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Summary 

The aim of this study was to define axes from clearly identifiable landmarks on the 

proximal aspect of the humerus and to compare these for reasonable best 

alternatives to the use of the humeral canal and elbow epicondylar axes to define a 

humeral coordinate frame (HCF). The elbow epicondylar axis (EC) and six different 

humeral canal axes (HC) based on varying lengths of humerus were quantified from 

twenty-one computed tomography scans of humeri. Six additional axes were defined 

using the proximal humerus only. These included a line from the centre of a sphere 

fit on the humeral head to the surface area centroid of the greater tubercle region, 

(GT). The inclinations of these axes relative to EC were calculated. GT was found to 

be the most closely aligned to EC (13.4° ±6.8°). The inclinations of the other axes 

ranged from 36.3° to 86.8°. The HC axis orientation was found to be insensitive to 

humeral shaft lengths (variability, within average: 0.6°). This was chosen as 1 of 2 

axes for the HCF. This was also the most inter-subject related axis to EC with 

inclination standard deviation of ±1.8°. EC was therefore predicted from this such 

that if the superior axis [1 0 0] of an image scan is maintained and the humerus 

rotated to make its quantified HC align superiorly in the direction [0.98  0.01   0.01], 

then its EC axis lies laterally in the direction [0 0 1]. This study demonstrates that it is 

possible with confidence to apply an orthogonal coordinate frame to the humerus 

based on proximal imaging data only.  
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Introduction 

The osteological anatomy of the proximal humerus is known to vary in terms of the 

sphericity of the humeral head, (Soslowsky et al. 1992) the position of the bicipital 

groove (Robertson et al. 2000) and other features (Pearl, 2005; Amadi et al. 2008b). 

The most robust methods for defining a coordinate frame on the humerus require the 

use of the distal humerus to define a medio-lateral axis; the use of the proximal 

humerus only to define a robust coordinate frame has not been proven as yet. The 

primary need for defining a coordinate frame in this context is to have an approach 

that can be used for glenohumeral (GH) kinematics studies. The most common axes 

that are used to define a coordinate frame are the humeral canal (HC) and 

epicondylar (EC) axes (Wu et al. 2005; Van der Helm, 1997; Fung et al. 2001; 

Levasseur et al. 2006; Doyle et al. 1998; Macdonald et al. 2008). Their near-

orthogonality gives them mathematical advantages as appropriate axes for the 

definition of the humeral coordinate frame (HCF), especially when obtained from 2D 

radiographic images. A number of different techniques have been used in the 

literature to quantify these axes (Van der Helm, 1997; Wu et al. 2005; Bobrowitsch et 

al. 2007; Hill, 2006; Amadi, 2006) and their applicability is related to the ease of 

obtaining the landmarks that have been used to define them. One of the key 

specifications of these coordinate frames is that landmarks must be chosen such 

that the resulting principal axes of the coordinate frame automatically orient to “the 

standard anatomical planes (coronal, sagittal, axial) of a person standing in the 

upright position” (Amadi et al. 2008a). In the anatomical position, the shaft axis is 

approximately directed inferior-superiorly while the epicondylar axis is in the 

approximate medio-lateral sense (De Wilde et al. 2003). Therefore, the commonly 

used axes satisfy this specification. However, if a scanning field of view (FOV) does 

not include the distal humeral epicondyles, as is the case in standard shoulder or 
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chest scans, then the standard coordinate frame definition is not possible. The aims 

of this study were to:  

(i) identify the most closely oriented or consistent related axis to EC for its 

replacement or prediction from a 3D scan of the proximal humerus, 

(ii) use the above and a proximal humeral canal axis to propose a HCF 

definition that can be applied to a standard shoulder scan. 

 

Materials and Methods 

Twenty-one CT scans of whole humeri were obtained for this study including two 

contra-laterals, slice thickness (1.5 mm). An inferior-superior axis through the centre 

of the humeral shaft was quantified (HC) on all the datasets as follows (Figure 1):  

 The surgical neck was identified. By anatomical definition, this is the 

constriction of the humerus immediately distal to the lesser and greater 

tubercle regions (Gray, 2000).  Therefore the immediate axial slice distal to 

the tubercles was identified as the surgical neck slice.   

 The cross-sections of the humeral shaft axial slices within 10 mm distal to 

the surgical neck slice were identified and contours drawn on these. 

 Ellipses were fitted to the humeral shaft at each cross section 

 A least-squares line was fitted to the centres of the ellipses. 

 This procedure was repeated for each specimen for humeral shaft lengths 

of 20, 30, 40, 50 and 60 mm distal to the surgical neck (Bobrowitsch et al. 

2007, Figure 1). 

A sphere-fitting algorithm (Eberly, 2008; Amadi, 2006) was used to define the centre 

(c) of the humeral head (Figure 2). EC was defined as a unit vector from the medial 

margin to the lateral margin of the epicondyles and was found by digitisation of these 
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marginal regions and quantification of their surface centroids. Five additional 

proximal humeral axes were quantified on each dataset. These were: 

(1) A perpendicular line, CN from c to HC-axis. 

(2) FC, from c to the proximal end-point of the bicipital groove, the fovea 

capitis, ‘f’. 

(3) GT, from c to the area centroid of the greater tubercle region. 

(4) LT, from c to the area centroid of the lesser tubercle region. 

(5) AN, the normal to the plane upon which the anatomical neck lies 

(Figure 2).  

EC was then compared to all six other quantified axes from the same specimen and 

the inclinations computed. These were averaged over the twenty-one specimens 

studied. A coordinate system converter algorithm was applied to EC from the 

specimens expressing and aligning them in a common coordinate system (Amadi et 

al. 2008b). This also converted the axis with the lowest standard deviation (SD) of 

inclination to the same common coordinate system and the average of its relative 

orientation from EC was quantified. These were used to define the transfer function 

for the prediction of EC from the proximal aspect of any humerus. Error analysis for 

the prediction accuracy of the transfer function was carried out by the quantification 

of the ‘Mean Percentage Prediction Error (MPPE)’ and the ‘Mean Absolute 

Percentage Prediction Error’ (Yaffee and McGee, 2000).  

The most appropriate proximal axis to replace EC in the new frame definition was 

considered. This was the second (H2temp) of the two HCF parenting axes, the first 

being HC. The strengths of inter-subject relationship (inclination SD) between HC 

and the rest of the quantified proximal axes were calculated. EC was replaced with 

its most closely oriented axis provided this had a stronger inter-subject relationship 
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with HC compared with the strongest EC relationships. If this condition was not met, 

EC was predicted using the axis of its strongest relationship. 

The HCF: The superiorly directed HC was 1 of 3 principal axes of the proposed HCF. 

The cross product between HC and H2temp was quantified as the second orthogonal 

(H3) of the frame. This is directed anteriorly. The third orthogonal axis (H2) was 

quantified as the cross product between HC and H3. This was approximately in 

same sense as H2temp.  

 

Results 

The average orientation variation of axis HC for different humeral shaft lengths was 

0.6°± 0.3°. The strongest landmark inter-subject relationship measured by SD of 

±1.8° was between EC and HC (Table 1). An axis directed from the humeral head 

centre to the area centroid of the greater tubercle (GT) was the closest orientation to 

the epicondylar axis, having the lowest average inclination angle of 13.4° ± 6.8°. GT 

however inclines at an average of 83° and has a relatively weaker landmark 

relationship of ±3.5° with HC. The EC-axis prediction transfer function reveals that if 

any image data is mapped into a coordinate system such that  

 the superior axis [1 0 0] of this system is made to align with that of the 

original scan coordinate system but  

 the humerus rotated to allow the quantified HC to align superiorly in the 

direction [0.98  0.01   0.01] and the normal from HC to the greater tubercle 

centriod in the direction [0.00  -0.02  0.98], then  

 the EC of such a specimen would lay laterally in the direction [0 0 1].  
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Error analysis of the transfer function accuracy in the prediction of EC from HC-axis 

quantified a ‘mean percent prediction error’ of -0.03% of their inclination angle and a 

‘mean absolute percent prediction error’ of 1.6%. 

Discussion 

At the anatomical position, with the forearm by the side of the body and the palm of 

the hand facing forward, De Wilde et al (2003) reported that the EC inclines at 3° 

frontal to the coronal plane. In this study, we have shown that the GT-axis is nearly 

in the same direction as the EC and may serve as a replacement. However, from our 

inclination and relationship strength analyses, EC is more strongly related (±1.8°) 

and nearly orthogonal (86.8°) to axis HC than GT to HC (±3.5°, 83°). Therefore HC 

axis quantified by the technique used here and the EC axis predicted from this are 

the best for a consistent HCF. We also quantified the average vectorial relationship 

between HC and EC as a transfer-function for the prediction of EC of any bone when 

its axis HC is quantified (Amadi et al. 2008b). Hence, if any image data is mapped 

into a coordinate system with its scan coordinate superior axis [1 0 0] aligned and 

fixed but the humerus rotated such that its quantified HC aligns superiorly in the 

direction [0.98  0.01  0.01], then axis EC of such a specimen lies laterally in the 

direction [0 0 1]. In addition to a high orientation consistency of HC from any 

available length of humeral shaft and its strong anatomical landmark relationship 

with EC, our error analysis shows that EC could be accurately predicted from the 

quantified transfer function with a mean confidence of 99.97%. The coordinate frame 

developed in this study can be applied in a further study to define a joint coordinate 

system for the investigation of the kinematics of the glenohumeral joint.  
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Tables 

 

Table 1: Axes inclinations relative to epicondylar and humeral canal axes. 

 

Axes 

Inclinations (°) 

With EC With HC 

(mean) (SD) (mean) (SD) 

AN 49.8 7.2 52.3 5.0 

FC 72.3 6.4 41.0 6.5 

GT 13.4 6.8 83.0 3.5 

CN 36.3 17.4 product 

LT 81.2 7.7 82.8 6.0 

HC 86.8 1.8 NA 

EC NA 86.8 1.8 
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Figure Legends 

 
Figure 1: (A) Segmented humeral shaft cross-sections 

    (B) Humeral head centre and canal axis 
 

Figure 2: Various quantified axes on the humerus 
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Figure 1: (A) Segmented humeral shaft cross-sections 
(B) Humeral head centre and canal axis 
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Figure 2: Various quantified axes on the humerus 


