.

By consequence, the execution and memory models of APIs for developing software on

GPUs largely differ from those of CPUs, exposing to the software developer the GPU

architecture. Based on several strategies for distributing tasks across a GPU, aligning

memory accesses and efficiently communicating intermediate results, we developed a GPU

reimplementation of the 5th order accurate implicit Runge-Kutta solver Radau5.

The performance of the GPU reimplementation was compared with that of an MPI

parallelization of the original Fortran 77 Radau5 implementation on both a user-end

GPU/CPU and a professional level GPU/CPU for initial conditions sampled from a tran-

sient equilibrium scheme for the flamelet model. In a comprehensive analysis we included

several reaction mechanisms and considered a range of problem sizes (number of grid

points), time steps and convergence tolerances. Our findings indicated that the GPU

reimplementation performs well even for small problems and that, on a high-end GPU,

the relative performance of GPU and MPI-CPU implementation is largely independent of

the reaction mechanism size. However, at best, the GPU implementation took about two

times longer to execute than its MPI-CPU counterpart. We believe that this is mainly

due to the frequent communication and synchronizations on the GPU that occur in the

direct solution of linear systems and in global reduction schemes.

Finally, we explored strategies for parallelizing the computationally intensive reaction

fractional step across a CPU-GPU pair in a desktop workstation. Considering a turbu-

lent, non-premixed jet flame, we found an implementation in which the chemical kinetics

systems were equally distributed across the compute units of a CPU and the GPU, while

minimizing idle times of either processor, to be the most efficient—despite the significant

205

7 Conclusions

reallocation of memory and data migration. This implementation, however, can be fur-

ther improved and work is in progress on restricting the repeated all-to-one and one-to-all

communication to pair-wise data exchange.

In summary, we have presented, in this work, a comprehensive LES-based model for

predicting the evolution of the size distribution associated with a polydispersed particulate

phase in a turbulent carrier flow. Complementarily, an accurate grid-adaptive discretiza-

tion scheme was developed and the question whether the chemical reaction step can be

accelerated by deferral to a graphics card or by parallelization across a CPU-GPU pair was

investigated. Our model and numerical solution scheme are general by nature and can be

applied to investigate processes as different as precipitation, condensation, nano-particle

synthesis, emulsification or soot formation. In the following section, some potential model

enhancements are outlined for future consideration and suggestions for further validation

are given.

7.2 Outlook

In this section, a few ideas for extending the LES-PBE-PDF approach towards flows in

which the immersed particulate phase is characterized by more than one characteristic

property and for validating the model more extensively are collected. For each point, we

briefly summarize the main motivation, rationale and projected outcomes.

Turbulent precipitation. Our first validation test case in Chapter 3, the precipitation

of BaSO4 in a coaxial pipe mixing device [18], was chosen for two main reasons. First,

the kinetics of BaSO4 nucleation and growth as well as the thermodynamic properties

of ionic aqueous solutions can be reliably described by (semi-)empirical or analytical ex-

pressions. Moreover, previous investigators [18, 40] have been able to predict the particle

size distribution at the outlet of the coaxial pipe mixer very well in the context of RANS

using different approaches for the turbulence-chemistry/particle formation interaction and

the parameterization of the particle size distribution. Thus, we had some confidence in

the reliability of the experimental measurements and adopted the first test case both for

model validation and for verifying the implementation of the numerical solution scheme.

In view of the excellent earlier RANS predictions, however, it may be argued that there

is little reason to apply an LES-based model here. Adhering to precipitation, we hence

propose to apply the LES-PBE-PDF method to precipitation devices with more intricate

flow patterns such as impinging jet or cross-flow reactors [113].

Soot particle coagulation and aggregation. Nascent soot particles have been found to pos-

sess a liquid-like consistency until carbonization occurs [29]. Thus, young soot particles

may coagulate similar to droplets or merge with carbonized primary particles [130], main-

taining an approximately spherical shape. Although coagulation was not considered in our

206

7.2 Outlook

work, the coagulation source terms can be readily included in the present formulation. The

process of soot particle aggregation, by contrast, is more challenging to incorporate. Here,

mature carbonized soot particles assemble in chain like structures. In order to describe

such aggregates, more than one particle property is needed, for instance, a primary parti-

cle size and a property for the fractal dimension of an aggregate or its number of primary

particles. In this regard, the explicit adaptive grid discretization could be generalized to

a higher dimensional particle property space. Alternatively, maintaining the information

on the primary particle size distribution, one idea would be to apply a moment transfor-

mation along the additional particle property only or, if possible, to invoke an assumption

on the shape of the additional property distribution conditioned on primary particle size

based on experimental observations.

Inertial particles. In some applications of industrial relevance such as spray drying or

liquid spray combustion, the immersed particles or droplets experience significant lift and

drag forces and their trajectories, hence, do not coincide with pathlines of the carrier

flow. Within the scope of a population balance modelling approach, this implies that the

particulate phase is characterized both by a measure of particle size and a proprietary

velocity vector, yielding a PBE with four internal coordinates. The momentum exchange

between the particles and the ambient fluid is governed by the local fluid velocity ‘seen’

by the particles. For the PBE formulated in terms of a joint velocity-size property space,

it may be possible to reduce the number of independent coordinates by applying moment

methods along the velocity coordinates or by exploiting relations between particle size,

velocity and momentum exchange terms. However, the validity and benefits of such an

approach are not yet clear. In the context of turbulent flows, many modelling approaches

are, at the moment, based on the Lagrangian equations of motion of individual particles

[173].

Overlapping the reaction and PBE fractional steps. If the particle formation kinetics

exhibit a weak dependence on the fluid phase composition, it may be possible to solve the

PBE fractional step on the CPU while the chemical reaction step is in progress on the

GPU. While a formal justification for this approach is yet missing, it would provide further

opportunity for parallelizing and accelerating the solution scheme developed in this work.

207

208

Bibliography

[1] P. Akridis, “Coupled CFD-Population Balance Modelling of Soot Formation in

Laminar and Turbulent Flames”, PhD thesis, Imperial College London, 2016.

[2] P. Akridis and S. Rigopoulos, “Modelling of soot formation in a turbulent diffusion

flame using a comprehensive CFD-PBE model with full chemistry”, Proceedings of

the European Combustion Meeting, Budapest, Hungary, 2015.

[3] P. Akridis and S. Rigopoulos, “Modelling of soot formation in laminar diffusion

flames using a comprehensive CFD-PBE model with detailed gas-phase chemistry”,

Combustion Theory and Modelling 21.1 (2017), pp. 35–48.

[4] J. Akroyd, A. J. Smith, R. Shirley, L. R. McGlashan, and M. Kraft, “A coupled

CFD-population balance approach for nanoparticle synthesis in turbulent reacting

flows”, Chemical Engineering Science 66.17 (2011), pp. 3792–3805.

[5] A. H. Alexopoulos, A. I. Roussos, and C. Kiparissides, “Part I: Dynamic evolution of

the particle size distribution in particulate processes undergoing combined particle

growth and aggregation”, Chemical Engineering Science 59.24 (2004), pp. 5751–

5769.

[6] A. H. Alexopoulos, A. Roussos, and C. Kiparissides, “Part V: Dynamic evolution

of the multivariate particle size distribution undergoing combined particle growth

and aggregation”, Chemical Engineering Science 64.14 (2009), pp. 3260–3269.

[7] A. H. Alexopoulos and C. A. Kiparissides, “Part II: Dynamic evolution of the

particle size distribution in particulate processes undergoing simultaneous particle

nucleation, growth and aggregation”, Chemical Engineering Science 60.15 (2005),

pp. 4157–4169.

[8] M. Aoun, E. Plasari, R. David, and J. Villermaux, “A simultaneous determination

of nucleation and growth rates from batch spontaneous precipitation”, Chemical

Engineering Science 54.9 (1999), pp. 1161–1180.

[9] M. M. Attarakih, H.-J. Bart, and N. M. Faqir, “Optimal moving and fixed grids for

the solution of discretized population balances in batch and continuous systems:

droplet breakage”, Chemical Engineering Science 58.7 (2003), pp. 1251–1269.

209

Bibliography

[10] A. Attili and F. Bisetti, “Statistics and scaling of turbulence in a spatially devel-

oping mixing layer at Reλ= 250”, Physics of Fluids 24.3 (2012), p. 035109.

[11] A. Attili, F. Bisetti, M. E. Mueller, and H. Pitsch, “Formation, growth, and trans-

port of soot in a three-dimensional turbulent non-premixed jet flame”, Combustion

and Flame 161.7 (2014), pp. 1849–1865.

[12] S. Ayache and E. Mastorakos, “Conditional moment closure/large eddy simula-

tion of the Delft-III natural gas non-premixed jet flame”, Flow, Turbulence and

Combustion 88.1-2 (2012), pp. 207–231.

[13] X. S. Bai, M. Balthasar, F. Mauss, and L. Fuchs, “Detailed soot modeling in turbu-

lent jet diffusion flames”, Symposium (International) on Combustion 27.1 (1998),

pp. 1623–1630.

[14] J. Ba ldyga and W. Orciuch, “Closure problem for precipitation”, Chemical Engi-

neering Research and Design 75.2 (1997), pp. 160–170.

[15] J. Ba ldyga, M Jasińska, and W. Orciuch, “Barium sulphate agglomeration in a pipe

– An experimental study and CFD modeling”, Chemical Engineering & Technology

26.3 (2003), pp. 334–340.

[16] J. Ba ldyga, M. Jasińska, A. Krasiński, and A. Rožeń, “Effects of fine scale tur-

bulent flow and mixing in agglomerative precipitation”, Chemical Engineering &

Technology 27.3 (2004), pp. 315–323.

[17] J. Ba ldyga, “A closure model for homogeneous chemical reactions”, Chemical En-

gineering Science 49.12 (1994), pp. 1985–2003.

[18] J. Ba ldyga and W. Orciuch, “Barium sulphate precipitation in a pipe – an ex-

perimental study and CFD modelling”, Chemical Engineering Science 56.7 (2001),

pp. 2435–2444.

[19] R. Barlow and J. Frank, Piloted CH4/Air Flames C, D, E, and F - Release 2.1,

2.1, Sandia National Laboratories, Livermore, CA, USA, 2007.

[20] R. J. Batterham, J. S. Hall, and G. Barton, “Pelletizing kinetics and simulation

of full scale balling circuits”, Proceedings of the 3rd International Symposium on

Agglomeration, Nürnberg, W. Germany, 1981, A136–A150.

[21] F. Beenken, S. Ulmer, and F. Joos, “Parallel computing of chemical reactions on

graphic processing units”, Proceedings of the European Combustion Meeting, Lund,

Sweden, 2013.

[22] F. Bisetti, A. Attili, and H. Pitsch, “Advancing predictive models for particulate

formation in turbulent flames via massively parallel direct numerical simulations”,

Philosophical Transactions of the Royal Society A: Mathematical, Physical and En-

gineering Sciences 372.2022 (2014).

210

Bibliography

[23] F. Bisetti, G. Blanquart, M. E. Mueller, and H. Pitsch, “On the formation and

early evolution of soot in turbulent nonpremixed flames”, Combustion and Flame

159.1 (2012), pp. 317–335.

[24] J. G. Blom and J. G. Verwer, On the use of the arclength and curvature monitor in

a moving-grid method which is based on the method of lines, tech. rep. NM-N8902,

Centre for Mathematics and Computer Science, 1989, pp. 1–15.

[25] C. de Boor, “Good approximation by splines with variable knots. II”, Conference on

the Numerical Solution of Differential Equations: Dundee 1973, ed. by G. A. Wat-

son, vol. 363, Lecture Notes in Mathematics, Berlin, Heidelberg: Springer-Verlag,

1974, pp. 12–20.

[26] N. W. Bressloff, J. B. Moss, and P. A. Rubini, “CFD prediction of coupled radiation

heat transfer and soot production in turbulent flames”, Symposium (International)

on Combustion 26.2 (1996), pp. 2379–2386.

[27] L. A. Bromley, “Thermodynamic properties of strong electrolytes in aqueous solu-

tions”, AIChE Journal 19.2 (1973), pp. 313–320.

[28] S. J. Brookes and J. B. Moss, “Predictions of soot and thermal radiation properties

in confined turbulent jet diffusion flames”, Combustion and Flame 116.4 (1999),

pp. 486–503.

[29] J. Cain, A. Laskin, M. R. Kholghy, M. J. Thomson, and H. Wang, “Molecular

characterization of organic content of soot along the centerline of a coflow diffusion

flame”, Physical Chemistry Chemical Physics 16.47 (2014), pp. 25862–25875.

[30] F. B. Campos and P. L. C. Lage, “A numerical method for solving the transient

multidimensional population balance equation using an Euler-Lagrange formula-

tion”, Chemical Engineering Science 58.12 (2003), pp. 2725–2744.

[31] J. Cheng, C. Yang, and Z.-S. Mao, “CFD-PBE simulation of premixed continuous

precipitation incorporating nucleation, growth and aggregation in a stirred tank

with multi-class method”, Chemical Engineering Science 68.1 (2012), pp. 469–480.

[32] H. Choi and P. Moin, “Effects of the computational time step on numerical solutions

of turbulent flow”, Journal of Computational Physics 113.1 (1994), pp. 1–4.

[33] B. C. Connelly, B. A. V. Bennett, M. D. Smooke, and M. B. Long, “A paradigm

shift in the interaction of experiments and computations in combustion research”,

Proceedings of the Combustion Institute 32.1 (2009), pp. 879–886.

[34] T. J. Crowley, E. S. Meadows, and F. J. Doyle III, “Numerical issues in solving

population balance equations for particle size distribution control in emulsion poly-

merization”, Proceedings of the American Control Conference, vol. 2, San Diego,

CA, USA, 1999, pp. 1138–1142.

[35] CUBLAS Library User Guide, NVIDIA Corporation, 2012.

211

Bibliography

[36] W. Dahmen and A. Reusken, Numerik für Ingenieure und Naturwissenschaftler,

2nd ed., Springer-Lehrbuch, Berlin: Springer-Verlag, 2008.

[37] S. F. Davis and J. E. Flaherty, “An adaptive finite element method for initial-

boundary value problems for partial differential equations”, SIAM Journal on Sci-

entific and Statistical Computing 3.1 (1982), pp. 6–27.

[38] G. Y. Di Veroli and S. Rigopoulos, “A study of turbulence-chemistry interaction

in reactive precipitation via a Population Balance-transported PDF method”, Pro-

ceedings of the sixth International Symposium on Turbulence, Heat and Mass Trans-

fer, ed. by K. Hanjalić, Y. Nagano, and S. Jakirlić, Rome, Italy: Begell House, Inc.,

2009.

[39] G. Y. Di Veroli and S. Rigopoulos, “Modeling of aerosol formation in a turbulent

jet with the transported population balance equation-probability density function

approach”, Physics of Fluids 23.4, 043305 (2011), p. 043305.

[40] G. Y. Di Veroli and S. Rigopoulos, “Modeling of turbulent precipitation: A trans-

ported population balance-PDF method”, AIChE Journal 56.4 (2010), pp. 878–

892.

[41] I. A. Dodoulas and S. Navarro-Martinez, “Analysis of extinction in a non-premixed

turbulent flame using large eddy simulation and the chemical explosion mode anal-

ysis”, Combustion Theory and Modelling 19.1 (2015), pp. 107–129.

[42] P. Donde, V. Raman, M. E. Mueller, and H. Pitsch, “LES/PDF based modeling of

soot-turbulence interactions in turbulent flames”, Proceedings of the Combustion

Institute 34.1 (2013), pp. 1183–1192.

[43] E. A. Dorfi and L. O. Drury, “Simple adaptive grids for 1-D initial value problems”,

Journal of Computational Physics 69.1 (1987), pp. 175–195.

[44] B. P. M. Duarte and C. M. S. G. Baptista, “Moving finite elements method applied

to dynamic population balance equations”, AIChE Journal 54.3 (2008), pp. 673–

692.

[45] B. P. M. Duarte and C. M. S. G. Baptista, “Using moving finite elements method

to solve population balance equations comprising breakage terms”, 17th European

Symposium on Computer Aided Process Engineering, ed. by V. Pleşu and P. Ş.

Agachi, vol. 24, Elsevier, 2007, pp. 255–260.

[46] L. Falk and E. Schaer, “A PDF modelling of precipitation reactors”, Chemical

Engineering Science 56.7 (2001), pp. 2445–2457.

[47] J. Fang, A. L. Varbanescu, and H. Sips, “A comprehensive performance comparison

of CUDA and OpenCL”, International Conference on Parallel Processing (ICPP),

Taipei, Taiwan, 2011, pp. 216–225.

212

Bibliography

[48] K. Farrell, “Explicit and adaptive grid methods for implicit conservative gas dy-

namics in one-dimension”, Irish Astronomical Journal 23.2 (1996), pp. 165–170.

[49] K. Farrell and L. O. Drury, “An explicit, adaptive grid algorithm for one-dimen-

sional initial value problems”, Applied Numerical Mathematics 26.1-2 (1998), pp. 3–

12.

[50] R. O. Fox, Computational Models for Turbulent Reacting Flows, Cambridge Uni-

versity Press, 2003.

[51] R. O. Fox, “On the relationship between Lagrangian micromixing models and com-

putational fluid dynamics”, Chemical Engineering and Processing: Process Inten-

sification 37.6 (1998), pp. 521–535.

[52] L. L. C. Franke, A. K. Chatzopoulos, and S. Rigopoulos, “Tabulation of combustion

chemistry via Artificial Neural Networks (ANNs): Methodology and application

to LES-PDF simulation of Sydney flame L”, Combustion and Flame 185 (2017),

pp. 245–260.

[53] M. Frenklach, H. Wang, M. Goldenberg, G. P. Smith, D. Golden, C. T. Bowman, R.

K. Hanson, W. C. Gardiner, and V. Lissianski, GRI-Mech–An Optimized Detailed

Chemical Reaction Mechanism for Methane Combustion, Topical Report No. GRI-

95/0058, Gas Research Institute, 1995.

[54] M. Frenklach et al., GRI-Mech 1.2, 1995, url: http://www.me.berkeley.edu/

gri_mech/.

[55] M. Frenklach, “Method of moments with interpolative closure”, Chemical Engi-

neering Science 57.12 (2002), pp. 2229–2239.

[56] S. K. Friedlander, Smoke, Dust, and Haze, vol. 198, New York: Oxford University

Press, 2000.

[57] F. Gao and E. E. O’Brien, “A large-eddy simulation scheme for turbulent reacting

flows”, Physics of Fluids A: Fluid Dynamics 5 (1993), pp. 1282–1284.

[58] C. E. Garcia-Gonzalez, F. Sewerin, A. Liu, S. Rigopoulos, and B. A. O. Williams,

“Predicting and measuring soot formation and particle size distributions in a lam-

inar diffusion flame”, European Combustion Meeting, Dubrovnik, Croatia, 2017.

[59] A. Garmory and E. Mastorakos, “Aerosol nucleation and growth in a turbulent jet

using the stochastic fields method”, Chemical Engineering Science 63.16 (2008),

pp. 4078–4089.

[60] E. Gavi, L. Rivautella, D. L. Marchisio, M. Vanni, A. A. Barresi, and G. Baldi,

“CFD modelling of nano-particle precipitation in confined impinging jet reactors”,

Chemical Engineering Research and Design 85.5 (2007), pp. 735–744.

[61] F. Gelbard and J. H. Seinfeld, “Numerical solution of the dynamic equation for

particulate systems”, Journal of Computational Physics 28.3 (1978), pp. 357–375.

213

Bibliography

[62] M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, “A dynamic subgridscale

eddy viscosity model”, Physics of Fluids A: Fluid Dynamics 3.7 (1991), pp. 1760–

1765.

[63] J. P. Gore, U.-S. Ip, and Y. R. Sivathanu, “Coupled structure and radiation analysis

of acetylene/air flames”, Journal of Heat Transfer 114 (1992), pp. 487–493.

[64] J. Gradl, Experimentelle und theoretische Untersuchungen der Bildungskinetik dif-

fusions- sowie reaktionslimitierter Systeme am Beispiel der Nanopartikelfällung von

Bariumsulfat und Zinkoxid, Göttingen: Cuvillier Verlag, 2010.

[65] D. Grosschmidt, P. Habisreuther, and H. Bockhorn, “Calculation of the size distri-

bution function of soot particles in turbulent diffusion flames”, Proceedings of the

Combustion Institute 31.1 (2007), pp. 657–665.

[66] W. L. Grosshandler, RADCAL: A Narrow-Band Model for Radiation Calculations

in a Combustion Environment, NIST Technical Note 1402, National Institute of

Standards and Technology, 1993.

[67] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and

Differential-Algebraic Problems, vol. 8, Springer Series in Computational Mathe-

matics, Berlin: Springer-Verlag, 1991.

[68] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations

I: Nonstiff Problems, vol. 8, Springer Series in Computational Mathematics, Berlin,

Heidelberg: Springer-Verlag, 1993.

[69] R. J. Hall, M. D. Smooke, and M. B. Colket, “Predictions of soot dynamics in

opposed jet diffusion flames”, Physical and Chemical Aspects of Combustion: A

Tribute to Irvin Glassman, ed. by R. F. Sawyer and F. L. Dryer, Langhorne, PA:

Combustion Science and Technology Book Series, Gordon & Breach, 1997, pp. 189–

230.

[70] S. J. Harris and A. M. Weiner, “Surface growth of soot particles in premixed ethy-

lene/air flames”, Combustion Science and Technology 31.3-4 (1983), pp. 155–167.

[71] G. Hauke and L. Valiño, “Computing reactive flows with a field Monte Carlo for-

mulation and multi-scale methods”, Computer Methods in Applied Mechanics and

Engineering 193.15-16 (2004), pp. 1455–1470.

[72] D. C. Haworth, “Progress in probability density function methods for turbulent

reacting flows”, Progress in Energy and Combustion Science 36.2 (2010), pp. 168–

259.

[73] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Ap-

proach, 5th, Morgan Kaufmann/Elsevier, 2012.

214

Bibliography

[74] M. J. Hounslow, R. L. Ryall, and V. R. Marshall, “A discretized population balance

for nucleation, growth, and aggregation”, AIChE Journal 34.11 (1988), pp. 1821–

1832.

[75] http://www.sandia.gov/TNF/radiation.html, 2003.

[76] W. Huang, Y. Ren, and R. Russell, “Moving mesh partial differential equations

(MMPDEs) based on the equidistribution principle”, SIAM Journal on Numerical

Analysis 31.3 (1994), pp. 709–730.

[77] H. M. Hulburt and S. Katz, “Some problems in particle technology: A statistical

mechanical formulation”, Chemical Engineering Science 19.8 (1964), pp. 555–574.

[78] J. R. Humphrey, D. K. Price, K. E. Spagnoli, A. L. Paolini, and E. J. Kelmelis,

“CULA: Hybrid GPU accelerated linear algebra routines”, SPIE Defense and Se-

curity Symposium (DSS), Orlando, FL, USA, 2010.

[79] A. Hunt, J. L. Abraham, B. Judson, and C. L. Berry, “Toxicologic and epidemi-

ologic clues from the characterization of the 1952 London smog fine particulate

matter in archival autopsy lung tissues”, Environmental Health Perspectives 111.9

(2003), pp. 1209–1214.

[80] R. Hyde, Write Great Code: Understanding the Machine, San Francisco, CA, USA:

No Starch Press, 2004.

[81] R. Hyde, Write Great Code Vol. 2: Thinking Low-Level, Writing High-Level, San

Francisco, CA, USA: No Starch Press, 2006.

[82] Intel SDK for OpenCL Applications 2013 - Optimization Guide, Document Num-

ber: 326542-003US, Intel Corporation, 2013.

[83] W. P. Jones, “The joint scalar probability density function method”, Closure Strate-

gies for Turbulent and Transitional Flows, ed. by B. E. Launder and N. Sandham,

Cambridge University Press, 2002, chap. 20, pp. 582–625.

[84] W. P. Jones and S. Navarro-Martinez, “Large eddy simulation of autoignition with a

subgrid probability density function method”, Combustion and Flame 150.3 (2007),

pp. 170–187.

[85] W. P. Jones and V. N. Prasad, “Large eddy simulation of the Sandia Flame Series

(D-F) using the Eulerian stochastic field method”, Combustion and Flame 157.9

(2010), pp. 1621–1636.

[86] W. P. Jones and V. N. Prasad, “LES-PDF simulation of a spark ignited turbulent

methane jet”, Proceedings of the Combustion Institute 33.1 (2011), pp. 1355–1363.

[87] W. P. Jones, F. di Mare, and A. J. Marquis, LES-BOFFIN: User’s Guide, Imperial

College London, Department of Mechanical Engineering, London, 2002.

215

Bibliography

[88] J. Kautsky and N. K. Nichols, “Equidistributing meshes with constraints”, SIAM

Journal on Scientific and Statistical Computing 1.4 (1980), pp. 499–511.

[89] R. J. Kee, F. M. Rupley, E. Meeks, and J. A. Miller, CHEMKIN-III: A FORTRAN

chemical kinetics package for the analysis of gas-phase chemical and plasma kinet-

ics, Sandia National Laboratories Livermore, CA, USA, 1996.

[90] P. Koniavitis, S. Rigopoulos, and W. P. Jones, “A methodology for derivation of

RCCE-reduced mechanisms via CSP”, Combustion and Flame 183 (2017), pp. 126–

143.

[91] H. Koo, M. Hassanaly, V. Raman, M. E. Mueller, and K. P. Geigle, “Large-eddy

simulation of soot formation in a model gas turbine combustor”, Journal of Engi-

neering for Gas Turbines and Power 139.3 (2016), p. 031503.

[92] B. Koren, “A robust upwind discretization method for advection, diffusion and

source terms”, Numerical Methods for Advection-Diffusion Problems, ed. by C.

B. Vreugdenhil and B. Koren, vol. 45, Notes on Numerical Fluid Mechanics and

Multidisciplinary Design, Vieweg Verlag, 1993, pp. 117–138.

[93] A. Kronenburg, R. Bilger, and J. H. Kent, “Modeling soot formation in turbulent

methane-air jet diffusion flames”, Combustion and Flame 121.1-2 (2000), pp. 24–

40.

[94] S. Kumar and D. Ramkrishna, “On the solution of population balance equations

by discretization – I. A fixed pivot technique”, Chemical Engineering Science 51.8

(1996), pp. 1311–1332.

[95] S. Kumar and D. Ramkrishna, “On the solution of population balance equations

by discretization – II. A moving pivot technique”, Chemical Engineering Science

51.8 (1996), pp. 1333–1342.

[96] S. Kumar and D. Ramkrishna, “On the solution of population balance equations

by discretization – III. Nucleation, growth and aggregation of particles”, Chemical

Engineering Science 52.24 (1997), pp. 4659–4679.

[97] H. P. Le, J.-L. Cambier, and L. K. Cole, “GPU-based flow simulation with detailed

chemical kinetics”, Computer Physics Communications 184.3 (2013), pp. 596–606.

[98] G. Lee, X. M. Meyer, B. Biscans, J. M. Le Lann, and E. S. Yoon, “Adaptive

finite difference method for the simulation of batch crystallization”, Computers

and Chemical Engineering Supplement 23 (1999), S363–S366.

[99] G. Lee, E. S. Yoon, Y.-I. Lim, J. M. Le Lann, X.-M. Meyer, and X. Joulia, “Adaptive

mesh method for the simulation of crystallization processes including agglomeration

and breakage: the potassium sulfate system”, Industrial & Engineering Chemistry

Research 40.26 (2001), pp. 6228–6235.

216

Bibliography

[100] K. W. Lee, J. Chen, and J. A. Gieseke, “Log-normally preserving size distribu-

tion for Brownian coagulation in the free-molecule regime”, Aerosol Science and

Technology 3.1 (1984), pp. 53–62.

[101] T. K. Lesniewski and S. K. Friedlander, “Particle nucleation and growth in a free

turbulent jet”, Proceedings of the Royal Society of London A: Mathematical, Phys-

ical and Engineering Sciences 454.1977 (1998), pp. 2477–2504.

[102] T. K. Lesniewski, “Particle nucleation and growth in turbulent jets”, PhD thesis,

University of California, Los Angeles, 1997.

[103] D. K. Lilly, The representation of small scale turbulence in numerical simulation

experiments, tech. rep. 281, National Center for Atmospheric Research (NCAR),

1967.

[104] Y. I. Lim, J. M. Le Lann, X. M. Meyer, and X. Joulia, “Dynamic simulation of batch

crystallization process by using moving finite difference method”, 11th European

Symposium on Computer Aided Process Engineering, ed. by R. Gani and S. B.

Jørgensen, vol. 9, Elsevier, 2001, pp. 201–206.

[105] Y. I. Lim, J.-M. Le Lann, X. M. Meyer, X. Joulia, G. Lee, and E. S. Yoon, “On

the solution of population balance equations (PBE) with accurate front tracking

methods in practical crystallization processes”, Chemical Engineering Science 57.17

(2002), pp. 3715–3732.

[106] R. P. Lindstedt and S. A. Louloudi, “Joint-scalar transported PDF modeling of

soot formation and oxidation”, Proceedings of the Combustion Institute 30.1 (2005),

pp. 775–783.

[107] J. C. Linford, J. Michalakes, M. Vachharajani, and A. Sandu, “Multi-core accelera-

tion of chemical kinetics for simulation and prediction”, Proceedings of the Confer-

ence on High Performance Computing, Networking, Storage and Analysis, SC ’09,

Portland, OR, USA: ACM, 2009, 7:1–7:11.

[108] J. D. Litster, D. J. Smit, and M. J. Hounslow, “Adjustable discretized population

balance for growth and aggregation”, AIChE Journal 41.3 (1995), pp. 591–603.

[109] F. Liu, H. Guo, G. Smallwood, and Ö. Gülder, “Numerical modelling of soot forma-

tion and oxidation in laminar coflow non-smoking and smoking ethylene diffusion

flames”, Combustion Theory and Modelling 7.2 (2003), pp. 301–315.

[110] J. Luche, “Elaboration of reduced kinetic models of combustion - Application to a

kerosene mechanism”, PhD thesis, Université d’Orléans, 2003.

[111] T. S. Lundgren, “Distribution functions in the statistical theory of turbulence”,

Physics of Fluids 10.5 (1967), pp. 969–975.

217

Bibliography

[112] A. W. Mahoney and D. Ramkrishna, “Efficient solution of population balance equa-

tions with discontinuities by finite elements”, Chemical Engineering Science 57.7

(2002), pp. 1107–1119.

[113] L. Makowski, W. Orciuch, and J. Ba ldyga, “Large eddy simulations of mixing

effects on the course of precipitation process”, Chemical Engineering Science 77.0

(2012), pp. 85–94.

[114] P. Marchal, R. David, J. P. Klein, and J. Villermaux, “Crystallization and precip-

itation engineering – I. An efficient method for solving population balance in crys-

tallization with agglomeration”, Chemical Engineering Science 43.1 (1988), pp. 59–

67.

[115] D. L. Marchisio and R. O. Fox, Computational Models for Polydisperse Particulate

and Multiphase Systems, Cambridge Series in Chemical Engineering, Cambridge,

New York: Cambridge University Press, 2013.

[116] D. L. Marchisio, R. Fox, A. A. Barresi, M. Garbero, and G. Baldi, “On the simula-

tion of turbulent precipitation in a tubular reactor via computational fluid dynamics

(CFD)”, Chemical Engineering Research and Design 79.8 (2001), pp. 998–1004.

[117] D. L. Marchisio, R. Dennis Vigil, and R. O. Fox, “Implementation of the quadrature

method of moments in CFD codes for aggregation-breakage problems”, Chemical

Engineering Science 58.15 (2003), pp. 3337–3351.

[118] D. L. Marchisio, A. A. Barresi, and M. Garbero, “Nucleation, growth, and agglom-

eration in barium sulfate turbulent precipitation”, AIChE Journal 48.9 (2002),

pp. 2039–2050.

[119] R. McDermott and S. B. Pope, “A particle formulation for treating differential

diffusion in filtered density function methods”, Journal of Computational Physics

226.1 (2007), pp. 947–993.

[120] R. McGraw, “Description of aerosol dynamics by the quadrature method of mo-

ments”, Aerosol Science and Technology 27.2 (1997), pp. 255–265.

[121] D. Meimaroglou, A. I. Roussos, and C. Kiparissides, “Part IV: Dynamic evolution

of the particle size distribution in particulate processes. A comparative study be-

tween Monte Carlo and the generalized method of moments”, Chemical Engineering

Science 61.17 (2006), pp. 5620–5635.

[122] B. Merci, B. Naud, and D. Roekaerts, “Flow and mixing fields for transported

scalar PDF simulations of a piloted jet diffusion flame (‘Delft flame III’)”, Flow,

Turbulence and Combustion 74.3 (2005), pp. 239–272.

[123] B. Merci, D. Roekaerts, and B. Naud, “Study of the performance of three micromix-

ing models in transported scalar PDF simulations of a piloted jet diffusion flame

(“Delft flame III”)”, Combustion and Flame 144.3 (2006), pp. 476–493.

218

Bibliography

[124] M. Metternich, W. Kollmann, I. M. Kennedy, and J.-Y. Chen, “PDF prediction of

sooting turbulent flames”, 29th Aerospace Sciences Meeting, Reno, NV, USA, 1991.

[125] K. Miller and R. N. Miller, “Moving finite elements. I”, SIAM Journal on Numerical

Analysis 18.6 (1981), pp. 1019–1032.

[126] J. B. Moss, C. D. Stewart, and K. J. Syed, “Flowfield modelling of soot forma-

tion at elevated pressure”, Symposium (International) on Combustion 22.1 (1989),

pp. 413–423.

[127] S. Motz, A. Mitrović, and E.-D. Gilles, “Comparison of numerical methods for

the simulation of dispersed phase systems”, Chemical Engineering Science 57.20

(2002), pp. 4329–4344.

[128] M. E. Mueller and H. Pitsch, “LES model for sooting turbulent nonpremixed

flames”, Combustion and Flame 159.6 (2012), pp. 2166–2180.

[129] M. E. Mueller and V. Raman, “Effects of turbulent combustion modeling errors

on soot evolution in a turbulent nonpremixed jet flame”, Combustion and Flame

161.7 (2014), pp. 1842–1848.

[130] M. E. Mueller, G. Blanquart, and H. Pitsch, “Hybrid method of moments for mod-

eling soot formation and growth”, Combustion and Flame 156.6 (2009), pp. 1143–

1155.

[131] A. Munshi, B. R. Gaster, and T. G. Mattson, OpenCL Programming Guide, ed. by

M. Taub, Addison-Wesley Publishing Company Inc., 2011.

[132] A. Munshi, ed., The OpenCL Specification, Version 1.1, The Khronos Group Inc.,

2011.

[133] R. Mustata, L. Valiño, C. Jiménez, W. P. Jones, and S. Bondi, “A probability

density function Eulerian Monte Carlo field method for large eddy simulations:

Application to a turbulent piloted methane/air diffusion flame (Sandia D)”, Com-

bustion and Flame 145.1-2 (2006), pp. 88–104.

[134] J. Nagle and R. F. Strickland-Constable, “Oxidation of carbon between 1000-

2000◦C”, Proceedings of the fifth Carbon Conference, vol. 1, 1, New York: Perg-

amon, 1962, pp. 154–164.

[135] S. Navarro-Martinez and S. Rigopoulos, “Differential diffusion modelling in LES

with RCCE-reduced chemistry”, Flow, Turbulence and Combustion 89.2 (2012),

pp. 311–328.

[136] K. Netzell, H. Lehtiniemi, and F. Mauss, “Calculating the soot particle size distri-

bution function in turbulent diffusion flames using a sectional method”, Proceedings

of the Combustion Institute 31.1 (2007), pp. 667–674.

219

Bibliography

[137] G. Neuber, A. Kronenburg, O. T. Stein, and M. J. Cleary, “MMC-LES modelling

of droplet nucleation and growth in turbulent jets”, Chemical Engineering Science

167 (2017), pp. 204–218.

[138] M. Nicmanis and M. J. Hounslow, “Finite-element methods for steady-state popu-

lation balance equations”, AIChE Journal 44.10 (1998), pp. 2258–2272.

[139] A. E. Nielsen, “Nucleation and growth of crystals at high supersaturation”, Kristall

und Technik 4.1 (1969), pp. 17–38.

[140] K. E. Niemeyer, C.-J. Sung, C. G. Fotache, and J. C. Lee, “Turbulence-chemistry

closure method using graphics processing unit: a preliminary test”, Seventh Fall

Technical Meeting of the Eastern States Section of the Combustion Institute, Storrs,

CT, USA, 2011.

[141] K. E. Niemeyer and C.-J. Sung, “Accelerating moderately stiff chemical kinetics

in reactive-flow simulations using GPUs”, Journal of Computational Physics 256

(2014), pp. 854–871.

[142] P. A. Nooren, H. A. Wouters, T. W. J. Peeters, D. Roekaerts, U. Maas, and D.

Schmidt, “Monte Carlo PDF modelling of a turbulent natural-gas diffusion flame”,

Combustion Theory and Modelling 1.1 (1997), pp. 79–96.

[143] P. A. Nooren, M. Versluis, T. H. van der Meer, R. S. Barlow, and J. H. Frank,

“Raman-Rayleigh-LIF measurements of temperature and species concentrations in

the Delft piloted turbulent jet diffusion flame”, Applied Physics B 71.1 (2000),

pp. 95–111.

[144] Nvidia Quadro Dual Copy Engines, NVIDIA Corporation, 2010.

[145] A. A. Öncül, K. Sundmacher, A. Seidel-Morgenstern, and D. Thévenin, “Numeri-

cal and analytical investigation of barium sulphate crystallization”, Chemical En-

gineering Science 61.2 (2006), pp. 652–664.

[146] OpenCL Best Practices Guide, NVIDIA Corporation, 2011.

[147] OpenCL Programming for the CUDA Architecture, NVIDIA Corporation, 2012.

[148] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips, “GPU

Computing”, Proceedings of the IEEE 96.5 (2008), pp. 879–899.

[149] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, New York: Hemisphere

Publishing Corporation, 1980.

[150] D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The

Hardware/Software Interface, 5th, Morgan Kaufmann/Elsevier, 2013.

[151] G. A. Pavliotis, Stochastic Processes and Applications, New York: Springer-Verlag,

2014.

220

Bibliography

[152] T. W. J. Peeters, P. P. J. Stroomer, J. E. de Vries, D. J. E. M. Roekaerts, and C. J.

Hoogendoorn, “Comparative experimental and numerical investigation of a piloted

turbulent natural-gas diffusion flame”, Symposium (International) on Combustion

25.1 (1994), pp. 1241–1248.

[153] E. L. Petersen, D. M. Kalitan, S. Simmons, G. Bourque, H. J. Curran, and J. M.

Simmie, “Methane/propane oxidation at high pressures: Experimental and detailed

chemical kinetic modeling”, Proceedings of the Combustion Institute 31.1 (2007),

pp. 447–454.

[154] C. D. Pierce and P. Moin, “Progress-variable approach for large-eddy simulation

of non-premixed turbulent combustion”, Journal of Fluid Mechanics 504 (2004),

pp. 73–97.

[155] U. Piomelli and J. Liu, “Large-eddy simulation of rotating channel flows using a

localized dynamic model”, Physics of Fluids 7.4 (1995), pp. 839–848.

[156] H. Pitsch and H. Steiner, “Large-eddy simulation of a turbulent piloted methane/air

diffusion flame (Sandia flame D)”, Physics of Fluids 12.10 (2000), pp. 2541–2554.

[157] H. Pitsch, “Large-eddy simulation of turbulent combustion”, Annual Review of

Fluid Mechanics 38.1 (2006), pp. 453–482.

[158] S. B. Pope, “A Monte Carlo method for the PDF equations of turbulent reactive

flow”, Combustion Science and Technology 25.5-6 (1981), pp. 159–174.

[159] S. B. Pope, “Computations of turbulent combustion: Progress and challenges”,

Symposium (International) on Combustion 23.1 (1991), pp. 591–612.

[160] S. B. Pope, “Particle method for turbulent flows: Integration of stochastic model

equations”, Journal of Computational Physics 117.2 (1995), pp. 332–349.

[161] S. B. Pope, “PDF methods for turbulent reactive flows”, Progress in Energy and

Combustion Science 11.2 (1985), pp. 119–192.

[162] S. B. Pope, Turbulent Flows, Cambridge University Press, 2000.

[163] V. N. Prasad, “Large eddy simulation of partially premixed turbulent combustion”,

PhD thesis, Imperial College London, 2011.

[164] S. E. Pratsinis, “Simultaneous nucleation, condensation, and coagulation in aerosol

reactors”, Journal of Colloid and Interface Science 124.2 (1988), pp. 416–427.

[165] N. H. Qamar, Z. T. Alwahabi, Q. N. Chan, G. J. Nathan, D. Roekaerts, and K.

D. King, “Soot volume fraction in a piloted turbulent jet non-premixed flame of

natural gas”, Combustion and Flame 156.7 (2009), pp. 1339–1347.

[166] S. Qamar, M. P. Elsner, I. A. Angelov, G. Warnecke, and A. Seidel-Morgenstern,

“A comparative study of high resolution schemes for solving population balances

in crystallization”, Computers and Chemical Engineering 30.6-7 (2006), pp. 1119–

1131.

221

Bibliography

[167] S. Qamar, A. Ashfaq, G. Warnecke, I. Angelov, M. P. Elsner, and A. Seidel-

Morgenstern, “Adaptive high-resolution schemes for multidimensional population

balances in crystallization processes”, Computers and Chemical Engineering 31.10

(2007), pp. 1296–1311.

[168] V. Raman and R. O. Fox, “Modeling of fine-particle formation in turbulent flames”,

Annual Review of Fluid Mechanics 48 (2016), pp. 159–190.

[169] D. Ramkrishna, Population Balances: Theory and Applications to Particulate Sys-

tems in Engineering, Elsevier Science, 2000.

[170] B. M. Reddy, A. De, and R. Yadav, “Numerical investigation of soot formation in

turbulent diffusion flame with strong turbulence-chemistry interaction”, Journal of

Thermal Science and Engineering Applications 8.1 (2016), p. 011001.

[171] M. Reddy and A. De, “Numerical investigation of soot formation in turbulent

diffusion flames using Moss-Brookes model”, ASME 2014 Gas Turbine India Con-

ference, GTINDIA 2014, New Delhi, India, 2014.

[172] M. Reddy, A. De, and R. Yadav, “Effect of precursors and radiation on soot for-

mation in turbulent diffusion flame”, Fuel 148 (2015), pp. 58–72.

[173] S. Rigopoulos, “Population balance modelling of polydispersed particles in reactive

flows”, Progress in Energy and Combustion Science 36.4 (2010), pp. 412–443.

[174] S. Rigopoulos, “PDF method for population balance in turbulent reactive flow”,

Chemical Engineering Science 62.23 (2007), pp. 6865–6878.

[175] S. Rigopoulos and A. G. Jones, “Finite-element scheme for solution of the dynamic

population balance equation”, AIChE Journal 49.5 (2003), pp. 1127–1139.

[176] D. Roekaerts, B. Merci, and B. Naud, “Comparison of transported scalar PDF and

velocity-scalar PDF approaches to ‘Delft flame III’”, Comptes Rendus Mécanique

334.8-9 (2006), pp. 507–516.

[177] A. I. Roussos, A. H. Alexopoulos, and C. Kiparissides, “Dynamic evolution of PSD

in continuous flow processes: A comparative study of fixed and moving grid numer-

ical techniques”, Chemical Engineering Science 61.1 (2006), pp. 124–134.

[178] A. I. Roussos, A. H. Alexopoulos, and C. Kiparissides, “Part III: Dynamic evolution

of the particle size distribution in batch and continuous particulate processes: A

Galerkin on finite elements approach”, Chemical Engineering Science 60.24 (2005),

pp. 6998–7010.

[179] V. Sabel’nikov and O. Soulard, “Rapidly decorrelating velocity-field model as a tool

for solving one-point Fokker-Planck equations for probability density functions of

turbulent reactive scalars”, Physical Review E 72.1 (2005), p. 016301.

[180] P. Sagaut, Large Eddy Simulation for Incompressible Flows: An Introduction, 3rd,

Berlin: Springer, 2006.

222

Bibliography

[181] A. Sandu, J. Verwer, M. Van Loon, G. Carmichael, F. Potra, D. Dabdub, and J.

Seinfeld, “Benchmarking stiff ODE solvers for atmospheric chemistry problems–I.

Implicit vs explicit”, Atmospheric Environment 31.19 (1997), pp. 3151–3166.

[182] A. Sandu, J. Verwer, J. Blom, E. Spee, G. Carmichael, and F. Potra, “Benchmark-

ing stiff ODE solvers for atmospheric chemistry problems II: Rosenbrock solvers”,

Atmospheric Environment 31.20 (1997), pp. 3459–3472.

[183] H.-C. Schwarzer, Nanoparticle precipitation – An experimental and numerical in-

vestigation including mixing, Berlin: Logos-Verlag, 2005.

[184] F. Sewerin and S. Rigopoulos, “Integration of stiff chemical kinetics on a CPU-

GPU pair – Application to a turbulent, non-premixed flame”, Ninth Mediterranean

Combustion Symposium, Rhodes, Greece, 2015.

[185] F. Sewerin and S. Rigopoulos, “A methodology for the integration of stiff chemical

kinetics on GPUs”, Combustion and Flame 162.4 (2015), pp. 1375–1394.

[186] F. Sewerin and S. Rigopoulos, “An explicit adaptive grid approach for the numerical

solution of the population balance equation”, Chemical Engineering Science 168

(2017), pp. 250–270.

[187] F. Sewerin and S. Rigopoulos, “An LES-PBE-PDF approach for modeling particle

formation in turbulent reacting flows”, Physics of Fluids 29.10 (2017), p. 105105.

[188] F. Sewerin and S. Rigopoulos, “An LES-PBE-PDF approach for predicting the soot

particle size distribution in turbulent flames”, Combustion and Flame 189 (2018),

pp. 62–76.

[189] M. R. H. Sheikhi, T. G. Drozda, P. Givi, and S. B. Pope, “Velocity-scalar filtered

density function for large eddy simulation of turbulent flows”, Physics of Fluids

15.8 (2003), pp. 2321–2337.

[190] Y. Shi, W. H. Green, H.-W. Wong, and O. O. Oluwole, “Accelerating multi-

dimensional combustion simulations using GPU and hybrid explicit/implicit ODE

integration”, Combustion and Flame 159.7 (2012), pp. 2388–2397.

[191] Y. Shi, W. H. Green Jr., H.-W. Wong, and O. O. Oluwole, “Redesigning combustion

modeling algorithms for the Graphics Processing Unit (GPU): Chemical kinetic rate

evaluation and ordinary differential equation integration”, Combustion and Flame

158.5 (2011), pp. 836–847.

[192] G. P. Smith et al., GRI-Mech 3.0, 2000, url: http://www.me.berkeley.edu/

gri_mech/.

[193] M. D. Smooke, C. S. McEnally, L. D. Pfefferle, R. J. Hall, and M. B. Colket,

“Computational and experimental study of soot formation in a coflow, laminar

diffusion flame”, Combustion and Flame 117.1-2 (1999), pp. 117–139.

223

Bibliography

[194] M. D. Smooke, M. B. Long, B. C. Connelly, M. B. Colket, and R. J. Hall, “Soot for-

mation in laminar diffusion flames”, Combustion and Flame 143.4 (2005), pp. 613–

628.

[195] K. Spafford, J. Meredith, J. Vetter, J. Chen, R. Grout, and R. Sankaran, “Acceler-

ating S3D: A GPGPU case study”, Euro-Par 2009 Workshops, LNCS 6043, ed. by

H. X. Lin, M. Alexander, M. Forsell, A. Knüpfer, R. Prodan, L. Sousa, and A.

Streit, Berlin, Heidelberg: Springer-Verlag, 2010, pp. 122–131.

[196] C. Stone and R. Davis, “Techniques for solving stiff chemical kinetics on GPUs”,

51st AIAA Aerospace Sciences Meetings, Grapevine, TX, USA: American Institute

of Aeronautics and Astronautics, 2013.

[197] H. Tang and T. Tang, “Adaptive mesh methods for one- and two-dimensional hy-

perbolic conservation laws”, SIAM Journal on Numerical Analysis 41.2 (2003),

pp. 487–515.

[198] T. H. Tsang and J. R. Brock, “Simulation of condensation aerosol growth by con-

densation and evaporation”, Aerosol Science and Technology 2.3 (1983), pp. 311–

320.

[199] T. H. Tsang and A. Rao, “A moving finite element method for the population

balance equation”, International Journal for Numerical Methods in Fluids 10.7

(1990), pp. 753–769.

[200] L. Valiño, “A field Monte Carlo formulation for calculating the probability density

function of a single scalar in a turbulent flow”, Flow, Turbulence and Combustion

60.2 (1998), pp. 157–172.

[201] E. Varoglu and W. D. L. Finn, “Finite elements incorporating characteristics for

one-dimensional diffusion-convection equation”, Journal of Computational Physics

34.3 (1980), pp. 371–389.

[202] V. Vikas, Z. J. Wang, A. Passalacqua, and R. O. Fox, “Realizable high-order finite-

volume schemes for quadrature-based moment methods”, Journal of Computational

Physics 230.13 (2011), pp. 5328–5352.

[203] V. Vikas, Z. J. Wang, and R. O. Fox, “Realizable high-order finite-volume schemes

for quadrature-based moment methods applied to diffusion population balance

equations”, Journal of Computational Physics 249 (2013), pp. 162–179.

[204] H. Wang et al., A high-temperature chemical kinetic model of n-alkane (up to n-

dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-cyclohexane ox-

idation at high temperatures, JetSurF version 2.0, 2010, url: http://melchior.

usc.edu/JetSurF/JetSurF2.0.

224

Bibliography

[205] H. Wang, X. You, A. V. Joshi, S. G. Davis, A. Laskin, F. Egolfopoulos, and C.

K. Law, USC Mech Version II. High-temperature combustion reaction model of

H2/CO/C1-C4 compounds, University of Southern California, 2007, url: http:

//ignis.usc.edu/USC_Mech_II.htm.

[206] J. D. Ward and C.-C. Yu, “Population balance modeling in Simulink: PCSS”,

Computers and Chemical Engineering 32.10 (2008), pp. 2233–2242.

[207] M. Warshaw, “Cloud droplet coalescence: Statistical foundations and a one-dimensional

sedimentation model”, Journal of the Atmospheric Sciences 24.3 (1967), pp. 278–

286.

[208] H. Wei and J. Garside, “Application of CFD Modelling to Precipitation Systems”,

Chemical Engineering Research and Design 75.2 (1997), pp. 219–227.

[209] X. Y. Woo, R. B. H. Tan, P. S. Chow, and R. D. Braatz, “Simulation of mixing

effects in antisolvent crystallization using a coupled CFD-PDF-PBE approach”,

Crystal Growth & Design 6.6 (2006), pp. 1291–1303.

[210] Y. Xuan and G. Blanquart, “Effects of aromatic chemistry-turbulence interactions

on soot formation in a turbulent non-premixed flame”, Proceedings of the Combus-

tion Institute 35.2 (2015), pp. 1911–1919.

[211] N. N. Yanenko, The Method of Fractional Steps: The Solution of Problems of Math-

ematical Physics in Several Variables, ed. by M. Holt, Berlin: Springer-Verlag, 1971.

[212] K. J. Young and J. B. Moss, “Modelling sooting turbulent jet flames using an

extended flamelet technique”, Combustion Science and Technology 105.1-3 (1995),

pp. 33–53.

[213] K. Zhou, A. Attili, A. Alshaarawi, and F. Bisetti, “Simulation of aerosol nucleation

and growth in a turbulent mixing layer”, Physics of Fluids 26.6 (2014), p. 065106.

[214] A. Zucca, D. L. Marchisio, A. A. Barresi, and R. O. Fox, “Implementation of

the population balance equation in CFD codes for modelling soot formation in

turbulent flames”, Chemical Engineering Science 61.1 (2006), pp. 87–95.

225

226

Appendices

227

Appendix A

Node density distribution

A.1 Steady-state solutions of Eq. (2.48)

In this section, we show that Eqs. (2.40) and (2.45) are both sufficient (a) and necessary

(b) conditions for ρ∞ = ρ(·, s∞) to be a steady-state solution of Eq. (2.48) for some

s∞ ≥ 0. In view of Eqs. (2.41) and (2.42), we have

Pρ(l, s) ≥ ρ(l, s) ∀l ∈ [0, L] (A.1)

such that, by Eq. (2.50), Eqs. (2.40) and (2.45) are equivalent to

Ṙ(l, s) = 0 ∀l ∈ [0, L]. (A.2)

(a) If Ṙ(·, s∞) vanishes identically, then, from Eq. (2.48), we immediately obtain

∂ρ(l, s∞)/∂s = 0 for all l ∈ [0, L], indicating that ρ(·, s∞) is a steady-state solution of Eq.

(2.48).

(b) In order to show that Eq. (A.2) is also a necessary condition, we consider ρ(·, s∞)

as a steady-state solution of Eq. (2.48) and proceed by contradiction, assuming that Eq.

(A.2) does not hold. This implies that Ṙ(l+, s∞) > 0 for at least one point l+ ∈ [0, L] and,

since Ṙ(·, s∞) is piecewise continuous, that there exists a half-open interval L+ about l+

on which Ṙ(·, s∞) > 0. In particular, L+ has a non-zero measure such that

1

L

∫ L

0
Ṙ(u, s) du > 0. (A.3)

Since, by assumption, ρ(·, s∞) is a steady-state solution of Eq. (2.48), we have the relation

Ṙ(l, s∞) =
ρ(l, s∞)

ρτL

∫ L

0
Ṙ(u, s∞) du ≡ C ′ρ(l, s∞) > 0 ∀l ∈ [0, L] (A.4)

with C ′ > 0 due to Eqs. (2.37), (2.38) and (A.3). Introducing Eq. (2.50) into Eq. (A.4)

229

A Node density distribution

leads to the condition

max(ρmin, Pρ(·, s∞)) = Cρ(·, s∞) (A.5)

with C = 1 + C ′T > 1. If Pρ(·, s∞) = ρ(·, s∞) identically, then Eq. (A.5) implies

ρmin = Cρ(·, s∞) (A.6)

which contradicts Eq. (2.47). In view of Eq. (A.1), we must hence have Pρ(l⋆, s∞) >

ρ(l⋆, s∞) for at least one point l⋆ ∈ [0, L]. By continuity, it follows that Pρ(·, s∞) > ρ(·, s∞)

on an entire open (or half-open if l⋆ is a boundary point) interval L⋆ about l⋆. However,

Eqs. (2.41) and (2.42) imply Pρ(·, s∞) 6= Cρ(·, s∞) on L⋆ such that, for Eq. (A.5) to be

valid on L⋆, ρmin ≥ Pρ(·, s∞) here. On the other hand, ρ(·, s∞) and its padding Pρ(·, s∞)

coincide at all those points in [0, L], at which Pρ(·, s∞) ≯ ρ(·, s∞). In view of Eq. (A.5),

we thus have ρmin > Pρ(·, s∞) at these points. By consequence, ρmin(l) ≥ Pρ(l, s∞) for all

l ∈ [0, L]. In combination with Eq. (A.5), this again implies Eq. (A.6). Since Eq. (A.6)

contradicts Eq. (2.47), we conclude by reversing the above rationale that Eq. (A.2) must

hold.

A.2 An iterative solution scheme for the steady-state node

density distribution

In view of a numerical solution scheme for Eqs. (2.48) and (2.49), we let sj = j∆s for

j ≥ 0, set T = ∆s = 1 and for

ρ(l, sj) ≡ ρj(l) = ρτ
dτ̄j(l)

dl
(A.7)

consider the following semi-implicit integration scheme

ρj+1(l)− ρj(l) = ∆sṘ(l, sj)−
ρj+1(l)

ρτ

∆s

L

∫ L

0
Ṙ(u, sj) du. (A.8)

Taking into account Eqs. (2.50) and (A.7) and slightly rearranging Eq. (A.8) now leads

to the following two-step scheme for j ≥ 0 and l ∈ [0, L]

dτ̄j+ 1
2
(l)

dl
≡ dτ̄j(l)

dl
+ max

(
max

(
ρmin(l), Pρj (l)

)

ρτ
− dτ̄j(l)

dl
, 0

)
, (A.9)

dτ̄j+1(l)

dl
=
dτ̄j+ 1

2
(l)

dl

(
1

L

∫ L

0

dτ̄j+ 1
2
(u)

du
du

)−1

. (A.10)

Here, the first step implements an update rule, while the second step renormalizes the

updated coordinate transformation τ̄j+ 1
2
(l) such that the boundary conditions in Eqs.

(2.6) and (2.7) are obeyed. Note that if τ̄0(l) is given in a discrete representation, then

230

A.2 An iterative solution scheme for the steady-state node density distribution

Eqs. (A.9) and (A.10) can inherit this discretization to yield a l-discrete scheme. In the

context of a finite volume discretization, for example, Eqs. (A.9) and (A.10) hold in a cell-

average sense. The numerical scheme terminates if dτ̄j(l)/dl and dτ̄j+1(l)/dl are identical

to within a given convergence tolerance. The converged Jacobians then yield the adjusted

equidistributing coordinate transformation τ̄∞(l) with inverse l̄∞(τ).

231

232

Appendix B

The LES-PBE-PDF method

B.1 Identity in Eq. (3.18)

In order to show Eq. (3.18), we first note that the LES-operator · represents the expecta-

tion of the argument fields · with respect to the LES-filtered joint pdf f
Y,N, ∂Y

∂xj
,...(y, n(·),

ψ, . . . ;x, t) corresponding to a single realization of Y(x, t), N(·,x, t) and the derivatives

∂Y(x, t)/∂xj , . . ., where y, n(·), ψ, . . . denote the sample space variables associated, re-

spectively, with the random fields Y(x, t), N(·,x, t), ∂Y(x, t)/∂xj , . . . and the lower dots

are place holders for the remaining spatial derivatives not listed explicitly. Expanding the

left hand side of Eq. (3.18) yields

g(y, n(·);x, t)F
(
Y(x, t), N(·,x, t), ∂Y(x, t)

∂xj
, . . .

)

=

∫
δ(y − y′)δ(n(·) − n′(·))F (y′, n′(·),ψ, . . .)

× f
Y,N, ∂Y

∂xj
,...(y

′, n′(·),ψ, . . . ;x, t) dψ · · · dn′(·) dy′.

(B.1)

By introducing the joint pdf of the derivatives ∂Y(x, t)/∂xj , . . . conditioned on Y(x, t)

and N(·,x, t),

f
Y,N, ∂Y

∂xj
,...(y

′, n′(·),ψ, . . . ;x, t) = f ∂Y
∂xj

,...|Y,N (ψ, . . . |y′, n′(·);x, t)f(y′, n′(·);x, t), (B.2)

233

B The LES-PBE-PDF method

and invoking the sifting property of the Dirac δ-distribution [162, Appendix C], we obtain

from Eq. (B.1)

g(y, n(·);x, t)F
(
Y(x, t), N(·,x, t), ∂Y(x, t)

∂xj
, . . .

)

=

∫
δ(y − y′)δ(n(·) − n′(·))f(y′, n′(·);x, t)

×
(∫

F (y′, n′(·),ψ, . . .)f ∂Y
∂xj

,...|Y,N (ψ, . . . |y′, n′(·);x, t) dψ · · ·
)
dn′(·) dy′

= f(y, n(·);x, t)
(∫

F (y, n(·),ψ, . . .)f ∂Y
∂xj

,...|Y,N (ψ, . . . |y, n(·);x, t) dψ · · ·
)

= f(y, n(·);x, t)
[
F

(
Y(x, t), N(·,x, t), ∂Y(x, t)

∂xj
, . . .

)∣∣∣∣y, n(·)
]
,

(B.3)

where the final equality follows from the definition of the conditional expectation in terms

of f ∂Y
∂xj

,...|Y,N . This completes the proof of Eq. (3.18).

B.2 An evolution equation for the transition pdf associated

with the stochastic fields

B.2.1 Incompressible, constant density flows

In the present section, we show that the transition pdf h(z, t;x) associated with the

stochastic process θ(t; ·,x) in Eq. (3.33) evolves according to Eq. (3.31) subject to the

initial condition in Eq. (3.32). Except for some modifications owing to the stochastic

forcing term in Eq. (3.33) and differences due to the expectation operation, our derivation

is similar in rationale to the one leading to Eq. (3.19) in Section 3.2.3. Following the ideas

of Lundgren [111], we first introduce the fine-grained density h′(z, t;x) as the transition

pdf associated with a single sample path of the stochastic process θ(t; ·,x),

h′(z, t;x) = δ (z− θ(t; ·,x)) , (B.4)

for a deterministic initial condition

θ(t0; l,x) = z0(l,x) ∀l ∈ [0, L]. (B.5)

In view of Section 3.2.6, θ(t; l,x) represents a temporal drift-diffusion process which is

smoothly parameterized by (l,x). By construction, the transition pdf h(z, t;x) associ-

ated with θ(t; ·,x) and the fine-grained density h′(z, t;x) are related via the expectation

operator 〈·〉 according to

h(z, t;x) =
〈
h′(z, t;x)

〉
. (B.6)

234

B.2 An evolution equation for the transition pdf associated with the stochastic fields

Since θ(t; l,x) varies smoothly in x, we have

∂h′

∂xj
= −

nφ∑

i=1

∂h′

∂zi

∂θi
∂xj

, j = 1, . . . , 3, (B.7)

where, for conciseness, the arguments of h′(z, t;x) and θ(t; ·,x) have been omitted. The

temporal derivative of Eq. (B.4), on the other hand, follows from Itô’s formula [151,

Section 3.4],

∂h′

∂t
= −

nφ∑

i=1

∂h′

∂zi

∂θi
∂t

+
1

2

nφ∑

i,j=1

3∑

k=1

σikσjk
∂2h′

∂zi∂zj
. (B.8)

Here, σik(∂θi/∂xk,x, t) represents the diffusion coefficient of Eq. (3.33),17

σik

(
∂θi
∂xk

,x, t

)
= −

√
2Γ(x, t)

∂θi
∂xk

. (B.9)

By introducing Eqs. (3.33) and (B.9) into Eq. (B.8) and taking into account Eq. (B.7),

we obtain

∂h′

∂t
+

3∑

j=1

uj
∂h′

∂xj
= −

nφ∑

i=1

∂h′

∂zi
(si(l,θ) +mi(x, t,θ))−

√
2Γ

3∑

j=1

∂h′

∂xj
Ẇj(t)

+

3∑

k=1

nφ∑

i,j=1

Γ
∂θi
∂xk

∂θj
∂xk

∂2h′

∂zi∂zj
−

nφ∑

i=1

∂h′

∂zi

∂

∂xk

(
Γ
∂θi
∂xk

)
 .

(B.10)

Since θ(t; ·,x) is independent of z and h′(z, t;x) varies smoothly in x, we may reformulate

the final terms in Eq. (B.10) with the aid of Eq. (B.7) and Schwarz’s rule as follows

−
nφ∑

i=1

{(
Γ
∂θi
∂xk

)
∂2h′

∂xk∂zi
+
∂h′

∂zi

∂

∂xk

(
Γ
∂θi
∂xk

)}
(B.11)

= − ∂

∂xk

(
Γ

nφ∑

i=1

∂h′

∂zi

∂θi
∂xk

)
=

∂

∂xk

(
Γ
∂h′

∂xk

)
, k = 1, . . . , 3. (B.12)

From the commutation property of the expectation operator 〈·〉, the analogue of Eq. (3.18)

for 〈·〉 and Eq. (B.12), we obtain after taking the expectation of Eq. (B.10) (B.10)

∂h

∂t
+

3∑

j=1

uj
∂h

∂xj
=

3∑

k=1

∂

∂xk

(
Γ
∂h

∂xk

)
−

nφ∑

i=1

∂

∂zi
(hsi(·, z) + hmi(x, t, z))

−
3∑

j=1

〈√
2Γ
∂h′

∂xj
Ẇj(t)

〉
.

(B.13)

17If the micromixing model mi(x, t, θ) includes a Brownian diffusion term in Itô’s sense, then
the matrix σ also encompasses the corresponding diffusion coefficients.

235

B The LES-PBE-PDF method

Here, the final term vanishes due to the martingale property of the Itô stochastic integral

[151, Section 3.2]. By consequence, Eq. (B.13) reduces to the evolution equation

∂h

∂t
+

3∑

j=1

uj
∂h

∂xj
=

3∑

k=1

∂

∂xk

(
Γ
∂h

∂xk

)
−

nφ∑

i=1

∂

∂zi
(hsi(·, z) + hmi(x, t, z)) (B.14)

which coincides with our modelled transport equation for the joint scalar-number density

pdf f(z;x, t) in Eq. (3.31).

B.2.2 Variable density flows at low Mach number

In this section, an evolution equation is obtained for the transition pdf h(z, t;x) associ-

ated with the stochastic process θ(t; ·,x) that evolves according to Eq. (4.33) subject to

the initial condition θ(t0; ·,x) = (Y0(x), Nρ,0(·,x)). Following the rationale outlined in

Appendix B.2.1, we introduce the fine-grained density function h′(z, t;x) associated with

θ(t; ·,x),

h′(z, t;x) = δ(z − θ(t; ·,x)), (B.15)

and recall that applying the expectation operator 〈·〉 to Eq. (B.15) yields the transition

pdf h(z, t;x),

h(z, t;x) =
〈
h′(z, t;x)

〉
= 〈δ(z − θ(t; ·,x))〉 . (B.16)

The spatial derivatives of h′(z, t;x) are given by

∂h′

∂xj
= −

nφ∑

i=1

∂h′

∂zi

∂θi
∂xj

, j = 1, . . . , 3. (B.17)

Since the fine-grained density depends on time through the stochastic process θ(t; ·,x)

(Eq. (B.15)), the temporal derivative of h′(z, t;x) can be obtained from Itô’s formula

[151, Section 3.4],

∂h′

∂t
= −

nφ∑

i=1

∂h′

∂zi

∂θi
∂t

+
1

2

nφ∑

i,j=1

3∑

k=1

∂2h′

∂zi∂zj
σikσjk, (B.18)

where σik(∂θi/∂xk,x, t) represents the diffusion coefficient associated with Eq. (4.33),

σik

(
∂θi
∂xk

,x, t

)
= −

√
2Γ(x, t)

∂θi
∂xk

. (B.19)

ntroducing Eqs. (4.33) and (B.19) into Eq. (B.18) and taking into account Eq. (B.17)

as well as the identity

nφ∑

i=1

3∑

k=1

ρΓ

∂θi
∂xk

nφ∑

j=1

∂2h′

∂zj∂zi

∂θj
∂xk
− ∂h′

∂zi

∂

∂xk

(
ρΓ

∂θi
∂xk

)
 =

3∑

k=1

∂

∂xk

(
ρΓ

∂h′

∂xk

)
(B.20)

236

B.3 An adaptive grid discretization of Eq. (3.33)

leads to the following evolution equation for the fine-grained pdf h′(z, t;x)

ρ
∂h′

∂t
+

3∑

j=1

ρũj
∂h′

∂xj
=

3∑

k=1

∂

∂xk

(
ρΓ

∂h′

∂xk

)
− ρ
√

2Γ

3∑

k=1

∂h′

∂xk
Ẇk(t)

−
nφ∑

i=1

∂h′

∂zi
ρ (si(·,θ) +mi(x, t,θ)) .

(B.21)

By applying the expectation operator 〈·〉 to Eq. (B.21), we obtain on account of the

commutation property of 〈·〉, the 〈·〉-analogue of Eq. (3.18) and by the martingale property

of the Itô stochastic integral

ρ
∂h

∂t
+

3∑

j=1

ρũj
∂h

∂xj
=

3∑

k=1

∂

∂xk

(
ρΓ

∂h

∂xk

)
−

nφ∑

i=1

∂

∂zi
(ρh (si(·, z) +mi(x, t, z))) . (B.22)

This evolution equation corresponds to our physical modelled pdf transport equation for

f̃(z;x, t) given in Eqs. (4.25), (4.28) and (4.30).

B.3 An adaptive grid discretization of Eq. (3.33)

In an explicit formulation, the time evolution of the coordinate transformation over the

upcoming (fractional) time step, t ∈ [tk, tk+1], k = 0, 1, . . ., is forecast explicitly in terms

of the current coordinate transformation l̄(τ,x, tk) and the current solution for the LES-

filtered number density N(l,x, tk) ≡ F (τ̄(l,x, tk),x, tk).

By defining the transformed stochastic fields φ(t; τ,x) according to

θ(t; l,x) ≡ φ(t; τ̄(l,x, t),x) (B.23)

and introducing Eq. (B.23) into Eq. (3.33), we obtain after evaluation at l̄(τ,x, t) and in

combination with Eqs. (2.9) through (2.12)

∂φi
∂t

+
3∑

j=1

(
uj(x, t) +

√
2Γ(x, t)Ẇj(t)

) ∂φi
∂xj

+
1

w

∂φi
∂τ

(
G(l̄,φ)− g′(τ,x, t)

)

=

3∑

j=1

∂

∂xj

(
Γ(x, t)

∂φi
∂xj

)
+

Γ(x, t)

w2

∂

∂τ

∂φi
∂τ

3∑

j=1

(
∂l̄

∂xj

)2

− 2Γ(x, t)

w

3∑

j=1

∂2φi
∂xj∂τ

∂l̄

∂xj
+ si(l̄,φ) +mi(l̄,x, t,φ), i = 1, . . . , nφ,

(B.24)

where g′(τ,x, t) involves the contribution of l̄(τ,x, t) to the overall growth rate (compare

237

B The LES-PBE-PDF method

with Eq. (2.22))

g′(τ,x, t) =
∂l̄

∂t
+

3∑

j=1

(
uj(x, t)−

∂Γ(x, t)

∂xj
+
√

2Γ(x, t)Ẇj(t)

)
∂l̄

∂xj

− Γ(x, t)b(τ,x, t)

(B.25)

and b(τ,x, t) summarizes the second derivatives of l̄(τ,x, t),

b(τ,x, t) =
3∑

j=1

∂2 l̄

∂x2
j

+
1

w2

∂2 l̄

∂τ2

3∑

j=1

(
∂l̄

∂xj

)2

. (B.26)

Similar to Eqs. (3.35) through (3.37), the fractional steps for convection/diffusion,

mixing and fluid phase reaction corresponding to Eq. (B.24) are given by

∂φi
∂t

+

3∑

j=1

(
uj(x, t) +

√
2Γ(x, t)Ẇj(t)

) ∂φi
∂xj

=

3∑

j=1

∂

∂xj

(
Γ(x, t)

∂φi
∂xj

)
,

i = 1, . . . , nφ,

(B.27)

and

∂φi
∂t

= mi(x, t,φ), i = 1, . . . , nφ, (B.28)

∂φi
∂t

= ω̇i(φ), i = 1, . . . , nφ − 1. (B.29)

Note that, also under the coordinate transformation, the stochastic scalars φi(t; τ,x) which

physically describe the fluid phase (i = 1, . . . , nφ − 1) evolve independently of the trans-

formed particle property τ .

The PBE fractional step encompasses additional transport terms that account for the

redistribution of resolution as the LES-filtered number density evolves

∂φnφ

∂t
+ φnφ

∂G(l̄,φ)

∂l
+

1

w

∂φnφ

∂τ

(
G(l̄,φ)− g′(τ,x, t)

)

=
Γ(x, t)

w2

∂

∂τ

∂φnφ

∂τ

3∑

j=1

(
∂l̄

∂xj

)2

− 2Γ(x, t)

w

3∑

j=1

(
∂2φnφ

∂τ∂xj

∂l̄

∂xj

)
+ ṡ(l̄,φ).

(B.30)

Except for the Wiener term, Eq. (B.30) corresponds to Eq. (2.16). If, in a practical

implementation, the mixed partial derivatives ∂2φnφ
/∂xj∂τ , j = 1, . . . , 3, are evaluated at

the previous point in time, then Eq. (3.38) can be solved independently for each spatial

grid point.

Similar to Eq. (3.39), an observable H(Y(x, t), N(·,x, t)) can be approximated by

Monte-Carlo estimates based on nf realizations φ(i)(t; τ,x), i = 1, . . . , nf , of the trans-

238

B.3 An adaptive grid discretization of Eq. (3.33)

formed stochastic fields φ(t; τ,x),

H(Y(x, t), N(·,x, t)) ≈ 1

nf

nf∑

i=1

H(φ(i)(t; τ̄(·,x, t),x)). (B.31)

239

240

Appendix C

Algorithmic details of the Radau5

GPU implementation

C.1 Radau5

Figures C.1 and C.2 depict a flow chart of the OpenCL reimplementation of the Radau5

algorithm.

C.2 Determining the number of kernel invocations

Figure C.3 lists the pseudo-code for an algorithm to determine the number of ODE systems

np per kernel invocation for the overlapping computation/data transfer scheme of Section

5.5.5.

241

C Algorithmic details of the Radau5 GPU implementation

�

�

� �

×

×

×

�

Logical control variablesINPUT

WHILE (t < tE , n < N , ns < Ns, h > |t|10ǫ)

IF (!isRejct)

IF (!isCalcl and !skipLhs)

IF (!isLu)

IF either linear system is singular

IF (isFirst)

ELSE

IF (!isConvg)

? ?

Initialize control variables

Compute convergence tolerances

fac← max(fac, ǫ)0.8 ×

Initial conditions
y

Absolute/relative convergence tolerances
absTol, relTol

is
R
ej
ct

is
C
al
cl

is
L
u

sk
ip
L
h
s

is
C
on

v
g

is
D
iv
rg

is
F
ir
stt, tE , h, hmax, n = 0, N = 105, ns = 0, Ns = 5, ǫ = 10−16, fac = 1.0, θ0 = 10−3

tolj = absTolj + relTolj|yj|

Evaluate right-hand-side (rhs)

Compute/approximate Jacobian

Compute lhs for real/complex linear system

LU-decompose the real/complex linear system

ns ++

h← h
2

Increment the number of time steps
n++

Initialize
z

(0)
i = 0,w

(0)
i = 0

z
(0)
i = g

(2)
i (s1, s2, s3)

w
(0)
i = T−1z

(0)
i

Modified Newton scheme (j steps)
• Compute the incremental vectors w

(j)
i

• z(j)
i = Tw

(j)
i

• Return convergence rate estimate θ

Adjust time step size h

Estimate the single step error e

Figure C.1 Flow chart indicating the control flow and the step size adjustment scheme of the OpenCL reim-
plementation of Radau5. This depiction slightly differs from the original Fortran 77 implementation by Hairer
and Wanner [67] since the goto’s have been removed and the individual steps encapsulated. The variables
T = T,W = (wT

1 ,wT
2 ,wT

3)T and Z = (zT1 , zT2 , zT3)T appear in the context of Reference [67, Chapter IV.8], while

g
(1)
i ,g

(2)
i and si, i = 1, . . . , 3, are auxiliary functions and vectors, respectively, which symbolize the interpolation of

starting values for the Newton iteration from past solution vectors. (Continued in Figure C.2.)

242

IF (e < 1)

IF (e < 1)

IF (isRejct)

ELSE

ELSE

IF (θ ≤ θ0)

ELSE

ELSE

�

�

�

×

×× ××

END

IF (isFirst)

Update time

Extrapolate for starting values of next Newton scheme
si = g

(1)
i (z

(j)
1 , z

(j)
2 , z

(j)
3)

Step size predictor

Update
hold ← h

step since the last accepted step
There has been at least one rejected

h← max(hnew, h)

h← max(hnew, hmax)

Update
h← hnew

h← (tE − t)

h← h
10

h← hnew

t← t + h

y← y + z
(j)
3

Update the solution vector

�

The next step is the final step

IF (t+ hnew < tE − |t|10ǫ)

ELSE

IF (θ ≤ θ0 and 1 ≤ hnew

h
≤ 1.2)

hnew from Hairer and Wanner [67, Eq. (8.20)]

Figure C.2 (Continued from Figure C.1.) Flow chart indicating the control flow and the step size adjustment
scheme of the OpenCL reimplementation of Radau5.

243

C Algorithmic details of the Radau5 GPU implementation

Input: ns, nr, msp

1. Determine the remaining memory rm that is available on the device

2. Query the maximum allocatable buffer size rb

3. Compute the size of the memory buffers required by a single ODE system

nb = {4ns(3 + ns) + (2 + ns) + nrmsp}8 B + {2ns}4 B (C.1)

4. Compute the maximum number of ODE systems that can be solved in a single t-cycle

n1 = floor

(
max(rm, rb)

nb

)
(C.2)

5. Compute the maximum number of ODE systems that can be solved in a single p-cycle

n2 = floor

(
max(rm, rb)

nb + (ns + 2)8 B

)
(C.3)

6. Compute

nhd = floor

(
t̄hd

BW

(ns + 2)8 B

)
(C.4)

7. If n > min(nhd, n1), then (do s p-cycles)
If n2 > nhd, then

s = max
(

1, ceil
(

n
2nhd

))
(Eq. (5.33))

Else
s = max

(
1, ceil

(
n

2n2

))
(Eq. (5.30))

End
Else (do a single t-cycle)

np = n
End

Output: np

Figure C.3 Scheme for determining the number of ODE systems np per kernel invocation.

244

