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in spacetime.

Keywords: D-branes, Flux compactifications, Non-Commutative Geometry, String Du-

ality

ArXiv ePrint: 1903.04947

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP09(2019)051

mailto:c.hull@imperial.ac.uk
mailto:R.J.Szabo@hw.ac.uk
https://arxiv.org/abs/1903.04947
https://doi.org/10.1007/JHEP09(2019)051


J
H
E
P
0
9
(
2
0
1
9
)
0
5
1

Contents

1 Introduction and summary 1

2 Open string dynamics in B-fields 7

3 Compactification on the twisted torus 9

3.1 SL(2,Z) monodromies 11

4 D3-branes on T-folds: parabolic monodromies 13

4.1 Worldvolume geometry 14

4.2 Noncommutative Yang-Mills theory 15

4.3 Interpretation of the decoupling limit 17

5 D2-branes on T-folds: elliptic monodromies 18

5.1 Worldvolume geometry 20

5.2 Noncommutative Yang-Mills theory 20

5.3 Interpretation of the Morita equivalence monodromy 22

5.4 D2-brane theory at the orbifold point 24

6 D-branes and doubled twisted torus geometry 25

6.1 The doubled twisted torus 26

6.2 D-branes in the doubled twisted torus 30

6.3 D2-branes on T-folds 32

7 D3-branes on essentially doubled spaces 34

7.1 Worldvolume geometry 34

7.2 Noncommutative Yang-Mills theory 35

A The Buscher construction 37

1 Introduction and summary

One of the most striking features of T-duality, which relates different string backgrounds

describing the same physics, is that it leads to the possibility of non-geometric backgrounds

which do not have a description in terms of conventional Riemannian geometry [1] (see

e.g. [2–4] for reviews and further references). Some non-geometric backgrounds arise as T-

duals of conventional geometric backgrounds, while others are not geometric in any duality

frame. Typical examples start with geometric spaces which admit a torus fibration, with

transition functions that are diffeomorphisms of the torus fibres and shifts of the B-field.

T-duality transformations along the torus fibres (using the standard Buscher rules [5, 6] on
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a covering space) in general lead to T-folds [1]. These are locally geometric — locally they

look like a product of the torus with a patch of the base — but the transition functions in

general involve T-duality transformations on the torus fibres. The Buscher rules give T-

duality in isometric directions. For non-isometric directions, there is a notion of generalised

T-duality that can be applied [7]. For a circular direction in which the fields depend

explicitly on the coordinate x of that circle, a generalised T-duality transforms this to a

configuration in which the fields depend on the coordinate x̃ of the T-dual circle. This

x̃-dependence means that it cannot be viewed as a conventional background even locally,

but has intrinsic dependence on the T-dual coordinates, so a doubled geometry formulation

is essential. This concept of generalised T-duality has been checked in asymmetric orbifold

limits [7], and is in agreement with the concept of generalised T-duality arising in double

field theory [8–10]. We will refer to configurations in which fields and/or transition functions

have explicit dependence on the dual coordinates x̃ as essentially doubled.

In this paper we will consider n-dimensional backgrounds obtained by T-dualising the

simplest examples of torus bundles, which are fibrations of n − 1-dimensional tori Tn−1

over a circle S1 with vanishing B-field, sometimes referred to as twisted tori [7, 11–15].1

The monodromy around the base circle is a diffeomorphism of the torus fibres, in the

mapping class group SL(n − 1,Z). These and their T-duals give compactifications with

a duality twist [11], which are stringy generalisations of Scherk-Schwarz reductions [13].

For definiteness, we will focus on the case of backgrounds in n = 3 dimensions, where all

of our considerations can be made explicit. Then the simplest case is that of a parabolic

monodromy, acting as an integer shift τ 7→ τ + m of the complex structure modulus τ

of the two-torus T 2. In this case, the torus bundle is the nilfold of degree m, which is

T-dual to a geometric three-torus T 3 with H-flux of the B-field proportional to m [13].

Applying T-duality transformations then results in a much-studied chain of transformations

between geometric and non-geometric backgrounds [7, 11, 12, 14, 15]. This is conventionally

depicted in a schematic form as [14]

Hijk
Ti←→ f i

jk
Tj
←→ Qij

k
Tk←→ Rijk (1.1)

where Ti denotes a T-duality transformation along the i-th coordinate direction. Successive

T-dualities take the three-torus with H-flux to a nilfold with what is sometimes called

“geometric flux” f , then to a T-fold with “Q-flux”, and finally a generalised T-duality takes

this to an essentially doubled space with “R-flux”. The cases with f -, H- and Q-flux can be

thought of as T 2 conformal field theories fibred over a circle coordinate x, with monodromy

in the T-duality group O(2, 2;Z), while the case with R-flux is an essentially doubled space

which is a fibration over the T-dual circle with dual coordinate x̃ and monodromy in the

T-duality group. For more general monodromies, such as the elliptic monodromies that

we consider in detail below, the results are rather different and do not follow the pattern

suggested by (1.1). As we shall see for the elliptic case, acting on the twisted torus ‘with

f -flux’ with either Ti or Tj gives a T-fold, and no dual with only H-flux arises. A further

T-duality then gives an essentially doubled space.

1Closely related non-geometric backgrounds involving torus bundles with T-duality monodromy around

singular fibres were discussed in [16, 17].
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A useful perspective for understanding non-geometry in string theory is to study D-

branes in these backgrounds. D-branes can be used as probes to analyse the geometry of a

string background and to provide an alternative definition of the background geometry in

terms of the moduli space of the probe. D-branes in non-geometric backgrounds were pre-

viously discussed from the point of view of doubled (twisted) torus geometry in [1, 18–20],

directly in string theory from a target space perspective in [21–23], and from open string

worldsheet theory in [24, 25].

In the present paper we focus on an approach based on effective field theory, rein-

terpreting all of the T-duality transformations in the chain (1.1) for the nilfold and the

corresponding chains for other backgrounds in terms of open strings. In this setting it is

important to define a low-energy scaling limit which decouples the deformations of geom-

etry due to non-locality of strings from the “genuine” non-geometry due to background

fields. In the case of D-branes in flat space with a constant B-field background, the D-

brane worldvolume theory is a noncommutative supersymmetric Yang-Mills theory [26],

and the decoupling limit was carefully set out in [27]; these considerations were extended

to the case of D-branes in curved backgrounds with non-constant B-fields and non-zero

H-flux in [28, 29] (see e.g. [30–32] for reviews and further references). This limit is often

neglected in the literature on embeddings of worldvolume noncommutative gauge theories

in string theory.

To this end, we revisit the problem of formulating effective noncommutative Yang-

Mills theories on D-branes in non-geometric tori in the decoupling limit, extending the

earlier work of [22, 23] (see also [21]) in various directions. In these works, D3-branes

in the simplest T-fold background, originating via T-duality from a flat three-torus with

H-flux, are shown to have an effective description as a noncommutative gauge theory on

a flat torus. The non-geometry of the background is then interpreted as the dependence

of the noncommutativity parameter on the base coordinate x ∈ S1 of the original torus

fibration, with a monodromy around the circle that is a Morita transformation. Morita

equivalence was understood in [27] as the open string version of T-duality in the decoupling

limit, which is a symmetry of the noncommutative Yang-Mills theory.

In the following we will re-examine D-branes on non-geometric spaces in a more general

setting, allowing for more general monodromies beyond the parabolic ones. The elliptic

monodromies are of particular interest as they give string theory backgrounds directly,

without the need to fibre over some base space [11]. For the particular case of the Z4

elliptic monodromy, we find that the low-energy effective field theory is defined on a non-

geometric torus and that all of its moduli, including the noncommutativity parameter and

the Yang-Mills coupling, have a monodromy in the base circle coordinate x in such a way

as to render the supersymmetric Yang-Mills theory invariant under Morita duality. To the

best of our knowledge, such an example of a noncommutative fibration with non-geometric

torus fibres has not appeared before in the literature. The monodromy also interchanges

D0-brane and D2-brane charges, which swaps the roles of the rank of the gauge fields and

their topological charge in the worldvolume gauge theory.

We also study the effective noncommutative gauge theories in essentially doubled

spaces using the doubled twisted torus formalism of [33–36], in which D-branes have been
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classified in [19]. Here we find a dependence of the noncommutative gauge theory on the

dual base coordinate x̃ ∈ S1, thus further exemplifying the need of the doubled formalism

in describing such configurations, another point of emphasis which is sometimes neglected

in the literature. The general picture of the effective theories on D-branes in non-geometric

polarisations of the doubled twisted torus geometry is then that of a parameterised family

of noncommutative Yang-Mills theories with monodromies in x or x̃ that are Morita trans-

formations. These arise as decoupling limits of backgrounds with monodromies in x or x̃

that are T-duality transformations.

An important feature of our considerations is the role of the doubled geometry. For

simple backgrounds, there is a conventional geometry which is seen by particles or mo-

mentum modes, while string winding modes will see a T-dual geometry. However, in more

complicated settings there is a doubled geometry which cannot be disentangled to give a

separate geometry and dual geometry, and the momentum and winding modes see different

aspects of the full doubled geometry. For a T-fold, there is a local split, referred to as a

polarisation in [1], and local coordinates in a patch can be split into spacetime coordinates

and dual coordinates. However, globally this is not possible for a T-fold as the T-duality

transition functions mix the two kinds of coordinates so that there is no global polarisa-

tion. For essentially doubled spaces, the dependence of the background on the coordinate

conjugate to the winding number means that a conventional undoubled formulation is not

possible even locally. Configurations that are related to each other by T-dualities all arise as

different polarisations of the same doubled geometry. For example, the four configurations

in the duality chain (1.1) all arise as different polarisations of the same six-dimensional

doubled space [35]. T-duality can be viewed as changing the polarisation [1].

A polarisation splits the doubled coordinates XM into “spacetime coordinates” xm and

dual coordinates x̃m. For a conventional configuration, the background fields include the

closed string metric g, the two-form B-field, and the dilaton φ. These background fields

depend only on xm and one obtains the usual spacetime interpretation, at least locally.

For an essentially doubled configuration, some of the fields depend explicitly on the dual

coordinates x̃m. For a conventional configuration with explicit dependence on a coordinate

xι, a generalised T-duality along the vector field ∂ι =
∂

∂xι will change the dependence of the

fields on xι to dependence of the fields on the dual coordinate x̃ι, resulting in an essentially

doubled background.

The doubled geometry formulation of D-branes has some interesting features [1]. Con-

sider a Dp-brane wrapped on an n-torus Tn with coordinates xm, where m = 1, . . . , n and

p ≤ n. Then the ends of open strings will have p coordinates xiD satisfying Dirichlet bound-

ary conditions on Tn and n− p coordinates xaN satisfying Neumann boundary conditions.

The doubled space is a torus T 2n with coordinates xm, x̃m, with m = 1, . . . , n. As T-duality

interchanges Dirichlet and Neumann boundary conditions, the coordinates dual to xiD are

p coordinates x̃N i satisfying Neumann boundary conditions and the coordinates dual to

xaN are n − p coordinates x̃D a with Dirichlet boundary conditions. Then in the doubled

torus there are precisely n Dirichlet coordinates xiD, x̃D a, so that whatever the value of p,

the doubled picture is that of a Dn-brane wrapping a maximally isotropic (Lagrangian)

n-cycle in T 2n. As a result, a Dp-brane is secretly a Dn-brane in the doubled space.
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The polarisation determines the subset of the n Dirichlet directions which are regarded as

physical, and changing the polarisation changes this subset: a T-duality that changes the

polarisation from one with p Dirichlet physical coordinates to one with q Dirichlet physical

coordinates is interpreted as taking a Dp-brane to a Dq-brane. This picture was developed

and extended to more general doubled spaces in [18, 19].

The effective worldvolume theory on a D-brane is a noncommutative Yang-Mills theory

coupling to a background open string metric GD with noncommutativity bivector θ and

gauge coupling gYM. In general the background fields (GD, θ) as well as the coupling gYM

can depend on the coordinates xm. The action of T-duality on the closed string background

(g,B, φ) gives rise to Morita transformations of (GD, θ, gYM), as we will review in section 2,

and in our considerations of D-branes on non-geometric backgrounds we find open string

analogues of T-folds in which the dependence (GD(x), θ(x), gYM(x)) on a circle coordinate

x can have a monodromy that is a Morita transformation. Surprisingly, we also find open

string analogues of essentially doubled backgrounds in which (GD, θ, gYM) have explicit

dependence on a doubled coordinate x̃, possibly with a Morita monodromy. This suggests

that the effective field theory should be defined on the full Dn-brane in the doubled space,

and so the fields can depend on all n Dirichlet coordinates xiD, x̃D a.

One of the complications in the case of the flat three-torus withH-flux and its T-duals is

that they do not define worldsheet conformal field theories, and so are not solutions of string

theory. However, there are string solutions in which these appear as fibres. The simplest

case is that in which these are fibred over a line. Taking an NS5-brane with transverse

space R× T 3 and smearing over the T 3 gives a domain wall solution which is the product

of six-dimensional Minkowski space with R × T 3, where there is constant H-flux over T 3

and the remaining fields depend explicitly on the coordinate of the transverse space R [13].

T-duality then takes this to a metric on the product of R with the nilfold [13, 21, 22, 37, 38]

that is hyperkähler, as was to be expected from the requirement that the background is

supersymmetric. Then further T-dualities in the chain (1.1) give T-folds and essentially

doubled spaces fibred over a line; the proper incorporation of such spaces in string theory

will be discussed further in [39]. This leads to complications in the analysis of D-branes

and decoupling limits in such backgrounds [22].

Due to the difficulties arising from such fibrations over a line or other space, we will be

particularly interested in examples that do give string theory solutions directly without the

need for introducing a fibration. For the cases with elliptic monodromy, at special points

in the moduli space the background reduces to an orbifold defining a conformal field theory

and so provides a consistent string background. However, we will also be interested in the

elliptic monodromy case at general points in the moduli space; these can arise as fibres in

which the moduli vary over a line or a higher-dimensional base space.

From the effective field theory point of view, the duality twisted reduction from ten

dimensions gives a Scherk-Schwarz reduction of ten-dimensional supergravity to a seven-

dimensional gauged supergravity. The fact that in general the product of the internal

twisted torus with seven-dimensional Minkowski space does not define a conformal field the-

ory, and so is not a supergravity solution, is reflected in the fact that the seven-dimensional

supergravity has a scalar potential. In the parabolic monodromy case, the scalar potential
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has no critical points and so there are no Minkowski vacua, but there are domain wall

solutions which lift to the ten-dimensional geometry given by the twisted torus fibred over

a line. In the elliptic monodromy case, there is a minimum of the potential corresponding

to the orbifold compactification to seven dimensions [11], but again there are more general

domain wall solutions in which the moduli vary over a line.

We will also consider the dilaton in what follows. For a given background, T-duality

will change the dilaton according to the Buscher rules. Defining a conformal field theory

requires the metric, B-field and dilaton to satisfy the beta-function equations, but it will be

useful to consider general configurations of metric, B-field and dilaton without necessarily

requiring them to satisfy the beta-function equations — they then define more general

compactifications, as outlined above.

One of our motivations for revisiting these field theory perspectives is to shed some

light on the relevance of the noncommutative and nonassociative deformations of closed

string geometry which were recently purported to occur in certain non-geometric back-

grounds [40–44] (see e.g. [45] for a review and further references). In contrast to these

analyses, here we work in a controlled setting with (doubled) twisted tori and quantised

fluxes, without any linear approximations and with an exact effective field theory descrip-

tion of the string geometry. Noncommutative and nonassociative geometries were sug-

gested as global (algebraic) descriptions of T-fold and R-flux non-geometries respectively

in the mathematical framework of topological T-duality in [46–49], which strictly speaking

only applies to the worldvolumes of D-branes, but it was further suggested that such a

description should also apply to the closed string background itself. Such a suggestion re-

quires further clarification, insofar that in closed string theory itself there is no immediate

evidence for such nonassociative structures. While we reproduce and generalise the non-

commutative geometries on D-branes in parabolic T-fold backgrounds, which were shown

by [22, 23] to agree with the expectations from topological T-duality, we do not directly

find a nonassociative geometry on D-branes in R-folds. Instead, we find that the decou-

pled noncommutative gauge theory on the D-branes depends explicitly on the transverse

doubled coordinate x̃, and so is essentially doubled and it appears that these cannot be

fully understood in an undoubled space.

The organisation of the paper is as follows. In section 2 we briefly review, following [27],

the well-known description of the low-energy effective dynamics of D-branes in constant

B-fields in terms of noncommutative gauge theory, and in particular its Morita duality on

a torus which is inherited from the T-duality symmetry of the closed string background.

In section 3 we briefly review some general aspects of string theory compactifications on

twisted tori, which are subsequently used to study the worldvolume gauge theories on

D-branes on three-dimensional T-folds via T-duality. We treat the cases of parabolic mon-

odromies in section 4 and of elliptic monodromies in section 5. We demonstrate, in both

cases of parabolic and Z4 elliptic twists, that there exist well-defined low-energy scaling

limits which completely decouple the open strings from closed strings, and wherein the

non-geometry of the T-fold background is manifested in the open string sector as a pa-

rameterised family of noncommutative gauge theories which are identified under Morita

dualities determined by the particular type of monodromy around x ∈ S1. We give a
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physical interpretation of the scaling limit which reproduces the mathematical description

of the field of noncommutative tori probed by the D-branes, and of the Morita equivalence

bimodules which implement the Morita duality monodromies. In the case of the elliptic

monodromy we examine the theory at the orbifold fixed point where we find that it is

equivalent to an ordinary commutative gauge theory on a flat torus for finite area and

string slope α′. In section 6 we review the doubled twisted torus formalism and the classifi-

cation of D-branes therein. This setting allows us to take the final T-duality transformation

that describes D-branes in essentially doubled spaces, whose decoupled worldvolume gauge

theory is studied in section 7 where we find that in this case the D-branes really probe

a noncommutative doubled geometry. For convenience, in appendix A we summarise the

Buscher T-duality rules including dimensionful factors.

2 Open string dynamics in B-fields

Consider the standard sigma-model for the embedding of an open string worldsheet Σ into

a flat target space with constant metric g, two-form gauge field B and dilaton φ. We impose

boundary conditions by requiring that the boundary ∂Σ is mapped to a submanifold W of

spacetime, which is the worldvolume of a D-brane. At tree-level in open string perturbation

theory, Σ is a disk, which can be mapped to the upper complex half-plane by a conformal

transformation. The boundary of the upper half-plane with coordinate t ∈ R is then

mapped to a curve xi(t) which is the worldline of the end of the string in the D-brane

worldvolume W. We are interested in the dynamics of the open string ends located on

the D-brane. The two-point function of the xi on the boundary of the upper complex

half-plane is given by [27]

〈
xi(t)xj(t′)

〉
= −α′Gij log(t− t′)2 + i

2 Θ
ij sgn(t− t′) . (2.1)

The metric G and the bivector Θ determine the open string geometry seen by the D-brane,

and they are related to the closed string metric g and two-form B by the open-closed string

relation

G−1 +
Θ

2π α′ :=
(
g + 2π α′B

)−1
, (2.2)

which is equivalent to

G = g − (2π α′)2B g−1B ,

Θ = −(2π α′)2 (g + 2π α′B)−1B (g − 2π α′B)−1 . (2.3)

Of particular interest is the second term in the open string propagator (2.1), which depends

only on the ordering of the insertion points of open strings on the boundary of the disk

and hence leads to a well-defined target space quantity, independent of the worldsheet

coordinates.

In [27] it was shown that there is a consistent decoupling limit where the string slope

and closed string metric scale as α′ = O(ǫ1/2) and gij = O(ǫ), with ǫ → 0, which decouples

the open and closed string modes on the D-brane, and in which the bulk closed string

– 7 –
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geometry degenerates to a point. In this limit the first contribution to the propagator (2.1)

vanishes, while the open string metric and bivector are finite and are given by

GD = −(2π α′)2B g−1B ,

θ = B−1 . (2.4)

The open string interactions in scattering amplitudes among tachyon vertex operators

are captured in this limit by the Moyal-Weyl star-product of fields f, g on the D-brane

worldvolume given by

f ⋆ g = ·

[
exp

(
i
2 θ

ij ∂
∂xi ⊗

∂
∂xj

)
(f ⊗ g)

]
, (2.5)

where · (f ⊗ g) = f · g is the usual pointwise multiplication of fields. The massless bosonic

modes on the D-brane are gauge and scalar fields whose low-energy dynamics in the de-

coupling limit is described by noncommutative Yang-Mills theory on W. The effective

Yang-Mills coupling in the case of a Dp-brane gauge theory can be determined from the

Dirac-Born-Infeld action and is generally given by [27]

g2YM =
(2π)p−2

(α′)(3−p)/2
gs e φ

(
det(g + 2π α′B)

det g

)1/2

, (2.6)

where gs is the string coupling. This is finite in the decoupling limit above if gs e φ =

O(ǫ(3−p+r)/4), where r is the rank of the antisymmetric matrix B. These considerations

can be extended to curved backgrounds with non-constant B-field, including those with

non-vanishing H-flux H = dB [28, 29], in which case the Moyal-Weyl star-product (2.5) is

replaced by the more general Kontsevich star-product.

This story becomes particularly interesting in the case when Dp-branes wrap a p-

dimensional torus W = T p. In this case, T-duality of the closed string background trans-

lates into open string T-duality which acts on the D-brane charges. The T-duality group

O(p, p;Z) acts on the closed string moduli

E =
1

α′
(
g + 2π α′B

)
(2.7)

through the fractional linear transformations

Ẽ = (aE + b) (cE + d)−1 for

(
a b

c d

)
∈ O(p, p;Z) . (2.8)

The subgroup SO(p, p;Z) is a proper symmetry of IIA or IIB string theory; in the decou-

pling limit, this translates into SO(p, p;Z) transformations of the open string variables on

the Dp-brane given by

G̃D = (c θ + d)GD (c θ + d)⊤ ,

θ̃ = (a θ + b) (c θ + d)−1 ,

g̃YM = gYM

∣∣ det(c θ + d)
∣∣1/4 . (2.9)
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The remarkable feature is that the noncommutative gauge theory on the Dp-brane inherits

this T-duality symmetry. The transformation of the bivector θ on its own is known from

topological T-duality to define a Morita equivalence between the corresponding noncom-

mutative tori T p
θ and T p

θ̃
, which mathematically preserves their K-theory groups, or more

physically the spectrum of D-brane charges on T p
θ and T p

θ̃
. Thus open string T-duality in

the decoupling limit is a refinement of Morita equivalence, which is referred to as Morita

duality of noncommutative gauge theory.

In the mapping of T-duality of the closed string background to Morita equivalence

of noncommutative Yang-Mills theory with gauge group U(n), it is generally necessary to

introduce a closed two-form [27, 50, 51]

Φ =
1

2n
Qij dx

i ∧ dxj (2.10)

on the D-brane worldvolume, which can be thought of as an abelian background ’t Hooft

magnetic flux, where Qij ∈ Z are the Chern numbers of a U(n)-bundle over T p of constant

curvature. The action is then constructed from a shifted form of the noncommutative field

strength tensor

F = F⋆ +Φ1n . (2.11)

The dependence on Φ simply serves to shift the classical vacuum of the noncommutative

gauge theory, giving the fields twisted periodic boundary conditions around the cycles of

T p. Under T-duality, it is required to transform as

Φ̃ = (c θ + d) Φ (c θ + d)⊤ + c (c θ + d)⊤ . (2.12)

For example, if the components of the noncommutativity bivector θ are rational-valued,

then this can be used to provide a Morita equivalence beween noncommutative Yang-Mills

theory with periodic gauge fields and ordinary Yang-Mills theory with gauge fields having

monodromies in Zn ⊂ U(n) [51]. The inclusion of Φ also enables one to follow the T-duality

orbits of the charges of D-branes wrapping non-contractible cycles of even codimension in

the Dp-brane worldvolume, realised as topological charges in the noncommutative gauge

theory, which can be suitably arranged into vectors of SO(p, p;Z) [27, 50].

One purpose of this paper is to investigate this duality in the cases of twisted tori and

the non-geometric backgrounds resulting from these under closed string T-duality.

3 Compactification on the twisted torus

In the duality-twisted dimensional reductions of string theory on an n-dimensional twisted

torus that we consider here, one first compactifies on an n − 1-torus T d, with d = n − 1.

The theory on this internal space is then the conformal field theory with target space T d,

specified by a choice of modulus taking values in the coset space O(d, d)/O(d) × O(d),

which can be represented by a choice of metric g and B-field on the torus T d. The group

O(d, d) then acts naturally on the combination E = 1
α′ (g + 2π α′B) through fractional

linear transformations. The automorphism group of the T d conformal field theory is the
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subgroup O(d, d;Z), which is the T-duality group symmetry of the compactified string the-

ory. Configurations related by an O(d, d;Z) transformation are physically equivalent, and

so the moduli space O(d, d)/O(d)×O(d) should be identified under the action of O(d, d;Z).

The next step is to compactify on a further circle S1 and allow the modulus E of the

T d conformal field theory to depend on the point x ∈ S1. The x-dependence of E(x) is

determined by a map γ : S1 → O(d, d) given by

γ(x) = exp(xM) , (3.1)

for a (dimensionless) mass matrix M in the Lie algebra of O(d, d). This map has mon-

odromy

M(γ) = γ(0) γ−1(1) = exp(M) . (3.2)

For a consistent string theory background, this monodromy is required to be a symmetry

of string theory, and so it must lie in the T-duality group O(d, d;Z) [11, 13]. The condition

that this imposes on the mass matrix M can be thought of as a “non-linear quantisation

condition”.

The map γ is a local section of a principal bundle over S1 with monodromy M(γ).

The moduli of the theory depend on the coordinate x through this section, giving a pa-

rameterised family of conformal field theories over S1 with moduli E(x), so that after a

periodic shift x 7→ x+1 around the base S1, the conformal field theory returns to itself up

to the monodromy M(γ), which is an automorphism of the T d conformal field theory. Two

such bundles are isomorphic, and hence define equivalent theories, if their monodromies lie

in the same O(d, d;Z) conjugacy class.

Suppose that the monodromy M(γ) takes values in the geometric subgroup GL(d,Z)

of the duality group consisting of large diffeomorphisms of the torus T d. In this case

we take γ(x) in GL(d,R) ⊂ O(d, d), and represent γ(x), M and M by d × d matrices.

Then compactifying on T d, followed by compactification on S1 with the duality twist

M(γ) amounts to compactification on a torus bundle X over a circle S1, often referred

to as a twisted torus. We denote the local coordinates on this fibration by (x, y1, . . . , yd),

where x ∈ [0, 1) is the coordinate on the base S1 of radius r and (y1, . . . , yd) ∈ [0, 1)d are

coordinates on the fibres T d. The metric is given by

ds2X = (2π r dx)2 + h(τ)ab dy
a dyb , (3.3)

where h(τ) is the metric on the d-torus, which depends on moduli τ taking values in the

coset space GL(d,R)/SO(d). The x-dependence of τ is defined by

h
(
τ(x)

)
ab

= h(τ◦)cd γ(x)
c
a γ(x)

d
b (3.4)

for some fixed modulus τ◦.

To determine the homologically stable cycles in X which can be wrapped by D-branes,

it will prove useful to have another description of these backgrounds. The twisted torus can

also be described as the quotient GZ\GR of an n-dimensional non-compact Lie group GR by
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a cocompact discrete subgroup GZ, so that much of the local structure of the theory is the

same as that for the reduction on the group manifold GR. In particular, the left-invariant

Maurer-Cartan forms and the generators of the right action of GR are well-defined on the

compact space GZ \GR.

The generators J1, . . . , Jd, Jx of the Lie algebra of GR then have brackets

[Ja, Jx] = Ma
b Jb and [Ja, Jb] = 0 , (3.5)

where M = (Ma
b) is the d × d mass matrix satisfying γ(x) = exp(xM), and GR may be

described as a group of n× n matrices

GR =

{(
γ−1(x) y

0 1

) ∣∣∣∣ x, y
1, . . . , yd ∈ R

}
. (3.6)

The left action of the discrete subgroup

GZ =

{(
M−α β

0 1

) ∣∣∣∣ α, β
1, . . . , βd ∈ Z

}
(3.7)

by multiplication on GR can be expressed in terms of the local coordinates as

x 7−→ x+ α and ya 7−→ (M−α)ab y
b + βa , (3.8)

and the resulting quotient

X = GZ \GR (3.9)

is the required twisted torus construction.

The n-manifoldX is parallelisable, and the corresponding basis of left-invariant Maurer-

Cartan forms is given by

ζx = dx and ζa = γ(x)ab dy
b . (3.10)

They are globally defined one-forms on the torus bundle which obey the Maurer-Cartan

equations

dζx = 0 and dζa +Ma
b ζ

x ∧ ζb = 0 . (3.11)

The metric (3.3) can then be rewritten as the left-invariant metric

ds2X = (2π r ζx)2 + h(τ◦)ab ζ
a ζb . (3.12)

3.1 SL(2,Z) monodromies

In this paper we will study the examples with n = 3 (d = 2) in detail. In this case the

T-duality group of the string theory compactified on T 2 can be factored as

O(2, 2;Z) ≃
(
SL(2,Z)τ × SL(2,Z)ρ

)
⋊
(
Z2 × Z2

)
. (3.13)
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The first SL(2,Z) factor is the mapping class group of T 2 which acts geometrically by

fractional linear transformations on the complex structure modulus τ of T 2, while the

second acts on the complexified Kähler modulus ρ whose imaginary part is the area of T 2

and whose real part is the restriction of the two-form B-field to T 2. The Z2×Z2 factor can

be taken to be generated by a reflection in one direction and a T-duality in one direction.

A further compactification on S1 with the duality twist M(γ) in the geometric sub-

group SL(2,Z)τ is equivalent to compactification on a T 2-bundle X over S1 with mon-

odromy M(γ). The constant metric h(τ)ab on the T 2 fibers can be written in terms of the

complex structure modulus τ = τ1 + i τ2 and the constant area modulus A of the torus as

h(τ) =
A

τ2

(
1 τ1
τ1 |τ |2

)
. (3.14)

The torus modulus transforms under SL(2,Z)τ as τ 7→ M[τ ] with

M[τ ] :=
a τ + b

c τ + d
for M =

(
a b

c d

)
∈ SL(2,Z) . (3.15)

In the T 2-bundle over S1, the modulus varies with the circle coordinate x according to the

SL(2,R) transformation

τ(x) = γ(x)[τ◦] (3.16)

for some fixed modulus τ◦, so that τ(x + 1) = M
[
τ(x)

]
. The metric on the twisted

three-torus X is given by (3.3), which can be rewritten as

ds2X = (2π r dx)2 +
A

τ2

∣∣dy1 + τ dy2
∣∣2 . (3.17)

In the following we will describe D-branes in non-geometric backgrounds associated

with these twisted three-tori. For this, we wrap Dp-branes around suitable p-cycles of X

for p = 1, 2, which become D(p+1)-branes after T-duality to a T-fold background charac-

terised by a monodromy M in a non-geometric subgroup of the duality group O(2, 2;Z).

We will study the corresponding noncommutative gauge theory on the D(p + 1)-branes

induced by the metric, B-field and dilaton of the T-fold background, in a scaling limit

which decouples open and closed string modes. We shall generally find embeddings into

non-geometric string theory of noncommutative Yang-Mills theory whose worldvolume ge-

ometry and noncommutativity parameter vary over the base coordinate of a non-geometric

“bundle”, and hence determine a parameterised family of noncommutative gauge theories

which is globally well-defined up to Morita equivalence, the open string avatar of T-duality.

As conjugate monodromies define equivalent backgrounds X, the monodromies lead-

ing to physically distinct configurations are classified by SL(2,Z) conjugacy classes [11].

Following [7, 11, 52], the conjugacy classes can be classified into three sets: parabolic

(|Tr(M)| = 2), elliptic (|Tr(M)| < 2) and hyperbolic (|Tr(M)| > 2). In this paper we will

concentrate on the examples of parabolic monodromies which generate integer translations

τ 7→ τ + m of the modular parameter τ , and the Z4 elliptic monodromies which gener-

ate the inversion τ 7→ − 1
τ . These examples capture many of the essential features of the

noncommutative gauge theories on D-branes in non-geometric backgrounds.

– 12 –
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4 D3-branes on T-folds: parabolic monodromies

The parabolic conjugacy classes of SL(2,Z) generate monodromies M[τ ] = τ+m of infinite

order and are labelled by an integer m ∈ Z, with mass matrix M and monodromy matrix

M = exp(M) where

M =

(
1 m

0 1

)
and M =

(
0 m

0 0

)
. (4.1)

The local section is given by

γ(x) =

(
1 mx

0 1

)
with τ(x) = τ◦ +mx , (4.2)

where τ◦ = τ◦1 + i τ◦2 is some constant modulus, so that

τ(0) = τ◦ and τ(1) = τ◦ +m . (4.3)

The metric can be brought to the form

ds2X = (2π r dx)2 +
A

τ◦2

(
dy1 + ω

)2
+Aτ◦2

(
dy2

)2
, (4.4)

where ω := (τ◦1 +mx) dy2. This identifies the twisted torus X in this case as a circle bundle

over T 2 of degree m, with fibre coordinate y1 and base coordinates (x, y2), while ω is a

connection on this bundle with Chern number m. The B-field vanishes and the dilaton is

constant in this background.

In this case GR is the three-dimensional Heisenberg group whose generators satisfy the

Heisenberg algebra

[J1, Jx] = mJ2 and [J1, J2] = 0 = [Jx, J2] . (4.5)

Then the quotient by the discrete group action

x 7−→ x+ α , y1 7−→ y1 − αmy2 + β1 and y2 7−→ y2 + β2 (4.6)

for α, β1, β2 ∈ Z is the three-dimensional Heisenberg nilmanifold. A globally defined basis

of one-forms on the nilfold is given by

ζx = dx , ζ1 = dy1 +mx dy2 and ζ2 = dy2 . (4.7)

The Maurer-Cartan equations

dζx = 0 = dζ2 and dζ1 = mζx ∧ ζ2 (4.8)

imply that H1(X,R) = R⊕ R is generated by ζx and ζ2. By Poincaré duality, the second

homology H2(X,Z) = Z⊕Z is generated by the two-cycles ξx,1 and ξ1,2 dual to ζx∧ ζ1 and

ζ1 ∧ ζ2, and in particular the two-cycle ξx,2 dual to ζx ∧ ζ2 is homologically trivial [18]. On

the other hand, from the Gysin sequence for X viewed as a circle bundle it follows that
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H1(X,Z) = Z⊕Z⊕Zm, where the Z-valued classes are the one-cycles ξx and ξ2 dual to ζx

and ζ2 on the T 2 base, while the Zm torsion one-cycle ξ1 is the class of the y1 circle fiber.

This background is T-dual to a flat three-torus T 3 with H-flux: Applying the Buscher

construction along the abelian isometry generated by the global vector field ∂
∂y1

on X (see

appendix A), T-duality maps the metric (4.4) to the metric and B-field

ds2T 3 = (2π r dx)2 +
(2π α′)2 τ◦2

A

(
dy1

)2
+Aτ◦2

(
dy2

)2
,

BT 3 = (τ◦1 +mx) dy1 ∧ dy2 . (4.9)

The B-field gives a constant H-flux

HT 3 = dBT 3 = mdx ∧ dy1 ∧ dy2 (4.10)

on T 3. This has a monodromy in SL(2,Z)ρ,

M[ρ] = ρ+m, (4.11)

giving a shift in BT 3 by mdy1 ∧ dy2, which represents an integral cohomology class.

4.1 Worldvolume geometry

Let us now wrap a D2-brane around the non-trivial two-cycle ξx,1. T-duality in the y1-

direction then maps the D2-brane to a D1-brane wrapped around the one-cycle dual to ζx in

the flat three-torus T 3 with metric and B-field given by (4.9), and constant H-flux (4.10).

These are both allowed D-brane configurations, according to the doubled torus analysis

of [18].

On the other hand, we can consider T-duality along the abelian (covering space) isom-

etry generated by the vector field ∂
∂y2

which maps the D2-brane to a D3-brane filling the

T-fold. The metric and B-field are given by

g = (2π r dx)2 +
τ2(x)

|τ(x)|2

(
A
(
dy1

)2
+

(2π α′)2

A

(
dy2

)2
)
,

B =
τ1(x)

|τ(x)|2
dy1 ∧ dy2 , (4.12)

together with the dilaton field

e φ(x) =

(
2π α′

A

τ2(x)

|τ(x)|2

)1/2

. (4.13)

where

τ(x) = τ◦1 +mx+ i τ◦2 . (4.14)

The area of the T 2 fibres with coordinates (y1, y2) is

A = 2π α′ τ2(x)

|τ(x)|2
. (4.15)
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Then the Kähler modulus of the T 2 fibres is

ρ := B12 +
i

2π α′ A =
τ1(x) + i τ2(x)

|τ(x)|2
=

1

τ̄(x)
(4.16)

so that, as τ(x+ 1) = τ(x) +m, this is a T-fold with monodromy

ρ(x+ 1) =
ρ(x)

1 +mρ(x)
(4.17)

in SL(2,Z)ρ.

Let us now transform to the open string variables seen by the D3-brane [27, 28].

These are the open string metric G and noncommutativity bivector Θ defined from (4.12)

through (2.2). Explicit calculation from (4.12) gives a worldvolume WD3 with the topology

of S1 × T 2 and

G = (2π r dx)2 +
A

τ◦2

(
dy1

)2
+

(2π α′)2

Aτ◦2

(
dy2

)2
,

Θ = (τ◦1 +mx)
∂

∂y1
∧

∂

∂y2
. (4.18)

4.2 Noncommutative Yang-Mills theory

In order to get a low-energy limit with pure gauge theory on WD3 in which the massive

string modes are decoupled and gravity is non-dynamical, we need to take the zero slope

limit α′ → 0 while keeping G and Θ fixed, which in the present case means keeping the

parameters

r1 :=

(
A

4π2 τ◦2

)1/2

and r2 :=
α′

(Aτ◦2 )
1/2

(4.19)

fixed. This can be achieved by the scaling limit α′ = O(ǫ1/2), A = O(ǫ1/2) and τ◦2 = O(ǫ1/2)

with ǫ → 0, and with all other parameters, including the B-field, held fixed. In this limit

the closed string metric from (4.12) degenerates along T 2, taking the area to zero while

fixing B, whereas the open string parameters on the D3-brane become

ds2D3 = (2π r dx)2 +
(
2π r1 dy

1
)2

+
(
2π r2 dy

2
)2

,

θ = (τ◦1 +mx)
∂

∂y1
∧

∂

∂y2
, (4.20)

where in the particular instance of a parabolic twist the open string bivector Θ from (4.18)

and its zero slope limit θ happen to coincide.

Finally, the effective Yang-Mills coupling can be determined from (2.6), which in the

present case with p = 3 is the constant

g2YM =

(
(2π)3 α′ g2s

Aτ◦2

)1/2

. (4.21)
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In order to obtain a well-defined quantum gauge theory, we thus require that

ḡ2s :=
2π α′ g2s
Aτ◦2

(4.22)

remains finite in the zero slope limit, which implies that the string coupling scales as

gs = O(ǫ1/4), which is consistent with the perturbative regime of the string theory that we

are working in. Then

g2YM = 2π ḡs (4.23)

is indeed finite in the limit α′ → 0.

Since ∂
∂ya θ = 0, the supersymmetric noncommutative Yang-Mills theory on the D3-

brane is defined by multiplying fields f, g on S1 × T 2 together with the Kontsevich star-

product [21] (see also [53])

f ⋆ g = ·

[
exp

(
i
2 θ(x)

(
∂

∂y1
⊗ ∂

∂y2
− ∂

∂y2
⊗ ∂

∂y1

))
(f ⊗ g)

]
. (4.24)

Defining [f, g]⋆ := f ⋆g−g⋆f , this gives a quantisation of the three-dimensional Heisenberg

algebra

[y1, y2]⋆ = i θ(x) and [y1, x]⋆ = 0 = [y2, x]⋆ . (4.25)

For fixed x ∈ S1 the star-product (4.24) defines a noncommutative torus T 2
θ(x), which

means geometrically that varying x ∈ S1 determines a field of noncommutative tori in the

D3-brane worldvolume WD3 [46, 53].

The noncommutative torus T 2
θ(x) has Morita equivalence group

SO(2, 2;Z) ≃
(
SL(2,Z)θ × SL(2,Z)τ

)
/Z2 . (4.26)

(The Z2 factor is generated by (−1,−1) ∈ SL(2,Z) × SL(2,Z).) Morita transformations

in this group leave invariant the noncommutative gauge theory on the D3-brane filling the

T-fold compactification. Here the roles of the two SL(2,Z) factors in the original duality

group (3.13) are interchanged: The SL(2,Z)ρ factor in (3.13) now acts on the D3-brane

torus with (4.20) as the geometric action of the mapping class group SL(2,Z)τ of the

T 2 ‘fibres’ with coordinates (y1, y2), leaving θ, the Yang-Mills coupling gYM and the area

V = 4π2 r1 r2 of the torus T 2 with the metric ds2D3 unchanged, while the SL(2,Z)τ factor

in (3.13) now acts as the SL(2,Z)θ Morita transformations

M[V ] = V (c θ + d)2 ,

M[θ] =
a θ + b

c θ + d
,

M[gYM] = gYM |c θ + d|1/2 . (4.27)

This is the old statement [27] that Morita equivalence is precisely the structure inherited

from T-duality in the decoupling limit.
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Thus by wrapping a D3-brane we gain an alternative perspective on the non-geometric

nature of the T-fold background in terms of noncommutative gauge theory: under a mon-

odromy around the circle coordinate x, the noncommutativity parameter transforms as

θ(x + 1) = θ(x) +m, which is precisely an SL(2,Z)θ Morita transformation by the perti-

nent monodromy matrix (4.1)

θ(x+ 1) = M
[
θ(x)

]
. (4.28)

The identification of monodromies in x via T-duality in the closed string sector is realised

in the open string sector via Morita equivalence in Yang-Mills theory on a noncommutative

torus. Under the parabolic monodromy, all other parameters of the gauge theory, including

the open string metric ds2D3, the area V and the Yang-Mills coupling constant gYM, are

invariant.

To summarise, in the case of parabolic twists we have found that although closed

strings see non-geometry, open strings see an undeformed conventional geometric torus but

the original closed string non-geometry is now reflected in the noncommutativity bivector

θ in the dual gauge theory description of D3-branes as a θ-deformed noncommutative su-

persymmetric Yang-Mills theory. The T-duality monodromy for the geometric moduli of

the closed string geometry is mapped to a Morita monodromy for the moduli of noncom-

mutative Yang-Mills theory.

4.3 Interpretation of the decoupling limit

We can give a physical derivation of this noncommutative gauge theory by adapting the

description of [26] which considered the case of vanishing fluxes and constant B-field. The

essential features can be seen already in the low-energy effective theory of a D1-brane on

the twisted torus X wrapping the torsion one-cycle ξ1, and placed at y2 = 0 and any fixed

point x ∈ S1. We can think of the original torus fibres T 2 of X as the complex plane C,

with coordinate z = y1+ i y2, quotiented by the translations z 7→ z+α and z 7→ z+β τ(x)

for α, β ∈ Z. In the scaling limit τ◦2 → 0 taken above, the torus fibre degenerates to the

flat cylinder S1 × R with coordinate y1 ∈ [0, 1) quotiented by the additional translations

y1 7→ y1+β θ(x); this is not a conventional Hausdorff space for generic values of x ∈ S1, but

can be precisely interpreted as the noncommutative torus T 2
θ(x), which for irrational values

of θ(x) is sometimes called the ‘irrational rotation algebra’. In this geometric picture, the

Morita invariance under parabolic monodromies around the base circle is trivially realised

as the equality T 2
θ(x+1) = T 2

θ(x)+m = T 2
θ(x) under the identification of the periodic coordinate

y1 with y1 +m.

In the gauge theory on the D1-brane, there are additional light states formed by strings

winding w2 times around y2, viewed as open strings connecting the D1-brane and its images

on the covering space over y2, which have mass proportional to w2 τ◦2 . The complete low-

energy spectrum for τ◦2 → 0 is thus obtained by considering fields fw2(y1) with an arbitrary

dependence on both y1 ∈ [0, 1) and on w2 ∈ Z. The open string starting at (y1, 0) ends at

(y1, w2 τ◦2 ), which is identified with the point (y1 − w2 θ(x), 0) on the twisted torus. Since

open strings interact via concatenation of paths, in (y1, w2) space the interaction of two
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fields fw2 and f̃w̃2 is given by

fw2

(
y1
)
f̃w̃2

(
y1 − w2 θ(x)

)
= fw2

(
y1
)
exp

(
−w2 θ(x) ∂

∂y1

)
f̃w̃2

(
y1
)
. (4.29)

By T-duality along the vector field ∂
∂y2

, which maps the winding number w2 to a momentum

mode p2, followed by the usual Fourier transform of p2 = − i ∂
∂y2

to y2, this interaction is

given by the noncommutative star-product f ⋆ f̃ from (4.24) in the gauge theory on the

D2-brane in the dual T-fold frame; in particular, this shows that the star-product (4.24)

is invariant under the monodromy θ(x + 1) = θ(x) + m. The open string metric on the

D2-brane in the scaling limit is obtained from (4.20) with all other parameters as above

and is the metric on a flat square torus with radii r1, r2. This gives a family of D2-

brane gauge theories on T 2
θ(x) parameterised by x ∈ S1, such that after a monodromy

x 7→ x + 1 the noncommutative gauge theory returns to itself up to Morita equivalence,

which is a symmetry of the theory; in particular, this leaves the noncommutative Yang-

Mills action SYM
x invariant: SYM

x+1 = SYM
x . The fibre over x of this parameterised family

of noncommutative gauge theories is dual to the low-energy effective theory of a D0-brane

placed at y1 = y2 = 0 and x ∈ S1 on the three-torus T 3 with constant H-flux (4.10).

5 D2-branes on T-folds: elliptic monodromies

The elliptic conjugacy classes of SL(2,R) are matrices M = exp(M) that are conjugate to

rotations, so that they are of the form

M = U

(
cos(mϑ) sin(mϑ)

− sin(mϑ) cos(mϑ)

)
U−1 and M = U

(
0 mϑ

−mϑ 0

)
U−1 , (5.1)

where U ∈ SL(2,R), the angle ϑ ∈ (0, π] and m ∈ Z. The elliptic conjugacy classes of

SL(2,Z) are matrices of integers that are in elliptic conjugacy classes of SL(2,R). This

is highly restrictive, and the only angles for which there is a U such that M is integer-

valued are ϑ = π, 2π3 , π2 ,
π
3 . These give matrices of finite order, generating the cyclic groups

Z2,Z3,Z4,Z6 respectively, which provide the four possible choices of elliptic monodromies.

For ϑ = π (and m ∈ 2Z+ 1) and ϑ = π
2 (and m ∈ 4Z+ 1) the required conjugation is

trivial, U = 1. These SL(2,Z) transformations then act on τ by M[τ ] = τ and M[τ ] = − 1
τ

respectively. For ϑ = 2π
3 and ϑ = π

3 (with m = 1), the conjugation matrix is

U =
√

2√
3

(
1 1

2

0
√
3
2

)
. (5.2)

These generate M[τ ] = − 1
τ+1 and M[τ ] = − τ+1

τ respectively.

The local section is given by

γ(x) = U

(
cos(mϑx) sin(mϑx)

− sin(mϑx) cos(mϑx)

)
U−1 . (5.3)
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For definiteness, we now focus our discussion on the case of Z4 monodromies with U = 1,

ϑ = π
2 and m ∈ 4Z+ 1 so that

M =

(
0 1

−1 0

)
. (5.4)

Then the complex structure modulus is

τ(x) =
τ◦ cos(mϑx) + sin(mϑx)

−τ◦ sin(mϑx) + cos(mϑx)
, (5.5)

with

τ(0) = τ◦ and τ(1) = −
1

τ◦
. (5.6)

In this case GR = ISO(2) is the isometry group of the Euclidean plane R
2 whose

generators satisfy

[J1, Jx] = mϑJ2 , [J2, Jx] = −mϑJ1 and [J1, J2] = 0 . (5.7)

The group manifold of ISO(2) has the topology of S1 × R
2 which is compactified by the

discrete group action

ya 7−→ ya + βa , (5.8)

where βa ∈ Z for a = 1, 2; then X is topologically S1×T 2. For U = 1, the Maurer-Cartan

equations

dζx = 0 , dζ1 = −mϑζx ∧ ζ2 and dζ2 = mϑζx ∧ ζ1 (5.9)

imply thatH1(X,R) = R is generated by ζx. By Poincaré duality it follows thatH2(X,Z) =

Z is generated by ξ1,2, and in particular now both ξx,1 and ξx,2 are homologically trivial

two-cycles. On the other hand, for the Z4 monodromy, H1(X,Z) = Z⊕Z2 is generated by

the Z-valued S1 base one-cycle ξx dual to ζx, with the Z2 torsion one-cycle ξ1 given by the

class of the y1 circle fibre [18].

The metric is given by (3.12). For the parabolic monodromy, T-dualising in y1 gave a

T 3 with H-flux while T-dualising in y2 gave a T-fold, but for this elliptic case, dualising

in either y1 or y2 gives the same result, which is a T-fold with H-flux. Starting with the

twisted torus metric (3.17), we apply the Buscher construction along the abelian isometry

generated by the vector field ∂
∂y2

to get a non-geometric background with metric and B-field

given by

g = (2π r dx)2 +
τ2(x)

|τ(x)|2

(
A
(
dy1

)2
+

(2π α′)2

A

(
dy2

)2
)
,

B =
τ1(x)

|τ(x)|2
dy1 ∧ dy2 , (5.10)
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together with the dilaton field

e φ(x) =

(
2π α′

A

τ2(x)

|τ(x)|2

)1/2

. (5.11)

Here the Kähler modulus of the T 2 fibres with coordinates (y1, y2) is

ρ(x) =
1

τ̄(x)
(5.12)

so that this is a T-fold with monodromy

ρ(x+ 1) = −
1

ρ(x)
(5.13)

in SL(2,Z)ρ.

5.1 Worldvolume geometry

Unlike the parabolic case, here we cannot wrap a D2-brane on the base S1 of the twisted

torus. Moreover, unlike the parabolic case, T-dualising the twisted torus with Z4 ellip-

tic monodromy in either of the torus fibre directions results in something non-geometric.

Instead, we wrap a D1-brane around the torsion one-cycle ξ1 as we did in section 4.3. T-

dualising y2 gives a D2-brane in the T-fold background with metric and B-field in (5.10),

and dilaton in (5.11). Transforming now to the open string metric and noncommutativity

bivector on the D2-brane using (2.2) we find

G =
A

τ2(x)

(
dy1

)2
+

(2π α′)2

Aτ2(x)

(
dy2

)2
,

Θ = τ1(x)
∂

∂y1
∧

∂

∂y2
. (5.14)

5.2 Noncommutative Yang-Mills theory

In the zero slope limit with the radii (4.19) held fixed, the closed string metric from (5.10) is

again degenerate, while the decoupled open string noncommutative geometry is described

by the metric and bivector

ds2D2 =
(
− τ◦1 sin(mϑx) + cos(mϑx)

)2 (
(2π r1)

2
(
dy1

)2
+ (2π r2)

2
(
dy2

)2)
,

θ =
τ◦1 cos(mϑx) + sin(mϑx)

−τ◦1 sin(mϑx) + cos(mϑx)

∂

∂y1
∧

∂

∂y2
. (5.15)

Again since ∂
∂ya θ = 0, the star-product incorporating the dynamics of open strings in this

background is given in the same form (4.24) quantising the three-dimensional algebra (4.25),

which however is no longer based on a Lie algebra but rather some quantum deformation of

the Heisenberg Lie algebra determined by the discrete parameters m ∈ 4Z+ 1 and ϑ = π
2 .

As before, the non-geometric nature of the closed string background is captured in

the noncommutative gauge theory on the D2-brane via Morita equivalence. Under a mon-

odromy in the circle coordinate x, the noncommutativity parameter transforms in the
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expected way from (4.27) under an SL(2,Z)θ Morita transformation corresponding to the

elliptic monodromy matrix (5.1):

θ(x+ 1) =
cos(mϑ) θ(x) + sin(mϑ)

− sin(mϑ) θ(x) + cos(mϑ)
= M

[
θ(x)

]
. (5.16)

For m ∈ 4Z+ 1 and ϑ = π
2 this reduces to

θ(x+ 1) = −
1

θ(x)
. (5.17)

However, in contrast with the case of parabolic twists, here the metric on the D2-brane

worldvolume WD2 is not globally well-defined, so that the open string sector now simulta-

neously probes both a non-geometric and a noncommutative space. This is exactly what

is needed to compensate the Morita equivalence of the corresponding noncommutative

fibre tori T 2
θ(x) and render the noncommutative Yang-Mills theory on WD2 invariant; in

particular, the area of the non-geometric worldvolume

V (x) = 4π2 r1 r2
(
− τ◦1 sin(mϑx) + cos(mϑx)

)2
(5.18)

transforms under a monodromy x 7→ x + 1 in the expected way from (4.27) under the

Morita duality corresponding to (5.1):

V (x+ 1) = V (x)
(
− sin(mϑ) θ(x) + cos(mϑ)

)2
= M

[
V (x)

]
. (5.19)

For m ∈ 4Z+ 1 and ϑ = π
2 this reduces to

V (x+ 1) = V (x) θ(x)2 . (5.20)

Finally, the Yang-Mills coupling of the decoupled noncommutative gauge theory in the

non-geometric T 2-bundle over S1 is x-dependent and is computed from (2.6) with p = 2

to get

gYM(x)2 =

(
2π g2s
Aτ2(x)

)1/2

. (5.21)

In this case, it is the combination

ḡ2s :=
g2s

2π A τ◦2
(5.22)

which must be fixed in the zero slope limit, so that now the string coupling scales as

gs = O(ǫ1/2). Then the Yang-Mills coupling in the zero slope limit is still x-dependent and

given by

gYM(x)2 = 2π ḡs
∣∣− τ◦1 sin(mϑx) + cos(mϑx)

∣∣ . (5.23)

Hence the Yang-Mills coupling also transforms in the expected way from (4.27) under the

Morita duality corresponding to (5.1):

gYM(x+ 1) = gYM(x)
∣∣− sin(mϑ) θ(x) + cos(mϑ)

∣∣1/2 = M
[
gYM(x)

]
. (5.24)
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For m ∈ 4Z+ 1 and ϑ = π
2 this is

gYM(x+ 1) = gYM(x)
∣∣θ(x)

∣∣1/2 . (5.25)

Thus again we obtain a family of noncommutative D2-brane gauge theories on T 2
θ(x)

parameterised by x ∈ S1. We stress that there is a well-defined action of the Morita duality

transformations on the gauge theory: all three moduli — the area, the noncommutativity

parameter and the gauge coupling — transform in a way that conspires to leave the gauge

theory invariant. The underlying noncommutative geometries here are new and generalise

the field of noncommutative tori obtained previously in the case of parabolic monodromies.

5.3 Interpretation of the Morita equivalence monodromy

The case of elliptic mondromies exhibits another new feature compared to the case of

parabolic twists. Recall that the parabolic monodromy affects only the noncommutativity

bivector θ(x) and is an exact invariance of the noncommutative torus at the topological

level, T 2
θ(x+1) = T 2

θ(x); in particular the star-product (4.24) is invariant under integer shifts

θ(x+1) = θ(x)+m. This is no longer true for the Z4 elliptic twist, which requires the full

machinery of Morita equivalence of noncommutative tori to explain the invariance of the

Yang-Mills theory on the D2-brane; this necessitates, in particular, the non-trivial actions

of the elliptic monodromy on the remaining moduli of the gauge theory described above.

We can give a physical picture for this distinction by including the background mag-

netic flux modulus Φ which twists the vacuum of the noncommutative gauge theory as

discussed in section 2. It shifts the noncommutative field strength tensor F⋆ defining the

Yang-Mills action by a closed two-form Φ on the D2-brane worldvolume to give

F = F⋆ +Φ . (5.26)

Under a Morita transformation (4.27) with monodromy M, the magnetic flux Φ trans-

forms as

M[Φ] = −(c θ + d)2Φ+ c (c θ + d) . (5.27)

This also affects the spectrum of D-brane charges on the T 2 fibres: a generic configuration

(n, q) ∈ Z
2 of n D2-branes wrapping T 2 with q units of D0-brane charge, realised as a

background magnetic charge q in U(n) noncommutative Yang-Mills theory, transforms as

a vector under SL(2,Z)θ to

M

[(
n

q

)]
=

(
a b

c d

)(
n

q

)
. (5.28)

For the parabolic monodromies (4.1) this has no effect; in that case Φ(x + 1) = Φ(x)

and the single D2-brane charge with (n, q) = (1, 0) that we have considered is mapped to

itself. Thus we can consistently set Φ = 0 for the parabolic case and simply write the

standard noncommutative Yang-Mills action in terms of F⋆ and single-valued gauge fields

on the T 2 fibre.
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In contrast, for the Z4 elliptic monodromy (5.4) the magnetic flux Φ on the D2-brane

transforms as

Φ(x+ 1) = −θ(x)2Φ(x) + θ(x) , (5.29)

while the single D2-brane charge (1, 0) that we started with is mapped to a single D0-brane

charge (0,−1); the notation (n, q), as above, denotes n units of D2-brane charge and q units

of D0-brane charge. This is solved by

Φ = −
x

θ(x)
dy1 ∧ dy2 , (5.30)

which should be properly incorporated in (5.26) in order to obtain the correct compact-

ification of the open string non-geometric background via shifts in x. Choosing the real

part of the fixed modular parameter τ◦ to be τ◦1 = −1, the two-form (5.30) then correctly

interpolates between the D0-brane charges Φ(0) = 0 and Φ(1) = −1, implying that single-

valued gauge fields are mapped to multi-valued gauge fields on the D2-brane under the

monodromy in the base coordinate x ∈ S1 [51].

This effect may be interpreted in terms of open string boundary conditions. By observ-

ing that the bivector θ(x) is constant on the D2-brane worldvolume, we can easily adapt the

description of open string ground states given in [27] as Morita equivalence bimodules for a

noncommutative torus, as is also done by [21] in a different context. We start with a single

D2-brane placed at some fixed point x ∈ S1, wrapping the T 2 fibre. Since open strings

interact by concatenation of paths, the space of open string ground states on the D2-brane

forms an algebra Ax descending from the algebra of open string tachyon vertex operators

in the decoupling limit, which is precisely the algebra of functions on the noncommutative

torus T 2
θ(x) with the star-product (4.24).

Consider now a string winding once around the x-circle, viewed in the covering space

R over S1 as an open string stretching with its left end on the (1, 0) D2-brane at the point

x and with its right end on some other configuration (n, q) of D2–D0-branes placed at the

point x+1, with the n D2-branes wrapping T 2 and the q D0-branes located at y1 = y2 = 0

on T 2. The configuration (n, q) comes with its own algebra Ax+1 of open string ground

states, identified as the algebra of functions on T 2
θ(x+1) for a suitable monodromy (4.27)

of the noncommutativity parameter determined by the transformation (5.28) of D-brane

charges. Quantisation of the stretched open string with these boundary conditions in the

decoupling limit gives a space of statesHn,q which is a left module for the algebraAx, acting

on the left end of the open string, and a right module for Ax+1, acting on the right end of

the open string. The actions of Ax and Ax+1 commute because they act at opposite ends of

the open string, and together they generate the complete algebra of observables on the open

string tachyon ground states, acting irreducibly onHn,q. This implies that the algebraAx+1

is the commutant of Ax in this space (and vice-versa), the maximal algebra of all operators

on Hn,q that commute with Ax. In [27] it is shown that the space Hn,q thus defines a Morita

equivalence bimodule over Ax ×Ax+1 in this sense, which mathematically implements the

Morita equivalence between noncommutative tori whose algebras of functions are Ax and

Ax+1; roughly speaking, this implies that there is a bijective mapping between the “gauge

bundles” over the noncommutative tori T 2
θ(x) and T 2

θ(x+1).
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The parabolic Morita duality above dictates that the right end of the open string should

also land on a single (1, 0) D2-brane at x+1. In this case the Morita equivalence is trivial:

The space of open string ground states H1,0 in the decoupling limit is simply a copy of the

algebra Ax itself, or the free bimodule over Ax, with the algebra Ax of functions on the

noncommutative torus T 2
θ(x) acting from the left and the algebra Ax+1 = Ax of functions

on T 2
θ(x+1) = T 2

θ(x) acting from the right, both via the star-product (4.24); this identifies

H1,0 as the space of functions on an ordinary torus T 2. Thus the parabolic monodromies

recover the standard free bimodule over Ax.

In contrast, the Z4 elliptic Morita duality dictates that the right end of the open string

should land on a single (0,−1) D0-brane at x+ 1. The space of open string ground states

H0,−1 in this case comes from quantising a two-dimensional phase space, which is the cover

of the torus T 2 with the Poisson bracket {y1, y2} = θ(x). This may be identified as an alge-

bra of functions on R in a Schrödinger polarisation in which the algebra Ax acts on H0,−1,

regarded as the space of functions of y2, by representing y2 as multiplication by y2 and y1

as the derivative i θ(x) ∂
∂y2

. The commutant of Ax in H0,−1 is generated by operators given

as multiplication by y2/θ(x) together with the derivative i ∂
∂y2

, which quantise the Pois-

son bracket {y1, y2} = θ(x)−1. This gives the standard Morita equivalence bimodule over

Ax×Ax+1 [27], with the algebra Ax of functions on the noncommutative torus T 2
θ(x) acting

from the left and the algebra Ax+1 of functions on T 2
θ(x+1) = T 2

−1/θ(x) acting from the right.

More general Morita transformations of the D-brane charges, taking the initial config-

uration of charges (1, 0) to a configuration (1, 1) with a unit of D0-brane charge inside a

D2-brane, are possible with the Z3 elliptic monodromy, and can be similarly interpreted

on the space H1,1 of sections of a line bundle over T 2 with Chern number 1 [27].

5.4 D2-brane theory at the orbifold point

In twisted dimensional reductions, the scaling limits discussed in this section describe

D-branes with x-dependent noncommutativity parameters θ(x) coupled to gauged super-

gravity. One of the most interesting features of elliptic twists, as compared to parabolic

twists, is that they each admit a fixed point in moduli space at which the twisted reduc-

tion reduces to an orbifold reduction and so gives an exact string theory realisation [11].

The fixed point for a given elliptic twist is at a minimum of the corresponding Scherk-

Schwarz potential at which the potential vanishes, and so gives a stable compactification

to Minkowski space [11]. The twist γ(x) at the fixed point is independent of x and the

monodromy M generates a cyclic group of order p for some integer p, Mp = 1. The twisted

reduction at the fixed point then is realised as a Zp orbifold of the theory compactified on

T 3. This is given by the compactification on S1×T 2 orbifolded by the action of M on the

T 2 conformal field theory together with a shift x 7→ x+ 1
p of the coordinate x of the S1. In

particular, from (5.5) it follows that τ◦ = i is a fixed point of the SL(2,Z) transformation

generated by (5.1) for U = 1: In that case τ(x) = i independently of x ∈ S1, and the

minimum of the potential gives a Minkowski vacuum. The construction is a Z4 orbifold of

the compactification on S1×T 2
τ(x)= i with the Z4 twist of the conformal field theory on the

T 2 with τ◦ = i accompanied by a shift x 7→ x+ 1
4 .
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At this point it is not possible to decouple open and closed string modes on the D2-

brane, which would require a scaling limit τ◦2 → 0. In fact, at this point the B-field vanishes

and the closed string metric

gτ(x)= i = (2π r dx)2 +
(
2π r1 dy

1
)2

+
(
2π r2 dy

2
)2

(5.31)

coincides exactly with the T 3 metric for finite string slope α′ and area A. As expected

from the open-closed transformation (2.2) with B = 0, in this case the open and closed

string metrics on the D2-brane coincide while the noncommutativity vanishes, Θ = 0. The

dilaton is given by e φτ(x)= i = (2π α′/A)1/2 and hence the Yang-Mills coupling at the fixed

point is the α′-independent constant

(
gYM

)
τ(x)= i

=

(
2π g2s
A

)1/4

. (5.32)

Thus in this case the closed string geometry is identical to the open string geometry,

and the worldvolume gauge theory on the D2-brane is that of an ordinary commutative

supersymmetric Yang-Mills theory on a flat torus T 2 ⊂ T 3. The same is expected to be

true for the Z3 (and Z6) twist at the fixed point τ◦ = e π i /3, which can be viewed as a Z3

orbifold and as a toroidal reduction with magnetic flux.

6 D-branes and doubled twisted torus geometry

Having understood the non-geometric T-fold backgrounds, our aim now is to study D-

branes in the essentially doubled space obtained by T-duality in the x-direction. However,

T-duality along the vector field ∂
∂x is problematic because the background depends explic-

itly on x ∈ S1: The vector field ∂
∂x does not generate an isometry of the torus bundle and

the Buscher construction can no longer be applied. For such cases, we use a generalised

T-duality [7] which takes a background with dependence on x to an essentially doubled

background in which the fields depend on the coordinate x̃ of the T-dual circle and so are

problematic to interpret in conventional terms.

The reduction with duality twist by an O(d, d;Z) monodromy around the x-circle

is generalised to a twisted construction with both a twist along x and along its dual

coordinate x̃, so that the dependence of the moduli E(x, x̃) is through a local section

γ : S1 × S1 → O(d, d) given by

γ(x, x̃) = exp(xM) exp(x̃ M̃ ) , (6.1)

with commuting mass matrices M, M̃ and with the corresponding monodromies

M = exp(M) and M̃ = exp(M̃ ) (6.2)

both valued in O(d, d;Z). A general non-geometric reduction then gives rise to a torus

bundle with doubled fibres T 2d, and coordinates ya, ỹa, a = 1, . . . , d, over a doubled base

S1 × S1, with coordinates x, x̃, such that a generalised T-duality along the vector field
∂
∂x takes a T 2d-bundle over the x-circle to a T 2d-bundle over the dual x̃-circle. In the
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remainder of this paper we describe the noncommutative Yang-Mills theories on D-branes

in a doubled geometry of this type which is the natural lift of the twisted torus backgrounds

considered in section 3.

We will formulate the theory using a doubled geometry with coordinates (x, x̃, ya, ỹa).

Such a doubled formulation was first proposed in [33] and developed in [34–36], replacing

the doubled torus with a twisted version, the doubled twisted torus. This 2n-dimensional

doubled geometry incorporates all the dual forms of the n-dimensional background, with the

different backgrounds arising from different polarisations, which give different n-dimensional

‘slices’. This doubled geometry has been recently discussed in [54].

6.1 The doubled twisted torus

Following [35, 36], we extend the twisted torus X = GZ \ GR of section 3 to the 2n-

dimensional doubled twisted torus

X = GZ \ GR (6.3)

where the 2n-dimensional non-compact Lie group GR is the cotangent bundle GR = T ∗GR =

GR ⋉ R
n; this is a Drinfeld double, and GZ is a discrete cocompact subgroup of GR. The

local structure of X is given by the Lie algebra of GR whose generators JM , M = 1, . . . , 2n,

have brackets

[JM ,JN ] = tMN
P JP , (6.4)

with structure constants tMN
P satisfying the Jacobi identity t[MN

Q tP ]Q
T = 0. The Lie

algebra admits an O(n, n)-invariant constant symmetric bilinear form ηMN of signature

(n, n), and so GR is a 2n-dimensional subgroup of O(n, n). The generators JM consist of

Jm = {Jx, Ja}, a = 1, . . . , d, m = 1, . . . , n, generating the GR subgroup, and J̃m = {J̃x, J̃a}

generating the R
n subgroup. Then

JM =

(
Jm
J̃m

)
(6.5)

is formally an O(n, n)-vector and in this basis the O(n, n)-invariant metric is

η =

(
0 1

1 0

)
. (6.6)

The Lie algebra is

[Ja, Jx] = Ma
b Jb , [Ja, Jb] = 0 and [J̃a, J̃x] = 0 = [J̃a, J̃ b] ,

[Ja, J̃
b] = −Ma

b J̃x , [Jx, J̃
a] = Mb

a J̃ b and [Ja, J̃
x] = 0 = [Jx, J̃

x] . (6.7)

This has the Drinfeld double form

[Jm, Jn] = fmn
p Jp , [J̃m, J̃n] = 0 and [Jn, J̃

m] = −fnp
m J̃p (6.8)

where fmn
p are the structure constants for GR.
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The group manifold of GR is parameterised by coordinates (x, y1, . . . , yd) on GR as

in (3.6), and coordinates (x̃, ỹ1, . . . , ỹd) on G̃R = R
n. The quotient by the action of the

discrete cocompact subgroup GZ of the 2n-dimensional group GR results in the compact

space X . The T-dual coordinates (x̃, ỹa) are all periodic and so parameterise an n-torus

Tn, so that X admits a Tn fibration with fibre coordinates (x̃, ỹa) as well as the T 2d

doubled torus fibration with fibre coordinates (ya, ỹa).

The action of GZ induces a monodromy in O(d, d;Z) ⊂ GL(2d,Z) acting geometrically

by a large diffeomorphism of the doubled torus fibres as
(
ya

ỹa

)
x 7→x+1

−−−−−−→

(
M−1 0

0 M⊤

)(
ya

ỹa

)
, (6.9)

together with the GL(d,Z) monodromy



x̃

ỹ1
...

ỹd−1




yd 7→yd+1
−−−−−−−→ M−1




x̃

ỹ1
...

ỹd−1


 (6.10)

acting geometrically as a large diffeomorphism on the T-dual torus. Here M is the mon-

odromy matrix of the twisted torus X from section 3, given explicitly for n = 3 (d = 2)

by (4.1) in the case of parabolic twists and by (5.1) for elliptic twists.

The Maurer-Cartan one-forms (3.10) lift to left-invariant forms on GR, but GR acts

non-trivially on G̃R so one needs to “twist” the left-invariant one-forms dx̃, dỹa of G̃R when

lifting them to GR. A basis of left-invariant one-forms on GR is then given by

ζx = dx and ζa = γ(x)ab dy
b ,

ζ̃x = dx̃−Ma
b ỹb ζ

a and ζ̃a = dỹa +Ma
b ỹb ζ

x . (6.11)

The action of GZ is compatible with G̃R, so that the quotient G̃R \ X is well-defined and

corresponds to the n-dimensional twisted torus X = GZ \GR. In this way the conventional

spacetime description is obtained for the natural polarisation associated to the coset G̃R\GR,

which corresponds to the natural projection on the cotangent bundle T ∗X = X × R
n.

We write coordinates on the quotient X as X
I = (x, ya, x̃, ỹa) with a = 1, . . . , d and

I = 1, . . . , 2n, and the one-forms ζm = {ζx, ζa} and ζ̃m = {ζ̃x, ζ̃a} with m = 1, . . . , n

collectively as

PM = PM
I dX

I . (6.12)

We will sometimes denote these coordinates as XM = (xm, x̃m), and write a general group

element g ∈ GR as

g = h̃ h (6.13)

where

h = exp(xm Jm) and h̃ = exp(x̃m J̃m) . (6.14)
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The left-invariant one-forms PM , M = 1, . . . , 2n satisfy the Maurer-Cartan equations

dPM + 1
2 tNP

M PN ∧ PP = 0 , (6.15)

so that the 2n-manifold X is parallelisable. We further introduce a constant (independent

of the coordinates X on X ) metric given by a 2n× 2n symmetric matrix MMN satisfying

MMN = ηMP (M−1)PQ ηQN , (6.16)

so that it parameterises the left coset
(
O(n)×O(n)

)
\O(n, n). The matrix MMN constitutes

the moduli of the doubled twisted torus, and becomes a matrix of scalar fields on dimen-

sional reduction, giving a non-linear sigma-model with target space
(
O(n)×O(n)

)
\O(n, n).

A natural left-invariant metric and three-form on X are then defined by

ds2X = MMN PM PN = HIJ dX
I dXJ (6.17)

and

K = 1
6 tMNP PM ∧ PN ∧ PP = 1

6 TIJK dXI ∧ dXJ ∧ dXK , (6.18)

where the doubled metric HIJ := MMN PM
I P

N
J obeys HIJ = ηIK (H−1)KL ηLJ , with

ηIJ = ηMN PM
I P

N
J , while TIJK := tMNP PM

I P
N

J P
P
K with tMNP := ηMQ tNP

Q

totally antisymmetric. The Wess-Zumino three-form K is closed, dK = 0, by virtue of the

Jacobi identity t[MN
Q tP ]Q

T = 0.

The natural action of O(n, n) on the tangent bundle of GR then gives

dXI 7−→ (O−1)IJ dX
J ,

PM 7−→ (O−1)MN PN ,

JM 7−→ JN ON
M , (6.19)

for O ∈ O(n, n). This is essentially the O(n, n) structure group of generalised geometry,

acting on the generalised tangent bundle TX ⊕ T ∗X of the n-dimensional twisted torus

X. Note, however, that O(n, n;Z) is not a symmetry in this case. Consider the subgroup

GL(n,Z) ⊂ O(n, n;Z). For Tn, the group of large diffeomorphisms is GL(n,Z), but for

the n-dimensional twisted torus X, GL(n,Z) is not a symmetry, although the subgroup

GL(d,Z) acting on the T d fibres is. For string theory on X, or any of its T-duals, there

is an O(d, d;Z) T-duality symmetry acting in the conformal field theory on the T d fibres;

in the doubled formalism, this acts as a diffeomorphism on the T 2d doubled torus fibres of

X . For n = 3 (d = 2), this O(2, 2;Z) acting on (ya, ỹa) recovers the T-duality orbits of the

three-dimensional twisted torus from section 4 and section 5. For O ∈ O(d, d;Z) ⊂ O(n, n),

the action (6.19) extends to

X
I 7−→ (O−1)IJ X

J ,

HIJ(X) 7−→ OI
K HKL(O

−1
X)OL

J ,

TIJK(X) 7−→ TLMN (O−1
X)OL

I O
M

J O
N

K . (6.20)
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In [35], it was proposed that generalised T-duality acts in the same way, for certain

other O ∈ O(n, n). In particular, it was proposed that the generalised T-duality in the

x-direction is given by an O(n, n)-transformation Ox, which for n = 3 reads as

Ox =




0 0 0 1 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1




(6.21)

acting on

X
I =




x

y1

y2

x̃

ỹ1
ỹ2




(6.22)

corresponding to the exchange x ↔ x̃.

The transformation JM 7−→ JN ON
M changes the split of the Lie algebra generators

JM into Jn, J̃
m and so changes the form of the algebra (6.8) to an algebra of the form

[Jm, Jn] = fmn
p Jp + hmnp J̃

p ,

[J̃m, J̃n] = Qp
mn J̃p +Rmnp Jp ,

[Jn, J̃
m] = −fnp

m J̃p +Qn
mp Jp , (6.23)

where the various tensors are determined by the choice of O, and are sometimes referred

to as fluxes.

In [35], these dualities were interpreted in terms of the choice of polarisation, general-

ising the picture in [1]. A polarisation splits the tangent bundle TX of X at each point

into an n-dimensional physical subspace Π and an n-dimensional dual subspace Π̃, and the

issue is whether the split of the tangent vectors defines an n-dimensional submanifold (at

least locally) which can be viewed as a patch of spacetime. If the spaces Π and Π̃ define

an integrable distribution on X , then there is locally a physical subspace of X and the

background is locally geometric. If the distribution is non-integrable, then there is no such

local spacetime and the background is not geometric even locally; it is essentially doubled.

The polarisation splits the 2n Lie algebra generators JM into two sets of n generators, the

Jm and the J̃m. The integrability condition is that the J̃m generate a subgroup G̃R ⊂ GR.

Then the physical spacetime is defined by the quotient by G̃R. The covering space for X is

GR and the covering space for the physical subspace is the coset GR/G̃R. If the action of GZ

is compatible with the action of G̃R, then the background is geometric and given globally

by a double quotient of GR by GZ and G̃R. If it is not, then the result is a T-fold, with local

n-dimensional patches given by patches of GR/G̃R. A T-duality transformation is then

interpreted as a change of polarisation, changing the physical subspace within the doubled

– 29 –



J
H
E
P
0
9
(
2
0
1
9
)
0
5
1

space, and can be realised as the action of the operator O on the projectors defining the

polarisation [35].

The vielbeins PM
I are maps P : O(n, n) → O(n)×O(n) and can be brought to lower

block-triangular form by an O(n)×O(n) transformation to get

P =

(
e 0

−(2π α′) e−1B (2π α′) e−1

)
, (6.24)

where e is the vielbein for the spacetime metric g = e⊤ e, and B is the NS-NS two-form

potential. By choosing the simple background MMN = δMN , the doubled metric can be

written as

H =

(
g − (2π α′)2B g−1B (2π α′)2B g−1

−(2π α′)2 g−1B (2π α′)2 g−1

)
. (6.25)

The expressions for general moduli MMN are given in [35].

If g̃ denotes the dual metric arising from an O(n, n) transformation (6.20) of (6.25),

then the dilaton transforms as

e φ 7−→

(
det g̃

det g

)1/4

e φ . (6.26)

6.2 D-branes in the doubled twisted torus

D-branes in the doubled picture were discussed for the doubled torus and for doubled

torus fibrations in [1, 18], and this was extended to the doubled twisted torus in [19].

Following [19], let us now describe D-branes in the doubled twisted torus geometry.

The starting point is the doubled sigma-model which was introduced in [35] for maps

embedding a closed string worldsheet Σ in X . These maps pull back the one-forms PM to

one-forms P̂M on Σ. Introducing a three-dimensional manifold V with boundary ∂V = Σ

and extending the maps to V , the sigma-model is defined by the action

SX =
1

4

∮

Σ
MMN P̂M ∧ ∗P̂N +

1

2

∫

V
K̂ , (6.27)

where K̂ is the pullback of the Wess-Zumino three-form K to V and ∗ is the Hodge duality

operator on Σ. To recover the ordinary non-linear sigma-model on a physical target space,

this doubled sigma-model is subjected to the self-duality constraint

P̂M = ηMP
MPN ∗ P̂N (6.28)

which eliminates half of the 2n degrees of freedom by restricting n of them to be right-

moving and n of them to be left-moving on Σ. In [35] this constraint was imposed by

choosing a polarisation and then gauging the sigma-model.

In the case that the structure constants Rmnp in (6.23) vanish, so that the J̃m generate

a subgroup G̃R ⊂ GR, then the reduction to the physical subspace can be achieved by

gauging the action of G̃R. On quotienting by the discrete subgroup GZ and eliminating
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the worldsheet gauge fields, one obtains a standard non-linear sigma-model on a target

space described locally by the coset GR/G̃R with coordinates (x, y1, . . . , yd), with metric

and B-field given from the generalised metric (6.25), and with physical H-field strength

given by

H = dB . (6.29)

For more general doubled groups that are not Drinfeld doubles, the equation for H has

further terms which are given in [35].

On the other hand, if the structure constants Rmnp in (6.23) are non-zero, then the

sigma-model will depend explicitly on both x and x̃. In this essentially doubled case, the

metric and H-field strength depend on both x and x̃, and it appears that there is no

interpretation of the sigma-model in terms of a conventional n-dimensional spacetime.

In [19] it was shown that the same sigma-model action (6.27) can be used to describe

the embedding of an open string worldsheet Σ in the doubled space X . In this case one

must specify boundary conditions by demanding that the string maps should send the

boundary ∂Σ of Σ to a given submanifold W ⊂ X , the worldvolume of a D-brane in the

doubled space X . This requires that the embedding of the boundary ∂V of the three-

dimensional manifold V is the sum of the embedding of Σ with some chain D ⊆ W , and

consistency of the Wess-Zumino term in (6.27) requires that the pullback of the three-form

K to D vanishes, K|D = 0. One can then analyse the boundary equations of motion as well

as the self-duality constraint (6.28) with these conditions. In [19] it is shown that as a result

the worldvolume W of a D-brane in the doubled twisted torus is a subspace of X which is

maximally isotropic with respect to the O(n, n)-invariant metric η. Choosing a polarisation

then picks out physical worldvolume coordinates, so that the physical D-brane wraps that

part of the physical space which intersects the generalised D-brane subspace W . D-branes

in the doubled space are specified by complementary Dirichlet and Neumann projectors

that respectively project the tangent bundle of X at each point into subspaces normal

and tangential to the worldvolume wrapped by the D-brane. Both subspaces are null with

respect to η, and they are mutually orthogonal to each other with respect to the doubled

metric H. The Neumann projector moreover satisfies an integrability condition ensuring

that the D-brane worldvolume W is locally a smooth submanifold of X . The vanishing of

the Wess-Zumino three-form K on W further constrains the structure constants tMN
P of

the Lie algebra of GR which restricts the orientation of the D-brane in X .

This construction implies, in particular, that for each Neumann condition there is a

corresponding Dirichlet condition. Thus there are always n Neumann directions and n

Dirichlet directions on the doubled twisted torus X , and these directions each form a null

subspace of X . As a consequence, any D-brane in a physical n-dimensional polarisation

always arises from a Dn-brane in the extended 2n-dimensional doubled geometry.

As before, we shall study the cases with n = 3 in detail. Starting from the three-

dimensional spacetime polarisation above onto the twisted torus X, we will follow the

T-duality orbits of D-branes in X . The D-brane projectors transform under the action of

the T-duality operator O, and the possible D-branes in the various T-duality frames are

classified using the doubled twisted torus formalism by [19]. In particular, some anticipated
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Background Flux Dp-brane x y1 y2 x̃ ỹ1 ỹ2

T 3 with H-flux H-flux D0-brane − − − × × ×

Nilfold f -flux D1-brane − × − × − ×

T-fold Q-flux D2-brane − × × × − −

Essentially doubled R-flux D3-brane × × × − − −

Table 1. The Dp-brane configurations considered in the various T-duality frames of the doubled

twisted torus geometry for the case of parabolic monodromies. A dash denotes a normal (Dirichlet)

direction to the D-brane, while a cross denotes a worldvolume (Neumann) direction. The number

of Dirichlet and Neumann directions in each case are both equal to three.

worldsheet classification results are confirmed explicitly in this way; for example, it is

known that D3-branes cannot wrap the three-torus T 3 with non-zero H-flux due to the

Freed-Witten anomaly [55] (because T 3 is a spinc-manifold and so anomaly cancellation

requires m = [H] = W3(T
3) = 0).

6.3 D2-branes on T-folds

We start by rederiving the results of section 4 and section 5 in the doubled picture, which

involve T-duality transformations in the ya direction corresponding to Oya ∈ O(2, 2;Z).

Starting from the twisted torus with metric (3.17) and vanishing B-field, we write the

corresponding doubled metric from (6.25):

Hf =




(2π r)2 0 0 0 0 0

0 A
τ2(x)

Aτ1(x)
τ2(x)

0 0 0

0 Aτ1(x)
τ2(x)

A |τ(x)|2
τ2(x)

0 0 0

0 0 0
(
α′

r

)2
0 0

0 0 0 0 (2π α′)2 |τ(x)|2
Aτ2(x)

− (2π α′)2 τ1(x)
Aτ2(x)

0 0 0 0 − (2π α′)2 τ1(x)
Aτ2(x)

(2π α′)2

Aτ2(x)




, (6.30)

where the complex structure modulus τ(x) = τ1(x)+ i τ2(x) is given by (4.2) in the case of

parabolic twists and by (5.5) (with m ∈ 4Z+ 1 and ϑ = π
2 ) for the Z4 elliptic twist. The

Wess-Zumino three-form is given by

Kf = −1
2 Ma

b dx ∧ dỹb ∧ dya , (6.31)

where the components of the mass matrix M can be read off from (4.1) for the case of

parabolic twists and by (5.1) (with U = 1, m ∈ 4Z+1 and ϑ = π
2 ) for the Z4 elliptic twist.

In this polarisation one thus finds H = 0, as expected. As the only non-vanishing structure

constants in this case are fax
b = Ma

b, we can wrap a D1-brane around the torsion one-cycle

ξ1 in the doubled geometry [19], as previously, and follow its orbits under T-duality, which

are summarised in table 1.
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To dualise along the vector field ∂
∂y1

of X , we apply (6.20) to (6.30) with

Oy1 =




1 0 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 0 1




, (6.32)

which interchanges y1 with ỹ1 in the doubled coordinates X and all fields, leaving all other

components invariant. The transformed doubled metric is given by

HH = O⊤
y1 Hf Oy1 =




(2π r)2 0 0 0 0 0

0 (2π α′)2 |τ(x)|2
Aτ2(x)

0 0 0 − (2π α′)2 τ1(x)
Aτ2(x)

0 0 A |τ(x)|2
τ2(x)

0 Aτ1(x)
τ2(x)

0

0 0 0
(
α′

r

)2
0 0

0 0 Aτ1(x)
τ2(x)

0 A
τ2(x)

0

0 − (2π α′)2 τ1(x)
Aτ2(x)

0 0 0 (2π α′)2

Aτ2(x)




. (6.33)

Comparing with (6.25), we can read off the closed string metric and B-field. For the

parabolic monodromy (4.2), these agree with (4.9) for the geometric three-torus T 3 with

constant H-flux (4.10), and the Wess-Zumino three-form is given by

KH = −1
2 mdx ∧ dy1 ∧ dy2 . (6.34)

In this polarisation the generators J̃m generate a maximally isotropic subgroup G̃R ⊂ GR

which is compatible with the action of GZ, so that the quotient G̃R \ X is well-defined

and provides a global description of the three-dimensional compactification geometry. Al-

together we recover the standard non-linear sigma-model with target space T 3 threaded

by a constant H-flux.

On the other hand, dualising along the vector field ∂
∂y2

implements (6.20) on (6.30) with

Oy2 =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 1 0 0 0




, (6.35)

which now interchanges y2 with ỹ2 in the doubled coordinates X and all fields, leaving all

other components invariant. The transformed doubled metric is given by

HQ = O⊤
y2 Hf Oy2 =




(2π r)2 0 0 0 0 0

0 A
τ2(x)

0 0 0 Aτ1(x)
τ2(x)

0 0 (2π α′)2

Aτ2(x)
0 − (2π α′)2 τ1(x)

Aτ2(x)
0

0 0 0
(
α′

r

)2
0 0

0 0 − (2π α′)2 τ1(x)
Aτ2(x)

0 (2π α′)2 |τ(x)|2
Aτ2(x)

0

0 Aτ1(x)
τ2(x)

0 0 0 A |τ(x)|2
τ2(x)




, (6.36)

– 33 –



J
H
E
P
0
9
(
2
0
1
9
)
0
5
1

while the Wess-Zumino three-form is

KQ = −1
2 δ

acMc
b dx ∧ dỹa ∧ dỹb . (6.37)

Reading off the closed string metric and B-field from (6.25) yields precisely (5.10) for the

non-geometric T 2-bundle over S1, while (6.26), with vanishing dilaton on the twisted torus,

yields the anticipated dilaton field (5.11). The H-field strength is given by H = dB. In

this case the generators J̃m generate a subgroup G̃R which is not preserved by GZ, so

that the quotient G̃R \ X is locally modelled on the coset G̃R \ GR but is not globally

well-defined, and a global description of the background in terms of conventional geometry

is not possible. However, the T-fold is a submanifold of the doubled twisted torus X ,

because O(2, 2;Z) ⊂ GL(4,Z) acts geometrically on the doubled torus fibres. As the

only non-vanishing structure constants are Qx
ab = δacMc

b, we obtain the allowed D2-

brane configuration displayed in table 1 [19]; as Morita duality acts entirely within the

noncommutative Yang-Mills theory on the D2-brane, and in particular does not mix gauge

theory modes with string winding states, the same picture of a parameterised family of D2-

brane gauge theories fibred over the x-circle emerges in the doubled geometry, returning to

itself under a monodromy x 7→ x+1 up to Morita equivalence, which is a symmetry of the

noncommutative gauge theory. On the other hand, the D3-brane considered in section 4

is not a consistent worldvolume when embedded as a three-dimensional subspace of the

six-dimensional doubled twisted torus X [19].

7 D3-branes on essentially doubled spaces

Recall that one motivation for turning to the doubled twisted torus formalism is that it

enables us to perform the generalised T-duality transformation along the non-isometric base

direction of the original T 2-bundle over S1. This maps the original D1-brane configuration

to a D3-brane wrapping an essentially doubled background. In this final section we will

discuss how to make sense of the noncommutative supersymmetric Yang-Mills theory on

D3-branes in essentially doubled spaces in the decoupling limit using the doubled twisted

torus formalism.

7.1 Worldvolume geometry

To carry out T-duality along the vector field ∂
∂x of X , we apply (6.20) to (6.36) with

the O(3, 3;Z) operator (6.21), which interchanges x with x̃ in the doubled coordinates X

and all fields, leaving all other components invariant. The transformed doubled metric is

given by

HR = O⊤
x HQOx =




(
α′

r

)2
0 0 0 0 0

0 A
τ2(x̃)

0 0 0 Aτ1(x̃)
τ2(x̃)

0 0 (2π α′)2

Aτ2(x̃)
0 − (2π α′)2 τ1(x̃)

Aτ2(x̃)
0

0 0 0 (2π r)2 0 0

0 0 − (2π α′)2 τ1(x̃)
Aτ2(x̃)

0 (2π α′)2 |τ(x̃)|2
Aτ2(x̃)

0

0 Aτ1(x̃)
τ2(x̃)

0 0 0 A |τ(x̃)|2
τ2(x̃)




. (7.1)
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Comparing with (6.25) formally gives the closed string metric and B-field

gR =

(
α′

r
dx

)2

+
τ2(x̃)

|τ(x̃)|2

(
A
(
dy1

)2
+

(2π α′)2

A

(
dy2

)2
)

,

BR =
τ1(x̃)

|τ(x̃)|2
dy1 ∧ dy2 (7.2)

in the essentially doubled space, while (6.26) yields the dilaton field

e φR(x̃) =

(
(α′)2 τ2(x̃)
r2A |τ(x̃)|2

)1/2

. (7.3)

The explicit dependence on the dual coordinate x̃ reflects the non-geometric nature of

the essentially doubled space: In this polarisation the generators J̃m do not close to a

subalgebra and a conventional description of the background cannot be recovered even

locally.

In this polarisation the Wess-Zumino three-form

KR = −1
2 δ

acMc
b dx̃ ∧ dỹa ∧ dỹb (7.4)

vanishes as required on the worldvolume of the D3-brane, which wraps the directions

with coordinates (x, y1, y2). It is shown by [35] that it is possible to use the self-duality

constraint (6.28) to completely remove the dependence of the doubled worldsheet sigma-

model on the pullbacks of dx̃m and write the doubled theory as a non-linear sigma-model

for the metric gR and B-field BR in (7.2), depending explicitly on the winding coordinate

x̃, thus rendering the coordinate fields non-dynamical along the dual directions (x̃, ỹ1, ỹ2).

Using (2.2) we now compute the open string metric and noncommutativity bivector

on the D3-brane in the R-flux background to find

GR =
(α′

r
dx

)2
+

A

τ2(x̃)

(
dy1

)2
+

(2π α′)2

Aτ2(x̃)

(
dy2

)2
,

ΘR = τ1(x̃)
∂

∂y1
∧

∂

∂y2
. (7.5)

Thus even the open string geometry seen by the D3-brane has a non-geometric dependence

along the transverse x̃-direction to its worldvolume in X .

7.2 Noncommutative Yang-Mills theory

To find a decoupling limit with pure gauge theory on the D3-brane worldvolume, we note

that the T 2-fibre parts of the open string geometry (7.5) coincide with those of the T-folds,

given in (5.14), upon replacing the base S1 coordinate x with its dual coordinate x̃. Thus

the scaling limit will involve taking α′ = O(ǫ1/2), A = O(ǫ1/2) and τ◦2 = O(ǫ1/2), with

ǫ → 0 and the radii (4.19) held fixed exactly as previously, and in addition r = O(ǫ1/2)

with the base radius

r̄x :=
α′

2π r
(7.6)
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finite in the zero slope limit. Then the open string metric and noncommutativity bivector

are finite in this limit and can be written as

ds2R = (2π r̄x dx)
2 + ds2D2

∣∣
x→x̃

,

θR = τ1(x̃)
∣∣
τ◦2=0

∂

∂y1
∧

∂

∂y2
, (7.7)

where ds2D2

∣∣
x→x̃

is the decoupled metric of a D2-brane wrapping the T 2-fibre of a T-

fold with all x-dependence replaced by x̃-dependence; these quantities can be read off

from (4.20) in the case of parabolic twists and from (5.15) (with m ∈ 4Z + 1 and ϑ = π
2 )

in the case of the Z4 elliptic twist. Note that in this limit, the original twisted torus X

and the dual T-fold completely degenerate to a point, even though the bivector ΘR has no

components along the S1 base.

From (2.6) with p = 3 we can also compute the Yang-Mills coupling on the D3-brane

wrapping the essentially doubled space to get

gYM(x̃)2 =

(
(2π α′)2 g2s
r2Aτ2(x̃)

)1/2

, (7.8)

which also generally depends on the dual coordinate x̃. Thus in this case the relevant

parameter to be kept finite in the zero slope limit is given by

ḡ2s :=
(α′)2 g2s
r2Aτ◦2

, (7.9)

which requires the string coupling to scale as gs = O(ǫ1/2). Then the finite Yang-Mills

coupling in the scaling limit is given by (4.23) in the case of parabolic twists, and by (5.23)

(for m ∈ 4Z+ 1 and ϑ = π
2 ) with x → x̃ in the case of the Z4 elliptic twist.

Since the D3-brane wraps the T 2 fibres over the dual x̃-circle in this case, we now

obtain a parameterised noncommutative worldvolume gauge theory, with noncommutative

associative star-products of fields f, g given by the Kontsevich star-product

f ⋆̃ g = ·

[
exp

(
i
2 θ(x̃)

(
∂

∂y1
⊗ ∂

∂y2
− ∂

∂y2
⊗ ∂

∂y1

))
(f ⊗ g)

]
, (7.10)

which is invariant up to Morita equivalence under monodromies x̃ 7→ x̃+1, in the same sense

as explained in section 4 and section 5. This shows that a D3-brane wrapping the essentially

doubled space has a sensible low-energy effective description, which can be understood as

a noncommutative gauge theory over a compactification of the x̃-direction transverse to its

worldvolume in the doubled twisted torus X using Morita duality. Following the discussion

of section 5.3, in the case of the Z4 elliptic monodromy the noncommutative Yang-Mills

action should be augmented by replacing the noncommutative field strength tensor F⋆̃ with

F̃ = F⋆̃ + Φ̃ , (7.11)

where

Φ̃ = −
x̃

θ(x̃)
dy1 ∧ dy2 , (7.12)
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thus exibiting further non-geometric dependence of the noncommutative gauge theory on

the winding coordinate x̃.

This can be interpreted as follows. Consider, for example, a D2-brane wrapping the

(y1, y2)-directions. As discussed in section 1, this is secretly a D3-brane wrapping the

(x̃, y1, y2)-directions in the doubled space (see table 1). In the usual (untwisted) case, there

is no x̃-dependence of either the closed background (g,B, φ) or the open string moduli

(GR,ΘR, gYM) and one can project to the “physical space” with coordinates (x, y1, y2),

obtaining a 2 + 1-dimensional supersymmetric Yang-Mills theory in (y1, y2, t)-space as

the low-energy effective description of the D2-brane. On the other hand, in the twisted

case, the open string background has a genuine x̃-dependence, and so the theory cannot

be interpreted in the physical space. This results in a worldvolume theory in the full

(x̃, y1, y2, t)-space. A similar interpretation holds for other D-branes.
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A The Buscher construction

The Buscher T-duality rules are given by

g̃ιι =
(4π2 α′)2

gιι
,

g̃ια = −2π α′ 2 Bια

gιι
,

g̃αβ = gαβ −
1

gιι

(
gια gιβ − (2π α′)2BιαBιβ

)
,

B̃ια = −
gια
gιι

,

B̃αβ = Bαβ −
1

gιι

(
gιαBιβ −Bια gιβ

)
,

e φ̃ =

(
2π α′

gιι

)1/2

e φ . (A.1)

Here the index ι labels the direction of the Killing vector ∂ι of an isometry of the initial

closed string background (g,B, φ). Note that the T-duality relations along multiple isomet-

ric directions are formally equivalent to the open-closed string relations (2.2) with G = g̃

and Θ = B̃ −1.
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