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ABSTRACT 

 

Obtaining a clear understanding of the elastic properties and overall responses of woven 

composites is a significant prerequisite for cost-effective design of these materials. Such 

an understanding is often achieved via developing unit cell (UC) models using analytical 

or the FEM-based approaches, which leads to either the problem of a reduced accuracy, 

resulting from the analytical nature, or the concern of high complexity, associated with 

using elements. The aim of this work is to simultaneously address the above concerns by 

developing a meshfree-based UC modelling approach to predict the elastic properties and 

overall responses of woven composites. Specifically, high-fidelity UC models have been 

developed to describe the internal architecture of woven composites, which addresses the 

accuracy problem in analytical approaches. Also, meshfree methods have been employed 

to implicitly implement the UC models, eliminating the complexity problem in the FEM-

based approaches. For predicting the overall responses, constitutive modelling has been 

performed for the constituents of woven composites, with a viscoplasticity-based model 

being selected to describe the nonlinear and rate-dependent behaviour of polymer matrix 

and Weibull function based formulations being proposed to identify the damage of yarn 

material. Furthermore, in-house computer programs implementing the UC models, the 

constitutive models and the meshfree methods have been coded, and numerical examples 

have been conducted for predicting the elastic properties and overall responses of woven 

composites. It has been demonstrated that the meshfree predictions agree well with the 

experimental results and the data in the literature, validating the proposed approach. The 

significance of this work is that it eliminates the problems in traditional approaches and 

meanwhile extends the capability of the UC modelling methodology from homogenising 

only the elastic properties in the normal directions to predicting the elastic properties and 

overall responses of woven composites in both the normal and off-axis directions. 
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Symbols for material models 

𝛼 Material constant of the original damage model 

𝛽 Material constant of the improved damage model 

𝛽𝑖 Material constant of the improved damage model (𝑖 = 1,… ,6) 

𝛽𝑚 Damage evolution coefficient of polymer matrix 

𝛾𝑖𝑗 Engineering shear strain component (𝑖𝑗 = 12, 23, 31) 

𝛿𝑖𝑗 Kronecker delta tensor or component 

𝜀 Uniaxial strain 

𝜀̇ Uniaxial strain rate 

𝜀0̇ Reference strain rate 

𝜀𝑖𝑗 Strain tensor or component (𝑖, 𝑗 = 1,2,3) 

𝜀�̇�𝑗 Strain rate tensor or component (𝑖, 𝑗 = 1,2,3) 

𝜀�̇�𝑗
E  Elastic strain rate tensor or component (𝑖, 𝑗 = 1,2,3) 

𝜀�̇�𝑗
I  Inelastic strain rate tensor or component (𝑖, 𝑗 = 1,2,3) 

𝜀s
I Inelastic strain at saturation 

𝜀m0 Failure strain of matrix material at reference strain rate 

𝜀mf Failure strain of matrix material 

𝜺 Strain vector or tensor 

𝜺m Strain vector of matrix material 

𝜺y Strain vector of yarn material 

𝜺𝑙 Strain vector of yarn material in the LCS 

𝜺𝑔 Strain vector of yarn material in the GCS 

𝜌m Density of matrix material 

𝜌y Density of yarn material 

𝜎 Uniaxial stress 
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𝜎𝑖𝑗 Stress tensor or component (𝑖, 𝑗 = 1,2,3) 

𝜎s Stress at saturation 

𝝈 Stress vector or tensor 

𝝈m Stress vector of matrix material 

𝝈y Stress vector of yarn material 

𝝈𝑙 Stress vector of yarn material in the LCS 

𝝈𝑔 Stress vector of yarn material in the GCS 

𝜏𝑖𝑗 Shear stress component (𝑖𝑗 = 12, 23, 31) 

𝜔𝑖 Damage variable (𝑖 = 1,… ,6) 

𝜔𝑖aB Damage variable of failure mode 𝑖aB = 1fT, 1fC… 

Ωm Internal stress at saturation 

Ω𝑖𝑗 Internal stress tensor or component 

Ω̇𝑖𝑗 Internal stress rate tensor or component 

𝑐𝑖𝑗𝑘𝑙 The fourth-order elasticity tensor or component 

𝐶EL Rate-dependence parameter of yarn material 

𝐶mε Rate-dependence parameter of matrix material 

𝐂 Elasticity matrix 

𝐂m Elasticity matrix of matrix material 

𝐂𝑙 Elasticity matrix of yarn material in the LCS 

𝐂𝑔 Elasticity matrix of yarn material in the GCS 

𝐂(𝜔) Damaged elasticity matrix of yarn material 

𝐷0 Maximum inelastic strain rate 

𝐸m Young’s modulus of matrix material 

𝐸L Longitudinal Young’s modulus of yarn material 

𝐸L0 Longitudinal Young’s modulus of yarn material at reference strain rate 

𝐸T Transverse Young’s modulus of yarn material 

𝑓𝑖aB Failure function of failure mode 𝑖aB = 1fT, 1fC, 2mC, 2mS, 3mC, 3mS 

𝐺m Shear modulus of matrix material 

𝐺LT Longitudinal-transverse shear modulus of yarn material 

𝐺TL Transverse-longitudinal shear modulus of yarn material 

𝐺TT Transverse shear modulus of yarn material 
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𝐽2 The second invariant of the overstress 

𝑛r Material constant of the viscoplasticity-based model 

𝑞 Hardening rate of matrix material 

𝐑 Rotation matrix 

𝑆LT Longitudinal-transverse shear strength of yarn material 

𝑆TT Transverse-longitudinal shear strength of yarn material 

𝑆TL Transverse shear strength of yarn material 

𝑆𝑖𝑗 Deviatoric stress tensor or component 

𝐒 Inverse of elasticity matrix 

𝐒m Inverse of elasticity matrix of matrix material 

𝐒𝑙 Inverse of elasticity matrix of yarn material in the LCS 

𝐒𝑔 Inverse of elasticity matrix of yarn material in the GCS 

𝐒(𝜔) Inverse of damaged elasticity matrix of yarn material 

𝐒d(𝜔) Direct part of 𝐒(𝜔) 

𝐒s(𝜔) Shear part of 𝐒(𝜔) 

𝐓 Transformation matrix of the equivalence approach 

𝐓𝑖 Transformation matrix of the 𝑖th equivalent domain, 𝐷𝑖 

𝐓𝜀
𝑔|𝑙

 Transformation matrix for strain from the LCS to the GCS 

𝐓𝜀
𝑙|𝑔

 Transformation matrix for strain from the GCS to the LCS 

𝐓𝜎
𝑔|𝑙

 Transformation matrix for stress from the LCS to the GCS 

𝐓𝜎
𝑙|𝑔

 Transformation matrix for stress from the GCS to the LCS 

𝐓𝑐
𝑔|𝑙

 Transformation matrix for elasticity matrix from the LCS to the GCS 

𝐓𝑐
𝑙|𝑔

 Transformation matrix for elasticity matrix from the GCS to the LCS 

𝑣m Poisson’s ratio of matrix material 

𝑣LT Longitudinal-transverse Poisson’s ratio of yarn material 

𝑣TL Transverse-longitudinal Poisson’s ratio of yarn material 

𝑣TT Transverse Poisson’s ratio of yarn material 

𝑋T Longitudinal tensile strength of yarn material 

𝑋C Longitudinal compressive strength of yarn material 

𝑌T In-plane transverse tensile strength of yarn material 

𝑌C In-plane transverse compressive strength of yarn material 
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𝑍T Out-of-plane transverse tensile strength of yarn material 

𝑍C Out-of-plane transverse compressive strength of yarn material 

𝑍0 Initial hardness of matrix material 

〈 〉 Volume average operator or the Macaulay brackets 

 

Symbols for meshfree methods 

𝛼s Support domain scaling coefficient 

𝜶(𝒙) Vector of unknown coefficients 

Γ Boundary 

𝛿 Differentiation operator 

𝜻 Intermediate vector for shape function derivatives 

𝜂 Free parameter of the RBF method 

𝜃 Free parameter of the RBF or MK method 

𝝀 Periodicity vector 

𝝃 Difference vector of displacements 

�̇� Difference vector of velocities 

�̈� Difference vector of accelerations 

𝛱 Total potential energy 

𝜌 Density 

𝝓 Shape function vector 

𝝓,𝑖 First-order partial derivative of 𝝓 

𝝓,𝑖𝑗 Second-order partial derivative of 𝝓 

𝚽 Shape function matrix 

𝚽𝐼 Nodal shape function matrix 

Ω Domain 

ℒ Lagrangian function 

𝑎0 Free parameter of the RBF or MK method 

𝑎1 Free parameter of the RBF or MK method 

𝑎2 Free parameter of the RBF or MK method 

𝑎3 Free parameter of the RBF or MK method 
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𝐴s Estimated support domain area 

𝐀(𝒙) MLS weighted moment matrix 

𝒃 Body force vector 

𝒃𝐼(𝒙) 𝐼-th vector of moment matrix 𝐁 

𝐁 Strain matrix or moment matrix of the RBF or MK method  

𝑑c Average nodal spacing 

𝑑c𝑥 Average nodal spacing in X direction 

𝑑c𝑦 Average nodal spacing in Y direction 

𝑑c𝑧 Average nodal spacing in Z direction 

𝑑𝐼 Distance between node 𝒙𝐼 and the point of interest 𝒙 

𝑑s Size of support domain 

𝐷s Estimated support domain distance 

𝑭e External force vector 

𝑭b External body force vector 

𝑭i Internal force vector 

𝑭t External traction force vector 

𝒈 Intermediate vector of the MK method 

𝑮 Correlation matrix of the MK method 

𝐈0 Identity matrix 

𝐊 Discretised stiffness matrix 

𝐋 Differential operator 

𝑚 Number of polynomial terms 

𝐌 Global or consistent mass matrix 

𝐌L Lumped mass matrix 

𝑛 Number of support nodes 

𝑛A Number of field nodes within 𝐴s 

𝑛D Number of field nodes within 𝐷s 

𝑛V Number of field nodes within 𝑉s 

𝑛F𝑥 Number of field nodes in X direction 

𝑛F𝑦 Number of field nodes in Y direction 

𝑛F𝑧 Number of field nodes in Z direction 

𝑛C𝑥 Number of background cells in X direction 
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𝑛C𝑦 Number of background cells in Y direction 

𝑛C𝑧 Number of background cells in Z direction 

𝑁 Total number of field nodes 

𝑁F Total number of field nodes 

𝑁C Total number of background cells 

𝒏 Unit outward normal vector 

𝒏+ Unit outward normal vector 

𝒏− Unit inward normal vector 

𝑝 Order of polynomial basis function 

𝒑(𝒙) Polynomial basis function 

𝑞 Free parameter of the RBF method 

𝑅𝑚𝑙𝑠 Weighted residual of the MLS method 

𝒓(𝒙) Vector of radial basis functions 

𝐑 Moment matrix of the RBF method 

t time 

𝑇 Kinematic energy 

𝒕 Traction force vector 

𝑢ℎ Approximated field variable 

𝑈 Elastic strain energy 

𝒖 Displacement vector of a field node or an integration point 

�̇� Velocity vector of a field node or an integration point 

�̈� Acceleration vector of a field node or an integration point 

𝒖s Displacement vector of the field nodes in a local support domain 

�̇�s Velocity vector of the field nodes in a local support domain 

𝑼 Displacement vector of all field nodes in the whole problem domain 

�̇� Velocity vector of all field nodes in the whole problem domain 

�̈� Acceleration vector of all field nodes in the whole problem domain 

𝑉s Estimated support domain volume 

𝑊 Work associated with external forces 

𝑊(𝒙) Weighted function 

𝒙 Point of interest 

𝑍(𝒙) Stochastic term of the MK method 
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Symbols for unit cells and PBCs 

𝛾 Load reversal factor 

𝛾𝑖 Load reversal factor corresponding to the 𝑖th equivalent domain, 𝐷𝑖 

𝜃0 Geometry parameter of the 3D woven normal mUC 

𝜃binder Undulation angle of binder yarn 

𝜃fill Undulation angle of fill yarn 

𝜃warp Undulation angle of warp yarn 

𝜃A Geometry parameter of the 3D woven off-axis mUC 

𝜃B Geometry parameter of the 3D woven off-axis mUC 

𝜆 Dimensionless parameter of mUC models 

𝜆b Ratio parameter of the binder yarn of the 3D woven mUC 

𝜆fa Ratio parameter of the lower or upper fill yarn of the 3D woven mUC 

𝜆fb Ratio parameter of the middle layer of fill yarn of the 3D woven mUC 

𝜆w Ratio parameter of the warp yarn of the 3D woven mUC 

𝐻 Height of normal or off-axis mUC models 

𝐻b Thickness of the binder yarn of the 3D woven mUC 

𝐻fa Thickness of the lower or upper fill yarn of the 3D woven mUC 

𝐻fb Thickness of the middle layer of fill yarn of the 3D woven mUC 

𝐻w Thickness of the warp yarn of the 3D woven mUC 

𝐿 Length of normal mUC models 

𝐿o Length of off-axis mUC models 

𝑚0 Geometry parameter of the 3D woven normal mUC 

𝑝A Geometry parameter of the 3D woven off-axis mUC 

𝑝B Geometry parameter of the 3D woven off-axis mUC 

𝑠0 Geometry parameter of the 3D woven normal mUC 

𝐓 Transformation matrix of the equivalence approach 

𝐓𝑖 Transformation matrix of the 𝑖th equivalent domain, 𝐷𝑖 

𝑣yarn Volume fraction of yarn material 

𝑣yf Intra-yarn fibre volume fraction 

𝑊 Width of normal mUC models 

𝑊o Width of off-axis mUC models 
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Abbreviations 

ASTM American Society for Testing and Materials 

BEM Boundary element method 

CDM Continuum damage mechanics 

CFRP Carbon fibre-reinforced polymer 

CLT Classical laminate theory 

DBC Derivative boundary condition 

DEM Diffuse element method 

ECS Equivalent coordinate system 

EFGM Element-free Galerkin method 

FDM Finite difference method 

FEA Finite element analysis 

FEM Finite element method 

FPM Finite point method 

FRP Fibre-reinforced polymer (or fibre-reinforced plastic) 

FVF Fibre volume fraction 

GCS Global coordinate system 

GFRP Glass fibre-reinforced polymer 

GRF Gaussian radial function 

LCS Local coordinate system 

LRBF Logarithmic radial basis function 

LRPIM Local radial point interpolation method 

MK Moving kriging 

MLPGM Meshless local Petrov-Galerkin method 

MLS Moving least squares 

MQF Multiquadric function 

MSE Mean squared error 

mUC Minimum unit cell 

ODE Ordinary differential equation 

PBC Periodic boundary condition 

PDE Partial differential equation 

RBF Radial basis function 
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RKPM Reproducing kernel particle method 

RPIM Radial point interpolation method 

rUC Reduced unit cell 

RVE Representative volume element  

SHPB Split Hopkinson pressure bar 

SPHM Smooth particle hydrodynamics method 

TPSF Thin plate spline function 

VBO Viscoplasticity theory based on overstress 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background and literature review 

1.1.1 General background 

Fibre-reinforced polymers (FRPs), also referred to as fibre-reinforced plastics, are a class 

of composite materials made from a polymer matrix reinforced with fibres, such as carbon 

fibres, glass fibres and aramid fibres. The polymer matrix, which is generally low in 

density and strength, supports fibres and binds them together in the transverse directions, 

whereas the fibre reinforcement in return enhances the mechanical properties of the 

composites in the fibre direction. Compared to traditional materials, such as metals, the 

combination of the low-density polymer matrix and the high strength fibres offers FRP 

composites many advantages, such as a high strength-to-weight ratio, a high stiffness-to-

weight ratio, the ability to be tailored to obtain enhanced properties in target directions, 

an improved corrosion resistance [1]. 

These desirable features have made the applications of FRP composites expanding from 

initially technology-intensive industries such as aerospace and military to today almost 

every field. The rapid expansion of FRP composites is accompanied by extensive research 

on experimentally characterising the mechanical behaviour of these materials. Therefore, 

many standardised experimental techniques have been developed to identify the static or 

quasi-static material properties of FRP composites. For example, the American Society 

for Testing and Materials (ASTM) has developed for polymer matrix composites a variety 

of standard test methods including ASTM D3039 [2] for measuring tensile properties, 

ASTM D3410 [3] and D6641 [4] for conducting compression tests with unsupported 

gauge section with shear loading and using a combined loading compression test fixture, 

ASTM D4255 [5] and D5379 [6] for obtaining shear properties by utilising the rail shear 

method and the V-notched beam method, and ASTM D7264 [7] for measuring flexural 

properties. Also, since FRP composites can be exposed to not only static applications but 
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also to dynamic loading scenarios, numerous experimental studies have been conducted 

and a variety of experimental techniques have been established to determine the material 

properties and overall responses of FRP composites subjected to various dynamic loading 

conditions, including 1) low velocity impact, where the strain rate is typically in between 

10-3/s and 102/s and servo-hydraulic or drop-weight test machines are often used [8-13]; 

2) crash, where the strain rate can reach 102/s ~ 104/s and split Hopkinson pressure bars 

(SHPBs) can be utilised [14-25]; and 3) ballistic impact or explosion, where the strain 

rate is generally higher than 104/s and gas guns are often employed [26-30]. Furthermore, 

micromechanical test methods [31-37] such as the fibre pull-out/push-out and single fibre 

fragmentation techniques have been developed to characterise the fibre-matrix interface 

behaviour of FRP composites. 

In addition to the development of experimental techniques, numerous theories, analytical 

methods and predictive models have been proposed to further our understanding of FRP 

composites from a mechanics point of view. For instance, analytical theories such as rules 

of mixtures and the classical laminate theory (CLT) have been established for predicting 

the elastic properties and analysing the stress or strain of unidirectional laminates. Also, 

many predictive models have been developed to identify the nonlinear, rate-dependent 

deformation of the polymer matrix in composites or that of the composite material as a 

whole [38-45]. Extensive research studies have been also conducted on characterising the 

complicated failure modes and mechanisms in FRP composites, such as matrix cracking 

[46-49], fibre kinking [50-62], delamination [63-72], matrix/fibre interface debonding 

[73-80] and progressive damage [81-84]. 

However, most of the existing experimental techniques, analytical theories and predictive 

models have been mainly designed for unidirectional FRP composites, and surprisingly, 

textile FRP composites have received much less attention even though these materials 

offer many advantages, such as a reduced notch sensitivity, a better impact resistance, an 

improved fracture toughness, a better drapability and lower fabrication costs, compared 

to their unidirectional counterparts. Admittedly, most of the experimental techniques that 

are initially designed for evaluating the overall behaviours of unidirectional composites 

are still applicable to textile composites. However, the analytical theories and numerical 

models that have been developed for unidirectional composites generally cannot be 

applied to textile composites owing to the significant difference in the internal geometries 
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of the two classes of composites. For example, it is very common to use different rules of 

mixtures to approximate the elastic properties of unidirectional composites based on the 

material properties and the volume fractions of the individual constituents; however, the 

exceptionally complex architecture of the fabric reinforcement in textile composites 

makes rules of mixtures totally collapse for evaluating the elastic properties. In sum, the 

understanding of textile FRP composites, from a modelling point of view, is not nearly 

as well-established as is the case of unidirectional FRP composites, and also the current 

methodologies for designing textile FRP composite structures are still largely based on 

time-consuming and sometimes financially prohibitive experiments or empirical trials. In 

the following two sections, a literature review will be conducted from the perspectives of 

both the elastic property prediction and the overall response prediction of textile FRP 

composites. 

1.1.2 Elastic property prediction 

 

Figure 1.1: CLT-based idealisation of woven fabric composites [85] 

To accurately predict the elastic properties of textile FRP composites, the main concern 

is how to effectively and efficiently account for the highly complex architecture of the 

fabric. However, the highly complex nature of textile composites makes it impractical to 

develop predictive models at the structure scale since modelling all the yarns within the 

composite structure would require unaffordable computational time and costs. To save 

time, the current methodology is mainly based on the concept of unit cell (UC), which is 

a small unit or region whose properties and response can be utilised to represent those of 
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the composite material. The UC modelling methodology typically involves three steps. 

First, a UC is identified by considering the periodicity of the composite material and the 

geometries of the constituents are explicitly modelled based on the UC. Then, the elastic 

behaviours of both the polymer matrix and the yarn material are modelled separately 

using material models such as the generalised Hooke’s law. Lastly, based on the geometry 

and elasticity models of the constituents, the volume average stress and strain of the UC 

can be obtained for any prescribed boundary condition (typically in the form of applying 

displacement constraints to boundary nodes). By combining the volume average strain 

with the volume average stress of the UC, the effective (or homogenised) elastic constants 

and consequently the elastic properties of the composite material can be calculated. 

The research on predicting the elastic properties of textile composites was pioneered by 

Ishikawa and Chou [85-88], Whitney and Chou [89], and Naik and Shembekar [90-92]. 

In their work, they focused on adapting the CLT to idealise textile composites as an 

assemblage of laminate plates arranged in parallel and/or series manners (see Fig. 1.1). 

Due to the use of such an idealisation, these CLT-based models allow for the development 

of analytical equations that are capable of efficiently calculating the elastic properties of 

textile composites. However, the analytical nature of the CLT-based models introduces a 

limitation, which is that the internal architecture of textile composites is oversimplified 

and thus the accuracy of the prediction may not be always guaranteed. 

Because of the recent development in computer technology and computational methods 

such as the finite element method (FEM), several numerical models have been proposed 

for predicting the elastic properties of textile composites. Notable examples include those 

developed by Chung and Tamma [93], Wen and Aliabadi [94] and Bacarreza et al. [95] 

for plain woven composites, by Ng et al. [96], Whitcomb and Tang [97] and Dixit et al. 

[98] for twill woven composites, and by Tan et al. [99], Lee et al. [100] and Bogdanovich 

[101] for three-dimensional (3D) orthogonal woven composites. In these numerical UC 

models, the internal architecture of textile composites including the cross-section and 

waviness of yarns is considered in detail. More sophisticated models have also been 

developed by Lomov and co-workers [102, 103], Hallett and co-workers [104-107] and 

Durville [108, 109], where the effect of fabric compaction and/or layer interaction in the 

material properties of textile composites are taken into account, apart from considering 

the internal architecture. 
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As the models outlined above account for the internal architecture in detail, they can 

predict the elastic properties of textile FRP composites with high accuracy. However, a 

concern of using the existing numerical models is that most of them are designed to be 

implemented using the standard FEM, requiring additional efforts in explicitly building 

the highly complex geometries for the individual constituents and discretising them using 

high-quality elements and meshes, see Fig. 1.2 for example. Furthermore, the detailed 

modelling of the internal features of textile composites poses an increased complexity for 

assigning the material properties for the constituents, particularly, the ever-changing 

material orientations for the yarns, see Fig. 1.3 for example. Although the above problems 

might be addressed using pre-processing toolkits for textile composites, such as WiseTex 

[110, 111], which is developed by the Composites Materials Group at the University of 

Leuven, and TexGen [112-114], which is developed by the Composites Research Group 

at the University of Nottingham, it is still of both academic and practical interests to 

bypass these problems whenever possible. 

               

Figure 1.2: Complex constituent geometry & mesh design in 3D composites [95] 

 

Figure 1.3: Ever-changing material orientations in the yarns [115] 
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1.1.3 Overall response prediction 

Apparently, addressing the above concerns contributes to a better understanding of textile 

composites in terms of their elastic properties or behaviours. However, obtaining a clear 

understanding of textile composites requires predicting not only the elastic properties but 

also the overall response in the inelastic regime. In addition, it is sometimes desirable to 

obtain an understanding of how the individual behaviour (e.g. the nonlinear behaviour of 

the polymer matrix) of each constituent contributes to the overall response of the whole 

composite structure. Compared to the former, which involves only the prediction of the 

elastic properties, the latter remains a significant challenge. 

Recently, however, several detailed studies have been performed to predict the overall 

response of textile FRP composites. The modelling methods utilised in these studies can 

be largely classified into two categories, namely, macromechanics-based approaches and 

micromechanics-based approaches. When utilising macromechanics-based approaches, a 

textile composite material is often assumed to be a smeared, homogenous and orthotropic 

material, and its response is characterised in an average sense without considering the 

behaviours or responses of the constituents separately. Also, the initiation of damage in 

composites is determined using failure criteria, and the damage propagation is identified 

phenomenologically using damage variables. In many cases, the inelastic response of the 

composites is assumed to be the result of damage development. Based on the technique 

that is used to model damage evolution, macromechanics-based approaches can be further 

divided into continuum damage mechanics (CDM)-based approaches and energy-based 

approaches. The main difference between the two types of approaches is that the former 

models the damage evolution in textile composites based on strain softening techniques, 

while the latter using energy terms. 

A notable example of using CDM-based approaches is the model jointly developed by 

Materials Science Corporation [116] and the University of Delaware [117]. Adapting 

from the strain softening theory proposed by Matzenmiller et al. [118], this model has 

been incorporated into the commercially available finite element software LY-DYNA as 

a user material model termed as MAT162. This material model was later adopted with or 

without modifications by some researchers [13, 119-121] to perform impact simulations 

of woven composites. Typical examples of using energy-based approaches include the 
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models proposed by Jenq et al. [122], Schwer and Whirley [123], Iannucci [124], Iannucci 

and Willows [125, 126] and Naik et al. [127, 128]. As both CDM-based and energy-based 

approaches model composites in an average sense, they are very efficient and suitable for 

the prediction of the overall response of textile composites even at the structure scale. 

However, the main disadvantage is that the detailed responses and failure characteristics 

of the individual constituents cannot be effectively captured. 

As opposed to macromechanics-based approaches, micromechanics-based approaches 

are essentially based on the UC methodology since they model textile composites at least 

at the constituent scale, where both the yarn phase and the polymer matrix are addressed 

explicitly and separately. If the overall properties or response evaluated at the constituent 

scale are used as inputs for coarse scales such as the macroscopic scale, they become 

multiscale approaches. It should be noted that the modelling of a micromechanics UC 

here is different from that in the case of predicting elastic properties. This is because to 

ensure an accurate prediction of the overall response the constitutive behaviours of the 

individual constituents must be modelled both in the elastic and inelastic regimes, 

whereas in the case of predicting the elastic properties the behaviours of the constituents 

need to be accounted for only in the elastic regime. 

Based on the manner of modelling a UC, micromechanical-based approaches can be 

further classified into analytical approaches and the FEM-based approaches [129]. In 

analytical approaches, the geometries of the constituents in a UC are modelled with 

different levels of simplifications, typically using simple blocks. Based on the simplified 

UC and the material models for the polymer matrix and the yarns, the volume average 

stress of the UC can be correlated using analytical equations with the stresses and strains 

of the constituents and consequently with the macroscopic strain prescribed to the UC. 

For a prescribed history of macroscopic strains, a history of the volume average stresses 

of the UC can be calculated using the analytical equations, leading to the overall response 

of the composites of investigation. Recently, analytical approaches have been adopted by 

some researchers to develop multiscale models for the finite element analysis (FEA) of 

textile composites. A notable example can be found in Aminjikarai and Tabiei [130], 

where they extended a micromechanics model developed by Tanov and Tabiei [131] 

originally for predicting the elastic properties of plain woven composites. In the extended 

model, the UC was simplified as an assemblage of four subcells with each subcell 
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representing the warp and fill yarns, the pure matrix and the yarn-matrix mixed parts (see 

Fig. 1.4). Iso-strain boundary conditions were applied to the full-size UC to calculate the 

homogenised response, which was subsequently utilised to represent the response of the 

corresponding material point of the composite structure. This model was later adapted by 

both Bacarreza et al. [132] and Raimondo and Aliabadi [133] for multiscale progressive 

damage analysis of plain woven composites. Some other analytical models have been also 

developed by Tabiei and co-workers [134-136] for plain woven composites and by Sun 

et al. [137] for 3D orthogonal woven composites. Similar to the analytical methods used 

for predicting the elastic properties (e.g. the CLT-based approaches), as discussed in 

Section 1.1.2, the main advantage of the analytical approaches that have been developed 

for predicting the overall response of textile composites is their exceptional efficiency, 

whereas the main concern is a reduced accuracy originated from the simplifications that 

are needed to model the geometries of the constituents. 

  

Figure 1.4: Analytical UC model developed by Tanov and Tabiei [112] 

In contrast to analytical approaches, the FEM-based approaches explicitly model the 

geometries of the individual constituents with high fidelity. Several predictive models 

based on such approaches have been developed for predicting the response of textile 

composites under different loading conditions [138-143]. A common feature of the FEM-

based approaches is that both the waviness and cross-section of the yarns are usually 

modelled sophisticatedly, allowing these approaches to effectively capture the detailed 

information of the individual constituents (e.g. stress concentration in the constituents, 

damage distribution in the yarns and the debonding between the polymer matrix and the 

yarns). Clearly, the capability of the FEM-based models in terms of capturing the detailed 

information is a significant advantage over the models developed based on analytical 
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approaches. However, the main disadvantage of such models is again the complexities 

associated with explicitly building the detailed geometries, discretising the constituents 

with high-quality elements and meshes, and assigning the ever-changing orientations for 

the yarns. 

1.2 Research aim and methodology 

1.2.1 Research questions 

Modelling of textile 
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Figure 1.5: Summary of the existing approaches for modelling textile composites 

The previous section briefly reviews the research studies that have been conducted on the 

topic of predictive modelling of the elastic properties and mechanical response of textile 

FRP composites. An examination of these studies suggests that the current methodologies 

(either for predicting the elastic properties or the overall response of textile composites) 

mainly takes the so-called UC modelling methodology, with a UC being modelled based 

on either analytical approaches or the FEM-based approaches, as summarised in Fig. 1.5. 

In the case of using the UC modelling methodology for predicting the elastic properties 

of textile composites, it typically takes three steps, which consist of 1) defining a UC and 

modelling the geometries of the constituents, 2) modelling the elastic behaviours of the 



1.2 Research aim and methodology  

10 

 

constituents, and 3) prescribing an appropriate boundary condition to the UC to calculate 

the volume average quantities (e.g. stress) of the UC. In the case of predicting the overall 

response based on the UC modelling methodology, it also takes three similar steps. One 

of the differences is in the second step, where both the elastic and inelastic behaviours of 

the constituents must be modelled. The other difference is in the third step, where a history 

of boundary conditions must be enforced to the UC to calculate the history of the volume 

average quantities. 

In addition to the above general conclusions, it can be revealed from the literature review 

that the main problem of using analytical approaches (which are generally simple and 

thus efficient) is a reduced accuracy resulting from the geometry simplifications required 

to implement the analytical nature, while the concern of using the FEM-based approaches 

(which are generally sophisticated and therefore accurate) is the time-consuming pre-

processing required to explicitly address the highly complex geometry modelling. What 

we can also conclude after analysing the two categories of modelling approaches is that 

the pursuit of simplicity in developing predictive models for textile composites seemingly 

has to be compromised by a reduced accuracy, while the pursuit of accuracy seemingly 

has to be accompanied by an increased complexity or a reduced simplicity. Thus, one of 

the most critical questions in modelling textile composites is: 

Is it possible and how can it be possible to develop an approach which is able 

to combine the advantages of analytical and the FEM-based approaches (i.e. 

simplicity and accuracy) and address the two inherently concerns existing in 

the two types of approaches (i.e. reduced accuracy and high complexity) for 

predicting the elastic properties and overall response of textile composites – 

in other words, is it possible and how can it be possible to develop an accurate 

but simple approach for modelling textile composites? 

By taking a closer examination of the published research, it can also be found that most 

of these studies have focused on developing models for predicting the elastic properties 

of textile composites in the fibre directions (e.g. the warp direction) and no much attempt 

has been made to predict the elastic properties in off-axis directions (e.g. 45° to the warp 

or weft direction). In addition, it should be noted that most of the existing studies on 

predicting the overall response of textile composites have been essentially based on large 
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composite structures, which requires expensive computational costs, rather than utilising 

UCs only, which is computationally efficient. Thus, another critical research question in 

modelling textile composites is: 

 Is it possible and how can it be possible to develop an approach within the 

framework of the UC modelling methodology to predict the elastic properties 

and the overall response of textile composites in not only the normal but also 

the off-axis directions? 

1.2.2 Research aim and scope 

In response to the above two research questions, the aim of this research is to develop 

within the framework of the UC modelling methodology a novel approach that is capable 

of addressing the problem of a reduced accuracy in analytical approaches and meanwhile 

eliminating the complex and time-consuming pre-processing required in the FEM-based 

approaches, and thus to accurately and simply predict the elastic properties and the overall 

responses of textile composites in both the normal and off-axis directions. 

    

Woven [95]                         Braided [144]                    Stitched [144] 

Figure 1.6: Typical textile fabric geometries (woven, braided and stitched) 

Plain woven 

3D orthogonal woven 

2D triaxial braid 

(stitched & unstitched) 

3D braid Knitted & stitched 

Multiaxial warp knit 

(stitched & unstitched) 
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The material properties and the overall response of textile composites depend on not only 

those of the constituent materials but also the internal weave structure of the composites. 

In view of the fact that there is a wide variety of weave structures in textile composites, 

as shown in Fig. 1.6, the present work focuses on developing predictive models for three 

types of woven composites (i.e. plain, twill and 3D orthogonal woven composites) since 

they are commonly used and less complex compared to other types of textile composites 

such as 3D braided or knitted composites. However, it should be noted that the approach 

developed in the present work can be theoretically utilised for any other types of textile 

composites as such an approach does not depend on the weave structure, which will be 

demonstrated in Chapters 4 and 5. Furthermore, since it is always impossible to develop 

a single predictive model capable of predicting the overall response of textile composites 

under all kinds of loading conditions, this research focuses on predicting the response of 

woven composites under in-plane tensile loading conditions. 

1.2.3 Research methodology 

The present work is conducted within the framework of the UC modelling methodology. 

To simultaneously address the two concerns discussed earlier, the specific approach of 

this work is based on the idea of developing high-fidelity analytical UC models for woven 

composites and subsequently implementing the analytical UC models using numerical 

methods that do not require the use of elements and/or meshes, i.e. meshfree methods, 

which is a relatively new class of numerical methods that discretise a problem domain 

simply using nodes (see Chapter 3 for detail). In this thesis, this approach is termed as the 

meshfree-based UC modelling approach. 

To develop analytical UC models with high fidelity, micrographs of a typical woven 

composite material have been taken to observe the internal features, i.e. the cross-section 

and the waviness of yarns. Based on the data extracted from the micrographs, analytical 

functions that fit the geometrical features of yarns have been proposed, and analytical 

equations have been developed to describe the surfaces and waviness of yarns in plain, 

twill and 3D woven composites. To enable the proposed approach to accurately predict 

the elastic properties and the overall responses in the normal and off-axis directions, both 

normal and off-axis UC models have been developed. Here, the term “normal” refers to 

the UC model is developed based on an orthogonal coordinate system where the warp, 
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weft and through-the-thickness directions of the composites coincide with the X, Y and 

Z axes of the coordinate system, respectively. On the other hand, an off-axis UC model 

refers to that it is developed when the warp or weft direction of the composites has an 

angle (e.g. 45°) to the X or Y axis, whereas the through-the-thickness direction coincides 

with the Z axis of the coordinate system. 

One of the theoretical implications of developing high-fidelity analytical UC models is 

that it retains an analytical nature, allowing the proposed approach to have the possibility 

of being simple. Additionally, the high-fidelity description of the constituents ensures the 

proposed approach to be accurate from the perspective of geometry modelling. More 

importantly, since analytical equations have been developed to describe both the surfaces 

and waviness of yarns, they can be utilised to determine the relative location of any given 

material point, as well as its orientation. In combination with meshfree methods, which 

discretise a problem domain using nodes only, the high-fidelity analytical UC models can 

therefore be implicitly implemented (which will be demonstrated in detail in Section 4.6, 

Chapter 4), avoiding the need for explicitly building the geometries of the constituents 

and assigning the ever-changing orientations of yarns, and thus ensuring the proposed 

approach to be simple but accurate. 

Since the specific procedure for utilising the UC modelling methodology in the case of 

predicting the elastic properties is different from that in the case of predicting the overall 

response, as previously summarised in Section 1.2.1, two different meshfree methods 

have been chosen to implement the high-fidelity analytical UC models. By examining the 

two procedures, it is evident that the case of predicting the elastic properties is essentially 

a static boundary-value problem of elasticity, while that of predicting the overall response 

can be treated as a dynamic problem with initial conditions. In this thesis, the meshfree 

methods that have been adopted for solving the two types of problems are termed as the 

standard and explicit weak-form meshfree methods, respectively. It should be noted that 

periodic boundary conditions (PBCs) have been utilised in this research for predicting 

both the elastic properties and the overall response of woven composites, instead of using 

any other types of boundary conditions. Therefore, the basic equations for implementing 

PBCs in combination with the two meshfree methods have also been formulated, which 

will be detailed in Section 3.6, Chapter 3. 
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Apart from developing high-fidelity analytical UC models and adapting proper meshfree 

methods, another significant aspect of the present research is the modelling of the material 

behaviours of the individual constituents, particularly in the inelastic regime. To describe 

the inelastic behaviours, a viscoplasticity-based model has been chosen to characterise 

the nonlinear, rate-dependent behaviour of the polymer matrix, and an improved Weibull 

function based formulation has been proposed to identify the damage evolution of the 

yarn material in woven composites. Based on the material models of the constituents, the 

high-fidelity UC models and the two meshfree methods, in-house computer programs 

have been developed for conducting meshfree predictions of the elastic properties and the 

overall responses of the three types of woven composites. 

1.3 Original contributions 

The idea of using meshfree methods in combination with the UC modelling methodology 

is not completely new. It was initially proposed by Wen and Aliabadi [94] for predicting 

the normal elastic properties of plain woven composites and was later adopted by Li et 

al. [145] for predicting the normal elastic properties of 3D woven composites. The present 

research is an extension of their research, and the main original contributions of this work 

are the formalisation of the above idea into the meshfree-based UC modelling approach 

and the extension of the capability of the UC modelling methodology from traditionally 

the homogenisation of only the normal elastic properties to that of both the normal and 

off-axis elastic properties, as well as to the regime of predicting the overall responses of 

woven composites under both normal and off-axis loading scenarios. To be specific, the 

original contributions of the present work are summarised as follows: 

1) The improvements to the normal UC models of plain woven composites originally 

developed by Wen and Aliabadi [94] and also the normal UC model of 3D woven 

composites developed by Li et al. [145], from the perspective of describing the 

internal architectures of the two types of woven composites. 

2) The development of a high-fidelity normal UC model for twill woven composites 

and that of off-axis UC models for plain, twill and 3D woven composites. 
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3) The formulation of the basic equations for implementing PBCs in combination 

with the standard and explicit weak-form meshfree methods. 

4) The proposal of an improved Weibull function based formulation for describing 

the damage evolutions associated with the predominant failure modes in the yarn 

material of woven composites. 

5) The extension of the UC modelling methodology for predicting the off-axis elastic 

properties and the overall response of woven composites under normal and off-

axis loading conditions. 

1.4 Thesis structure 

This research involves various aspects of knowledge including mechanics of composites, 

micromechanical homogenisation of periodic materials such as woven composites and 

meshfree methods. For the sake of clarity, the remainder of this thesis will be presented 

by firstly introducing the background knowledge and theories relating to this work. Then, 

it will be progressed by the description of the high-fidelity UC models and the utilisation 

and validation of the meshfree-based UC approach in predicting the elastic properties and 

the overall response of woven composites. 

In Chapter 2, the mechanics knowledge involved in the elastic constitutive modelling of 

the polymer matrix and the yarn material in woven composites will be firstly presented. 

Due to the presence of waviness in the yarn material, it is always desirable to perform the 

constitutive modelling of the yarn material in its local coordinate system (LCS). Thus, 

the procedure for conducting coordinate transformations between the LCS of the yarn 

material and the global coordinate system (GCS) of the UC will then be detailed. Finally, 

the general theories and concepts associated with the micromechanical homogenisation 

of periodic materials, as well as the basic equations for deriving PBCs, will be briefed. 

In Chapter 3, the background knowledge and concepts relating to meshfree methods will 

be briefly introduced in comparison with the FEM. Then, three types of shape function 

construction techniques in meshfree methods will be detailed, and a numerical example 

will be presented following the description of each technique to discuss the features that 

are possessed by the corresponding shape functions. Finally, the formulation procedures 
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for the standard and explicit weak-form meshfree methods, as well as the implementation 

of PBCs in combination with the two methods, will be detailed. 

In Chapter 4, the high-fidelity normal UC models that have been developed or improved 

for describing the internal features of plain, twill and 3D orthogonal woven composites 

will be firstly detailed. Then, a generic approach for calculating the PBCs at the scale of 

reduced UC of woven composites will be described, and the PBCs for the UC models of 

woven composites will be summarised. After that, an in-house computer program which 

has been developed to implement the high-fidelity UC models using the standard weak-

form meshfree method will be introduced. Finally, numerical examples conducted based 

on the computer program for predicting the elastic properties of the three types of woven 

composites will be discussed, and the predicted results will be validated by comparing 

with the numerical and/or experimental data found in the relevant literature. 

In Chapter 5, the high-fidelity off-axis UCs of the three types of woven composites will 

be firstly presented. Then, a viscoplasticity-based model for describing the nonlinearity 

and rate-dependence of the polymer matrix and a CDM-based model for identifying the 

damage initiations and evolutions of the yarn material will be detailed. After that, an in-

house computer program that has been developed to implement the high-fidelity UCs and 

the material models by using the explicit weak-form meshfree method will be introduced. 

Following the description of this program, a numerical example for predicting the overall 

responses of a plain woven carbon fibre-reinforced polymer (CFRP) composite material 

subjected to some in-plane loading conditions will be presented, and the predicted results 

will be validated by comparing against the experimental results. Finally, the application 

of the meshfree-based UC approach will be exemplified through qualitatively analysing 

the influences of fibre tow size and weave structure on the response of woven composites. 

In the last chapter, the conclusions of the present research will be summarised from the 

perspectives of the development of high-fidelity UC models, the implementation of the 

weak-form meshfree methods and the material behaviour modelling for the constituents 

in woven composites. Recommendations for future work will also be discussed. 



 

17 

 

 

CHAPTER 2: MECHANICS PRELIMINARIES 

 

2.1 Introduction 

As summarised in Section 1.2.1, the utilisation of the UC modelling methodology in the 

case of homogenising the elastic properties or the case of predicting the overall response 

of textile composites involves three similar steps, as follows: 

1) Identify a representative domain or unit cell (UC) for the textile composites of 

investigation and model the internal architecture of the UC; 

2) Model the material behaviours of the constituents in the elastic regime for the 

former case or in both the elastic and inelastic regimes for the latter case; 

3) Apply a proper boundary condition for the former case or a history of boundary 

conditions for the latter case so as to calculate the volume average quantities or 

the histories of the volume average quantities.  

As is clearly seen from the above description, a fundament step in both cases is to model 

the behaviours of the constituents. In such a step, performing constitutive modelling in 

the former case is different from that in the latter case. Specifically, the constitutive 

modelling in the former case needs to be performed only in the elastic regime. On the 

contrary, the constitutive modelling in the latter case should be conducted in both the 

elastic regime and the inelastic regime, where the material behaviours of the constituents 

such as yarn damage, material nonlinearity and strain rate dependence should often be 

considered. To avoid repetition, the background knowledge related to the constitutive 

modelling of the constituents (i.e. the polymer matrix and the yarn material) in the elastic 

regime will be introduced in this chapter, leaving the constitutive modelling in the 

inelastic regime to be addressed in Chapter 5. 
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In addition, due to the presence of yarn waviness in woven composites, it is desirable to 

address the mechanics quantities (e.g. stress and strain) of wavy yarns initially in its local 

coordinate system (LCS), and then to transform them into the global coordinate system 

(GCS) of the (UC). Again, this is a shared feature between the case of the elastic property 

homogenisation and that of the overall response prediction. Thus, the basic equations for 

performing coordinate transformations between the LCS of the yarn material and the GCS 

of the UC will be detailed in this chapter. 

Furthermore, the fundamental knowledge associated with conducting micromechanical 

homogenisation of periodic materials such as woven composites will be introduced at the 

end of this chapter. In this thesis, to distinguish the quantities associated with the polymer 

matrix from those associated with the yarn material, the former quantities will be denoted 

with a subscript “m”, while no subscript will be used for the latter quantities. 

2.2 Hooke’s law for polymer matrix 

In woven FRP composites, the polymer matrix, which is often assumed as a homogeneous 

isotropic material, typically exhibits linear elastic behaviour at small strains and becomes 

nonlinear if the strain applied exceeds the elastic threshold. As a homogeneous isotropic 

material, its constitutive behaviour in the elastic regime can be described using Hooke’s 

law for isotropic materials, as follows: 

 𝝈m = 𝐂m𝜺m  (2.1) 

or alternatively as: 

 𝜺m = 𝐒m𝝈m  (2.2) 

where the four symbols, 𝝈m, 𝜺m, 𝐂m and 𝐒m, are the stress vector, the engineering strain 

vector, the elasticity matrix and the inverse of the elasticity matrix, and they are defined 

using the following equations: 

 𝝈m = {𝜎11 𝜎22 𝜎33 𝜏12 𝜏23 𝜏31}T  (2.3) 

 𝜺m = {𝜀11 𝜀22 𝜀33 𝛾12 𝛾23 𝛾31}T  (2.4) 
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  (2.6) 

where 𝐸m, 𝑣m, 𝐺m are Young’s modulus, Poisson’s ratio and the shear modulus, and 𝐺m 

and ∆m are given by: 

 𝐺m =
𝐸m

2(1+𝑣m)
  (2.7) 

 ∆m= (1 + 𝑣m)(1 − 2𝑣m)  (2.8) 

2.3 Hooke’s law for yarn material 

In woven FRP composites, the internal fabric is woven from yarns and each yarn is further 

made of many fibre filaments. In its final production form, the fibre filaments in each 

yarn are surrounded by the polymer matrix. This indicates that the yarn material in its 

LCS is essentially a unidirectional composite. Therefore, the yarn material in woven 

composites can be largely assumed as a homogeneous transversely isotropic material in 

its LCS. Here, it should be noted that yarns based on glass fibres are isotropic, but they 

can still be assumed to be transversely isotropic as isotropy is a special case of transverse 
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isotropy. Based on this assumption, the stress-strain relation of the yarn material in the 

elastic regime can be described using the generalised Hooke’s law, as follows: 

 𝝈𝑙 = 𝐂𝑙𝜺𝑙 (2.9) 

 𝜺𝑙 = 𝐒𝑙𝝈𝑙  (2.10) 

where 

 𝝈𝑙 = {𝜎11
𝑙 𝜎22

𝑙 𝜎33
𝑙 𝜏12

𝑙 𝜏23
𝑙 𝜏31

𝑙 }T  (2.11) 

 𝜺𝑙 = {𝜀11
𝑙 𝜀22

𝑙 𝜀33
𝑙 𝛾12

𝑙 𝛾23
𝑙 𝛾31

𝑙 }T  (2.12) 
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  (2.14) 

where the superscript, 𝑙, denotes that the corresponding quantities are evaluated in the 

LCS; the subscripts, 1, 2 and 3, refer to the longitudinal, in-plane transverse and out-of-

plan transverse directions; 𝐸L  is Young’s modulus in the longitudinal direction; 𝐸T  is 

Young’s modulus in the transverse directions; 𝑣𝑖𝑗  (𝑖, 𝑗 = L, T) is Poisson’s ratio relating 
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to a contraction in direction 𝑗 caused by a tension in direction 𝑖; 𝐺LT, 𝐺TT and 𝐺TL are the 

shear moduli corresponding to the shear strains, 𝛾12, 𝛾23 and 𝛾31; and  

 ∆= 1 − 𝑣TT − 2𝑣LT𝑣TL  (2.15) 

It should be noted that the above equations are subjected to the following constraints: 

 𝐸L = 𝐸1  (2.16) 

 𝐸T = 𝐸2 = 𝐸3  (2.17) 

 𝐺LT = 𝐺TL  (2.18) 

 𝐺TT =
𝐸T

2(1+𝑣TT)
  (2.19) 

 
𝐸L

𝑣LT
=

𝐸T

𝑣TL
  (2.20) 

2.4 Coordinate transformation for yarn material 

In the previous section, the constitutive equations and quantities (e.g. stress) for the yarn 

material are addressed in its LCS. This necessitates defining coordinate transformations 

for these quantities. In this section, the general concepts and equations for performing 

coordinate transformations between the LCS and the GCS will be introduced, and an 

example of conducting coordinate transformations for the warp and weft yarns in plain 

woven composites will be presented. 

2.4.1 Basic equations for rotational transformation 

The transformations between two coordinate systems can be rotations, translations, or a 

combination of them. However, in the context of constitutive modelling, the quantities 

involved (i.e. stress, strain and elasticity matrix) are independent of any translation. Thus, 

only rotations need to be considered when conducting coordinate transformations for the 

yarn material in woven composites. Assume that the LCS of the yarn material is denoted 

using X𝑙Y𝑙Z𝑙, and the GCS of the UC using X𝑔Y𝑔Z𝑔. Any form of rotation between the 

two coordinate systems can be mathematically described using: 



2.4 Coordinate transformation for yarn material  

22 

 

 𝒙𝑔 = 𝐑𝑔|𝑙𝒙𝑙  (2.21) 

where the superscripts, 𝑙 and 𝑔, denote the LCS and the GCS; the superscript, 𝑔|𝑙, refers 

to that the associated rotation is from the LCS to the GCS; 𝒙𝑙 represents the coordinate 

vector of a point, 𝒙, in the LCS; 𝒙𝑔 stands for the coordinate vector of this point in the 

GCS; and 𝐑𝑔|𝑙 is the matrix associated with a rotation from the LCS to the GCS and is 

defined by: 

 𝐑𝑔|𝑙 =

[
 
 
 
 
cos𝜃11 cos𝜃12 cos𝜃13

cos𝜃21 cos𝜃22 cos𝜃23

cos𝜃31 cos𝜃32 cos𝜃33]
 
 
 
 

  (2.22) 

where 𝜃𝑖𝑗  (𝑖, 𝑗 = 1,2,3) is the angle between the 𝑗th axis of the LCS and the 𝑖th axis of 

the GCS. 

By rewriting Eq. (2.21) into Eq. (2.23), it can be found that the matrix for a rotation from 

the GCS to the LCS, 𝐑𝑙|𝑔, is equal to the inverse of 𝐑𝑔|𝑙: 

 𝒙𝑙 = (𝐑𝑔|𝑙)
−1
𝒙𝑔 = 𝐑𝑙|𝑔𝒙𝑔  (2.23) 

Also, the inverse matrix of 𝐑𝑔|𝑙, i.e. 𝐑𝑙|𝑔, is equal to the transpose of 𝐑𝑙|𝑔 because we 

have the following equation according to the definition of a rotation matrix: 

 𝒙𝑙 =

[
 
 
 
 
cos𝜃11 cos𝜃21 cos𝜃31

cos𝜃12 cos𝜃22 cos𝜃32

cos𝜃13 cos𝜃23 cos𝜃33]
 
 
 
 

𝒙𝑔 = (𝐑𝑙|𝑔)
T
𝒙𝑔  (2.24) 

Furthermore, if a coordinate transformation is comprised of more than one rotation (e.g. 

𝑛 rotations), the relation between the coordinate vectors before and after these rotations 

can be obtained by repetitively utilising Eq. (2.21), as follows: 

 𝒙𝑙1 = 𝐑𝑙1|𝑙0𝒙𝑙0  (2.25) 

 𝒙𝑙2 = 𝐑𝑙2|𝑙1𝒙𝑙1 = 𝐑𝑙2|𝑙1𝐑𝑙1|𝑙0𝒙𝑙0  (2.26) 
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 𝒙𝑔 = 𝒙𝑙𝑛 = 𝐑𝑙𝑛|𝑙(𝑛−1)…𝐑𝑙2|𝑙1𝐑𝑙1|𝑙0𝒙𝑙0  (2.27) 

where 𝐑𝑙𝑖|𝑙(𝑖−1) (𝑖 = 1,2, … , 𝑛) denotes the matrix corresponding to the 𝑖th rotation, and 

𝒙𝑙𝑖 (𝑖 = 1,2, … , 𝑛) is the coordinate vector after the 𝑖th rotation.  

2.4.2 Transformation for constitutive quantities 

If the rotation matrix, 𝐑𝑔|𝑙, as defined in Eq. (2.21), is denoted in the tensor form as 𝑟𝑖𝑗, 

the relation between the stress tensors of a material point before and after such a rotation, 

which is from the LCS to the GCS, can be expressed using the following tensor form: 

 𝜎𝑖𝑗
𝑔
= 𝑟𝑖𝑚𝑟𝑗𝑛𝜎𝑚𝑛

𝑙   (2.28) 

where 𝜎𝑖𝑗
𝑔

 is the stress tensor after rotation (i.e. the stress tensor in the GCS), and 𝜎𝑚𝑛
𝑙  is 

the stress tensor before rotation (i.e. the stress tensor in the LCS). Expanding the above 

expression yields the following equations: 

𝜎11
𝑔
= 𝑟1𝑚𝑟1𝑛𝜎𝑚𝑛

𝑙 = 𝑟11𝑟11𝜎11
𝑙 + 𝑟11𝑟12𝜎12

𝑙 + 𝑟11𝑟13𝜎13
𝑙  

 𝜎11
𝑔
= 𝑟1𝑚𝑟1𝑛𝜎𝑚𝑛

𝑙 + 𝑟12𝑟11𝜎21
𝑙 + 𝑟12𝑟12𝜎22

𝑙 + 𝑟12𝑟13𝜎23
𝑙  

 𝜎11
𝑔
= 𝑟1𝑚𝑟1𝑛𝜎𝑚𝑛

𝑙 + 𝑟13𝑟11𝜎31
𝑙 + 𝑟13𝑟12𝜎32

𝑙 + 𝑟13𝑟13𝜎33
𝑙  (2.29) 

𝜎22
𝑔
= 𝑟2𝑚𝑟2𝑛𝜎𝑚𝑛

𝑙 = 𝑟21𝑟21𝜎11
𝑙 + 𝑟21𝑟22𝜎12

𝑙 + 𝑟21𝑟23𝜎13
𝑙  

 𝜎11
𝑔
= 𝑟1𝑚𝑟1𝑛𝜎𝑚𝑛

𝑙 + 𝑟22𝑟21𝜎21
𝑙 + 𝑟22𝑟22𝜎22

𝑙 + 𝑟22𝑟23𝜎23
𝑙  

 𝜎11
𝑔
= 𝑟1𝑚𝑟1𝑛𝜎𝑚𝑛

𝑙 + 𝑟23𝑟21𝜎31
𝑙 + 𝑟23𝑟22𝜎32

𝑙 + 𝑟23𝑟23𝜎33
𝑙  (2.30) 

𝜎33
𝑔
= 𝑟3𝑚𝑟3𝑛𝜎𝑚𝑛

𝑙 = 𝑟31𝑟31𝜎11
𝑙 + 𝑟31𝑟32𝜎12

𝑙 + 𝑟31𝑟33𝜎13
𝑙  

 𝜎11
𝑔
= 𝑟1𝑚𝑟1𝑛𝜎𝑚𝑛

𝑙 + 𝑟32𝑟31𝜎21
𝑙 + 𝑟32𝑟32𝜎22

𝑙 + 𝑟32𝑟33𝜎23
𝑙  

 𝜎11
𝑔
= 𝑟1𝑚𝑟1𝑛𝜎𝑚𝑛

𝑙 + 𝑟33𝑟31𝜎31
𝑙 + 𝑟33𝑟32𝜎32

𝑙 + 𝑟33𝑟33𝜎33
𝑙  (2.31) 

𝜎12
𝑔
= 𝑟1𝑚𝑟2𝑛𝜎𝑚𝑛

𝑙 = 𝑟11𝑟21𝜎11
𝑙 + 𝑟11𝑟22𝜎12

𝑙 + 𝑟11𝑟23𝜎13
𝑙  

 𝜎11
𝑔
= 𝑟1𝑚𝑟1𝑛𝜎𝑚𝑛

𝑙 + 𝑟12𝑟21𝜎21
𝑙 + 𝑟12𝑟22𝜎22

𝑙 + 𝑟12𝑟23𝜎23
𝑙  
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 𝜎11
𝑔
= 𝑟1𝑚𝑟1𝑛𝜎𝑚𝑛

𝑙 + 𝑟13𝑟21𝜎31
𝑙 + 𝑟13𝑟22𝜎32

𝑙 + 𝑟13𝑟23𝜎33
𝑙  (2.32) 

𝜎23
𝑔
= 𝑟2𝑚𝑟3𝑛𝜎𝑚𝑛

𝑙 = 𝑟21𝑟31𝜎11
𝑙 + 𝑟21𝑟32𝜎12

𝑙 + 𝑟21𝑟33𝜎13
𝑙  

 𝜎11
𝑔
= 𝑟1𝑚𝑟1𝑛𝜎𝑚𝑛

𝑙 + 𝑟22𝑟31𝜎21
𝑙 + 𝑟22𝑟32𝜎22

𝑙 + 𝑟22𝑟33𝜎23
𝑙  

 𝜎11
𝑔
= 𝑟1𝑚𝑟1𝑛𝜎𝑚𝑛

𝑙 + 𝑟23𝑟31𝜎31
𝑙 + 𝑟23𝑟32𝜎32

𝑙 + 𝑟23𝑟33𝜎33
𝑙  (2.33) 

𝜎31
𝑔
= 𝑟3𝑚𝑟1𝑛𝜎𝑚𝑛

𝑙 = 𝑟31𝑟11𝜎11
𝑙 + 𝑟31𝑟12𝜎12

𝑙 + 𝑟31𝑟13𝜎13
𝑙  

 𝜎11
𝑔
= 𝑟1𝑚𝑟1𝑛𝜎𝑚𝑛

𝑙 + 𝑟32𝑟11𝜎21
𝑙 + 𝑟32𝑟12𝜎22

𝑙 + 𝑟32𝑟13𝜎23
𝑙  

 𝜎11
𝑔
= 𝑟1𝑚𝑟1𝑛𝜎𝑚𝑛

𝑙 + 𝑟33𝑟11𝜎31
𝑙 + 𝑟33𝑟12𝜎32

𝑙 + 𝑟33𝑟13𝜎33
𝑙  (2.34) 

The above equations can be assembled into the following matrix form by utilising the 

relation of 𝜎𝑚𝑛
𝑙 = 𝜎𝑛𝑚

𝑙  (𝑚 ≠ 𝑛): 

 𝝈𝑔 = 𝐓𝜎
𝑔|𝑙
𝝈𝑙  (2.35) 

 𝝈𝑔 = {𝜎11
𝑔

𝜎22
𝑔

𝜎33
𝑔

𝜏12
𝑔

𝜏23
𝑔

𝜏31
𝑔
}
T
  (2.36) 

where 𝝈𝑔 is the stress vector in the GCS, 𝝈𝑙 is the stress vector in the LCS, and 𝐓𝜎
𝑔|𝑙

 is 

the stress transformation matrix from the LCS to the GCS:  

 𝐓𝜎
𝑔|𝑙
=

[
 
 
 
 
 
 
 
 
 
 
𝑟11
2 𝑟12

2 𝑟13
2 2𝑟11𝑟12 2𝑟12𝑟13 2𝑟13𝑟11

𝑟21
2 𝑟22

2 𝑟23
2 2𝑟21𝑟22 2𝑟22𝑟23 2𝑟23𝑟21

𝑟31
2 𝑟32

2 𝑟33
2 2𝑟31𝑟32 2𝑟32𝑟33 2𝑟33𝑟31

𝑟11𝑟21 𝑟12𝑟22 𝑟13𝑟23 𝑟11𝑟22 + 𝑟12𝑟21 𝑟12𝑟23 + 𝑟13𝑟22 𝑟13𝑟21 + 𝑟11𝑟23

𝑟21𝑟31 𝑟22𝑟32 𝑟23𝑟33 𝑟21𝑟32 + 𝑟22𝑟31 𝑟22𝑟33 + 𝑟23𝑟32 𝑟23𝑟31 + 𝑟21𝑟33

𝑟31𝑟11 𝑟32𝑟12 𝑟33𝑟13 𝑟31𝑟12 + 𝑟32𝑟11 𝑟32𝑟13 + 𝑟33𝑟12 𝑟33𝑟11 + 𝑟31𝑟13]
 
 
 
 
 
 
 
 
 
 

  (2.37) 

Based on Eq. (2.23) or (2.24), the relation between the stress vectors before and after the 

inverse rotation of 𝐑𝑔|𝑙, i.e. 𝐑𝑙|𝑔, which is from the GCS to the LCS, can be expressed 

using the following equation: 

 𝜎𝑚𝑛
𝑙 = 𝑟𝑚𝑖𝑟𝑛𝑗𝜎𝑖𝑗

𝑔
  (2.38) 
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Following a similar procedure for obtaining 𝐓𝜎
𝑔|𝑙

, the stress transformation matrix from 

the GCS to the LCS can be obtained, as follows: 

 𝝈𝑙 = 𝐓𝜎
𝑙|𝑔
𝝈𝑔  (2.39) 

 𝐓𝜎
𝑙|𝑔
=

[
 
 
 
 
 
 
 
 
 
 
𝑟11
2 𝑟21

2 𝑟31
2 2𝑟11𝑟21 2𝑟21𝑟31 2𝑟31𝑟11

𝑟12
2 𝑟22

2 𝑟32
2 2𝑟12𝑟22 2𝑟22𝑟32 2𝑟32𝑟12

𝑟13
2 𝑟23

2 𝑟33
2 2𝑟13𝑟23 2𝑟23𝑟33 2𝑟33𝑟13

𝑟11𝑟12 𝑟21𝑟22 𝑟31𝑟32 𝑟11𝑟22 + 𝑟21𝑟12 𝑟31𝑟32 + 𝑟31𝑟22 𝑟31𝑟12 + 𝑟11𝑟32

𝑟12𝑟13 𝑟22𝑟23 𝑟32𝑟33 𝑟12𝑟23 + 𝑟22𝑟13 𝑟22𝑟33 + 𝑟32𝑟23 𝑟32𝑟13 + 𝑟12𝑟33

𝑟13𝑟11 𝑟23𝑟21 𝑟33𝑟31 𝑟13𝑟31 + 𝑟23𝑟11 𝑟23𝑟31 + 𝑟33𝑟31 𝑟33𝑟11 + 𝑟13𝑟31]
 
 
 
 
 
 
 
 
 
 

  (2.40) 

Combining Eqs. (2.35) and (2.39), the following relation can be obtained: 

 𝐓𝜎
𝑙|𝑔
= (𝐓𝜎

𝑔|𝑙
)
−1

  (2.41) 

Similarly, the relations between the strain vector in the LCS, �̃�𝑙, and the strain vector in 

the GCS, �̃�𝑔, can be determined by replacing 𝝈𝑙 with �̃�𝑙 and 𝝈𝑔 with �̃�𝑔: 

 �̃�𝑔 = 𝐓𝜎
𝑔|𝑙
�̃�𝑙  (2.42) 

 �̃�𝑙 = 𝐓𝜎
𝑙|𝑔
�̃�𝑔  (2.43) 

Here, it is should be noted that the symbol of ̃  is used to highlight that the strains in the 

above two equations are tensorial strains, rather than engineering strains, i.e. 𝜺𝑔 and 𝜺𝑙. 

Thus, it should be kept in mind that the shear components in tensorial strains are halves 

of those in engineering strains, as illustrated in Eqs. (2.44) ~ (2.47): 

 �̃�𝑔 = {𝜀11
𝑔

𝜀22
𝑔

𝜀33
𝑔

𝜀12
𝑔

𝜀23
𝑔

𝜀31
𝑔
}
T
  (2.44) 

 �̃�𝑙 = {𝜀11
𝑙 𝜀22

𝑙 𝜀33
𝑙 𝜀12

𝑙 𝜀23
𝑙 𝜀31

𝑙 }T  (2.45) 

 𝜺𝑔 = {𝜀11
𝑔

𝜀22
𝑔

𝜀33
𝑔

𝛾12
𝑔

𝛾23
𝑔

𝛾31
𝑔
}
T
  

 𝜺𝑔         = {𝜀11
𝑔

𝜀22
𝑔

𝜀33
𝑔

2𝜀12
𝑔

2𝜀23
𝑔

2𝜀31
𝑔
}
T
  (2.46) 
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 𝜺𝑙 = {𝜀11
𝑙 𝜀22

𝑙 𝜀33
𝑙 𝛾12

𝑙 𝛾23
𝑙 𝛾31

𝑙 }T  

 𝜺𝑔         = {𝜀11
𝑙 𝜀22

𝑙 𝜀33
𝑙 2𝜀12

𝑙 2𝜀23
𝑙 2𝜀31

𝑙 }T  (2.47) 

Considering the relations between tensorial strains and engineering strains, Eqs. (2.42) 

and (2.43) can be rewritten as follows: 

 𝜺𝑔 = 𝐓𝜀
𝑔|𝑙
𝜺𝑙  (2.48) 

 𝜺𝑙 = 𝐓𝜀
𝑙|𝑔
𝜺𝑔  (2.49) 

where the transformation matrices, 𝐓𝜀
𝑔|𝑙

 and 𝐓𝜀
𝑙|𝑔

, are given by: 

 𝐓𝜀
𝑔|𝑙
=

[
 
 
 
 
 
 
 
 
 
 
𝑟11
2 𝑟12

2 𝑟13
2 𝑟11𝑟12 𝑟12𝑟13 𝑟13𝑟11

𝑟21
2 𝑟22

2 𝑟23
2 𝑟21𝑟22 𝑟22𝑟23 𝑟23𝑟21

𝑟31
2 𝑟32

2 𝑟33
2 𝑟31𝑟32 𝑟32𝑟33 𝑟33𝑟31

2𝑟11𝑟21 2𝑟12𝑟22 2𝑟13𝑟23 𝑟11𝑟22 + 𝑟12𝑟21 𝑟12𝑟23 + 𝑟13𝑟22 𝑟13𝑟21 + 𝑟11𝑟23

2𝑟21𝑟31 2𝑟22𝑟32 2𝑟23𝑟33 𝑟21𝑟32 + 𝑟22𝑟31 𝑟22𝑟33 + 𝑟23𝑟32 𝑟23𝑟31 + 𝑟21𝑟33

2𝑟31𝑟11 2𝑟32𝑟12 2𝑟33𝑟13 𝑟31𝑟12 + 𝑟32𝑟11 𝑟32𝑟13 + 𝑟33𝑟12 𝑟33𝑟11 + 𝑟31𝑟13]
 
 
 
 
 
 
 
 
 
 

  (2.50) 

 𝐓𝜀
𝑙|𝑔
=

[
 
 
 
 
 
 
 
 
 
 
𝑟11
2 𝑟21

2 𝑟31
2 𝑟11𝑟21 𝑟21𝑟31 𝑟31𝑟11

𝑟12
2 𝑟22

2 𝑟32
2 𝑟12𝑟22 𝑟22𝑟32 𝑟32𝑟12

𝑟13
2 𝑟23

2 𝑟33
2 𝑟13𝑟23 𝑟23𝑟33 𝑟33𝑟13

2𝑟11𝑟12 2𝑟21𝑟22 2𝑟31𝑟32 𝑟11𝑟22 + 𝑟21𝑟12 𝑟21𝑟32 + 𝑟31𝑟22 𝑟31𝑟12 + 𝑟11𝑟32

2𝑟12𝑟13 2𝑟22𝑟23 2𝑟32𝑟33 𝑟12𝑟23 + 𝑟22𝑟13 𝑟22𝑟33 + 𝑟32𝑟23 𝑟32𝑟13 + 𝑟12𝑟33

2𝑟13𝑟11 2𝑟23𝑟21 2𝑟33𝑟31 𝑟13𝑟21 + 𝑟23𝑟11 𝑟23𝑟31 + 𝑟33𝑟21 𝑟33𝑟11 + 𝑟13𝑟31]
 
 
 
 
 
 
 
 
 
 

  (2.51) 

Comparing Eqs. (2.50) and (2.51) with Eqs. (2.40) and (2.37), the following relations can 

be obtained: 

 𝐓𝜀
𝑔|𝑙
= (𝐓𝜎

𝑙|𝑔
)
T

  (2.52) 

 𝐓𝜎
𝑙|𝑔
= (𝐓𝜀

𝑔|𝑙
)
T

  (2.53) 
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Based on the coordinate transformations defined for stress and engineering strain and the 

constitutive relation given in Eq. (2.9), the transformation matrices between the elasticity 

matrix in the LCS, 𝐂𝑙, and that in the GCS, 𝐂𝑔, can be deduced, as follows: 

∵ 𝝈𝑔 = 𝐓𝜎
𝑔|𝑙
𝝈𝑙    -   see Eq. (2.35) 

∵ 𝝈𝑙 = 𝐂𝑙𝜺𝑙    -   see Eq. (2.9) 

∵ 𝜺𝑙 = 𝐓𝜀
𝑙|𝑔
𝜺𝑔    -   see Eq. (2.49) 

∴ 𝝈𝑔 = 𝐓𝜎
𝑔|𝑙
𝝈𝑙 = 𝐓𝜎

𝑔|𝑙
𝐂𝑙𝜺𝑙 

∴ 𝝈𝑔 = 𝐓𝜎
𝑔|𝑙
𝐂𝑙𝐓𝜀

𝑙|𝑔
𝜺𝑔 

∵ 𝝈𝑔 = 𝐂𝑔𝜺𝑔 

∴ 𝐂𝑔 = 𝐓𝜎
𝑔|𝑙
𝐂𝑙𝐓𝜀

𝑙|𝑔
 

∵ 𝐓𝜀
𝑙|𝑔
= (𝐓𝜎

𝑔|𝑙
)
T
    -   see Eq. (2.53) 

∴ 𝐂𝑔 = (𝐓𝜀
𝑙|𝑔
)
T
𝐂𝑙𝐓𝜀

𝑙|𝑔
 

∴ 𝐂𝑙 = ((𝐓𝜀
𝑙|𝑔
)
T
)
−1

𝐂𝑔(𝐓𝜀
𝑙|𝑔
)
−1

 

∴ 𝑪𝑙 = (𝐓𝜎
𝑔|𝑙
)
−1
𝐂𝑔 ((𝐓𝜎

𝑔|𝑙
)
−1
)
T

 

∵ 𝐓𝜎
𝑙|𝑔
= (𝐓𝜎

𝑔|𝑙
)
−1

    -   see Eq. (2.41) 

∵ (𝐓𝜎
𝑙|𝑔
)
T
= 𝐓𝜀

𝑔|𝑙
    -   see Eq. (2.52) 

∴ 𝐂𝑙 = (𝐓𝜀
𝑔|𝑙
)
T
𝐂𝑔𝐓𝜀

𝑔|𝑙
     

If 𝐓𝜀
𝑙|𝑔

 is denoted using 𝐓𝑐
𝑔|𝑙

 and 𝐓𝜀
𝑔|𝑙

 using 𝐓𝑐
𝑙|𝑔

, the coordinate transformations between 

the elastic matrix in the LCS and that in the GCS can be expressed as follows: 
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 𝐂𝑔 = (𝐓𝑐
𝑔|𝑙
)
T
𝐂𝑙𝐓𝑐

𝑔|𝑙
   (2.54) 

 𝐂𝑙 = (𝐓𝑐
𝑙|𝑔
)
T
𝐂𝑔𝐓𝑐

𝑙|𝑔
  (2.55) 

 𝐓𝑐
𝑔|𝑙
=

[
 
 
 
 
 
 
 
 
 
 
𝑟11
2 𝑟21

2 𝑟31
2 𝑟11𝑟21 𝑟21𝑟31 𝑟31𝑟11

𝑟12
2 𝑟22

2 𝑟32
2 𝑟12𝑟22 𝑟22𝑟32 𝑟32𝑟12

𝑟13
2 𝑟23

2 𝑟33
2 𝑟13𝑟23 𝑟23𝑟33 𝑟33𝑟13

2𝑟11𝑟12 2𝑟21𝑟22 2𝑟31𝑟32 𝑟11𝑟22 + 𝑟21𝑟12 𝑟21𝑟32 + 𝑟31𝑟22 𝑟31𝑟12 + 𝑟11𝑟32

2𝑟12𝑟13 2𝑟22𝑟23 2𝑟32𝑟33 𝑟12𝑟23 + 𝑟22𝑟13 𝑟22𝑟33 + 𝑟32𝑟23 𝑟32𝑟13 + 𝑟12𝑟33

2𝑟13𝑟11 2𝑟23𝑟21 2𝑟33𝑟31 𝑟13𝑟21 + 𝑟23𝑟11 𝑟23𝑟31 + 𝑟33𝑟21 𝑟33𝑟11 + 𝑟13𝑟31]
 
 
 
 
 
 
 
 
 
 

  (2.56) 

 𝐓𝑐
𝑙|𝑔
=

[
 
 
 
 
 
 
 
 
 
 
𝑟11
2 𝑟12

2 𝑟13
2 𝑟11𝑟12 𝑟12𝑟13 𝑟13𝑟11

𝑟21
2 𝑟22

2 𝑟23
2 𝑟21𝑟22 𝑟22𝑟23 𝑟23𝑟21

𝑟31
2 𝑟32

2 𝑟33
2 𝑟31𝑟32 𝑟32𝑟33 𝑟33𝑟31

2𝑟11𝑟21 2𝑟12𝑟22 2𝑟13𝑟23 𝑟11𝑟22 + 𝑟12𝑟21 𝑟12𝑟23 + 𝑟13𝑟22 𝑟13𝑟21 + 𝑟11𝑟23

2𝑟21𝑟31 2𝑟22𝑟32 2𝑟23𝑟33 𝑟21𝑟32 + 𝑟22𝑟31 𝑟22𝑟33 + 𝑟23𝑟32 𝑟23𝑟31 + 𝑟21𝑟33

2𝑟31𝑟11 2𝑟32𝑟12 2𝑟33𝑟13 𝑟31𝑟12 + 𝑟32𝑟11 𝑟32𝑟13 + 𝑟33𝑟12 𝑟33𝑟11 + 𝑟31𝑟13]
 
 
 
 
 
 
 
 
 
 

  (2.57) 

In terms of the coordinate transformations between the verse matrix of 𝐂𝑔 and that of 𝐂𝑙, 

i.e. the transformations between 𝐒𝑔 and 𝐒𝑙, their equations can be directly obtained from 

Eqs. (2.54) and (2.55) by substituting 𝐂𝑔 with (𝐒𝑔)−1 and 𝐂𝑙 with (𝐒𝑙)−1. 

2.4.3 Application of coordinate transformation 

To successfully perform a micromechanical homogenisation for woven composites, the 

elasticity matrices of the individual constituents in the GCS need to be calculated. For the 

polymer matrix, its elasticity matrix in the GCS is essentially the one defined in Eq. (2.5), 

due to its isotropic nature. However, since the elasticity matrix of the yarn material is 

explicitly defined only in the LCS, as shown in Eq. (2.13), its elasticity matrix in the GCS 

should be calculated by applying the coordinate transformations introduced in Section 

2.4.4. In this section, the procedure for applying coordinate transformations for the yarns 

in woven composites is exemplified using the plain woven composite UC model shown 

in Fig. 2.1. 
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Figure 2.1: Coordinate transformations in plain woven composites 

As shown in the figure, the LCS of the warp yarn, X𝑤Y𝑤Z𝑤, can be brought to be parallel 

to the GCS, X𝑔Y𝑔Z𝑔, by rotating it for an angle of 𝜃 with respect to the Y𝑤 axis. Thus, 

the rotation matrix from X𝑤Y𝑤Z𝑤 to X𝑔Y𝑔Z𝑔 can be calculated directly using Eq. (2.22), 

as follows: 

 𝐑𝑔|𝑤 = [

cos𝜃 0 −sin𝜃

0 1 0

sin𝜃 0 cos𝜃

]  (2.58) 

Substituting Eq. (2.58) into Eq. (2.56), the matrix for transforming the elasticity matrix 

of the warp yarn from the LCS to the GCS can be obtained, as follows: 

 𝐓𝑐
𝑔|𝑤

=

[
 
 
 
 
 
 
 
 

cos2𝜃 0 sin2𝜃 0 0 cos𝜃sin𝜃

0 1 0 0 0 0

sin2𝜃 0 cos2𝜃 0 0 −cos𝜃sin𝜃

0 0 0 cos𝜃 sin𝜃 0

0 0 0 −sin𝜃 cos𝜃 0

−2sin𝜃cos𝜃 0 2cos𝜃sin𝜃 0 0 cos(2𝜃) ]
 
 
 
 
 
 
 
 

  (2.59) 
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Assume that the elasticity matrix of the warp yarn in the LCS is 𝐂warp
𝑤 . Substituting Eq. 

(2.59) into Eq. (2.54) yields the elasticity matrix of the warp yarn in the GCS: 

 𝐂warp
𝑔

= (𝐓𝑐
𝑔|𝑤
)
T
𝐂warp
𝑤 𝐓𝑐

𝑔|𝑤
  (2.60) 

For the fill yarn, the rotation matrix from the LCS, X𝑓Y𝑓Z𝑓, to the GCS, X𝑔Y𝑔Z𝑔, cannot 

be written out directly as it involves two rotations. Specifically, the LCS of the fill yarn, 

X𝑓Y𝑓Z𝑓, should be firstly rotated with respect to the Z𝑓 axis for an angle of 90, which 

yields an intermediate coordinate system, denoted as X𝑚Y𝑚Z𝑚. This coordinate system 

can then be rotated with respect to the X𝑚 axis for an angle of 𝜑, leading to a coordinate 

system parallel to the GCS, X𝑔Y𝑔Z𝑔. Thus, the rotation matrix from X𝑓Y𝑓Z𝑓 to X𝑔Y𝑔Z𝑔 

can be calculated using the chain rule defined in Eq. (2.27), as follows: 

 𝐑𝑔|𝑓 = 𝐑𝑔|𝑚𝐑𝑚|𝑓 = [

1 0 0

0 cos𝜑 −sin𝜑

0 sin𝜑 cos𝜑

] [

0 −1 0

1 0 0

0 0 1

]  

              = [

0 −1 0

cos𝜑 0 −sin𝜑

sin𝜑 0 cos𝜑

]  (2.61) 

Here, it should be kept in mind that the two-step operation is not commutative and the 

order of the rotations must be preserved. Therefore, the matrix associated with the latter 

rotation, 𝐑𝑔|𝑚, must present before that associated with the former rotation, 𝐑𝑚|𝑓, when 

calculating the final matrix, 𝐑𝑔|𝑓. Substituting Eq. (2.61) into Eq. (2.56), the matrix for 

transforming the elasticity matrix of the fill yarn from its LCS to the GCS can be obtained, 

as follows: 

 𝐓𝑐
𝑔|𝑓

=

[
 
 
 
 
 
 
 
 
0 cos2𝜑 sin2𝜑 0 cos𝜑sin𝜑 0

1 0 0 0 0 0

0 sin2𝜑 cos2𝜑 0 −cos𝜑sin𝜑 0

0 0 0 −cos𝜑 0 −sin𝜑

0 0 0 sin𝜑 0 −cos𝜑

0 −2cos𝜑sin𝜑 2cos𝜑sin𝜑 0 cos(2𝜑) 0 ]
 
 
 
 
 
 
 
 

  (2.62) 
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Based on this equation and assuming that the elasticity matrix of the fill yarn in the LCS 

is 𝐂fill
𝑓

, the elasticity matrix of the fill yarn in the GCS can be calculated, as follows: 

 𝐂fill
𝑔
= (𝐓𝑐

𝑔|𝑓
)
T
𝐂fill
𝑓
𝐓𝑐
𝑔|𝑓

  (2.63) 

Eqs. (2.5), (2.60) and (2.63) form the basis for calculating the elasticity matrices of the 

constituents in woven composites in the GCS. Using these equations, micromechanical 

analysis can be conducted to calculate the stresses and strains of the internal points of the 

UC, which can be subsequently used to calculate the volume average stress and strain of 

the UC. However, it should be noted that at this point the stresses and strains derived for 

the internal points of the UC are based on the GCS. Thus, in the case of homogenising 

the overall response, where the damage of the yarn material needs to be considered, the 

stresses and strains of the material points in the yarns should be transformed back to their 

LCSs such that the damage of the yarn material in woven composites can be evaluated 

locally. Fig. 2.2 is a flow chart highlighting the coordinate transformations that are often 

required when homogenising the overall response of woven composites, as well as the 

equations that can be used to perform these transformations. 
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Figure 2.2: Coordinate transformations in homogenising woven composites 
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2.5 Micromechanical homogenisation methods 

2.5.1 Averaging theory 

In micromechanical homogenisation of periodic materials such as woven composites, the 

macroscopic (also known as effective, homogenised, or overall) quantities are evaluated 

often as the volume averages of the microscopic quantities. Such an averaging theory can 

be utilised to calculate the volume average stress and strain, as follows: 

 〈𝝈〉 =
1

V
∫ 𝝈
Ω

𝑑V  (2.64) 

 〈𝜺〉 =
1

V
∫ 𝜺
Ω
𝑑V  (2.65) 

where V stands for the volume of the domain of homogenisation, Ω; 𝝈 and 𝜺 represent the 

microscopic stress and strain tensors; and 〈𝝈〉 and 〈𝜺〉 denote the macroscopic or volume 

average stress and strain tensors. 

2.5.2 Uniform boundary conditions 

According to the Hill-Mandel principle [146], a prior condition for the volume average  

properties or responses of a representative region (e.g. UC) being capable of effectively 

representing those of the macroscopic structure is that the macroscopic strain energy is 

equal to the volume average work done by the microscopic stress, as follows: 

 〈𝝈〉: 〈𝜺〉 = 〈𝝈: 𝜺〉  (2.66) 

This equation can be rewritten by performing the mathematical manipulations described 

in [147], as follows: 

 ∯ (𝑡𝑖 − 〈𝜎𝑖𝑗〉𝑛𝑗)(𝑢𝑖 − 〈𝜀𝑖𝑘〉𝑥𝑘)Γ
𝑑S = 0  (2.67) 

where Γ is the boundary of the domain of homogenisation; 𝑡𝑖 denotes the component of 

the traction vector, 𝒕; 𝑢𝑖 represents the component of the displacement vector, 𝒖; 𝑛𝑗  refers 

to the component of the outward normal, 𝒏; 𝑥𝑘 stands for the component of the coordinate 

vector, 𝒙; 〈𝜎𝑖𝑗〉 is the component of the macroscopic stress; and 〈𝜀𝑖𝑘〉 is the component of 

the macroscopic strain. 
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As can be seen from Eq. (2.67), a straightforward boundary condition that satisfies the 

consistency condition of energy is: 

 𝑡𝑖 = 〈𝜎𝑖𝑗〉𝑛𝑗         ∀𝒙 ∈ Γ  (2.68) 

This type of boundary condition is termed as the static uniform boundary condition (also 

known as the Neumann boundary condition), and it can be enforced by prescribing to the 

boundary of the problem domain with a uniform traction whose value can be calculated 

based on the macroscopic stress. Similarly, it can be seen that another type of boundary 

condition satisfying Eq. (2.67) is: 

 𝑢𝑖 = 〈𝜀𝑖𝑘〉𝑥𝑘      ∀𝒙 ∈ Γ  (2.69) 

This type of boundary condition is termed as the kinematic uniform boundary condition 

(also known as the Dirichlet boundary condition), and it can be enforced by prescribing 

to the boundary of the problem domain with a uniform displacement whose value should 

be calculated based on the macroscopic strain. 

In addition to the above two types of boundary conditions, another possible one is the 

mixed boundary condition, in which a uniform displacement is applied to one part of the 

whole boundary, and a uniform traction is enforced to the remaining area. This type of 

boundary condition was firstly proposed by Hazanov and co-workers [148-150] and was 

inspired by uniaxial tension tests, where one part of a specimen is often applied with a 

displacement constraint and the remaining part is prescribed with a force. Based on the 

results obtained, they argued that the mixed boundary condition can provide better 

predictions than the kinematic and static uniform boundary conditions. However, this 

type of boundary condition is found to be less commonly used in the micromechanical 

homogenisation of woven composites. 

Furthermore, the so-called iso-stress or iso-strain boundary condition can be utilised to 

perform the micromechanical homogenisation of woven composites. Examples of using 

iso-stress and iso-strain boundary conditions can be found in Ishikawa and Chou [85-88], 

Naik and Shembekar [90-92], and Tabiei and his co-workers [134-136]. In these studies, 

the homogenisation of woven composites is conducted often by prescribing either the 

same stress (i.e. the iso-stress boundary condition) or the same strain (i.e. the iso-strain 
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boundary condition) to not only the boundary but also the UC domain itself. Thus, the 

iso-stress and iso-strain boundary conditions can be largely treated as special cases of the 

static and kinematic uniform boundary conditions, respectively. The main advantage of 

the two types of boundary conditions is their exceptionally low computational costs, due 

to the fact that the stress or strain of any material point in the domain can be calculated 

directly using the constitutive equation of the material point as long as an iso-strain or 

iso-stress is prescribed. However, they may suffer from the problem of a reduced accuracy 

owing to the fact that the energy consistency condition, as defined in Eq. (2.66) or (2.67), 

does not necessarily hold. 

2.5.3 Periodic boundary condition 

Compared to the boundary conditions discussed above, the periodic boundary condition 

(PBC) is the most commonly used in homogenising the elastic properties or the overall 

response of periodic materials such as woven composites. It has been found in numerous 

studies [147, 151-153] that the PBC provides better predictions than any other boundary 

conditions. In this section, the formulation of the PBC will be detailed since it has been 

adopted in the present research to conduct the micromechanical homogenisation of all 

three types of woven composites. 

Consider a general periodic structure to which a macroscopic loading is applied. Then, 

the response (e.g. deformation) of an arbitrary point of this structure can be assumed as 

the sum of a constant part denoting the contribution of macroscopic uniformity and an 

oscillatory part representing that of microscopic inhomogeneity. If the length scale of the 

fluctuation in the applied load is significantly larger than the characteristic dimension of 

the structure (i.e. the length of periodicity), then the oscillatory part will be periodic. The 

above description suggests that: 

 𝒖(𝒙) = 〈𝜕𝒖/𝜕𝒙〉𝒙 + 𝒖∗(𝒙)  (2.70a) 

 𝒖∗(𝒙) = 𝒖∗(𝒙 + 𝝀),  (2.70b) 

 𝝈(𝒙) = 〈𝝈〉 + 𝝈∗(𝒙) (2.71a) 

 𝝈∗(𝒙) = 𝝈∗(𝒙 + 𝝀) (2.71b) 
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 𝜺(𝒙) = 〈𝜺〉 + 𝜺∗(𝒙) (2.72a) 

 𝜺∗(𝒙) = 𝜺∗(𝒙 + 𝝀) (2.72b) 

where 𝒙 is the coordinate vector; 𝒖(𝒙) is the displacement vector; 𝝈(𝒙) and 𝜺(𝒙) stand 

for the stress and strain tensors; 〈𝝈〉 and 〈𝜺〉 represent the macroscopic stress and strain 

contributions; 〈𝜕𝒖/𝜕𝒙〉 denotes the displacement gradient; 𝝀 is the periodicity vector; 

and 𝒖∗(𝒙), 𝝈∗(𝒙) and 𝜺∗(𝒙) are the oscillatory parts. 

Replacing 𝒙 with 𝒙 + 𝝀 in Eqs. (2.70a), (2.71a) and (2.72a) and considering the relations 

in Eqs. (2.70b), (2.71b) and (2.72b), we can get the following equations: 

 𝒖(𝒙) = 〈𝜕𝒖/𝜕𝒙〉𝝀 + 𝒖(𝒙 + 𝝀)  (2.73) 

 𝝈(𝒙) = 𝝈(𝒙 + 𝝀) (2.74) 

 𝜺(𝒙) = 𝜺(𝒙 + 𝝀) (2.75) 

 

Figure 2.3: Schematic of a 2D UC for applying the PBC  

By applying Eq. (2.73) to the boundary of a representative region of the structure, the 

standard form of PBC can be explicitly formulated, which can be illustrated using the 

two-dimensional (2D) UC shown in Fig. 2.3. Assume that the UC is bounded by Γ, which 

can be subdivided into a negative part, Γ−, and a positive part, Γ+. Then, for an arbitrary 

node on the negative boundary, ∀𝒙�̅� ∈ Γ−, there is an equivalent node on the positive 

𝒙𝐴 ∈ Γ+ 

𝒙𝐴 ∈ Γ+ 

𝒙�̅� ∈ Γ− 

𝒙�̅� ∈ Γ− 
𝒏𝐴 𝒏�̅� 
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boundary, ∀𝒙𝐴 ∈ Γ+, such that the two equivalent nodes, 𝒙�̅� and 𝒙𝐴, satisfy the relation 

of 𝒙𝐴 = 𝒙�̅� + 𝝀. Substituting this relation into Eqs. (2.73) yields: 

 𝒖(𝒙𝐴) − 𝒖(𝒙�̅�) = −〈𝜕𝒖/𝜕𝒙〉𝝀  (2.76) 

To prevent any rigid rotation in the homogenisation, the following restriction should be 

imposed: 

 〈𝜕𝒖/𝜕𝒙〉 = 〈𝜕𝒖/𝜕𝒙〉T  (2.77) 

The above equation means that the displacement gradient can be replaced by the volume 

average strain, 〈𝜺〉, since we have: 

 〈𝜺〉 =
1

2
(〈𝜕𝒖/𝜕𝒙〉 + 〈𝜕𝒖/𝜕𝒙〉T) = 〈𝜕𝒖/𝜕𝒙〉  (2.78) 

Combining Eqs. (2.76) and (2.78), the standard form of PBC can be expressed, as follows: 

 𝒖(𝒙𝐴) − 𝒖(𝒙�̅�) = −〈𝜺〉𝝀     ∀𝒙�̅� ∈ Γ− & ∀𝒙𝐴 ∈ Γ+  (2.79) 

Here, it should be noted that the above equation can be used to derive PBCs only for full-

size UCs, not reduced UCs (the concepts of full-size and reduced UCs will be addressed 

in Chapter 4). If a homogenisation is performed based on a reduced UC, then the generic 

form of PBC equation (which can be derived using the equivalence approach and will be 

detailed in Section 4.5.2, Chapter 4) should be used, as follows: 

 𝒖(𝒙𝐴) − 𝛾𝐓𝒖(𝒙�̅�) = −〈𝜺〉𝐓𝝀    ∀𝒙�̅� ∈ Γ− & ∀𝒙𝐴 ∈ Γ+  (2.80) 

In this equation, 𝐓 is the transformation matrix representing the geometrical equivalence 

between the two equivalent points, 𝒙�̅� and 𝒙𝐴. The symbol, 𝛾, stands for the load reversal 

factor, which reflects the loading admissibility between the two equivalent points. The 

specific meanings of 𝐓 and 𝛾 will be addressed also in Section 4.5.2, Chapter 4. 

2.6 Summary 

In this chapter, the elastic constitutive behaviours of the polymer matrix and yarn material 

of woven composites were firstly described using the generalised Hooke’s law. Then, the 
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basic equations for performing coordinate transformations between the LCS of the yarn 

material and the GCS of the UC were detailed, followed by an example showing how to 

use these equations to calculate the elasticity matrices in the GCS from those in the LCS 

for the warp and weft yarns of plain woven composites. Finally, the theories and concepts 

involved in the micromechanical homogenisation of periodic materials were presented, 

with an emphasis on deriving the basic equations of the standard form of PBC.
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CHAPTER 3: MESHFREE METHODS 

 

3.1 Introduction 

Many engineering problems or phenomena can often be described using mathematical 

equations such as algebraic equations, ordinary differential equations (ODEs) and partial 

differential equations (PDEs), which are often referred to as governing equations. In many 

cases, obtaining the exact or analytical solution for the governing equation is impossible, 

particularly for the problems involving nonlinearity. The only practical way is to obtain 

an approximate solution, which can be generally achieved by using a suitable numerical 

method, such as the finite difference method (FDM), the finite element method (FEM), 

the boundary element method (BEM) and the meshfree (or meshless) methods. 

Among different types of numerical methods, the FEM is the most widely used as it is 

well-suited for many engineering problems. In the FEM, the continuum of investigation 

is discretised with non-overlapping but seamlessly connected elements, which forms the 

mesh. The mesh and element based nature provides the FEM with exceptional robustness 

and versatility, allowing many types of engineering problems to be efficiently solved. 

However, the mesh and element based nature also brings about the limitations inherently 

associated with the utilisation of elements and meshes [154]. Such limitations become 

increasingly evident when the FEM is utilised for addressing the problems with high 

geometrical complexity and varying material orientations, e.g. the problem of performing 

micromechanical homogenisation of woven composites. 

One of the limitations of the FEM is that creating a reasonably high-quality mesh is 

always a prerequisite for conducting the finite element analysis (FEA). For geometrically 

complex structures, the automatic generation of the mesh using pre-processing tools is 

difficult to achieve without compromising the quality of the mesh. Thus, heavy manual 

operations and human interventions are required to create a high-quality mesh, which, 

however, can be the main component of the time cost in the FEM analysis. This limitation 
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is even more evident if the FEM is used to perform micromechanical homogenisation of 

woven composites, where not only the modelling and discretisation of the highly complex 

geometries of the constituents should be addressed with manual operations, but also the 

ever-changing material orientations of the yarns need to be assigned manually, see Figs. 

1.2 and 1.3 in Chapter 1 for examples. 

Another limitation of the FEM arises from it being used to solve the problems involving 

large deformation, which is that the accuracy of the FEM solution might be significantly 

reduced as a result of the presence of element distortion. To prevent such a problem, one 

might take the so-called adaptive analysis to re-mesh the regions with large deformation 

or distortion. However, the current available re-meshing processors have been mainly 

designed for the adaptive analysis of two-dimensional (2D) problems due to the technical 

difficulty in the automatic and efficient regeneration of hexahedron elements for three-

dimensional (3D) problems. Even if an adaptive scheme were available for 3D problems, 

the computational cost that is required to regenerate arbitrary 3D elements may still be 

unacceptable, particularly for the problems involving nonlinearity and dynamic loading 

conditions. 

The FEM may suffer from the difficulty in predicting the crack propagation in solids. 

This is because the actual path of a crack in solids is often arbitrary and thus does not 

necessarily coincides with the interfaces between elements. In addition, the use of the 

FEM to simulate material breakage is not ideal because of that the elements in the FEM 

are assumed to be unbreakable, and thus the only possible way is to delete the elements 

that have been considered as damaged completely. Such a treatment, however, can result 

in a mesh-dependent prediction of the path of material breakage. 

The above examinations reveal that the limitations of the FEM inherently arise from the 

utilisation of elements and meshes. Therefore, the idea of avoiding the use of elements 

has been logically formed, and the concept of meshfree (as known as element-free or 

meshless) has been proposed in the research community, contributing to the development 

of a wide variety of meshfree methods. In this chapter, an overview of meshfree methods 

will be firstly presented by comparing against the FEM. Since a key issue to be addressed 

in developing a meshfree method is how to construct shape functions for approximating 

field variables. Thus, following the introduction of meshfree methods, three commonly 
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used shape function construction techniques in meshfree methods, i.e. the moving least 

squares (MLS) interpolation, the radial basis function (RBF) interpolation and the moving 

kriging (MK) interpolation, will be detailed in combination with presenting a numerical 

example for each of these techniques. Another important issue in meshfree methods is 

how to transform the governing equation of the problem of investigation into a discretised 

system of equations so as to numerically obtain an approximate solution. Thus, at the end 

of this chapter, the specific procedures for formulating the standard and explicit weak-

form meshfree methods, which have been selected in this work to address the prediction 

of the elastic properties and that of the overall response of woven composites, will be 

described, and the implementation of the generic form of PBC within the two types of 

meshfree methods will be presented. 

3.2 Overview of meshfree methods 

The key idea of meshfree methods is to discretise the problem domain of investigation 

with a set of arbitrarily distributed nodes (which are known as field nodes) without using 

any predefined elements and meshes, and meanwhile to provide an accurate and stable 

solution based on such a discretisation. Clearly, the use of nodes for domain discretisation 

is one of the differences between the FEM and meshfree methods, see the flow chart in 

Fig 3.1 [154]. The node-based nature also produces another significant difference, which 

is that shape functions in meshfree methods are constructed based on the nodes in a local 

domain, whereas those in the FEM are constructed based on predefined elements. In the 

following two sections, the theories and concepts associated with meshfree methods will 

be introduced by comparing against the FEM from the above two aspects. 

Here, it should be noted that all discussions on domain discretisation and shape function 

construction in this chapter are assumed to be based on a 3D space. However, for the sake 

of convenience, all illustrations associated with domain discretisation in this chapter will 

be presented in a 2D manner, see Fig. 3.2 for example. In addition, the basic equations 

for shape function construction techniques will be presented only in a one-dimensional 

(1D) manner for simplicity, see Eq. (3.1) for example, where it will be shown that the 

approximation of the displacement, i.e. 𝒖 = (𝑢, 𝑣, 𝑤), of a 3D spatial point, 𝒙 = (𝑥, 𝑦, 𝑧), 

is described based on the first component, i.e. 𝑢, of the displacement vector. 
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Figure 3.1: Typical procedures in the FEM and meshfree methods 

3.2.1 Domain discretisation 

As discussed earlier, the fundamental difference between the FEM and meshfree methods 

is the way of discretising the problem domain of investigation. In the FEM, the problem 

domain must be discretised using non-overlapping but seamlessly connected elements, 

see Fig. 3.2a. During the discretisation, the information such as element connectivity must 

be created. In general, the accuracy of the FEM solution is controlled by the number of 

elements and the smoothness of the element type, and a finer mesh design often produces 

a better approximation but requires a higher computational cost. 

In meshfree methods, the problem domain is discretised simply using a set of scattered 

nodes (which can be arbitrarily or regularly distributed) both within the problem domain 

and on the boundary, see Fig. 3.2b. These nodes are often termed as field nodes as they 

carry information for field variables. Similar to the FEM, the accuracy of the meshfree 

solution is controlled by the number of field nodes used. However, compared to the FEM, 

meshfree methods are much simpler since there is no need to create elements and define 
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the connectivity between the nodes shared by adjacent elements. In addition, the adaptive 

analysis based on meshfree methods can be easily performed even for 3D problems since 

only the regeneration of nodes is needed and therefore the associated computational cost 

is less expensive. 

  

(a) Domain discretisation using the FEM 

 

 (b) Domain discretisation using meshfree methods 

Figure 3.2: Domain representation in the FEM and meshfree methods 

3.2.2 Shape function construction 

In the FEM, a field variable (e.g. the displacement) of a point of interest, 𝒙 = (𝑥, 𝑦, 𝑧) is 

approximated based on the nodal information of the element where the point is located. 

For instance, the displacement of 𝒙 can be approximated as a polynomial interpolation of 

the nodal displacements of the element in which it is located: 
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 𝑢ℎ(𝒙) = ∑ 𝜙𝐼(𝒙)𝑢𝐼
𝑛d
𝐼=1 = 𝝓T(𝒙)𝒖   (3.1) 

where 𝑢ℎ(𝒙) is the approximate displacement of 𝒙; the superscript, 𝑛d, denotes the total 

number of the nodes that form the element; and 𝑢𝐼 and 𝜙𝐼(𝒙) are the displacement and 

shape function of the 𝐼th node. 

 

Figure 3.3: Local domain based approximation in meshfree methods 

On the other hand, as there is no element used in meshfree methods, the field variable of 

a point of interest is approximated based on the information of the field nodes within a 

small local domain of it, see Fig. 3.3. This small local domain is referred to as the support 

domain of this point, and the field nodes within the support domain are termed as the 

support nodes. The shape of a support domain can be circular, elliptical or rectangular. In 

the same problem, the support domains can have different sizes and shapes, and they can 

overlap with each other. Similar to the definition of the size of an element in the FEM, 

the choice of the size of a support domain in meshfree methods is very flexible. In general, 

it can be reasonably determined using the following equation [154]: 

 𝑑s = 𝛼s𝑑c (3.2) 

where 𝑑s is the size of the support domain, 𝛼s is a dimensionless factor used to scale the 

size of the support domain, and 𝑑c is the average spacing among the field nodes in the 

support domain and can be approximated using the following equation: 

Support domain Point of interest Field node 
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 𝑑c =

{
  
 

  
 

𝐷s

(1−𝑛D)
1D

√𝐴s

(√𝑛A−1)
2D

√𝑉s

(√𝑛V−1)
3D

 (3.3) 

where 𝐷s, 𝐴s and 𝑉s are the estimated sizes of the support domain in 1D, 2D and 3D cases, 

respectively; and 𝑛D, 𝑛A and 𝑛V are the numbers of the field nodes within the estimated 

support domain in 1D, 2D and 3D cases. 

It should be noted that the basic equations for approximating field variables in meshfree 

methods, which will be shown later when introducing the MLS, RBF and MK techniques, 

are essentially the same as that in the FEM, see Eq. 3.1. However, the way of constructing 

shape functions in meshfree methods is different since it is based on the use of a support 

domain rather an element. In addition, when approximating the field variables of the same 

problem, the number of nodes should be included in a support domain is generally larger 

than the number of nodes in a typical element in the FEM. This suggests that in general 

meshfree methods have lower computational efficiency but higher accuracy compared to 

the FEM. 

3.3 MLS interpolation 

The moving least squares technique was originally developed by mathematicians for data 

fitting and surface construction. A detailed description of such a technique can be found 

in Lancaster and Salkauskas [155]. Nayroles et al. [156] are the first researchers who 

adapted the MLS technique to develop the diffuse element method (DEM). The DEM 

was modified by Belytschko et al. [157], leading to the element-free Galerkin method 

(EFGM), which is a well-established meshfree method that is based on the utilisation of 

the MLS technique. 

The popularity of utilising the MLS technique in meshfree methods lies in two aspects. 

The first one is that the field function approximated will be continuous and smooth in the 

entire problem domain if an enough number of interpolation points is used. This feature 

makes the MLS technique well-suited for formulating the constrained Galerkin weak-
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form method. The seconded aspect is that it can be designed to obtain approximations at 

a designated order of consistency. In the following section, the procedure for applying 

the MLS technique for constructing the MLS-based meshfree shape functions will be 

detailed and discussed. 

3.3.1 MLS procedure 

 

Figure 3.4: Field variable approximation in meshfree methods 

To illustrate the MLS procedure, consider a general problem domain, Ω, bounded by Γ， 

as shown in Fig. 3.4. Assume that this domain is discretised with a number of arbitrarily 

distributed field nodes. For a continuous field function, 𝑢(𝒙), defined in the domain for 

an arbitrary point, 𝒙 = (𝑥, 𝑦, 𝑧), the MLS technique assumes that the field function can 

be approximated in the following form: 

 𝑢ℎ(𝒙) = ∑ 𝑝𝐽(𝒙)𝛼𝐽(𝒙)
𝑚
𝐽=1 = 𝒑T(𝒙)𝜶(𝒙)   (3.4) 

where 𝒑T(𝒙) represents a polynomial basis with 𝑚 monomial terms, and 𝜶(𝒙) is a vector 

of 𝑚 unknown coefficients: 

 𝒑T(𝒙) = {𝑝1(𝒙) 𝑝2(𝒙) ⋯ 𝑝𝑚(𝒙)}   (3.5) 

 𝜶(𝒙) = {𝛼1(𝒙) 𝛼2(𝒙) ⋯ 𝛼𝑚(𝒙)}
T   (3.6) 

Support domain 

Point of interest Field node Support node 

Ω𝑠 

Ω 

Γ 
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Theoretically, the components in 𝒑T(𝒙) can be any arbitrary functions of 𝒙. However, the 

most common choice is to utilised a complete basis, and a complete 𝑝-order polynomial 

can be defined by:  

 𝒑T(𝒙) =

{
 
 

 
 

{1 𝑥 𝑥2 ⋯ 𝑥𝑝−1 𝑥𝑝} 1D

{1 𝑥 𝑦 𝑥𝑦 𝑥2 𝑦2 ⋯ 𝑥𝑝 𝑦𝑝} 2D

{1 𝑥 𝑦 𝑧 𝑥𝑦 𝑦𝑧 𝑧𝑥 𝑥2 𝑦2 𝑧2 ⋯ 𝑥𝑝 𝑦𝑝 𝑧𝑝} 3D

  (3.7) 

To determine the coefficients in 𝜶(𝒙), a support domain, Ωs, is defined for the point of 

interest, 𝒙. Assume that the number of the field nodes in the support domain is 𝑛, which 

should be larger than 𝑚. Applying Eq. (3.4) to all the support nodes produces: 

 𝑢ℎ(𝒙𝐼) = 𝑢ℎ(𝒙, 𝒙𝐼) = ∑ 𝑝𝐽(𝒙𝐼)𝛼𝐽(𝒙)
𝑚
𝐽=1    (𝐼 = 1, 2, … , 𝑛)  (3.8) 

Here, it should be noted that the value approximated for a support node using this equation 

is not necessarily equal to its nodal value, i.e. 𝑢ℎ(𝒙𝐼) ≠ 𝑢𝐼. Thus, a function of weighted 

residual is constructed to minimise the error in the approximations, as follows: 

 𝑅𝑚𝑙𝑠 = ∑ 𝑊𝐼(𝒙)(𝑢
ℎ(𝒙, 𝒙𝐼) − 𝑢(𝒙𝐼))

2
𝑛
𝐼 = ∑ 𝑊𝐼(𝒙)(𝒑

T(𝒙𝐼)𝜶(𝒙) − 𝑢𝐼)
2 𝑛

𝐼   (3.9) 

In this equation, 𝑊𝐼(𝒙) is a weight function chosen to play two roles. The first role is to 

control the weights of support nodes, giving bigger (or smaller) weights for the support 

nodes close to (or far from) 𝒙. The second role is to ensure a smooth transition of the field 

nodes leaving or entering the support domain when the point of interest moves in the 

problem domain. Technically, the weight function can be any type of function as long as 

it satisfies the positivity, compact and decay conditions, as described in [158]. However, 

a weight function can effectively play the above two roles only when an enough number 

of support nodes is used (i.e. 𝑛 ≫ 𝑚). The commonly used weight functions include the 

cubic spline, the quadratic spline and the exponential weight functions. In this work, the 

quadratic spline weight function is utilised, as follows: 

 𝑊𝐼(𝒙) = {
1 − 6 (

𝑑𝐼

𝑑s
)
2

+ 8(
𝑑𝐼

𝑑s
)
3

− 3(
𝑑𝐼

𝑑s
)
4

0 ≤ 𝑑𝐼 ≤ 𝑑s

0 𝑑s ≤ 𝑑𝐼

    (3.10) 
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where 𝑑𝐼 stands for the distance between the point of interest and the 𝐼th support node, 

i.e. the distance between 𝒙 and 𝒙𝐼; and 𝑑s is the size of the support domain.  

In the MLS technique, the unknown coefficients in 𝜶(𝒙) are determined by minimising 

the weighted residual defined in Eq. (3.9). Since the condition of the residual reaching a 

minimum is 𝜕𝑅𝑚𝑙𝑠 𝜕𝜶⁄ = 0, we can obtain the following linear system of equations: 

 𝐀(𝒙)𝜶(𝒙) = 𝐁(𝒙)𝒖  (3.11) 

where 𝐀(𝒙) refers to as the MLS weighted moment matrix, 𝐁(𝒙) is a matrix based on 

weight functions and polynomials, and 𝒖 is a vector collecting the nodal values of the 𝑛 

support nodes: 

 𝐀(𝒙) = ∑ 𝑊𝐼(𝒙)𝒑(𝒙𝐼)
𝑛
𝐼 𝒑T(𝒙𝐼)  (3.12) 

 𝐁(𝒙) = {𝒃1(𝒙) 𝒃2(𝒙) … 𝒃𝑛(𝒙)}  (3.13) 

 𝒃𝐼(𝒙) = 𝑊𝐼(𝒙)𝒑(𝒙𝐼)  (3.14) 

 𝒖 = {𝑢1 𝑢2 … 𝑢𝑛}T  (3.15) 

Assuming that the MLS moment matrix is invertible, Eq. (3.11) can be rewritten into the 

following form: 

 𝜶(𝒙) = 𝐀−1(𝒙)𝐁(𝒙)𝒖  (3.16) 

Substituting this equation back into Eq. (3.4) yields the MLS approximation of the field 

variable, 𝑢ℎ(𝒙), as follows: 

 𝑢ℎ(𝒙) = ∑ (∑ 𝑝𝐽(𝒙)(𝐀
−1(𝒙)𝐁(𝒙))

𝐽𝐼
𝑚
𝐽=1 ) 𝑢𝐼

𝑛
𝐼=1 = ∑ 𝜙𝐼(𝒙)𝑢𝐼

𝑛
𝐼=1   (3.17) 

or in the matrix form: 

 𝑢ℎ(𝒙) = 𝒑T(𝒙)𝐀−1(𝒙)𝐁(𝒙)𝒖 = 𝝓T(𝒙)𝒖  (3.18) 

where (𝐀−1(𝒙)𝐁(𝒙))
𝐽𝐼

 is the 𝐽𝐼th component of the resulting matrix of 𝐀−1(𝒙)𝐁(𝒙), and 

𝝓 is a vector consisting of the MLS shape functions, as follows: 
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 𝝓T(𝒙) = {𝜙1 𝜙2 … 𝜙𝑛} = 𝒑T(𝒙)𝐀−1(𝒙)𝐁(𝒙)  (3.19) 

where 𝜙𝐼(𝒙) is the MLS-based meshfree shape function of the 𝐼th support node, and it 

can be expanded as follows: 

 𝜙𝐼(𝒙)  = ∑ 𝑝𝐽(𝒙)(𝐀
−1(𝒙)𝐁(𝒙))

𝐽𝐼
𝑚
𝐽=1 = 𝒑T(𝒙)𝐀−1(𝒙)𝐁(𝒙)  (3.20) 

3.3.2 MLS shape function derivatives 

The MLS formulation given in Eq. (3.17) or (3.18) can be utilised directly to evaluate the 

displacement field. However, in order to calculate field variables such as strain, the first-

order and second-order partial derivatives of the MLS-based shape functions need to be 

derived. The procedure for calculating these derivatives is briefed as follows. By denoting 

𝒑T(𝒙)𝐀−1(𝒙) as 𝜻T(𝒙), Eq. (3.19) can be rewritten as: 

 𝝓T(𝒙) = 𝜻T(𝒙)𝐁(𝒙)  (3.21) 

where 𝜻(𝒙) can be solved using the following equation, which is obtained by considering 

the symmetry of 𝐀(𝒙): 

 𝐀(𝒙)𝜻(𝒙) = 𝒑(𝒙)  (3.22) 

Then, the first-order partial derivative of 𝜻(𝒙) can be calculated by taking the derivative 

of the above equation with respect to 𝑖 = (𝑥, 𝑦, 𝑧), as follows: 

 𝜻,𝑖 = 𝐀−1(𝒑,𝑖 − 𝐀,𝑖𝜻)  (3.23) 

where ( ),𝑖 stands for 𝜕( ) 𝜕𝑥𝑖⁄ . Similarly, the second-order partial derivative of 𝜻(𝒙) 

can be obtained by taking the derivative of Eq. (3.23) with respect to 𝑗 = (𝑥, 𝑦, 𝑧), as 

follows: 

 𝜻,𝑖𝑗 = 𝐀
−1 (𝒑,𝑖𝑗 − (𝐀,𝑖𝜻,𝑗 + 𝐀,𝑗𝜻,𝑖 + 𝐀,𝑖𝑗𝜻))  (3.24) 

Considering the above two equations and taking the derivatives of Eq. (3.21) and the 

resulting equation with respect to 𝑖 and 𝑗, respectively, the first-order and second-order 

partial derivatives of the MLS-based shape functions can be derived, as follows: 
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 𝝓,𝑖
T = 𝜻,𝑖

T𝐁 + 𝜻T𝐁,𝑖 (3.25) 

 𝝓,𝑖𝑗
T = 𝜻,𝑖𝑗

T 𝐁 + 𝜻,𝑖
T𝐁,𝑗 + 𝜻,𝑗

T𝐁,𝑖 + 𝜻
T𝐁,𝑖𝑗 (3.26) 

3.3.3 An MLS example 

To investigate the features possessed by the MLS-based shape functions, an example has 

been conducted on a 2D square domain with dimensions of [−0.5, 0.5] × [−0.5, 0.5], and 

this domain is discretised with a total number of 5 × 5 uniformly distributed field nodes. 

The quadratic spline function, as defined in Eq. (3.10), is used as the weight function, and 

both the MLS-based shape functions and the first-order partial derivatives are calculated 

based on the use of the linear polynomial basis and that of the quadratic polynomial basis. 

Some of the input and output data in this example are given in Table A.1, Appendix A. 

In this table, the output data have been calculated when the point of interest is set to be 

the central point of the square domain, i.e. 𝒙 = (0,0). It is clear from this table that the 

sum of the shape functions in both the case of using the linear polynomial basis and that 

of using the quadratic polynomial basis is equal to unity: 

 ∑ 𝜙𝐼(𝒙)
𝑛
𝐼=1 = 1  (3.27) 

The above feature is referred to as the property of partitions of unity and is possessed by 

not only the MLS-based shape functions but also many other shape functions such as the 

RBF-based and MK-based shape functions, which will be demonstrated later in Sections 

3.4.3 and 3.5.3. The significance of possessing such a property is that it allows for the 

reproduction of a constant field or rigid body moment. 

Apart from the above results, further calculations have also been performed to derive the 

MLS-based shape functions and the corresponding first-order derivatives for a resolution 

of 51 × 51 uniformly distributed points. Here, it should be noted that the support domains 

used for these points are the same one, i.e. the square domain. The results corresponding 

to the central field node (which is one of the 5 × 5 field nodes not the 25 × 25 resolution 

nodes) are visualised in Fig. 3.5. As is evidently shown in this figure, both the MLS-based 

shape function and the first-order derivative are very smooth, with the former exhibiting 

a bell shape surface across the square domain and the latter showing an antisymmetric 
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shape with respect to the central point. In addition, the results obtained based on the linear 

polynomial basis resemble those based on the quadratic polynomial basis, except for the 

presence of higher peaks in the latter case. This means that both the linear polynomial 

basis and the quadratic polynomial basis are able to produce very smooth approximations. 

 

 

Figure 3.5: The MLS-based shape functions & x-derivatives at the central node 

 

Figure 3.6: The MLS-based shape functions plotted on plane Y=0 

To take a closer examination of the results presented in Fig. 3.5, the MLS-based shape 

functions are plotted on plane Y = 0, and the resulting curves are shown in Fig. 3.6. From 
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this figure, it can be seen that the MLS-based shape functions do not necessarily satisfy 

the following condition: 

 𝜙𝐼(𝒙 = 𝒙𝐽) = {
1 𝐼 = 𝐽

0 𝐼 ≠ 𝐽
𝐼 = 1,2, … , 𝑛 (3.28) 

The above feature is often termed as the Kronecker delta function property. The lack of 

such a property in the MLS-based shape functions is due to the fact that the field function 

of approximation in the MLS procedure is not required to pass through the nodal values. 

Therefore, it should be kept in mind that when using the MLS technique to enforce an 

essential boundary condition the displacements that will be actually prescribed may not 

be exactly equal to the designated values. Thus, additional treatments are often needed if 

an essential boundary condition needs to be enforced exactly. 

3.4 RBF interpolation 

In describing the MLS procedure, it has been assumed that the weighted moment matrix 

is invertible. However, it can be found by taking a closer examination that this assumption 

will fail if the number of the support nodes used is less than the number of components 

in the polynomial basis. Also, the reversibility of the weighted moment is dependent of 

the distribution of support nodes within the support domain. Therefore, one drawback of 

the MLS technique is that the weighted moment matrix can be singular. As demonstrated 

in the example in Section 3.2.3, another drawback of the MLS technique is that this type 

of shape functions does not possess the so-called Kronecker delta function property, 

which leads to a difficulty in exactly enforcing essential boundary conditions. A simple 

solution to avoid the above two problems is to replace the MLS technique with the RBF 

technique, as will be detailed in the following section. 

3.4.1 RBF procedure 

To illustrate the RBF procedure, consider again the problem domain defined in Section 

3.3.1. In the RBF technique, the field function of a point interest is approximated based 

on radial basis functions, as follows: 

 𝑢ℎ(𝒙) = ∑ 𝑟𝐼(𝒙)𝛼𝐼
𝑛
𝐼=1 = 𝒓T(𝒙)𝜶   (3.29) 
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where 𝑛 is the number of support nodes, and 𝛼𝐼 is the unknown coefficient corresponding 

to the 𝐼th radial basis function, 𝑟𝐼(𝒙): 

 𝒓T(𝒙) = {𝑟1(𝒙) 𝑟2(𝒙) ⋯ 𝑟𝑛(𝒙)}   (3.30) 

 𝜶(𝒙) = {𝛼1(𝒙) 𝛼2(𝒙) ⋯ 𝛼𝑛(𝒙)}
T   (3.31) 

where the 𝐼th radial basis function, 𝑟𝐼(𝒙), is related to the distance between 𝒙 and the 𝐼th 

support node, which can be defined as follows: 

 𝑑𝐼 =

{
 
 

 
 

|𝑥 − 𝑥𝐼| 1D

√(𝑥 − 𝑥𝐼)2 + (𝑦 − 𝑦𝐼)2 2D

√(𝑥 − 𝑥𝐼)2 + (𝑦 − 𝑦𝐼)2 + (𝑧 − 𝑧𝐼)2 3D

  (3.32) 

The commonly used RBFs include the multiquadric function (MQF), the Gaussian radial 

function (GRF), the thin plate spline function (TPSF) and the logarithmic radial basis 

function (LRBF). The general forms of these functions are defined as follows: 

 𝑟𝐼(𝒙) = (𝑎0
2 + 𝑑𝐼

2)𝑞    MQF   (3.33) 

 𝑟𝐼(𝒙) = exp(−𝜃𝑑𝐼
2)    GRF   (3.34) 

 𝑟𝐼(𝒙) = 𝑑𝐼
𝜂
    TPSF  (3.35) 

 𝑟𝐼(𝒙) = 𝑑𝐼
𝜂
log𝑑𝐼    LRFB  (3.36) 

where 𝑎0, 𝑞, 𝜃 and 𝜂 are numerical parameters controlling the shape and size of the radial 

basis function. 

In the present work, we focus on the use of the MQF proposed by Hardy [159] since this 

type of MQF is widely used for surface fitting and approximating solutions. Such an MQF 

can be obtained by setting 𝑞 = 0.5 in Eq. (3.33), as follows: 

 r𝐼(𝒙) = √𝑎0
2 + 𝑑𝐼

2    (3.37) 

In this work, three scaling parameters are added into 𝑑𝐼 to scale the radial basis function, 

as follows: 
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 𝑑𝐼 =

{
 
 

 
 

|𝑎1(𝑥 − 𝑥𝐼)| 1D

√𝑎1
2(𝑥 − 𝑥𝐼)2 + 𝑎2

2(𝑦 − 𝑦𝐼)2 2D

√𝑎1
2(𝑥 − 𝑥𝐼)2 + 𝑎2

2(𝑦 − 𝑦𝐼)2 + 𝑎3
2(𝑧 − 𝑧𝐼)2 3D

  (3.38) 

where 𝑎1, 𝑎2 and 𝑎3 are the scaling parameters. The purpose of using these parameters is 

to improve the flexibility of the RBF technique in terms of controlling the resulting shape 

functions and derivatives. 

By applying Eq. (3.29) to all the 𝑛 support nodes, a linear system of equations can be 

formed, as follows: 

 𝒖 = 𝐑𝜶  (3.39) 

where 𝒖 is a vector collecting the nodal values of the 𝑛 support nodes, 𝜶 is the vector 

consisting of the unknown coefficients and 𝐑 refers to the RBF moment matrix: 

 𝒖 = {𝑢1 𝑢2 ⋯ 𝑢𝑛}T (3.40) 

 𝜶 = {𝛼1 𝛼2 ⋯ 𝛼𝑛}T (3.41) 

 𝐑 =

[
 
 
 
 
 
 
𝑟1(𝒙1) 𝑟2(𝒙1) ⋯ 𝑟𝑛(𝒙1)

𝑟1(𝒙2) 𝑟2(𝒙2) ⋯ 𝑟𝑛(𝒙2)

⋮ ⋮ ⋱ ⋮

𝑟1(𝒙𝑛) 𝑟2(𝒙𝑛) ⋯ 𝑟𝑛(𝒙𝑛)]
 
 
 
 
 
 

 (3.42) 

It should be noted that the radial basis functions are positively defined and thus the RBF 

moment matrix is invertible. Therefore, the unknown coefficients in Eq. (3.39) can be 

solved, as follows: 

 𝜶 = 𝐑−1𝒖  (3.43) 

Substituting this equation back into Eq. (3.29) yields the RBF approximation of the field 

function, as follows: 

 𝑢ℎ(𝒙) = ∑ (∑ 𝑟𝐽(𝒙)(𝐑
−1)𝐽𝐼

𝑛
𝐽=1 )𝑢𝐼

𝑛
𝐼=1 = ∑ 𝜙𝐼(𝒙)𝑢𝐼

𝑛
𝐼=1    (3.44) 
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or in the matrix form: 

 𝑢ℎ(𝒙) = 𝒓T(𝒙)𝐑−1𝒖 = 𝝓T(𝒙)𝒖  (3.45) 

where (𝐑−1)𝐽𝐼 is the 𝐽𝐼th component of 𝐑−1, and 𝝓 is the vector consisting of the RBF-

based shape functions: 

 𝝓T(𝒙) = {𝜙1 𝜙2 … 𝜙𝑛}
T = 𝒓T(𝒙)𝐑−1 (3.46) 

where 𝜙𝐼(𝒙) is the RBF-based shape function corresponding to the 𝐼th support node, and 

it can be expanded as follows: 

 𝜙𝐼(𝒙)  = ∑ 𝑟𝐽(𝒙)(𝐑
−1)𝐽𝐼

𝑛
𝐽=1  (3.47) 

3.4.2 RBF shape function derivatives 

It is evident from Eq. (3.42) that the RBF moment matrix is independent of 𝒙. Thus, the 

first-order and second-order partial derivatives of the RBF shape functions can be directly 

obtained by taking the derivatives of Eq. (3.46) and the resulting equation with respect to 

𝑖 and 𝑗, respectively, as follows: 

 𝜙𝐼,𝑖(𝒙)  = ∑ 𝑟𝐽,𝑖(𝒙)(𝐑
−1)𝐽𝐼

𝑛
𝐽=1  (3.48) 

 𝜙𝐼,𝑖𝑗(𝒙)  = ∑ 𝑟𝐽,𝑖𝑗(𝒙)(𝐑
−1)𝐽𝐼

𝑛
𝐽=1  (3.49) 

where 𝑟𝐽,𝑖(𝒙) and 𝑟𝐽,𝑖𝑗(𝒙) are the first-order and second-order partial derivatives of 𝑟𝐽(𝒙), 

and they can be explicitly expressed for the case of using the modified MQF, as follows: 

 𝑟𝐽,𝑖(𝒙) =
2𝑞𝑎𝑖

2((𝒙)𝑖−(𝒙𝐽)𝑖)

𝑎0
2+𝑑𝐼

2 𝑟𝐽(𝒙) (3.50) 

 𝑟𝐽,𝑖𝑗(𝒙) =
4𝑞(𝑞−1)𝑎𝑖

2𝑎𝑗
2((𝒙)𝑖−(𝒙𝐽)𝑖)(

(𝒙)𝑗−(𝒙𝐽)𝑗)

(𝑎0
2+𝑑𝐼

2)
2 𝑟𝐽(𝒙) (3.51) 

3.4.3 An RBF example 

An example of utilising the RBF technique has been also conducted to study the features 

possessed by this type of shape functions. This example is performed by using again the 
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2D domain described in Section 3.3.3. Results are calculated for both the case of using 

the MQF defined in Eq. (3.37) and that of using the GQF defined in Eq. (3.34) as the 

radial basis function. The parameters used in this example are 𝑎0 = 1, 𝑎1 = 1, 𝑎2 = 1 

and 𝜃 = 0.75. 

The input and output data for the case of the central point being the point of interest are 

given in Table A.2, Appendix A. It is clearly seen in this table that the sum of the shape 

functions at all field nodes is equal to unity, meaning that the RBF-based shape functions 

possess the property of partitions of unity. Also, it can be found that the shape function at 

the central field node is equal to unity, while those at the remaining field nodes are equal 

to zero. This suggests that the RBF-based shape functions also possess the Kronecker 

delta function property, which is essentially a result of the fact that the field function of 

approximation in the RBF procedure is required to pass through all the field nodes in the 

support domain. 

 

 

Figure 3.7: The RBF-based shape functions & x-derivatives at the central node 

Similar to the MLS example, the shape functions and the 𝑥-derivatives corresponding to 

the central field node have been plotted with a resolution of 51 × 51 points for both the 
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case of using the MQF and that of using the GQF, as shown in Fig. 3.7. Here, it is evident 

that both the two cases are able to generate smooth shape functions and the first-order 

partial derivatives, with the latter case producing a higher degree of variations and thus a 

higher order of smoothness. 

 

Figure 3.8: The RBF-based shape functions plotted on plane Y=0 

Fig. 3.8 shows the shape function curves obtained by sectioning Figs. 3.7a and 3.7c using 

plane Y = 0. As is clearly shown in this figure, for both the case of using the MQF and 

that of using the GQF, the shape functions are equal to unity at the central field node and 

zero at all the other field nodes. This again confirms that the RBF-based functions possess 

the Kronecker delta function property, and thus the RBF technique can be used to avoid 

the problem in using the MLS technique to enforce essential boundary conditions. 

3.5 MK interpolation 

As demonstrated in the previous section, a solution to address the drawback of lacking 

the Kronecker delta function property in the MLS technique is to replace it with the RBF 

technique. Alternatively, this drawback can be effectively avoided by employing the MK 

technique. Such a technique was developed by Gu [160] from the kriging method, which 

is a geostatistical approach initially proposed by Krige [161] and formalised by Matheron 

[162] for spatial data interpolation. In this section, the MK procedure will be described 

and an MK-based example will be presented. 
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3.5.1 MK procedure 

To illustrate the MK procedure, consider again the problem domain defined in Section 

3.3.1. In the MK technique, the field function of a point of interest is approximated based 

on a combination of a polynomial interpolation and a stochastic process, as follows: 

 𝑢ℎ(𝒙) = ∑ 𝑝𝐽(𝒙)𝛼𝐽
𝑚
𝐽=1 + 𝑍(𝒙) = 𝒑T(𝒙)𝜶 + 𝑍(𝒙) (3.52) 

where 𝑝𝐽(𝒙) is the 𝑗th component of polynomial basis 𝒑T(𝒙), which has 𝑚 terms and is 

often chosen to be the complete basis given in Eq. (3.7); 𝛼𝐽 is the unknown coefficient 

corresponding to 𝑝𝐽(𝒙) and yet to be determined; and 𝑍(𝒙) is a function representing the 

realisation of a stochastic process that has a mean value of zero, a variance of 𝜎2, and a 

nonzero covariance defined by: 

 cov[𝑍(𝒙𝐼), 𝑍(𝒙𝐽)] = 𝜎2𝐆 (3.53) 

 𝐆 =

[
 
 
 
 
 

1 𝐺(𝒙1, 𝒙2) ⋯ 𝐺(𝒙1, 𝒙𝑛)

𝐺(𝒙2, 𝒙1) 1 ⋯ 𝐺(𝒙2, 𝒙𝑛)

⋮ ⋮ ⋱ ⋮

𝐺(𝒙𝑛, 𝒙1) 𝐺(𝒙𝑛, 𝒙2) ⋯ 1 ]
 
 
 
 
 

 (3.54) 

where 𝐆 is termed as the correlation matrix. The 𝐼𝐽th component in this matrix, 𝐺(𝒙𝐼 , 𝒙𝐽), 

is a correlation function relating to support nodes 𝒙𝐼 and 𝒙𝐽. Here, the GBF defined in Eq. 

(3.34) is modified to define this correlation function, as follows: 

 𝐺(𝒙𝐼 , 𝒙𝐽) = exp(−𝜃𝑑𝐼𝐽
2 ) (3.55) 

where 𝜃 is a parameter controlling the shape of the GBF, and the modification to this 

equation is made by introducing an free parameter, 𝑎0, to 𝑑𝐼𝐽, which is thus defined as 

follows: 

 𝑑𝐼𝐽 =

{
  
 

  
 

𝑎0 + |𝑎1(𝑥𝐼 − 𝑥𝐽)| 1D

√𝑎0
2 + 𝑎1

2(𝑥𝐼 − 𝑥𝐽)
2
+ 𝑎2

2(𝑦𝐼 − 𝑦𝐽)
2

2D

√𝑎0
2 + 𝑎1

2(𝑥𝐼 − 𝑥𝐽)
2
+ 𝑎2

2(𝑦𝐼 − 𝑦𝐽)
2
+ 𝑎3

2(𝑧𝐼 − 𝑧𝐽)
2
 3D

  (3.56) 
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The use of 𝑍(𝒙) produces a localised deviation in the approximation of the field function. 

Thus, a function of the mean squared error (MSE) is created to minimise such a deviation, 

as follows: 

 MSE = 𝐸[𝑢ℎ(𝒙) − 𝑢(𝒙)]2  (3.57) 

By minimising this error under the unbiased constraint of 𝐸[𝑢ℎ(𝒙)] = 𝐸[𝑢(𝒙)], the best 

linear unbiased prediction of 𝑢(𝒙) can be obtained [163], as follows: 

 𝑢ℎ(𝒙) = 𝒑T(𝒙)𝜻 + 𝒈T(𝒙)𝐆−1(𝒖 − 𝑷𝜻)  (3.58) 

where 𝒑T(𝒙) is the polynomial basis defined in Eq. (3.7), 𝒖 denotes the vector collecting 

the nodal values, and 𝒈T(𝒙), 𝐏 and 𝜻 are defined as follows:  

 𝒈T(𝒙) = {𝑔1(𝒙) 𝑔2(𝒙) … 𝑔𝑛(𝒙)}  (3.59) 

 𝐏 =

[
 
 
 
 
 
 
𝑝1(𝒙1) 𝑝2(𝒙1) ⋯ 𝑝𝑚(𝒙1)

𝑝1(𝒙2) 𝑝2(𝒙2) ⋯ 𝑝𝑚(𝒙2)

⋮ ⋮ ⋱ ⋮

𝑝1(𝒙𝑛) 𝑝2(𝒙𝑛) ⋯ 𝑝𝑚(𝒙𝑛)]
 
 
 
 
 
 

  (3.60) 

 𝜻 = (𝐏T𝐆−1𝐏)−1𝐏T𝐆−1𝒖  (3.61) 

where the 𝐼th component of 𝒈T(𝒙) is a correlation function  defined by 𝑔𝐼(𝒙) = 𝐺(𝒙, 𝒙𝐼). 

To reorganise Eq. (3.58), the following notations are introduced, where 𝐈 represents the 

identity matrix: 

 𝐀 = (𝐏T𝐆−1𝐏)−1𝐏T𝐆−1  (3.62) 

 𝐁 = 𝐆−1(𝐈 − 𝐏𝐀)  (3.63) 

Based on the above notations, Eq. (3.58) can be rewritten into the following form, which 

is the MK approximation of the field function: 

 uℎ(𝒙) = ∑ (∑ 𝑝𝐽(𝒙)(𝐀)𝐽𝐼
𝑚
𝐽=1 + ∑ 𝑔𝐾(𝒙)(𝐁)𝐾𝐼

𝑛
𝐾=1 )𝑢𝐼

𝑛
𝐼=1 = ∑ 𝜙𝐼(𝒙)𝑢𝐼

𝑛
𝐼=1   (3.64) 

or in the matrix form: 
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 𝑢ℎ(𝒙) = (𝒑T(𝒙)𝐀 + 𝐆T(𝒙)𝐁)𝒖 = 𝝓T(𝒙)𝒖  (3.65) 

where the symbols, (𝐀)𝐽𝐼 and (𝐁)𝐾𝐼, denotes the 𝐽𝐼th and 𝐾𝐼th components of 𝐀 and 𝐁, 

and 𝝓 is the vector consisting of the MK shape functions: 

 𝝓T(𝒙) = {𝜙1 𝜙2 … 𝜙𝑛}
T = 𝒑T(𝒙)𝐀 + 𝐆T(𝒙)𝐁 (3.66) 

where 𝜙𝐼(𝒙) is the MK shape function corresponding to the 𝐼th support node, and it can 

be expressed as follows: 

 𝜙𝐼(𝒙)  = ∑ 𝑝𝐽(𝒙)(𝐀)𝐽𝐼
𝑚
𝐽=1 + ∑ 𝑔𝐾(𝒙)(𝐁)𝐾𝐼

𝑛
𝐾=1  (3.67) 

3.5.2 MK shape function derivatives 

Since 𝐀 and 𝐁 in Eq. (3.67) are independent of 𝒙, the first-order and second-order partial 

derivatives of the MK shape functions can be obtained directly by taking the derivatives 

of this equation and the resulting equation with respect to 𝑖 and 𝑗 respectively, as follows: 

 𝜙𝐼,𝑖(𝒙)  = ∑ 𝑝𝐽,𝑖(𝒙)(𝐀)𝐽𝐼
𝑚
𝐽=1 + ∑ 𝑔𝐾,𝑖(𝒙)(𝐁)𝐾𝐼

𝑛
𝐾=1  (3.68) 

 𝜙𝐼,𝑖𝑗(𝒙)  = ∑ 𝑝𝐽,𝑖𝑗(𝒙)(𝐀)𝐽𝐼
𝑚
𝐽=1 + ∑ 𝑔𝐾,𝑖𝑗(𝒙)(𝐁)𝐾𝐼

𝑛
𝐾=1  (3.69) 

where 𝑝𝐽,𝑖(𝒙) and 𝑝𝐽,𝑖𝑗(𝒙) can be obtained easily based on the polynomial basis, and the 

first-order and second-order partial derivatives of 𝑔𝐾(𝒙) are defined by: 

 𝑔𝐾,𝑖(𝒙) = −2𝜃𝑎𝑖
2((𝒙)𝑖 − (𝒙𝐾)𝑖)𝑔𝐾(𝒙) (3.70) 

 𝑔𝐾,𝑖𝑗(𝒙) = 4𝜃
2𝑎𝑖

2𝑎𝑗
2((𝒙)𝑖 − (𝒙𝐾)𝑖)((𝒙)𝑗 − (𝒙𝐾)𝑗)𝑔𝐾(𝒙) (3.71) 

3.5.3 An MK example 

To study the features possessed by the MK-based shape functions, an example of utilising 

the MK technique has been conducted on again the 2D domain described in Section 3.3.3. 

In this example, the parameters in the modified GQF are 𝜃 = 1, 𝑎0 = 0, 𝑎1 = 4 and 𝑎2 =

4. Results are calculated for both the case of using the linear polynomial basis and that of 

using the quadratic polynomial basis. 
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The input and output data for the case of the central point being the point of interest are 

presented in Table A.3, Appendix A. The data given in this table clearly suggest that the 

MK-based shape functions possess both the partitions of unity property and the Kronecker 

delta function property.  

 

 

Figure 3.9: The MK-based shape functions & x-derivatives at the central node 

Similar to the MLS and RBF example, the shape functions and the 𝑥-derivatives relating 

to the central field node have been plotted with a resolution of 51 × 51 points for both 

the case of using the linear polynomial basis and that of using the quadratic polynomial 

basis, as shown in Fig. 3.9. It is interesting to note that the results calculated based on the 

former case are very similar to those obtained based on the latter case, exhibiting a high 

degree of smoothness in both the shape functions and the 𝑥-derivatives. 

Fig. 3.10 shows the shape functions obtained after sectioning Figs. 3.9a and 3.9c using 

plane Y = 0. The results shown in this figure once again confirm that the shape functions 

obtained using the MK technique possess the Kronecker delta function property. Thus, 

similar to the RBF technique, the MK technique can be utilised to address the problem in 

using the MLS technique to enforce essential boundary conditions. 
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Figure 3.10: The MK-based shape functions plotted on plane Y=0 

3.6 System equation formulation 

3.6.1 Categorisation of meshfree methods 

As discussed previously in the introduction of this chapter, engineering problems can be 

described often using governing equations such as PDEs. In many cases, obtaining the 

exact or analytical solution for a complex engineering is impractical. The only practical 

way is to use a numerical method to get an approximate solution. Among different types 

of numerical methods, meshfree methods are perhaps of the greatest potential as they are 

based on nodes only and do not require the use of elements. Based on the procedure for 

solving the governing equation, meshfree methods can be classified into three types, 

namely, the strong-form meshfree methods, the weak-form meshfree methods and the 

strong-weak form meshfree methods. In this section, the basic features, advantages and 

disadvantages of these methods will be briefly discussed. 

In a general engineering problem, the governing equation and the equations for enforcing 

boundary and/or initial conditions are typically strong-form equations. In the strong-form 

meshfree methods, the above equations are directly satisfied at field nodes. Therefore, the 

functions for approximating field variables in the strong-form meshfree methods should 

have a sufficient degree of consistency such that they are differentiable up to the order of 

the governing equation. Currently, a wide variety of strong-form meshfree methods has 

been developed, such as the general FDM [164-167], the meshfree collocation methods 

[168-171] and the finite point method (FPM) [172-174]. The primary advantage of the 
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strong-form meshfree methods is that they are simple and computationally efficient, due 

to the fact that the governing equation is satisfied only at field nodes and no background 

mesh is required to perform integral operations over the problem domain. Therefore, these 

methods are truly meshfree. However, a critical issue in these methods is that the moment 

matrix formed during the construction of shape functions can be singular. In addition, to 

reach a reasonable accuracy, it is often required to use irregular field node distributions, 

which prevents these methods from being utilised to address the problems with derivative 

boundary conditions (DBCs). In general, this type of meshfree methods is less stable and 

less accurate compared to the weak-form meshfree methods. 

In the weak-form meshfree methods, the governing equation is satisfied in an average 

sense, which is generally achieved by applying to the governing equation with an integral 

operation that is based on a physical or mathematical principle such as the variational 

principle and the weighted residual method. Due to the introduction of such an integral 

operation, these methods require a weaker consistency on the functions for approximating 

field variables and meanwhile are capable of producing very stable discretised system of 

equations. Thus, they are generally more accurate compared to the strong-form meshfree 

methods. However, introducing such an integral operation means that a background mesh 

is needed to discretise the problem domain simply for performing integral calculations, 

which makes these methods not truly meshfree. Based on the way of applying the integral 

operation to the governing equation, this type of meshfree methods can be further divided 

into the global and local weak-form meshfree methods. In the global weak-form meshfree 

methods, an integration operation is applied to the whole problem domain such that the 

governing equation is satisfied on the entire problem domain. Typical examples of the 

global weak-form meshfree methods include the element-free Galerkin method (EFGM) 

[157], the radial point interpolation method (RPIM) [175, 176] and the reproducing kernel 

particle method (RKPM) [177]. On the contrary, the local weak-form meshfree methods 

apply an integration operation to local domains so that the governing equation is locally 

satisfied. Examples of the local weak-form meshfree methods include the meshless local 

Petrov-Galerkin method (MLPGM) [178-180] and the local radial point interpolation 

method (LRPIM) [181, 182]. 

The meshfree methods that utilise both strong-form and weak-form formulations to obtain 

the discretised system equations are termed as the strong-weak form meshfree methods. 
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For instance, the meshfree method developed by Liu and Gu [183, 184] is a strong-weak 

form method, where a local weak-form formulation is performed for the field nodes near 

or on the boundaries with derivative boundary conditions, and a strong-form formulation 

is applied for all the other field nodes. Other examples of the strong-weak form methods 

include the smooth particle hydrodynamics methods (SPHMs) developed by Lucy [185] 

and Gingold and Monaghan [186]. In this type of methods, a weak-form operation (i.e. 

an integration operation) is applied for field variable approximation, while a strong-form 

operation is utilised to form the discretised system of equations. The main advantage of 

the strong-weak form meshfree methods is that they combine the stability of the weak-

form methods and the efficiency of the strong-form methods. However, they are much 

more complex compared to the other two types of meshfree methods. 

In this research, instead of using the other two types of meshfree methods, the weak-form 

meshfree methods have been selected for predicting both the elastic properties and the 

overall response of woven composites. One of the reasons for choosing the weak-form 

meshfree methods is that the weak-form formulation techniques such as the variational 

principle and the weighted residual method have been well-established and also widely 

used in the FEM. In addition, the weak-form meshfree methods are much more stable and 

accurate compared to the strong-form meshfree methods and much less complex than the 

strong-weak form meshfree methods. In the following two sections, the weak-form 

meshfree methods that have been selected in this thesis to predict the elastic properties 

and the overall response of woven composites will be described. For convenience, the 

two meshfree methods are termed as the standard weak-form meshfree method and the 

explicit weak-form meshfree method, respectively. 

3.6.2 Standard weak-form meshfree method 

3.6.2.1 Formulation of the discretised system of equations 

The homogenisation of the elastic properties of woven composites is essentially a static 

problem of linear elasticity. If we denote the unit cell (UC) of homogenisation as Ω, and 

the boundary as Γ, the governing equation for the homogenisation of the elastic properties 

of woven composites and the equations for boundary conditions can be written as follows: 

 Governing equation: 𝐋T𝝈 + 𝒃 = 𝐎 in Ω (3.72) 
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 Natural boundary condition: 𝝈𝒏 = �̅� on Γt (3.73) 

 Essential boundary condition: 𝒖 = �̅� on Γu  (3.74) 

where 𝝈 denotes the stress, 𝒃 represents the external body force, 𝒖 is the displacement, 𝒏 

stands for the unit outward normal to the natural boundary, �̅� is the traction prescribed to 

the natural boundary, �̅� denotes the displacement prescribed to the essential boundary, 

and 𝐋 is the differential operator and is defined by: 

  𝐋T =

[
 
 
 
 
 
𝜕

𝜕𝑥
0 0

𝜕

𝜕𝑦
0

𝜕

𝜕𝑧

0
𝜕

𝜕𝑦
0

𝜕

𝜕𝑥

𝜕

𝜕𝑧
0

0 0
𝜕

𝜕𝑧
0

𝜕

𝜕𝑦

𝜕

𝜕𝑥]
 
 
 
 
 

 (3.75) 

Here, it should be noted that the external body force term in Eq. (3.72) should be set to 

zero in the homogenisation of the elastic properties of woven composites, owing to the 

fact that no body force will be prescribed to the UC of homogenisation. It is further noted 

that Eq. (3.74) is inadequate for describing a homogenisation that is performed based on 

the use of periodic boundary condition (PBC), where a displacement constraint is applied 

in the form of a displacement relation between two equivalent boundary nodes, see Eq. 

(2.79) or (2.80), rather than in the form of Eq. (3.74). Thus, a special treatment is needed 

to enforce the PBC, which will be addressed later in this section. 

To solve Eq. (3.72), which is a strong-form equation, the minimum total potential energy 

principle can be employed to transform it into a weak-form equation, which leads to the 

formulation of the standard weak-form meshfree method, as follows. The minimum total 

potential energy principle dictates that the total potential energy is equal to the sum of the 

elastic strain energy and the potential energy or the work done the external forces: 

  𝛱 = 𝑈 +𝑊 = ∫ 𝜺T𝝈𝑑V
Ω

− (∫ 𝒖T𝒃𝑑V
Ω

+ ∫ 𝒖T�̅�𝑑S
Γt

) (3.76) 

In this equation, the minus sign indicates a loss of the potential energy when the force is 

displaced in its direction. At an equilibrium state, the total potential energy should be at 

a minimum, meaning that: 

  𝛿𝛱 = 𝛿𝑈 + 𝛿𝑊 = 0 (3.77) 
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where the symbol, 𝛿, denotes the first variation operator. Expanding the above equation 

produces the standard variational (i.e. weak-form) formulation, as follows: 

 ∫ 𝛿𝜺T𝝈𝑑V
Ω

− (∫ 𝛿𝒖T𝒃𝑑V
Ω

+ ∫ 𝛿𝒖T�̅�𝑑S
Γt

) = 0 (3.78) 

Since the integral operation in Eq. (3.77) is imposed on the whole problem domain Ω, a 

background mesh consisting of non-overlapping cells should be applied to partition the 

problem domain for the sake of performing numerical integrations. An example of using 

a background mesh to discretise a 2D general domain is shown in Fig. 3.11. It can be seen 

from this figure that the discretisation of the problem domain using background cells is 

independent of the way of discretising the problem using field nodes. This is because the 

former is made simply for conducting numerical integrations cell by cell. Technically, the 

shape of background cells can be arbitrary as far as they do not overlap with each other 

and there is no gap between any two adjacent cells. In addition, if a sufficient number of 

background cells is used, then the solution obtained should be independent of the type of 

background cells being used. Thus, it is often recommended to use background cells with 

simple shapes. 

 

Figure 3.11: 2D example of a background mesh in weak-form meshfree methods 

Assume that the whole problem domain is discretised with a set of field nodes that are 

numbered sequentially from 1 to 𝑁. For an integration point defined in the background 

Background cells Integration points Field nodes 

Ω 

Γ 
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mesh, its displacement can be interpolated based on those of the field nodes within its 

local support domain, which can be achieved by applying a field function approximation 

technique, such as the MLS, RBF or MK techniques, as follows: 

 𝒖ℎ = {

𝑢

𝑣

𝑤

} = [

𝜙1 0 0 ⋯ 𝜙𝑛 0 0

0 𝜙1 0 ⋯ 0 𝜙𝑛 0

0 0 𝜙1 ⋯ 0 0 𝜙𝑛

]

{
 
 

 
 
𝑢1

𝑣1

⋮

𝑤𝑛}
 
 

 
 

= 𝚽𝒖s (3.79) 

where 𝑛 is the number of the field nodes within the support domain, 𝚽 is a 3 × 3𝑛 matrix 

consisting of shape functions, and 𝒖s is a vector collecting the displacements of the local 

support nodes. An alternative form of this equation is as follows: 

 𝒖ℎ = ∑ [

𝜙𝐼 0 0

0 𝜙𝐼 0

0 0 𝜙𝐼

] {

𝑢𝐼

𝑣𝐼

𝑤𝐼

}𝑛
𝐼=1 = ∑ 𝚽𝐼𝒖𝐼

𝑛
𝐼=1  (3.80) 

where 𝚽𝐼 and 𝒖𝐼 denote the shape function matrix and the displacement corresponding 

to field node 𝐼. Based on the strain-displacement relation, i.e. 𝜺 = 𝐋𝒖ℎ, and substituting 

Eq. (3,79) into this relation, the strain of the integration point can be obtained, as follows: 

 𝜺 = 𝐋𝚽𝒖s =

[
 
 
 
 
 
 
 
 
 
 
 
𝜕𝜙1

𝜕𝑥
0 0 ⋯

𝜕𝜙𝑛

𝜕𝑥
0 0

0
𝜕𝜙1

𝜕𝑦
0 ⋯ 0

𝜕𝜙𝑛

𝜕𝑦
0

0 0
𝜕𝜙1

𝜕𝑧
⋯ 0 0

𝜕𝜙𝑛

𝜕𝑧
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𝜕𝜙1

𝜕𝑥
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𝜕𝜙𝑛

𝜕𝑦

𝜕𝜙𝑛

𝜕𝑥
0

0
𝜕𝜙1

𝜕𝑧

𝜕𝜙1

𝜕𝑦
⋯ 0

𝜕𝜙𝑛

𝜕𝑧

𝜕𝜙𝑛

𝜕𝑦

𝜕𝜙1

𝜕𝑧
0

𝜕𝜙1

𝜕𝑥
⋯

𝜕𝜙𝑛

𝜕𝑧
0

𝜕𝜙𝑛

𝜕𝑥 ]
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 
 

 
 
 
 
𝑢1

𝑣1

𝑤1

⋮

𝑢𝑛

𝑣𝑛

𝑤𝑛}
 
 
 
 

 
 
 
 

= 𝐁𝒖s (3.81) 

alternatively: 

 𝜺 = ∑

[
 
 
 
 
𝜕𝜙𝐼

𝜕𝑥
0 0

𝜕𝜙𝐼

𝜕𝑦
0

𝜕𝜙𝐼

𝜕𝑧

0
𝜕𝜙𝐼

𝜕𝑦
0

𝜕𝜙𝐼

𝜕𝑥

𝜕𝜙𝐼

𝜕𝑧
0

0 0
𝜕𝜙𝐼

𝜕𝑧
0

𝜕𝜙𝐼

𝜕𝑦

𝜕𝜙𝐼

𝜕𝑥 ]
 
 
 
 
T

{

𝑢𝐼

𝑣𝐼

𝑤𝐼

}𝑛
𝐼=1 = ∑ 𝐁𝐼𝒖𝐼

𝑛
𝐼=1  (3.82) 
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where 𝐁 is equal to 𝐋𝚽, and 𝐁𝐼 is equal to 𝐋𝚽𝐼 and is often termed as the strain matrix 

corresponding to node 𝐼. By considering the constitutive relation of the integration point, 

its stress can be obtained, as follows: 

 𝝈 = 𝐂𝜺 = 𝐂𝐋𝚽𝒖s = 𝐂𝐁𝒖s = ∑ 𝐂𝐋𝚽𝐼𝒖𝐼
𝑛
𝐼=1 = ∑ 𝐂𝐁𝐼𝒖𝐼

𝑛
𝐼=1  (3.83) 

In this equation, 𝐂 is the elasticity matrix, which has been defined in Eq. (2.5) for the 

isotropic polymer matrix and in Eqs. (2.13) and (2.54) for the transversely isotropic yarn 

material. By taking the first variation of Eq. (3.79) or (3.80) and substituting the resulting 

equation into Eq. (3.81), we can obtain: 

 𝛿𝒖ℎ = 𝚽𝛿𝒖s = ∑ 𝚽𝐼𝛿𝒖𝐼
𝑛
𝐼=1  (3.84) 

 𝛿𝜺 = 𝐋𝛿𝒖ℎ = 𝐋𝚽𝛿𝒖s = 𝐁𝛿𝒖s = ∑ 𝐁𝐼𝛿𝒖𝐼
𝑛
𝐼=1  (3.85) 

Based on Eqs. (3.83) and (3.85), the first term of Eq. (3.78) can be rewritten as follows: 

 ∫ 𝛿𝜺T𝝈𝑑V
Ω

= ∫ (𝐁𝛿𝒖s)T𝐂𝐁𝒖s𝑑V
Ω

                            

 ∫ 𝛿𝜺T𝝈𝑑Ω
Ω

= ∫ (∑ 𝐁𝐼𝛿𝒖𝐼
𝑛
𝐼=1 )T∑ 𝐂𝐁𝐽𝒖𝐽𝑑V

𝑛
𝐽=1Ω

  

 ∫ 𝛿𝜺T𝝈𝑑Ω
Ω

= ∫ ∑ ∑ 𝛿𝒖𝐼
T(𝐁𝐼𝐂𝐁𝐽)𝒖𝐽𝑑V

𝑛
𝐽=1

𝑛
𝐼=1Ω

  (3.86) 

where the subscripts, 𝐼 and 𝐽, represent the 𝐼th and 𝐽th field nodes and are defined based 

on the local numbering sequence of the support domain (i.e. 1 to n). Since the numbers 

representing the field nodes in a support domain can overlap with those denoting the field 

nodes in another support domain. To avoid this problem, the global numbering sequence 

defined previously (i.e. 1 to N) can be used to replace the local numbering sequence such 

that each field node is labelled using a unique number. Since in Eq. (3.86) the integration 

operation can be moved within the summation operations, Eq. (3.86) can be rewritten into 

the following form: 

 ∫ 𝛿𝜺T𝝈𝑑V
Ω

= ∫ ∑ ∑ 𝛿𝒖𝐼
T(𝐁𝐼𝐂𝐁𝐽)𝒖𝐽𝑑V

𝑛
𝐽=1

𝑛
𝐼=1Ω

   

  = ∑ ∑ 𝛿𝒖𝐼
T𝐊𝐼𝐽𝒖𝐽

𝑁
𝐽=1

𝑁
𝐼=1   (3.87) 

where 𝐊𝐼𝐽 is often termed as the nodal stiffness matrix and is defined by: 
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 𝐊𝐼𝐽 = ∫ (𝐁𝐼𝐂𝐁𝐽)𝑑VΩ
  (3.88) 

The right-hand side of Eq. (3.87) can be expanded and rewritten into the following matrix 

form: 

 ∑ ∑ 𝛿𝒖𝐼
T𝐊𝐼𝐽𝒖𝐽

𝑁
𝐽=1

𝑁
𝐼=1 = 𝛿𝑼T𝐊𝑼  (3.89) 

where 𝑼 is a vector consisting of the displacement of all field nodes, 𝛿𝑼 refers to the first 

variation of 𝑼, and 𝐊 is the global stiffness matrix: 

 𝛿𝑼T = {𝛿𝒖1 𝛿𝒖2 ⋯ 𝛿𝒖𝑁}  (3.90) 

 𝑼 = {𝒖1 𝒖2 ⋯ 𝒖𝑁}T (3.91) 

 𝐊 =

{
 
 

 
 
𝐊11 𝐊12 ⋯ 𝐊1𝑁

𝐊21 𝐊22 ⋯ 𝐊2𝑁

⋮ ⋮ ⋱ ⋮

𝐊𝑁1 𝐊𝑁2 ⋯ 𝐊𝑁𝑁}
 
 

 
 

 (3.92) 

Based on the above, the first term of Eq. (3.78) can be finally rewritten into the following 

form: 

 ∫ 𝛿𝜺T𝝈𝑑V
Ω

= 𝛿𝑼T𝐊𝑼 (3.93) 

By considering Eq. (3.84) and following a similar procedure for obtaining Eq. (3.93), the 

second and third terms of Eq. (3.78) can be rewritten as follows: 

 ∫ 𝛿𝒖T𝒃𝑑V
Ω

= 𝛿𝑼T𝑭b (3.94) 

 ∫ 𝛿𝒖T�̅�𝑑V
Ω

= 𝛿𝑼T𝑭t (3.95) 

where 𝑭b and 𝑭t denote the global body force vector and the global traction force vector, 

and are defined by the following equations respectively: 

 𝑭b = {𝑭1
b 𝑭2

b ⋯ 𝑭𝑁
b }T (3.96) 

 𝑭t = {𝑭1
t 𝑭2

t ⋯ 𝑭𝑁
t }T (3.97) 
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where 

 𝑭𝐼
b = ∫ 𝚽𝐼𝒃𝑑VΩ

 (3.98) 

 𝑭𝐼
t = ∫ 𝚽𝐼�̅�𝑑VΩ

 (3.99) 

Substituting Eqs. (3.93) – (3.95) into Eq. (3.78) yields: 

 𝛿𝑼T𝐊𝑼 = 𝛿𝑼T(𝑭b + 𝑭t) (3.100) 

Since the first variation of the global displacement, i.e. 𝛿𝑼, is arbitrary, Eq. (3.100) can 

be satisfied only if: 

 𝐊𝑼 = 𝑭b + 𝑭t = 𝑭e (3.101) 

where 𝑭e represents the global external force vector.  

Eq. (3.101) is the final form of the discretised system of equations in the standard weak-

form meshfree method. If it is used to predict the elastic properties of woven composites, 

all components in 𝐊, 𝑭𝐼
b and 𝑭𝐼

t can be directly calculated by using a proper integration 

scheme such as the Gauss-Legendre quadrature. Then, the displacement of all field nodes, 

i.e. 𝑼, can be obtained using a suitable algorithm such as the Gaussian elimination method. 

After obtaining 𝑼, the strains and consequently the stresses of all integration points can 

be calculated using Eqs. (3.82) and (3.83), respectively. 

3.6.2.2 Enforcement of boundary conditions 

For traction boundary conditions, which are explicitly defined in the form of Eq. (3.73), 

they have been naturally implemented during the formulation of the discretised system of 

equations. Therefore, no treatment is needed to enforce this type of boundary conditions. 

In terms of essential boundary conditions, they can be defined either explicitly in the form 

of Eq. (3.74) or implicitly in a PBC form, see Eq. (2.79) or (2.80). For the former case, 

they can be enforced by modifying the discretised system of equations as follows. Assume 

that a fixed displacement is prescribed to the 𝑖th component of the global displacement: 

 𝑢𝑖 = �̅�𝑖 (3.102) 
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The above condition can be exactly enforced by modifying the global stiffness matrix and 

the global force vector into the following forms, respectively: 

 𝐊 =

{
 
 
 
 

 
 
 
 
k11 ⋯ k1(𝑖−1) k1𝑖 k1(𝑖+1) ⋯ k1(3𝑁)

⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

k(𝑖−1)1 ⋯ k(𝑖−1)(𝑖−1) k(𝑖−1)𝑖 k(𝑖−1)(𝑖+1) ⋯ k(𝑖−1)(3𝑁)

0 ⋯ 0 1 0 ⋯ 0

k(𝑖+1)1 ⋯ k(𝑖+1)(𝑖−1) k(𝑖+1)𝑖 k(𝑖+1)(𝑖+1) ⋯ k(𝑖+1)(3𝑁)

⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

k(3𝑁)1 ⋯ k(3𝑁)(𝑖−1) k(3𝑁)𝑖 k(3𝑁)(𝑖+1) ⋯ k(3𝑁)(3𝑁)}
 
 
 
 

 
 
 
 

 (3.103) 

 𝑭e = {𝐹1 ⋯ 𝐹(𝑖−1) �̅�𝑖 𝐹(𝑖+1) ⋯ 𝐹(3𝑁)}T (3.104) 

For the PBC-based essential boundary conditions, see Eq. (2.79) or (2.80), they cannot 

be enforced directly since they present in the form of a displacement relation between two 

equivalent nodes. In this work, the displacement constraint elimination method [147] is 

extended to enforce this type of boundary conditions. It should be noted that the generic 

form of PBC, see Eq. (2.80), will become the standard form of PBC, see Eq. (2.79), if the 

load reversal factor is set to be unity, γ=1, and the transformation matrix is set to be the 

identity matrix, 𝐓 = 𝐈0 . Thus, the enforcement of the PBC-based essential boundary 

conditions will be addressed based on the generic form of PBC. 

The constraint elimination method is based on a division of all field nodes in the problem 

domain into three subsets, namely, the internal nodes, i.e. 𝒙𝐼𝑖 (𝐼 = 1,… , 𝑛𝑖), the nodes on 

the negative boundary, i.e. 𝒙𝐽− (𝐽 = 1,… , 𝑛−), and the nodes on the positive boundary, 

i.e. 𝒙𝐾+ (𝐾 = 1,… , 𝑛+). Then, the three subsets of field nodes are numbered sequentially, 

forming a set-based numbering sequence. Based this numbering sequence, the originally 

defined global displacement vector is reorganised such that it consists sequentially of an 

internal displacement vector, which collects the displacements of the internal nodes, i.e. 

𝑼𝑖, a negative displacement vector, which collects the displacements of the field nodes 

on the negative boundary, i.e. 𝑼−, and a positive displacement vector, which collects the 

displacements of the field nodes on the positive boundary, i.e. 𝑼+, as follows: 

 𝑼 = {𝑼𝑖 𝑼− 𝑼+}
T (3.105) 
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Similarly, the originally defined global stiffness matrix, 𝐊, and global external force, 𝑭e, 

can be reorganised, and consequently the discretised system of equations can be rewritten 

as follows: 

 [

𝐊𝑖𝑖 𝐊𝑖− 𝐊𝑖+

𝐊−𝑖 𝐊−− 𝐊−+

𝐊+𝑖 𝐊+− 𝐊++

]{

𝑼𝑖

𝑼−

𝑼+

} = {

𝑭𝑖
e

𝑭−
e

𝑭+
e

} (3.106) 

If we denote 𝛾𝐓 in Eq. (2.80) as 𝐓𝛾, the positive and negative displacement vectors can 

be related to each other as follows: 

 𝑼+ = �̃�𝑼− + 𝝃 (3.107) 

where 𝝃 is a vector denoting the difference between 𝑼+ and �̃�𝑼− and can be calculated 

based on the macroscopic strain applied to the UC of homogenisation, and �̃� is a matrix 

collecting all the 𝑻𝛾 associated with each pair of equivalent points. Substituting the above 

relation into Eq. (3.106), the discretised system of equations can be rearranged into: 

 �̃��̃� = �̃�e (3.108) 

where 

 �̃� = [
𝐊𝑖𝑖 𝐊𝑖− + 𝐊𝑖+�̃�

(𝐊−𝑖 + 𝐊+𝑖) 𝐊−− + 𝐊+− + (𝐊−+ + 𝐊++)�̃�
] (3.109) 

 �̃� = {
𝑼𝑖

𝑼−
} (3.110) 

 �̃�e = {
𝑭𝑖
e − 𝐊𝑖+𝝃

𝑭−
e + 𝑭+

e − (𝐊−+ + 𝐊++)𝝃
} (3.111) 

It should be noted that no external force will be prescribed in homogenising the elastic 

properties of woven composites. Therefore, the external force components in Eq. (3.111) 

vanish, leading to: 

 �̃�e = {
−𝐊𝑖−𝝃

−(𝐊−+ + 𝐊++)𝝃
} (3.112) 
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Since �̃� and �̃�e are known for a given problem, the reorganised displacement vector, �̃�, 

and thus the negative displacement vector, 𝑼−, can be solved. By utilising Eq. (3.107), 

the positive displacement vector, 𝑼+, can also be calculated. 

3.6.3 Explicit weak-form meshfree method 

3.6.3.1 Formulation of the discretised system of equations 

In predicting the overall response of woven composites based on the UC methodology, a 

history of macroscopic strains needs to be enforced to the UC for the sake of calculating 

the history of the volume average stresses of the UC. The suggests that the prediction of 

the overall response of woven composites is essentially a dynamic problem, with the time-

dependent macroscopic strains prescribed to the boundary acting as the external dynamic 

loading. If we denote the UC domain of homogenisation as Ω, and the boundary as Γ, the 

governing equation for the prediction of the overall response of woven composites and 

the equations for boundary and initial conditions can be written as follows: 

 Governing equation: 𝐋T𝝈(𝑡) + 𝒃(𝑡) = 𝜌�̈�(𝑡) in Ω (3.113) 

 Natural boundary condition: 𝝈(𝑡)𝒏 = �̅�(𝑡) on Γt (3.114) 

 Essential boundary condition: 𝒖(𝑡) = �̅�(𝑡) on Γu  (3.115) 

 Initial velocity condition: 𝒗(𝑡 = 0) = 𝒗0 in Ω  (3.116) 

where 𝜌 is the density of material, �̇� and �̈� denote the velocity and acceleration, and all 

the other symbols have the same meaning as those in Eqs. (3.72) – (3.74). Here, it should 

be noted that the boundary condition given in Eq. (3.115) is not adequate for describing 

the problem of the overall response prediction of woven composites if a time-dependent 

PBC is applied, which will be addressed later. 

To solve Eq. (3.113), which is a strong-form equation, Hamilton’s principle can be used 

to transform it into a weak-form equation, which leads to the formulation of the explicit 

weak-form meshfree method, as follows. For a deformation body, Hamilton’s principle 

states that the most accurate solution of all the admissible histories of displacement is a 

solution of the following equation: 
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 𝛿 ∫ ℒ𝑑𝑡
𝑡2
𝑡1

= 0 (3.117) 

alternatively, 

 ∫ 𝛿ℒ𝑑𝑡
𝑡2
𝑡1

= 0 (3.118) 

where 𝑡1 and 𝑡2 denote the starting and ending times of the dynamic event, and ℒ refers 

to a Lagrangian function defined based on a set of time histories of displacement and is 

defined as follows: 

 ℒ = 𝑇 − 𝛱 +𝑊 (3.119) 

where 𝑇 is the kinematic energy, 𝛱 is the potential or elastic strain energy, and 𝑊 is the 

work done by external force: 

 𝑇 =
1

2
∫ 𝜌�̇�T�̇�𝑑V
Ω

 (3.120) 

 𝛱 =
1

2
∫ 𝜺T𝝈𝑑V
Ω

 (3.121) 

 𝑊 = ∫ 𝒖T𝒃𝑑V
Ω

+ ∫ 𝒖T�̅�𝑑S
Γt

 (3.122) 

By taking the first variations of Eqs. (3.121) and (3.122), we can obtain the following two 

equations: 

 𝛿𝛱 =
1

2
𝛿 ∫ 𝜺T𝝈𝑑V

Ω
=

1

2
𝛿 ∫ 𝜺T𝐂𝜺𝑑V

Ω
= ∫ 𝛿𝜺T𝐂𝜺𝑑V

Ω
 (3.123) 

 𝛿𝑊 = 𝛿 ∫ 𝒖T𝒃𝑑V
Ω

+ 𝛿 ∫ 𝒖T�̅�𝑑S
Γt

= ∫ 𝛿𝒖T𝒃𝑑V
Ω

+ ∫ 𝛿𝒖T�̅�𝑑S
Γt

 (3.124) 

Since Eq. (3.123) is actually the first term of Eq. (3.78), and Eq. (3.124) is the sum of the 

second and third terms of Eq. (3.78), we can directly get the following two equations: 

 𝛿𝛱 = ∫ 𝛿𝜺T𝐂𝜺𝑑V
Ω

= 𝛿𝑼T𝑭i (3.125) 

 𝛿𝑊 = ∫ 𝛿𝒖T𝒃𝑑V
Ω

+ ∫ 𝛿𝒖T�̅�𝑑S
Γt

= 𝛿𝑼T(𝑭b + 𝑭t) = 𝛿𝑼T𝑭e (3.126) 

where 𝑭i stands for the internal force.  
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In terms of the kinematic energy, its first variation can be expressed as: 

 𝛿𝑇 =
1

2
𝛿 ∫ 𝜌�̇�T�̇�𝑑V

Ω
= ∫ 𝜌𝛿�̇�T�̇�𝑑V

Ω
 (3.127) 

The velocity vector in the above equation can be approximated in a similar manner as that 

for displacement, as shown in Eq. (3.80). Therefore, we can obtain: 

 �̇�ℎ = ∑ [

𝜙𝐼 0 0

0 𝜙𝐼 0

0 0 𝜙𝐼

] {

�̇�𝐼

�̇�𝐼

�̇�𝐼

}𝑛
𝐼=1 = ∑ 𝚽𝐼�̇�𝐼

𝑛
𝐼=1 = 𝚽�̇�s (3.128) 

By taking the first variation of �̇�ℎ, we have 𝛿�̇�ℎ = 𝛿(∑ 𝚽𝐼�̇�𝐼
𝑛
𝐼=1 ) = 𝚽𝛿�̇�s. Therefore, 

the integrand of the right side of Eq. (3.127) can be approximated as follows: 

 𝜌𝛿�̇�T�̇� = ∑ ∑ 𝜌𝛿(𝚽𝐼�̇�𝐼)
T𝚽𝐽�̇�𝐽

𝑛
𝐽=1

𝑛
𝐼=1 = ∑ ∑ 𝛿�̇�𝐼

T(𝜌𝚽𝐼
T𝚽𝐽)�̇�𝐽

𝑛
𝐽=1

𝑛
𝐼=1  (3.129) 

If the global numbering sequence is used instead of the local numbering sequence, Eq. 

(3.129) can be rewritten into the following form: 

 𝜌𝛿�̇�T�̇� = ∑ ∑ 𝛿�̇�𝐼
T(𝜌𝚽𝐼

T𝚽𝐽)�̇�𝐽
𝑁
𝐽=1

𝑁
𝐼=1  (3.130) 

Substituting Eq. (3.130) into Eq. (3.127) yields: 

 𝛿𝑇 = ∑ ∑ 𝛿�̇�𝐼
T𝐌𝐼𝐽�̇�𝐽

𝑁
𝐽=1

𝑁
𝐼=1 = 𝛿�̇�T𝐌�̇� (3.131) 

where �̇� is a vector collecting the velocities of all field nodes in the problem domain, and 

𝐌𝐼𝐽 and 𝐌 denote the nodal mass matrix and the global mass matrix, which are defined 

by: 

 𝐌𝐼𝐽 = ∫ 𝜌𝚽𝐼
T𝚽𝐽𝑑VΩ

 (3.132) 

 𝐌 =

{
 
 

 
 
𝐌11 𝐌12 ⋯ 𝐌1𝑁

𝐌21 𝐌22 ⋯ 𝐌2𝑁

⋮ ⋮ ⋱ ⋮

𝐌𝑁1 𝐌𝑁2 ⋯ 𝐌𝑁𝑁}
 
 

 
 

 (3.133) 

Substituting Eqs. (3.125), (3.126) and (3.131) into Eq. (3.118) produces: 
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 ∫ (𝛿�̇�T𝐌�̇� − 𝛿𝑼T𝑭i + 𝛿𝑼T𝑭e)𝑑𝑡
𝑡2
𝑡1

= 0 (3.134) 

Since the variation and the differentiation operations are interchangeable, the variation of 

the velocity vector can be rewritten as follows: 

 𝛿�̇�T = 𝛿 (
𝑑𝑼T

𝑑𝑡
) =

𝑑

𝑑𝑡
(𝛿𝑼T) (3.135) 

Based on the above equation, the left side of Eq. (3.134) can be integrated by parts, as 

follows: 

 ∫ 𝛿�̇�T𝐌�̇�𝑑𝑡
𝑡2
𝑡1

= 𝛿𝑼T𝐌�̇�|
𝑡1

𝑡2
− ∫ 𝛿𝑼T𝐌�̈�𝑑𝑡

𝑡2
𝑡1

 (3.136) 

Since the first term of the right side of Eq. (3.136) vanishes due to 𝛿𝑼T|𝑡1 = 𝛿𝑼
T|𝑡2 = 0, 

Eq. (3.136) can be simplified into the following form: 

 ∫ 𝛿�̇�T𝐌�̇�𝑑𝑡
𝑡2
𝑡1

= −∫ 𝛿𝑼T𝐌�̈�𝑑𝑡
𝑡2
𝑡1

 (3.137) 

Substituting this equation into Eq. (3.134) gives: 

 ∫ 𝛿�̇�T(−𝐌�̈� − 𝑭i + 𝑭e)𝑑𝑡
𝑡2
𝑡1

= 0 (3.138) 

In Eq. (3.138), the first variation of the displacement vector, i.e. 𝛿�̇�T, is arbitrary. Thus, 

the only condition satisfying the above equation is: 

 𝐌�̈� + 𝑭i = 𝑭e (3.139) 

The above equation is the final form of the discretised system of equations in the explicit 

weak-form meshfree method. It is interesting to note that the above-discretised system of 

equations has exactly the same form as that formulated based on the FEM. Thus, it should 

be borne in mind that the quantities in this equation, i.e. 𝐌, 𝑭i, and 𝑭e, are obtained based 

on meshfree shape functions. In this research, the explicit central difference method has 

been utilised to solve the meshfree-based discretised system of equations, which will be 

briefly introduced in the following section. 
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3.6.3.2 Meshfree explicit time integration 

In the explicit central difference method, the equations of motion are explicitly integrated 

using the following rules: 

 �̈�(𝑛) = 𝐌−1(𝑭e(𝑛) − 𝑭i(𝑛)) (3.140) 

 �̇�(𝑛+
1
2
) = �̇�(𝑛−

1
2
) +

∆𝑡(𝑛+1)+∆𝑡(𝑛)

2
�̈�(𝑛) (3.141) 

 𝑼(𝑛+1) = 𝑼(𝑛) + ∆𝑡(𝑛+1)�̇�(𝑛+
1
2
) (3.142) 

where the superscripts represent the time steps, and ∆𝑡 is the time increment. The above 

integration rules are explicit in that the calculation of the displacement at the current step 

can be advanced by using the acceleration at the previous step, the velocity at the previous 

half step and the displacement at the previous step. 

It should be noted that the calculation of the inverse of the global mass matrix, as well as 

the multiplication of the inverse with the force vectors, are computationally expressive, 

particularly for the problems with high degrees of freedom. To improve the efficiency of 

the solution procedure, the global mass matrix (which is often termed as the consistent 

mass matrix) can be lumped into a diagonal mass matrix, which is denoted using 𝐌L. The 

mass lumping made to the consistent mass matrix can be achieved by using the commonly 

used row-sum technique, as follows: 

 (𝐌L)𝐼𝐼 = ∑ M𝐼𝐽
3𝑁
𝐼=1  (3.143) 

where (𝐌L)𝐼𝐼 denotes the 𝐼th diagonal element of the lumped mass matrix, and M𝐼𝐽 is a 

component of the consistent mass matrix. 

The mass lumping operation described above has been widely used and considered as a 

necessary strategy in the explicit FEM. Although there is still very little theory formally 

justifying the use of such a strategy, its combination with the explicit central difference 

method can generally produce stable and reasonably accurate solutions. However, it must 

be noted that the lumping operation alters the consistent mass matrix in a way that most 

of the mass is lumped to the field nodes corresponding to the diagonal elements of the 

lumped mass matrix. This effect can get increasingly evident if high-orders of integration 
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are applied to obtain the mass matrix, leading to distortions in the accelerations that will 

be calculated. Thus, high-order integrations should be avoided if the lumping strategy is 

applied for the sake of efficiency. 

From Eqs. (3.140) – (3.142), it can be seen that the velocities are calculated only at half 

time steps. If the velocity at the current step needs to be obtained, the following equation 

can be employed:  

 �̇�(𝑛+1) = �̇�(𝑛+
1
2
) +

1

2
∆𝑡(𝑛+1)�̈�(𝑛+1) (3.144) 

It should be further noted that the explicit central difference method is not a self-starting 

method. To enable the calculation to be advanced automatically, the velocities at steps 

(−1

2
) and (+1

2
) need to be predefined. By replacing 𝑛 in Eq. (3.144) with -1, the velocity 

at time step (−1

2
) can be determined, as follows: 

 �̇�(−
1
2
) = �̇�(0) −

1

2
∆𝑡(0)�̈�(0) (3.145) 

By replacing 𝑛 in Eq. (3.141) with 0 and considering Eq. (3.145), the velocity at time step 

(+1

2
) can be determined, as follows: 

 �̇�(+
1
2
) = �̇�(0) +

1

2
∆𝑡(1)�̈�(0) (3.146) 

3.6.3.3 Enforcement of boundary conditions 

The essential boundary conditions in the homogenisation of the overall response of woven 

composites can be prescribed either explicitly in the form of Eq. (3.115) or implicitly in 

a PBC form. For the former case, they can be enforced directly in Eq. (3.142), and thus 

no further treatment is needed. In terms of the PBC-based essential boundary conditions, 

since they present in the form of displacement relations between each pair of equivalent 

boundary nodes, they should be enforced using the displacement constraint elimination 

method. However, it should be noted that the homogenisation of the overall response of 

woven composites requires applying a history of PBCs. This suggests that the PBC in this 

case is time-dependent and can be described using the following equation: 

 𝒖(𝒙𝐴, 𝑡) − 𝛾𝐓𝒖(𝒙�̅�, 𝑡) = −〈𝜺(𝑡)〉𝐓𝝀    ∀𝒙�̅� ∈ Γ− & ∀𝒙𝐴 ∈ Γ+ (3.147) 
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To enforce the above time-dependent PBC, the constraint elimination method described 

in Section 3.6.2 is extended as follows. Again, the original numbering sequence of field 

nodes is reorganised based on a division of all field nodes in the problem domain into the 

internal field nodes, i.e. 𝒙𝐼𝑖 (𝐼 = 1,… , 𝑛𝑖), the field nodes on the negative boundary, i.e. 

𝒙𝐽− (𝐽 = 1, … , 𝑛−), and the field nodes on the positive boundary, i.e. 𝒙𝐾+ (𝐾 = 1,… , 𝑛+). 

Based on the modified numbering sequence, the basic equations for the explicit central 

difference method can be rewritten as follows, where the diagonal lumped mass matrix is 

used instead of the consistent mass matrix: 

 

{
 
 

 
 �̈�𝑖

(𝑛)

�̈�−
(𝑛)

�̈�+
(𝑛)
}
 
 

 
 

=

[
 
 
 
 
(𝐌L)𝑖𝑖

−1 𝐎 𝐎

𝐎 (𝐌L)−−
−1 𝐎

𝐎 𝐎 (𝐌L)++
−1 ]
 
 
 
 

(

 
 

{
 
 

 
 𝑭𝑖

e(𝑛)

𝑭−
e(𝑛)

𝑭+
e(𝑛)

}
 
 

 
 

−

{
 
 

 
 𝑭𝑖

i(𝑛)

𝑭−
i(𝑛)

𝑭+
i(𝑛)
}
 
 

 
 

)

 
 

 (3.148) 

 

{
 
 

 
 �̇�

𝑖

(𝑛+
1

2
)

�̇�−
(𝑛+

1

2
)

�̇�+
(𝑛+

1

2
)
}
 
 

 
 

=

{
 
 

 
 �̇�

𝑖

(𝑛−
1

2
)

�̇�−
(𝑛−

1

2
)

�̇�+
(𝑛−

1

2
)
}
 
 

 
 

+
∆𝑡(𝑛)+∆𝑡(𝑛+1)

2

{
 
 

 
 �̈�𝑖

(𝑛)

�̈�−
(𝑛)

�̈�+
(𝑛)
}
 
 

 
 

 (3.149) 

 

{
 
 

 
 𝑼𝑖

(𝑛+1)

𝑼−
(𝑛+1)

𝑼+
(𝑛+1)

}
 
 

 
 

=

{
 
 

 
 𝑼𝑖

(𝑛)

𝑼−
(𝑛)

𝑼+
(𝑛)
}
 
 

 
 

+ ∆𝑡(𝑛+1)

{
 
 

 
 �̇�

𝑖

(𝑛+
1

2
)

�̇�−
(𝑛+

1

2
)

�̇�+
(𝑛+

1

2
)
}
 
 

 
 

  (3.150) 

Based on Eq. (3.147), we can assume: 

 𝑼+
(𝑛) = �̃�𝑼−

(𝑛) + 𝝃(𝑛) (3.151) 

 𝑼+
(𝑛+1) = �̃�𝑼−

(𝑛+1) + 𝝃(𝑛+1) (3.152) 

where 𝝃(𝑛) and 𝝃(𝑛+1) denote the differences between 𝑼+ and �̃�𝑼− at time steps 𝑛 and 

𝑛 + 1, and �̃� has been defined in Eq. (3.107). Substituting the above two equations into 

Eq. (3.150), we can obtain: 

 �̇�+
(𝑛+

1

2
)
= �̃��̇�−

(𝑛+
1

2
)
+ �̇�(𝑛+

1

2
)
 (3.153) 
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where  

 �̇�(𝑛+
1

2
) =

(𝝃(𝑛+1)−𝝃(𝑛))

∆𝑡(𝑛+1)
 (3.154) 

Replacing 𝑛 in Eq. (3.153) with 𝑛 − 1 produces: 

 �̇�+
(𝑛−

1

2
)
= �̃��̇�−

(𝑛−
1

2
)
+ �̇�(𝑛−

1

2
)
 (3.155) 

where 

 �̇�
(𝑛−

1

2
)
=

(𝝃(𝑛)−𝝃(𝑛−1))

∆𝑡(𝑛)
 (3.156) 

Substituting Eqs. (3.153) and (3.155) into Eq. (3.149), we can obtain: 

 �̈�+
(𝑛) = �̃��̈�−

(𝑛) + �̈�(𝑛) (3.157) 

where 

 �̈�(𝑛) =
2(�̇�

(𝑛+
1
2
)
−�̇�

(𝑛−
1
2
)
)

∆𝑡(𝑛)+∆𝑡(𝑛+1)
 (3.158) 

Substituting Eq. (3.157) into Eq. (3.148), the following equation can be obtained after 

performing some mathematical manipulations: 

 �̃̈�(𝑛) = �̃�−1(�̃�e(𝑛) − �̃�i(𝑛)) (3.159) 

where 

 �̃̈�(𝑛) = {�̈�𝑖
(𝑛) �̈�−

(𝑛)}
T
 (3.160) 

 �̃�−1 = [
(𝐌L)𝑖𝑖 𝐎

𝐎 (𝐌L)−− + (𝐌L)++�̃�
]

−1

 (3.161) 

 �̃�e(𝑛) = {
𝑭𝑖
e(𝑛)

𝑭−
e(𝑛) + 𝑭+

e(𝑛) − (𝐌L)++�̈�
(𝑛)
} (3.162) 
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 �̃�i(𝑛) = [
𝑭𝑖
i(𝑛)

𝑭−
i(𝑛) + 𝑭+

i(𝑛)
] (3.163) 

Since no external force will be prescribed when predicting the overall response of woven 

composites, the external force components in Eq. (3.162) vanish, leading to: 

 �̃�e(𝑛) = {
𝐎

−(𝐌L)++�̈�
(𝑛)
} (3.164) 

From Eqs. (3.149) and (3.150), we can also obtain: 

 �̃̇�(𝑛+
1

2
) = �̃̇�(𝑛−

1

2
) +

∆𝑡(𝑛)+∆𝑡(𝑛+1)

2
�̃̈�(𝑛) (3.165) 

 �̃�(𝑛+1) = �̃�(𝑛) + ∆𝑡(𝑛+1)�̃̇�(𝑛+
1

2
)
 (3.166) 

where 

 �̃̇�(𝑛−
1

2
) = {�̇�

𝑖

(𝑛−
1

2
)

�̇�−
(𝑛−

1

2
)}
T

 (3.167) 

 �̃�(𝑛) = {𝑼𝑖
(𝑛)

𝑼−
(𝑛)}

T
 (3.168) 

Eqs. (3.159), (3.165) and (3.166) are the final equations for enforcing the PBC defined in 

Eq. (3.147). Solving these equations and considering Eqs. (3.152), (3.153) and (3.157), 

all the components of the global displacement vector, the global velocity vector and the 

acceleration vectors can be calculated. 

3.7 Summary 

In this chapter, the background knowledge and basic concepts associated with meshfree 

methods were firstly introduced. Then, the formulation procedures for three commonly 

used shape function construction techniques, i.e. MLS, RBF and MK, were detailed in 

combination with examples of calculating shape functions using these techniques. These 

examples suggest that the RBF-based and MK-based shape functions possess both the 

property of partitions of unity and the Kronecker delta function property, while the MLS-
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based shape functions possess only the property of partitions of unity. At the end of this 

chapter, the formulation procedures for both the standard weak-form meshfree method 

and the explicit weak-form meshfree method were described, and the basic equations for 

enforcing the PBC-based essential boundary conditions within the two meshfree methods 

were formulated.
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CHAPTER 4: ELASTIC PROPERTY 

HOMOGENISATION 

 

4.1 Introduction 

4.1.1 Unit cell identification and domain reduction 

In the micromechanical homogenisation of woven composites, the representative region 

that is used to perform a homogenisation is termed as a unit cell (UC). In general,  a full-

size UC is defined as the smallest region such that the entire composite structure can be 

reconstructed from translational copies of it, without using rotational and/or reflectional 

symmetries [187]. This suggests that the choice of a UC for woven composites is not 

unique, but with many possibilities. 

 

Figure 4.1: Typical plain woven composites and its possible UCs 

Fig. 4.1 shows some of the possible UCs in typical plain woven composites. In this figure, 

the matrix has been set to be transparent in order to reveal the internal architecture. The 

same treatment will be applied if appropriate for presenting the internal architectures of 

other types of woven composites throughout this thesis. Clearly, each of the highlighted 
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regions in this figure can be defined as a UC, owing to the fact the composite structure 

can be reconstructed based on translations copies of any of these regions. In addition, this 

figure suggests that different types of UCs do not necessarily have the same size, but with 

the size of the UC being dependent of the translation symmetry applied to obtain the UC. 

For example, the size of UC “A” is the same as that of UC “B”, which is because the 

translational symmetries used in the two cases, i.e. those from A to A* and B to B*, are 

parallel to the global coordinate system (GCS) of the composite material, i.e. OXYZ. On 

the other hand, the size of UC “C” or “D” is smaller than that of UC “A” as a result of 

utilising non-parallel translational symmetries in obtaining UC “C” or “D”. Furthermore, 

it is worth noting that a UC should be defined such that it facilitates the homogenisation 

analysis that is to be performed. For instance, UC “A”, “B” or “D” is well-suited for 

homogenising the elastic properties in the warp and weft directions, while UC “C” is only 

suitable to predict the properties in off-axis directions, e.g. 45° to the warp direction. For 

convenience, the UCs that are similar to UC “A” will be referred to as normal UCs, while 

those similar to UC “C” will be termed as off-axis UCs in the rest of this thesis. 

 

(a) Full-size UC to 𝟏
𝟒
UC by using reflectional symmetries 

 

(b) 𝟏
𝟒
UC to 𝟏

𝟏𝟔
UC by using reflectional & rotational symmetries 

Figure 4.2: Domain reduction for plain woven composites 
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𝟒
UC 

𝟏

𝟒
UC 

𝟏

𝟏𝟔
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Clearly, the highly complex internal architecture of woven composites often requires an 

excessive modelling time and a high computational cost even at the level of full-size UC. 

Thus, it is always desirable to exploit all possible symmetries of the woven composites 

of investigation to reduce the size of the domain of homogenisation. The symmetries that 

can be exploited in woven composites consist of translation, rotation, reflection and a 

combination of these symmetries. Fig. 4.2 shows a typical procedure for exploiting all 

possible symmetries in plain woven composites from a full-size UC to the smallest UC, 

which is comprised of two steps. Firstly, the full-size UC can be quartered by exploiting 

the reflectional symmetries, leading to a 1
4
UC. Secondly, the 1

4
UC can be further reduced 

by considering both the reflectional and rotational symmetries, leading to a 1
16

UC, which 

is a UC that cannot be further exploited.  

The above example suggests that there will be different sizes of UCs involved in reducing 

the domain of woven composites. For clarity, the following definitions are introduced and 

will be utilised hereafter in this thesis. A domain region that is obtained after exploiting 

partially or fully the symmetries of a full-size UC will be referred to as a reduced unit cell 

(rUC), and an rUC will be termed as a minimum unit cell (mUC) if there is no symmetry 

that can be further exploited. Based on the above definitions, we can see in Fig. 4.2 that 

both the 1
4
UC and 1

16
UC are rUCs, while only the 1

16
UC is an mUC. For simplicity, all 

woven composite geometry models developed in the present research are mUCs. 

It should be noted that if a homogenisation of woven composites is conducted using a 

full-size UC, which is derived based on translational symmetries only, the standard form 

of PBC, as defined in Eq. (2.79), can be applied directly to enforce boundary conditions. 

However, if an rUC or mUC is used, the standard form of PBC cannot be applied since 

this type of PBC is formulated based on a full-size UC, rather than on an rUC or mUC, 

which can be obtained only after exploiting at least a non-translational symmetry. Thus, 

enforcing boundary conditions for an rUC or mUC must be performed in accordance with 

the reduction operations used to obtain the rUC or mUC. Algorithms for deriving the PBC 

of rUCs or mUCs of woven composites can be found in Li et al. [188], Whitcomb and 

co-workers [189, 190], De Carvalho et al. [191]. In this research, the algorithm developed 

by De Carvalho et al. [191] has been utilised to derive boundary conditions for woven 

composites, and it will be described in detail in Section 4.5. 
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4.1.2 General assumptions 

To model the internal architecture of woven composites as accurate as possible, a number 

of plain woven carbon fibre-reinforced polymer (CFRP) composite specimens has been 

fabricated based on EP121-C15-53 prepreg supplied by Gurit Ltd to observe the cross-

section and waviness of yarns. The woven fabric in this prepreg is made from 3k HTA40 

carbon fibres and has an areal density of 193g/m2. The fabric is pre-impregnated with a 

53% EP121 resin matrix, which is a toughened self-extinguishing epoxy resin. Hereafter 

in this thesis, this composite material will be used for predicting the elastic properties and 

the overall response. For convenience, it is denoted as EP121-C15-53 composites. 

 

(a) Micrograph at 25x magnification 

 

(b) Micrograph at 100x magnification 

Figure 4.3: Micrographs of typical plain woven composites 

300 μm 

200 μm 
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Fig. 4.3 shows two micrographs of this composite material at different magnifications. 

An initial observation of the two micrographs suggests that although the cross-sections 

of the yarns exhibit in different shapes (see the areas highlighted using solid curves), the 

dominant ones are lenticular. Thus, it is assumed that the cross-section of a general yarn 

in woven composites can be fitted using simple functions, such as cosine functions. Fig. 

4.4 shows the result of using cosine functions to fit the cross-sections of the yarns in the 

specimens. Here, it should be noted that the data points representing the cross-sections 

have been translated such that all cross-sections are centred at the same point for the sake 

of easy comparison. From this figure, it is established that the cross-section of a general 

yarn in woven composites can be described using cosine functions. 

 

Figure 4.4: Yarn’s cross-section fitted by using cosine functions 

In addition to the above observation, it can be found in Fig. 4.3 that the yarns in this type 

of composite material have a wave-like shape in the fibre direction, as highlighted in the 

figure using dashed curves. Furthermore, it can be seen that the thickness of each yarn is 

almost constant across the whole yarn. Based on these findings, it is assumed that the 

waviness of a general yarn in woven composites can be largely described using cosine 

functions. A subsequent curve fitting, as shown in Fig. 4.4, confirms the feasibility of 

such an assumption. 
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Figure 4.5: Yarn’s waviness fitted using cosine functions 

Based on the above observations and curve fittings, the general assumptions made in the 

present research to model the internal architecture of woven composites are summarised 

as follows: 

1) The cross-section of a general yarn in woven composites can be described using 

simple functions such cosine functions; 

2) The waviness of a general yarn in woven composites can be fitted using simple 

functions such as cosine functions; 

3) Each yarn in woven composites has a constant cross-sectional shape across the 

whole yarn. 

4.1.3 Further assumptions 

In structural application of woven composites, a woven composite structure is fabricated 

typically by stacking a number of plies or layers together to form the whole thickness of 

the structure. Depending on the mechanical performance required, the direction of a ply 

can be parallel or at an angle to that of another ply. Additionally, composite plies can be 

stacked together based on simple stacking, symmetrical stacking and/or a combination of 

them. Examples of simple and symmetrical stacking are shown in Fig. 4.6.  
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The many possible combinations of composite stacking and ply orientation complicates 

the development of predictive models for woven composites. Thus, the present research 

focuses on developing predictive models for the woven composites with simple stacking 

and the same ply orientation. This means that only a layer of woven composites is needed 

to identify UCs as translation is the unique type of symmetry in the through-the-thickness 

direction in such type of woven composites. Also, for simplicity, manufacturing defects, 

such as inter-ply shifting, yarn nesting and fibre misalignment, will not be considered in 

developing geometry models for woven composites. Furthermore, a perfect bonding is 

assumed, avoiding the effort needed to model the interface between the polymer matrix 

and the yarn material.  

 

(a) Plain woven composites based on simple stacking 

 

(b) Plain woven composites based on symmetrical stacking 

Figure 4.6: Two typical stacking methods in woven composites 
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4.1.4 Definitions and notations 

 

Figure 4.7: Definitions for the feature curves of a typical yarn 

To simplify the description of the UC models, which will be presented in the following 

sections, the following definitions are introduced for describing yarns. Firstly, the lower 

and upper curves of the intersection between a yarn and a plane that is perpendicular to 

the fibre direction are referred to as the lower cross-sectional curve and the upper cross-

sectional curve, see Fig. 4.7. Secondly, the lower and upper curves of the intersection 

between a yarn and a plane that is parallel to the fibre direction are termed as the lower 

guide curve and the upper guide curve, see Fig. 4.7. To systematically and accurately 

quote a feature curve, the following notation strategy is employed: 

Σ①②③ 

Σ This symbol is to suggest based on which coordinate a feature curve is described. 

For example, if a curve is described in the form of 𝑧 = 𝑓(𝑥, 𝑦), this symbol should 

be “z”. 

① This subscript is to suggest to which type of yarn a curve belongs, and it should 

be filled with the first letter of yarn’s name. For example, if a curve belongs the 

warp, fill or binder yarn, this subscript is filled with “w”, “f” or “b”. It should be 

noted that there could be more than one yarn of the same type even in a single UC 

model. In such a case, this subscript should be filled with a letter followed by a 
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Fill yarn 

Lower & upper 

cross-sectional curves 

Lower & upper 

guide curves 



Chapter 4: Elastic property homogenisation 

91 

 

number. For instance, subscripts “w1” and “f2” stand for the first warp yarn and 

the second fill yarn, respectively. 

② This subscript is to suggest the relative location of the curve being described. It 

should be filled with letter “l” if it is a lower curve; otherwise, letter “u” should 

be used to denote an upper curve. 

③ This subscript is to the type of a curve being described. This subscript should be 

filled with letter “c” if it is a cross-sectional curve; otherwise, letter “g” should be 

used to denote a guide curve. 

Based on the above notation strategy, the notation of zwlc suggests that the curve being 

described is the lower cross-sectional curve of the warp yarn. Similarly, the notation of 

zf2ug suggests that it is the upper guide curve of the second fill yarn. 

4.2 Normal mUC for plain woven composites 

  

      (a) Model I: lenticular cross-section         (b) Model II: elliptical cross-section 

Figure 4.8: Plain woven composite UCs developed by Wen and Aliabadi [94] 

The plain woven composite UC model proposed in the present research is improved from 

those originally developed by Wen and Aliabadi [94] for predicting the elastic properties 

of plain woven composites, as shown in Fig. 4.8. In their first model, the cross-section of 

a yarn was modelled as a lenticular shape with one cross-sectional curve described using 

a cosine function and the other using a quadratic function. Such an assumption, however, 
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leads to an asymmetrical cross-section. Although this problem was properly addressed in 

their second model by using an elliptical cross-section, the combination of using elliptical 

functions to describe the cross-section and using cosine functions to describe the waviness 

causes another problem, which is that the lower surface of the fill yarn is even lower than 

the upper surface of the warp yarn in the vicinity of the expected coincidence point of the 

two yarns, i.e. 𝒙 = (0, 0, 𝐻/2). 

 

Figure 4.9: The improved mUC model for plain woven composites 

To avoid the above two problems and follow the assumption given in Section 4.1, cosine 

functions are used to describe both the cross-section and waviness of the yarns of plain 

woven composites. Fig. 4.9 shows the improved model, which is a normal mUC obtained 

after performing the domain reduction operations illustrated in Fig. 4.2. Compared to the 

models shown in Fig. 4.8, two extra parameters, 𝐿 and 𝑊, which stand for the length and 

width of the UC, are utilised here to improve the flexibility of accommodating this model 

for plain woven composites with different fabric sizes. Similar to the original models, a 

dimensionless parameter, 𝜆, which is defined as the ratio of the half width of the warp 

(𝜆𝑊) or fill yarn (𝜆𝐿) to the width (𝑊) or length (𝐿) of the UC, is utilised to control the 

width of the yarns. In addition, the warp and fill yarns are assumed to have a maximum 
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thickness of 𝐻/2. It is further assumed that each yarn can be constructed by sweeping its 

cross-section along the corresponding guide curves. 

4.2.1 Warp yarn (0 ≤ y ≤ λW) 

 

Figure 4.10: The warp yarn of the improved mUC for plain woven composites 

According to the assumptions in Section 4.1 and the geometry configuration shown in 

Fig. 4.10, the lower and upper cross-sectional and guide curves can be described using 

the following four equations, respectively: 

 𝑧wlc =
3𝐻

4
−
𝐻

4
cos

π𝑦

2𝜆𝑊
 (4.1) 

 𝑧wuc =
3𝐻

4
+
𝐻

4
cos

π𝑦

2𝜆𝑊
 (4.2) 

 𝑧wlg =
𝐻

4
+
𝐻

4
cos

π𝑥

2𝐿
 (4.3) 

 𝑧wug =
3𝐻

4
+
𝐻

4
cos

π𝑥

2𝐿
 (4.4) 

Based on the above four equations, the lower and upper surfaces of the warp yarn can be 

described using the following two equations: 

 𝑧warp
lower = 𝑧wlc + 𝑧wlg −

𝐻

2
=

𝐻

4
(2 + cos

π𝑥

2𝐿
− cos

π𝑦

2𝜆𝑊
) (4.5) 

 𝑧warp
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= 𝑧wuc + 𝑧wlg − 𝐻 =
𝐻

4
(2 + cos

π𝑥

2𝐿
+ cos
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2𝜆𝑊
) (4.6) 
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By taking the partial derivative of Eq. (4.5) or (4.6) with respect to 𝑥, the waviness or the 

undulation angle of any material point on the warp yarn with respect to the XOY plane 

can be determined, as follows: 

 𝜃warp = tan
−1 (

∂𝑧warp
lower

∂𝑥
) = tan 1 (−

π𝐻

8𝐿
sin

π𝑥

2𝐿
) (4.7) 

4.2.2 Fill yarn (0 ≤ x ≤ λL) 

 

Figure 4.11: The fill yarn of the improved mUC for plain woven composites 

Similar to the warp yarn, the equations for describing the lower and upper cross-sectional 

and guide curves of the fill yarn, as highlighted in Fig. 4.11, can be obtained, as follows:  

 𝑧flc =
𝐻

4
−
𝐻

4
cos

π𝑥

2𝜆𝐿
 (4.8) 

 𝑧fuc =
𝐻

4
+
𝐻

4
cos

π𝑥

2𝜆𝐿
 (4.9) 

 𝑧flg =
𝐻

4
−
𝐻

4
cos

π𝑦

2𝑊
 (4.10) 

 𝑧fug =
3𝐻

4
−
𝐻

4
cos

π𝑦

2𝑊
 (4.11) 

Based on the above four equations, the lower and upper surfaces of the fill yarn can be 

described using the following two equations: 

 𝑧fill
lower = 𝑧flc + 𝑧flg =

𝐻

4
(2 − cos

π𝑥

2𝜆𝐿
− cos
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2𝑊
) (4.12) 
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 𝑧fill
upper

= 𝑧fug + 𝑧fuc −
𝐻

2
=

𝐻

4
(2 + cos

π𝑥

2𝜆𝐿
− cos

π𝑦

2𝑊
) (4.13) 

By taking the partial derivative of Eq. (4.12) or (4.13) with respect to 𝑦, the waviness or 

the undulation angle of any material point on the fill yarn with respect to the XOY plane 

can be determined, as follows: 

 𝜃fill = tan
−1 (

∂𝑧fill
lower

∂𝑦
) = tan−1 (

π𝐻

8𝑊
sin

π𝑦

2𝑊
) (4.14) 

Based on the above equations, the volume of the warp yarn, the volume of the fill yarn 

and the overall yarn volume fraction can be calculated, as follows: 

 Vwarp = 𝐿 ∫ (𝑧wuc − 𝑧wlc)𝑑𝑥
𝜆𝑊

0
=

𝜆𝐿𝑊𝐻

π
 (4.15) 

 Vfill = 𝑊∫ (𝑧fuc − 𝑧flc)𝑑𝑥
𝜆𝐿

0
=

𝜆𝐿𝑊𝐻

π
 (4.16) 

 vyarn = (Vwarp + Vfill) Vcell⁄ =
2𝜆

π
 (4.17) 

4.2.3 Choice of parameter λ 

 

Figure 4.12: Variation of on the shape and size of the yarn 

It should be noted that the dimensionless parameter, 𝜆, must satisfy the condition of 0 <

𝜆 ≤ 1 since the widths of the yarns must be no larger than the corresponding dimensions 
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of the UC, i.e. 𝜆𝑊 ≤ 𝑊 or 𝜆𝐿 ≤ 𝐿. Fig. 4.12 shows the variation of 𝜆 on the shape and 

size of the cross-section of the fill yarn. It is evident from this figure that the width of the 

fill yarn increases as the value of 𝜆 is increased. In addition, when the value of 𝜆 reaches 

its upper limit (i.e. 1.0), the upper cross-sectional curve of the fill yarn coincides with the 

lower guide curve of the warp yarn. 

4.3 Normal mUC for 2/2 twill woven composites 

The UC developed for 2/2 twill woven composites is shown in Fig. 4.13. This model is a 

normal mUC obtained after performing the three-step reduction operations illustrated in 

Fig. 4.14. Firstly, a single layer of twill woven composites is quartered after exploiting 

its translational symmetries, leading to a full-size UC. Secondly, by using the reflectional 

and rotational symmetries, the full-size UC is quartered into a 1
4
UC. Finally, exploiting 

the symmetries in the 1
4
UC leads to a 1

16
UC, which is the mUC shown in Fig. 4.13.  

 

Figure 4.13: The proposed mUC model for 2/2 twill woven composites 
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(a) Composite ply to full-size UC by using translational symmetries 

 

(b) Full-size UC to 𝟏
𝟒
UC by using reflectional and rotational symmetries 

 

(c) 𝟏
𝟒
UC to 𝟏

𝟏𝟔
UC by using reflectional and rotational symmetries 

Figure 4.14: Domain reduction for 2/2 twill woven composites 

The geometry configuration of the mUC model for twill woven composites is shown in 

Fig. 4.13. In this figure, 𝐿, 𝑊 and 𝐻 stand for the length, width and height of the UC, and 

the dimensionless parameter, 𝜆, is defined as the ratio of the half width of the warp yarns 

(𝜆𝑊) or the fill yarns (𝜆𝐿) to the width (𝑊) or length (𝐿) of the UC. To prevent any 

interpenetration between adjacent yarns, the dimensionless parameter should be no larger 

than 0.5. In addition, all the yarns are assumed to have a maximum thickness of 𝐻/2. 
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4.3.1 Warp yarn 1 (0 ≤ y ≤ λW) 

Based on the assumptions in Section 4.1 and the geometry configuration shown in Fig. 

4.13, the lower and upper cross-sectional and guide curves of warp yarn 1, as shown in 

Fig. 4.15, can be described using the following equations: 

 𝑧w1lc =
3𝐻

4
−
𝐻

4
cos

π𝑦

2𝜆𝑊
 (4.18) 

 𝑧w1uc =
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4
+
𝐻

4
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 (4.19) 

 𝑧w1lg =
𝐻

4
+
𝐻

4
cos
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𝐿
 (4.20) 

 𝑧w1ug =
3𝐻

4
+
𝐻

4
cos

π𝑥

𝐿
 (4.21) 

 

Figure 4.15: Warp yarn 1 of the proposed mUC for twill woven composites 

By considering the above four equations, the equations for describing the lower and upper 

surfaces of warp yarn 1 can be obtained, as follows: 
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By taking the partial derivative of Eq. (4.22) or (4.23) with respect to 𝑥, the waviness or 

the undulation angle of any material point on warp yarn 1 with respect to the XOY plane 

can be determined, as follows: 

 𝜃warp1 = tan−1 (
∂𝑧warp1

lower

∂𝑥
) = tan−1 (−

π𝐻

4𝐿
sin

π𝑥

𝐿
) (4.24) 

4.3.2 Warp yarn 2 (W-λW ≤ y ≤ W) 

The geometry configuration of the second warp yarn is illustrated in Fig. 4.16, where the 

X¹O¹Z¹ plane denotes plane Y = 𝑊 − 𝜆𝑊. It can be seen from this figure that there is no 

presence of waviness in this yarn. This indicates that the equations for describing the 

lower and upper surfaces are essentially those for describing the lower and upper cross-

sectional curves, as follows: 

 𝑧warp2
lower = 𝑧w2lc =

𝐻

4
−
𝐻

4
cos (

π𝑦

2𝜆𝑊
−

π

2𝜆
) (4.25) 

 𝑧warp2
upper

= 𝑧w2uc =
𝐻

4
+
𝐻

4
cos (

π𝑦

2𝜆𝑊
−

π

2𝜆
) (4.26) 

 

Figure 4.16: Warp yarn 2 of the proposed mUC for twill woven composites 

4.3.3 Fill yarn 1 (0 ≤ x ≤ λL) 

Similar to warp yarn 1, the lower and upper cross-sectional and guide curves of fill yarn 

1, as shown in Fig. 4.17, can be described using the following four equations: 
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Figure 4.17: Fill yarn 1 of the proposed mUC for twill woven composites 
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By combining the above four equations, the equations for describing the lower and upper 

surfaces of fill yarn 1 can be derived, as follows: 

 𝑧fill1
lower = 𝑧f1lg + 𝑧f1lc =

𝐻

4
(2 − cos

π𝑥

2𝜆𝐿
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𝑊
) (4.31) 
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By taking the partial derivative of Eq. (4.31) or (4.32) with respect to 𝑦, the waviness or 

the undulation angle of any material point on fill yarn 1 with respect to the XOY plane 

can be determined as follows: 

 𝜃fill1 = tan
−1 (

∂𝑧fill1
lower

∂𝑦
) = tan−1 (
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) (4.33) 
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4.3.4 Fill yarn 2 (L-λL ≤ x ≤ L) 

 

Figure 4.18: Fill yarn 2 of the proposed mUC for twill woven composites 

In terms of the second fill yarn, as shown in Fig. 4.18, where the X²O²Z² plane denotes 

plane X = 𝐿 − 𝜆𝐿, there is again no presence of waviness in this yarn. Thus, its lower and 

upper surfaces can be described directly using the equations for describing the lower and 

upper cross-sectional curves on the X O²Z² plane, as follows: 
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) (4.35) 

Based on the above equations, the volumes of the warp yarns, the volumes of the fill yarns 

and the overall yarn volume fraction can be calculated, as follows: 

 Vwarp2 = Vwarp1 = 𝐿 ∫ (𝑧w1uc − 𝑧w1lc)𝑑𝑥
𝜆𝑊

0
=

𝜆𝐿𝑊𝐻

π
 (4.36) 

 Vfill2 = Vfill1 = 𝑊∫ (𝑧f1uc − 𝑧f1lc)𝑑𝑥
𝜆𝐿

0
=

𝜆𝐿𝑊𝐻

π
 (4.37) 

 vyarn = (Vwarp1 + Vwarp2 + Vfill1 + Vfill2) Vcell⁄ =
4𝜆

π
 (4.38) 
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4.4 Normal mUC for 3D woven composites 

 

(a) Composite ply to full-size UC by using translational symmetries only 

 

(b) Full-size UC to 𝟏
𝟒
UC by using reflectional symmetries only 

 

(c) 𝟏
𝟒
UC → 𝟏

𝟏𝟔
UC by using reflectional and rotational symmetries 

Figure 4.19: Domain reduction for 3D orthogonal woven composites 

For three-dimensional (3D) orthogonal woven composites, the mUC can be derived after 

performing the domain reduction operations demonstrated in Fig. 4.19. Specifically, a 

full-size UC is firstly obtained by exploiting the translational symmetries in the composite 

ply. Secondly, the full-size UC can be reduced based on its reflectional and rotational 

Composites 

UC 

Full-size UC 

𝟏

𝟒
UC 

𝟏

𝟒
UC 

𝟏

𝟏𝟔
UC 



Chapter 4: Elastic property homogenisation 

103 

 

symmetries, which leads to a 1
4
UC. Finally, exploiting both the reflectional and rotational 

symmetries of the 1
4
UC yields a 1

16
UC, which is the mUC model that will be used to model 

the geometry of 3D orthogonal woven composites. 

At the level of mUC, Li et al. [145] developed a sophisticated model for predicting the 

elastic properties of 3D orthogonal woven composites. In their model, as shown in Fig. 

4.20, the cross-sections of the two warp yarns and the middle fill yarn, which are straight 

within the mUC, were assumed to be elliptical. For the lowest and highest fill yarns, they 

were modelled by utilising an arctangent function to describe one of the cross-sectional 

curves and a parabolic function to describe the other. In addition, the lowest fill yarn was 

assumed to be comprised of a straight part and a wavy part, with the waviness of the wavy 

part being described using a sine function. In terms of the binder yarn, its cross-section 

was assumed to be elliptical, and the waviness of the middle guide curve was described 

using an arctangent function. 

 

Figure 4.20: An mUC for 3D orthogonal woven composites (by Li et al. [145]) 

A small drawback of the above mUC model is that the use of different types of functions 

to describe the lower and upper cross-sectional curves of the lowest and highest fill yarns 

creates asymmetrical cross-sections, which is technically undesirable. In addition, this 
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UC model does not permit space between the adjacent yarns in the warp direction. For 

example, no space was assumed between the binder yarn and fill yarn 2. A problem of 

such a design is that it reduces the flexibility of accommodating the mUC model for the 

3D woven composites with loose weave pattern. Furthermore, for the sake of the lowest 

fill yarn interlacing with warp yarn 1 and the binder yarn, the use of a straight part and a 

wavy part produces a pocket between the fill yarn and warp yarn 1, which is obviously 

undesirable. Finally, the equations defined for the binder yarn produce lower values of 

the thickness in the regions with high waviness. A consequence of such a design is the 

presence of a high variation in the cross-section of the binder yarn, leaving the assumption 

of a constant cross-sectional shape being not satisfied exactly. 

 

Figure 4.21: The improved mUC model for 3D orthogonal woven composites 
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In the present research, an improved mUC has been developed to avoid the drawbacks 

discussed above. In the improved model, as demonstrated in Fig. 4.21, the problem of 

asymmetrical cross-sections is avoided by using cosine functions to describe both the 

lower and upper cross-sectional curves of all the yarns. In addition, four coefficients, 𝜆𝑤, 

𝜆𝑓𝑎, 𝜆𝑓𝑏 and 𝜆𝑏, the meaning of which will be listed later at the end of this paragraph, are 

utilised to improve the flexibility of the mUC in terms of forming gaps between adjacent 

yarns if needed. Furthermore, in order to avoid the problem of creating a pocket between 

the lowest fill yarn and warp yarn 1, the lowest fill yarn is assumed to consist of two wavy 

parts that match with both the binder yarn and warp yarn 1, respectively. In terms of the 

binder yarn, its waviness is described based on the middle guide curve using a hyperbolic 

tangent function, and the requirement of a constant cross-sectional shape is ensured by 

including a coordinate-dependent term when developing the equations for describing the 

lower and upper guide curves, which will be addressed later. To be concise, the meanings 

of the symbols in Fig. 4.21 are summarised as follows: 

𝐿 → Overall length of the mUC 

𝑊 → Overall width of the mUC 

𝐻 → Overall height of the mUC 

𝜆w → The ratio of the half width (𝜆w𝑊) of warp yarn 1 or 2 to 𝑊 

𝜆fa → The ratio of the half width (𝜆fa𝐿) of fill yarn 1 or 3 to 𝐿 

𝜆fb → The ratio of the half width (𝜆fb𝐿) of fill yarn 2 to 𝐿 

𝜆b → The ratio of the half width (𝜆b𝑊) of the binder yarn to 𝑊 

𝐻w → The maximum thickness of warp yarn 1 or 2 

𝐻fa → The maximum thickness of fill yarn 1 or 3 

𝐻fb → The maximum thickness of fill yarn 2 

𝐻b → The maximum thickness of the binder yarn 
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4.4.1 Warp yarn 1 (0 ≤ y ≤ λwW) 

 

Figure 4.22: Warp yarn 1 of the improved mUC for 3D woven composites 

The lower warp yarn (i.e. warp yarn 1) of the mUC is a straight yarn, as shown in Fig. 

4.22. Therefore, its lower and upper surfaces can be described directly using the lower 

and upper cross-sectional curves, as follows: 

 𝑧warp1
lower = 𝑧w1lc = 𝐻fa +

𝐻w

2
−
𝐻w

2
cos (

π𝑦

2𝜆w𝑊
) (4.39) 

 𝑧warp1
upper

= 𝑧w1uc = 𝐻fa +
𝐻w

2
+
𝐻w

2
cos (

π𝑦

2𝜆w𝑊
) (4.40) 

4.4.2 Warp yarn 2 (0 ≤ y ≤ λwW) 

The upper warp yarn (i.e. warp yarn 2) is also a straight one, as shown in Fig. 4.23, where 

𝐻t = 𝐻fb + 𝐻w. Again, its surfaces can be described based on the cross-sectional curves. 

However, since it has exactly the same geometry as warp yarn 1 and can be treated as a 

result of translating warp yarn 1 for a distance of 𝐻t in the Z direction, its lower and upper 

surfaces can be described directly as follows: 
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 𝑧warp2
lower = 𝑧w2lc = 𝐻fa + 𝐻fb +

3𝐻w

2
−
𝐻w

2
cos (

π𝑦

2𝜆w𝑊
) (4.41) 

 𝑧warp2
upper

= 𝑧w2uc = 𝐻fa + 𝐻fb +
3𝐻w

2
+
𝐻w

2
cos (

π𝑦

2𝜆w𝑊
) (4.42) 

 

Figure 4.23: Warp yarn 2 of the improved mUC for 3D woven composites 

4.4.3 Fill yarn 1 (0 ≤ x ≤ λfaL) 

For the lowest fill yarn (i.e. fill yarn 1), as highlighted in Fig. 4.24, it consists of two wavy 

parts, which should be described separately. However, as the yarn has been assumed to 

have a constant cross-sectional shape, the lower and upper cross-sectional curves of both 

parts on plane Y = 𝑊 can be described using the same set of equations, as follows: 

 𝑧f1lc = 𝐻b +
𝐻fa

2
−
𝐻fa

2
cos (

π𝑥

2𝜆fa𝐿
) (4.43) 

 𝑧f1uc = 𝐻b +
𝐻fa

2
+
𝐻fa

2
cos (

π𝑥

2𝜆fa𝐿
) (4.44) 
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Figure 4.24: Fill yarn 1 of the improved mUC for 3D woven composites 

To describe the surfaces of both parts of fill yarn 1, the waviness of each part and the ratio 

of the length of each part to that of the whole yarn need to be determined. In this work, 

the division of this yarn is controlled by a dimensionless parameter, 𝜆. It is assumed that 

the right wavy part has a length of 𝜆𝑊 and a guide curve height of 𝜆𝐻b, and the left wavy 

part has a length of (1 − 𝜆)𝑊 and a guide curve height of (1 − 𝜆)𝐻b, as shown in Fig. 

4.24. To ensure a smooth transition from the right wavy part to the left wavy part and at 

the same time to maintain a reasonable match of fill yarn 1 with both the warp and binder 

yarns, it is further assumed that the ratio of the length of the right wavy part to that of the 

left wavy part is equal to the ratio of the width of warp yarn 1 to that of the binder yarn, 

which leads to the following relation: 

 
𝜆𝑊

(1−𝜆)𝑊
=

𝜆w𝑊

𝜆b𝑊
 (4.45) 

Solving this equation yields the value of the dimensionless parameter: 

 𝜆 =
𝜆w

𝜆b+𝜆w
 (4.46) 
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4.4.3.1 Right wavy part of fill yarn 1 (0 ≤ y ≤ λW) 

Based on the above assumptions and those in Section 4.1, the equations for describing the 

lower and upper guide curves of the right wavy part can be obtained, as follows: 

 𝑧f1lg
r = 𝜆𝐻b − 𝜆𝐻bcos (

π𝑦

2𝜆𝑊
) (4.47) 

 𝑧f1ug
r = 𝐻fa + 𝜆𝐻b − 𝜆𝐻bcos (

π𝑦

2𝜆𝑊
) (4.48) 

By combining the above two equations with Eqs. (4.43) and (4.44), the lower and upper 

surfaces of the right wavy part of fill yarn 1 can be described, as follows: 

 𝑧fill1
r,lower = 𝑧f1lc + 𝑧f1lg

r − 𝐻b (4.49) 

 𝑧fill1
r,upper

= 𝑧f1uc + 𝑧f1ug
r − (𝐻fa + 𝐻b) (4.50) 

Expanding the above two equations gives: 

 𝑧fill1
r,lower =

𝐻fa

2
+ 𝜆𝐻b −

𝐻fa

2
cos (

π𝑥

2𝜆fa𝐿
) − 𝜆𝐻bcos (

π𝑦

2𝜆𝑊
) (4.51) 

 𝑧fill1
r,upper

=
𝐻fa

2
+ 𝜆𝐻b +

𝐻fa

2
cos (

π𝑥

2𝜆fa𝐿
) − 𝜆𝐻bcos (

π𝑦

2𝜆𝑊
) (4.52) 

By taking the partial derivative of Eq. (4.51) or (4.52) with respect to 𝑦, the waviness or 

the undulation angle of any material point on the right wavy part of fill yarn 1 with respect 

to the XOY plane can be determined, as follows: 

 𝜃fill1
r = tan−1 (

∂𝑧fill1
r,lower

∂𝑦
) = tan−1 (

π𝐻b

2𝑊
sin (

π𝑦

2𝜆𝑊
)) (4.53) 

4.4.3.2 Left wavy part of fill yarn 1 (λW ≤ y ≤ W) 

Similarly, the equations for describing the lower and upper guide curves of the left wavy 

part can be formulated, as follows: 

 𝑧f1lg
l = 𝜆𝐻b + (1 − 𝜆)𝐻bcos (

π(𝑦−𝑊)

2(1−𝜆)𝑊
) (4.54) 

 𝑧f1ug
l = 𝐻fa + 𝜆𝐻b + (1 − 𝜆)𝐻bcos (

π(𝑦−𝑊)

2(1−𝜆)𝑊
) (4.55) 
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By combining the above two equations with Eqs. (4.43) and (4.44), the lower and upper 

surfaces of the left wavy part of fill yarn 1 can be described, as follows: 

 𝑧fill1
l,lower = 𝑧f1lc + 𝑧f1lg

l − 𝐻b (4.56) 

 𝑧fill1
l,upper

= 𝑧f1uc + 𝑧f1ug
l − (𝐻fa + 𝐻b) (4.57) 

Expanding the above two equations gives: 

 𝑧fill1
l,lower =

𝐻fa

2
+  𝜆𝐻b −

𝐻fa

2
cos (

π𝑥

2𝜆fa𝐿
) + (1 − 𝜆)𝐻bcos (

π(𝑦−𝑊)

2(1−𝜆)𝑊
) (4.58) 

 𝑧fill1
l,upper

=
𝐻fa

2
+  𝜆𝐻b +

𝐻fa

2
cos (

π𝑥

2𝜆fa𝐿
) + (1 − 𝜆)𝐻bcos (

π(𝑦−𝑊)

2(1−𝜆)𝑊
) (4.59) 

By taking the partial derivative of Eq. (4.58) or (4.59) with respect to 𝑦, the waviness or 

the undulation angle of any material point on the left wavy part of fill yarn 1 with respect 

to the XOY plane can be determined as follows: 

 𝜃fill1
l = tan−1 (

∂𝑧fill1
l,lower

∂𝑦
) = tan−1 (−

π𝐻b

2𝑊
sin (

π(𝑦−𝑊)

2(1−𝜆)𝑊
)) (4.60) 

4.4.3.3 Comparison with the original formulation 

In order to demonstrate the improvement that has been achieved in modelling fill yarn 1, 

the intersections of fill yarn 1, warp yarn 1 and the binder yarn with the YOZ plane are 

visualised in Fig. 4.25a, where the intersection of the binder yarn with the plane is plotted 

based on Eqs. (4.65) and (4.66), which will be presented later in Section 4.4.6. For 

comparison, the intersections based on the formulation developed by Li et al. [145] are 

also drawn and shown in Fig. 4.25b. It should be noted that the same set of parameters 

was used to generate the figures, and the parameters were 𝑊 = 2.54, 𝐻b = 0.292, 𝐻fa =

0.292, 𝐻w = 0.637, 𝜆w𝑊 = 2.086 and 𝜆b𝑊 = 0.454.  

As is clearly shown in Fig. 4.25, the improved formulation is able to produce a smoother 

transition in the waviness of fill yarn 1, compared to the original formulation. More 

importantly, the undesirable pocket between the fill yarn and the warp yarn has been 

successfully eliminated by using the improved formulation. 
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(a) Intersections plotted based on the improved formulation 

 

(b) Intersections drawn based on the formulation by Li et al. [145] 

Figure 4.25: Comparison of the intersections of the two formulations 

4.4.4 Fill yarn 2 (0 ≤ x ≤ λfbL) 

The middle fill yarn (i.e. fill yarn 2) is a straight yarn, as shown in Fig. 4.26. Therefore, 

its lower and upper surfaces can be described directly using the equations for the lower 

and upper cross-sectional curves, as follows: 

 𝑧fill2
lower = 𝑧f2lc = 𝐻fa + 𝐻w +

𝐻fb

2
−
𝐻fb

2
cos (

π𝑥

2𝜆fb𝐿
) (4.61) 

 𝑧fill2
upper

= 𝑧f2uc = 𝐻fa + 𝐻w +
𝐻fb

2
+
𝐻fb

2
cos (

π𝑥

2𝜆fb𝐿
) (4.62) 
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Figure 4.26: Fill yarn 2 of the improved mUC for 3D woven composites 

 

Figure 4.27: Fill yarn 3 of the improved mUC for 3D woven composites 
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4.4.5 Fill yarn 3 (0 ≤ x ≤ λfaL) 

The highest fill yarn (i.e. fill yarn 3) is also a straight yarn, as shown Fig. 4.27. Thus, the 

lower and upper surfaces of this yarn can be described using the equations for the lower 

and upper cross-sectional curves, as follows: 

 𝑧fill3
lower = 𝑧f3lc = 𝐻 −

𝐻fa

2
−
𝐻fa

2
cos (

π𝑥

2𝜆fa𝐿
) (4.63) 

 𝑧fill3
upper

= 𝑧f3uc = 𝐻 −
𝐻fa

2
+
𝐻fa

2
cos (

π𝑥

2𝜆fa𝐿
) (4.64) 

4.4.6 Binder yarn (W-λbW ≤ y ≤W) 

According to the assumptions in Section 4.1 and the geometry configuration shown in 

Fig. 4.28, where the X¹O¹Z¹ plane stands for plane Y = 𝑊, the lower and upper cross-

sectional curves of the binder yarn can be described as follows: 

 𝑧blc =
𝐻b

2
−
𝐻b

2
cos (

π(𝑦−𝑊)

2𝜆b𝑊
) (4.65) 

 𝑧buc =
𝐻b

2
+
𝐻b

2
cos (

π(𝑦−𝑊)

𝜆b𝑊
) (4.66) 

 

Figure 4.28: Binder yarn of the improved mUC for 3D woven composites 
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To facilitate the description of the waviness of the binder yarn, an extended binder yarn 

has been constructed based on the binder yarn shown in Fig. 4.28. In the extended yarn, 

as shown in Fig. 4.29, the extended part is a copy of the original part after performing a 

rotation of 180° with respect to the Y¹ axis. Clearly, in 3D orthogonal woven composites, 

the binder yarn is designed to bind warp and fill yarns together in the form of switching 

itself from one side of the ply to the other, as indicated in Fig. 4.29 or more clearly in Fig. 

4.19. Such a switch requires the binder yarn to have a waviness with a significant variation 

in the middle region and minor variations in the remaining areas, suggesting that the initial 

assumption of simply utilising a cosine function to model the waviness of the whole yarn 

would be impossible in this case. 

 

Figure 4.29: Extended binder yarn of the improved mUC 

In this research, it is assumed that the waviness of the binder yarn can be described using 

a hyperbolic function as this type of function is capable of producing significant variation 

in the middle region and becoming flat in the remaining areas. Based on this assumption 

and the geometry configuration shown in Fig. 4.29, the following equation is proposed to 

describe the middle guide curve of the extended binder yarn: 
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 𝑧bmid =
𝐻

2
+𝑚0 tanh[𝑠0(𝑥 − 𝐿)] (4.67) 

where 𝑠0 is a parameter used to control the rate of the function reaching its limit values 

and thus to fit the waviness of the binder yarn (an example showing how this parameter 

controls the shape or waviness of a binder yarn is given in Fig. 4.30), and 𝑚0 is a scaling 

parameter defined such that the value of 𝑧bmid exactly equals 𝐻b 2⁄  if 𝑥 = 0 or equals 

𝐻 − 𝐻b 2⁄  if 𝑥 = 2𝐿, and it is determined as follows: 

 𝑚0 =
𝐻−𝐻b

2 tanh(𝑠0𝐿)
 (4.68) 

 

Figure 4.30: Variation in the waviness of a binder yarn on the value of s₀ 

Since the binder yarn shown in Fig. 4.28 is a part of the extended yarn, its waviness can 

also be described using Eq. (4.67). Therefore, by taking the derivative of Eq. (4.67) with 

respect to 𝑥, the waviness or the undulation angle of any material point on the binder yarn 

with respect to the XOY plane can be approximated, as follows: 

 𝜃binder =
d𝑧bmid

d𝑥
= tan−1{𝑚0𝑠0{1 − tanh

2[𝑠0(𝑥 − 𝐿)]}} (4.69) 

It should be noted that the binder yarn has been assumed to have a constant cross-sectional 

shape across the whole yarn. This suggests that both the lower and upper guide curves of 

the binder yarn should have the same distance from the middle guide curve, i.e. 𝐻b 2⁄ . 

Thus, the equations for describing the two guide curves can be defined, as follows: 

0.0

0.5

1.0

1.5

2.0

2.5

0.00.81.62.43.24.04.8

Z
 (

m
m

)

X (mm)

s₀=2.0

s₀=2.5

s₀=3.5



4.5 Derivation of boundary conditions  

116 

 

 𝑧blg = 𝑧bmid − |
𝐻b

2sin𝜃0
| =

𝐻

2
+𝑚0 tanh[𝑠0(𝑥 − 𝐿)] − |

𝐻b

2sin𝜃0
| (4.70) 

 𝑧bug = 𝑧bmid + |
𝐻b

2sin𝜃0
| =

𝐻

2
+𝑚0 tanh[𝑠0(𝑥 − 𝐿)] + |

𝐻b

2sin𝜃0
| (4.71) 

where 

 𝜃0 = −tan
−1 [

1

tan(𝜃binder)
] = −tan−1 {

1

𝑚0𝑠0{1−tanh2[𝑠0(𝑥−𝐿)]}
} (4.72) 

Here, in Eq. (4.70) or Eq. (4.71), the use of the last term ensures the maximum thickness 

of the binder yarn at any cross-section exactly equalling 𝐻b and thus ensures the binder 

yarn having a constant cross-sectional shape across the whole yarn. 

Based on the above two equations and those defined for describing the lower and upper 

cross-sectional curves, i.e. Eqs. (4.65) and (4.66), the lower and upper surfaces of the 

binder yarn can be described, as follows: 

 𝑧binder
lower = 𝑧blg + 𝑧blc (4.73) 

 𝑧binder
upper

= 𝑧bug + 𝑧buc − 𝐻b (4.74) 

Expanding the above two equations yields the explicit forms of equations for describing 

the surfaces of the binder yarn, as follows: 

 𝑧binder
lower =

𝐻

2
+
𝐻b

2
−
𝐻b

2
cos (

π(𝑦−𝑊)

2𝜆b𝑊
) + 𝑚0 tanh[𝑠0(𝑥 − 𝐿)] − |

𝐻b

2sin𝜃0
| (4.75) 

 𝑧binder
upper

=
𝐻

2
−
𝐻b

2
+
𝐻b

2
cos (

π(𝑦−𝑊)

2𝜆b𝑊
) + 𝑚0 tanh[𝑠0(𝑥 − 𝐿)] + |

𝐻b

2sin𝜃0
| (4.76) 

4.5 Derivation of boundary conditions 

4.5.1 Introduction 

Apart from identifying a UC and modelling the internal architecture, which have been 

covered previously in this chapter, one key issue to be addressed in the micromechanical 

homogenisation of the elastic properties or the overall response of woven composites is 

to derive the boundary condition for the UC of homogenisation. However, it should be 
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noted that the UC models proposed in this work are rUCs or specifically mUCs, which 

are identified by exploiting not only translational but also non-translational symmetries, 

such as rotation and reflection. This indicates that the standard form of PBC is applicable 

only at the level of full-size UC but inapplicable at the level of rUC or mUC since this 

form of PBC is formulated based on translational periodicity only, as detailed in Section 

2.5, Chapter 2. 

The approaches for deriving the PBC of woven composites at the level of rUC or mUC 

have been well established, and they can be largely classified into two types, namely, the 

multi-step approach and the equivalence approach. In the former approach, the boundary 

condition of an rUC is deduced step by step from that of the full-size UC in accordance 

with the symmetry operations that have been utilised to obtain the rUC from the full-size 

UC. An exhaustive example of utilising such an approach can be found in Li et al. [188], 

where the boundary conditions of rUCs of plain woven composites were calculated step 

by step and summarised for each loading condition.  

On the other hand, the equivalence approach is a one-step method as it formulates generic 

equations based on which the boundary condition of either a full-size UC or an rUC can 

be calculated. This approach was first proposed by Whitcomb et al. [190] based on the 

concept of Equivalent Coordinate System (ECS), which was applied to establish relations 

between the geometry and mechanics quantities (i.e. coordinate, displacement, stress and 

strain) of two adjacent subdomains and thus to derive the boundary condition for the UC 

of homogenisation. This approach was later extended by Tang and Whitcomb [189] and 

De Carvalho et al. [191], leading to very generic forms of equations for determining the 

boundary condition of woven composites at the level of rUC. In this research, the generic 

equations developed by De Carvalho et al. [191] have been utilised to derive the boundary 

conditions for the mUCs presented in this thesis, and these equations will be detailed in 

the following section, for completeness. 

4.5.2 The equivalence approach 

The equivalence approach developed by De Carvalho et al. [191] is based on 4 concepts, 

i.e., physical equivalence, loading equivalence, periodicity and subdomain admissibility. 

To clearly illustrate how this approach can be used to derive PBCs for woven composites 

the concepts of physical equivalence, loading equivalence and subdomain admissibility 
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will be firstly introduced in this section. Here, the concept of periodicity will not be 

discussed since it has been actually covered at the beginning of this chapter. After that, 

the theoretical procedure for deducing the generic equations will be detailed. Finally, the 

basic steps of using the equivalence approach to derive PBCs will be summarised at the 

end of this section. 

4.5.2.1 Physical equivalence 

Consider a general domain. Assume that in the general domain there is a subdomain, 𝐷, 

bounded by a boundary, and that there are 𝑛 physical properties which are defined in the 

local coordinate system (LCS) of 𝐷, i.e. O𝐷𝑥𝑦𝑧, in a tensor form of 𝒑𝐷
𝑖 , 𝑖 ∈ {1, 2, … , 𝑛}. 

Then, two subdomains, 𝐷 and �̅�, are treated as physically equivalent, i.e. 𝐷 ≅ �̅�, if for 

each point, 𝐴, in subdomain 𝐷 there is an equivalent point, �̅�, in subdomain �̅� such that 

for each physical property 𝑖 the following condition holds [191]: 

 𝒙𝐷
𝐴 = 𝒙�̅�

�̅�  ∩  𝒑𝐷
𝑖 (𝐴) = 𝒑�̅�

𝑖 (�̅�)  (4.77) 

where 𝒙𝐷
𝐴  and 𝒙�̅�

�̅�  are the coordinates of the equivalent points in the LCSs attached to 

subdomains 𝐷 and �̅�, respectively. 

 

Figure 4.31: Physically equivalent subdomains in plain woven composites 
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An example of two physically equivalent subdomains is illustrated by using two subcells 

of plain woven composites, as shown in Fig. 4.31. It can be clearly seen in the figure that 

for every point in the left subcell there is a geometrically equivalent point in the right 

subcell, and the physical properties (e.g. material properties or orientation) of a point in 

the left subcell are identical to those of the equivalent point in the right subcell. 

According to Eq. (4.77), the coordinate vectors of two equivalent points, 𝐴 and �̅�, in their 

own LCSs are equal to each other. Based on this, the coordinates of two equivalent points 

can be related in the same LCS, as follows: 

 𝒙𝐷
𝐴 = 𝐓(𝒙𝐷

�̅� − 𝒙𝐷
O�̅�) (4.78) 

where 𝐓 denotes the matrix for transforming from the LCS of the equivalent subdomain 

�̅� to that of subdomain 𝐷, and 𝒙𝐷
�̅� are 𝒙𝐷

O�̅� stands for the position vector of point �̅� and 

that of the origin of the LCS of subdomain �̅�, i.e. point O�̅�, in the LCS of subdomain 𝐷. 

4.5.2.2 Loading equivalence 

The concept of loading equivalence was originally proposed by Tang and Whitcomb 

[189]. It is utilised to correlate the stress and strain of a subdomain with those of the 

equivalent subdomain. Specifically, two physically equivalent subdomains, 𝐷 and �̅�, are 

treated as loading equivalent if the stress and strain of each point in 𝐷 and those of the 

equivalent point in �̅� can be related using the following equations: 

 𝝈𝐷
𝐴  = 𝛾𝝈�̅�

�̅�   (4.79) 

 𝜺𝐷
𝐴  = 𝛾𝜺�̅�

�̅� (4.80) 

where 𝛾 is referred to as the load reversal factor and must be equal to 1 or -1.  

4.5.2.3 Subdomain admissibility 

As suggested in [191], not all physically equivalent subdomains can be employed to 

homogenise the properties of a periodic material. Given that the volume average strain is 

a homogenised quantity and thus should be independent of the subdomain that is chosen 

to perform the homogenisation, the sufficient condition for a subdomain being admissible 
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for a homogenisation is that the value of the volume average strain calculated based on 

this subdomain in a given coordinate system is equal to that calculated based on any other 

subdomain in the same coordinate system. Using this condition and the general relation 

between the volume average strains of two equivalent subdomains, as detailed in Eq. (10) 

in [191], it can be concluded that the necessary and sufficient condition for a subdomain 

being admissible is that the following condition must be satisfied: 

 〈𝜺〉𝐷
𝐷 = 𝛾𝑖𝐓𝑖〈𝜺〉𝐷

�̅�𝑖𝐓𝑖
T (4.81) 

where 〈𝜺〉𝐷
𝐷 is the volume average strain of subdomain 𝐷 calculated in its LCS; 〈𝜺〉𝐷

�̅� is 

the volume average strain of any other subdomain, �̅�𝑖, derived in the LCS of subdomain 

𝐷; and 𝛾𝑖 and 𝐓𝑖 denotes the load reversal factor and the transformation matrix between 

subdomains 𝐷 and �̅�𝑖. 

The admissibility condition defined above indicates that not all combinations of loading 

conditions are admissible. Therefore, before conducting a homogenisation, all admissible 

loading cases of the subdomain of homogenisation must be determined, the procedure of 

which can be illustrated as follows. Consider two equivalent subdomains, 𝐷 and �̅�, with 

𝐷 being the subdomain of homogenisation and the transformation matrix between the two 

equivalent subdomains being: 

𝐓 = [
𝑎 0 0
0 𝑏 0
0 0 𝑐

] 

Here, it is should be noted that the diagonal elements in the transformation matrix have 

to be 1 or -1. By utilising the relations of 𝑎2 = 1, 𝑏2 = 1 and 𝑐2 = 1 and substituting the 

transformation matrix into Eq. (4.81), it yields the following equation: 

 [

〈𝜀11〉 〈𝜀12〉 〈𝜀13〉

〈𝜀21〉 〈𝜀22〉 〈𝜀23〉

〈𝜀31〉 〈𝜀32〉 〈𝜀33〉
] = 𝛾 [

〈𝜀11〉 𝑎𝑏〈𝜀12〉 𝑎𝑐〈𝜀13〉

𝑎𝑏〈𝜀21〉 〈𝜀22〉 𝑏𝑐〈𝜀23〉

𝑎𝑐〈𝜀31〉 𝑏𝑐〈𝜀32〉 〈𝜀33〉
] (4.82) 

The above equation is essentially an explicit form of Eq. (4.81). By solving this equation, 

all admissible loading cases, as well as the load reversal factors, can be determined. For 

example, if we assume that 𝑎 = −1, 𝑏 = 1 and 𝑐 = −1, Eq. (4.82) becomes: 
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[

〈𝜀11〉 〈𝜀12〉 〈𝜀13〉

〈𝜀21〉 〈𝜀22〉 〈𝜀23〉

〈𝜀31〉 〈𝜀32〉 〈𝜀33〉
] = 𝛾 [

〈𝜀11〉 −〈𝜀12〉 〈𝜀13〉

−〈𝜀21〉 〈𝜀22〉 −〈𝜀23〉

〈𝜀31〉 −〈𝜀32〉 〈𝜀33〉
] 

Considering that a load reversal factor has to be 1 or -1, the solutions of the above equation 

can be easily obtained, as follows: 

Solution 1: 𝛾 = 1 and 〈𝜀12〉 = 〈𝜀21〉 = 〈𝜀23〉 = 〈𝜀32〉 = 0 

Solution 2: 𝛾 = −1 and 〈𝜀11〉 = 〈𝜀22〉 = 〈𝜀33〉 = 〈𝜀13〉 = 〈𝜀31〉 = 0 

The above solutions indicate that there are only two admissible loading cases, and any 

other combinations of loadings cannot be applied to perform the homogenisation: 

Admissible loading case 1: 𝛾 = 1 and [

〈𝜎11〉 0 〈𝜎13〉

0 〈𝜎22〉 0
〈𝜎31〉 0 〈𝜎31〉

] 

Admissible loading case 2: 𝛾 = −1 and [

0 〈𝜎12〉 0
〈𝜎12〉 0 〈𝜎23〉

0 〈𝜎32〉 0
] 

4.5.2.4 Generic equations for enforcing PBC 

Based on the concepts discussed above, the standard form of PBC, as shown in Eq. (2.79), 

can be transformed into the generic form of PBC [191], which is an appropriate form for 

applying PBCs at the level of rUC or mUC. For the sake of clearly illustrating the specific 

procedure for enforcing this form of PBC, the derivation procedure of the basic equations 

is summarised as follows. 

The derivation of the basic equations is based on two adjacent, physically equivalent and 

loading equivalent subdomains, 𝐷 and �̅�. By using the physical equivalence between the 

two subdomains, we have that if a point, �̅�, that belongs to subdomain �̅� is chosen on the 

shared boundary of the two subdomains, then its equivalent point, 𝐴, will be also on the 

boundary of subdomain 𝐷. In other words, both point �̅� and point 𝐴 are located on the 

boundary of subdomain 𝐷. Therefore, according to Eq. (2.70a), the displacements of the 

two equivalent points in the LCS of subdomain 𝐷 can be expressed using the following 

two equations, respectively: 
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 𝒖(𝐴) = 〈𝜺〉𝒙𝐴 + 𝒖∗(𝐴) (4.83) 

 𝒖(�̅�) = 〈𝜺〉𝒙�̅� + 𝒖∗(�̅�) (4.84) 

Here, all quantities are evaluated in the same LCS (i.e. the LCS of 𝐷) and the subscripts 

denoting the reference coordinate system have been removed for simplicity. According 

to [192], the oscillatory parts in the above equations can be correlated using: 

 𝒖∗(𝐴) = 𝛾𝐓𝒖∗(�̅�) (4.85) 

Based on this relation, the oscillatory parts can be cancelled by firstly multiplying 𝛾𝐓 to 

Eq. (4.84) and then subtracting the resulting equation from Eq. (4.83), leading to: 

 𝒖(𝐴) − 𝛾𝐓𝒖(�̅�) = (〈𝜺〉𝐓 − 𝛾𝐓〈𝜺〉)𝒙�̅� − 〈𝜺〉𝐓𝒙O�̅� (4.86) 

By considering the admissibility condition, as given in Eq. (4.81), we can get the relation 

of 〈𝜺〉𝐓 − 𝛾𝐓〈𝜺〉 = 𝐎. Therefore, Eq. (4.86) can be simplified into: 

 𝒖(𝐴) − 𝛾𝐓𝒖(�̅�) = −〈𝜺〉𝐓𝒙O�̅� (4.87) 

This equation is the generic form of PBC equation, and it can be used to derive PBCs for 

not only rUCs or mUCs but also full-size UCs. Here, it should be noted that the standard 

form of PBC equation, as given in Eq. (2.79), is a special case of the above equation since 

the former can be derived by applying into the latter with the configurations associated 

with translation, i.e. 𝐓 = 𝐈 and 𝛾 = 1, where 𝐈 is the identity matrix.  

4.5.2.5 Application procedure 

The specific procedure for using the equivalence approach to derive PBCs for an rUC or 

mUC involves four steps: 

1) Identify all adjacent and physically equivalent subdomains for the UC domain of 

homogenisation and determine the position vector of the origin of each subdomain 

in the LCS of the UC; 

2) Determine the transformation matrix associated with the transformation between 

each pair of equivalent subdomains and calculate the coordinates of all equivalent 

points on the boundary of the UC by using Eq. (4.78);  
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3) Identify all admissible loading cases by using the admissibility condition, as given 

in Eq. (4.81) or (4.82) and determine the load reversal factor relating to each pair 

of equivalent subdomains; 

4) For each pair of equivalent points, calculate the constraint that should be enforced 

according to the generic form of PBC equation, i.e. Eq. (4.87), for each prescribed 

admissible loading case. 

4.5.3 PBCs for normal plain woven composites 

 

Figure 4.32: Normal mUC & adjacent subdomains of plain woven composites 

The equivalence approach has been utilised to obtain the PBCs for all mUCs presented in 

this thesis. In this section, the PBCs for the normal mUC of plain woven composites will 

be derived. Fig. 4.32 shows the normal mUC of plain woven composites (denoted as 𝐷), 

as well as four adjacent and physically equivalent subdomains (denoted as �̅�1, �̅�2, �̅�3 and 

�̅�4 ). Here, it should be noted that the origin of each LCS is positioned such that it 

coincides with the centre of the associated subdomain. In addition, there should be two 

more subdomains, �̅�5 and �̅�6, with one of them being under the mUC and the other being 

above. However, they have been excluded from this figure for the sake of revealing the 

mUC on one hand. On the other hand, the present work focuses on the woven composites 

with simply stacking, which means that the boundary conditions on the lower and upper 

surfaces of an mUC of this category of woven composites can be directly derived based 
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on the standard form of PBC equation, without using the equivalent approach, due to the 

fact that the upper and lower subdomains are translational copies of the mUC. 

Table 4.1: Relations between normal plain woven mUC & adjacent subdomains 

 �̅�1 �̅�2 �̅�3 �̅�4 

𝑻𝑖 [
−1 0 0
0 1 0
0 0 1

] [
−1 0 0
0 1 0
0 0 −1

] [
1 0 0
0 −1 0
0 0 1

] [
1 0 0
0 −1 0
0 0 −1

] 

𝒙
O�̅�𝑖  [

−𝐿
0
0
] [

𝐿
0
0
] [

0
−𝑊
0
] [

0
𝑊
0
] 

𝒙�̅�𝑖 

[
 
 
 
 −

𝐿

2

−
𝑊

2
≤ 𝑦 ≤

𝑊

2

−
𝐻

2
≤ 𝑧 ≤

𝐻

2 ]
 
 
 
 

 

[
 
 
 
 

𝐿

2

−
𝑊

2
≤ 𝑦 ≤

𝑊

2

−
𝐻

2
≤ 𝑧 ≤

𝐻

2 ]
 
 
 
 

 

[
 
 
 
 −

𝐿

2
≤ 𝑥 ≤

𝐿

2

−
𝑊

2

−
𝐻

2
≤ 𝑧 ≤

𝐻

2]
 
 
 
 

 

[
 
 
 −

𝐿

2
≤ 𝑥 ≤

𝐿

2
𝑊

2

−
𝐻

2
≤ 𝑧 ≤

𝐻

2]
 
 
 

 

𝒙𝐴𝑖 [

−
𝐿

2

𝑦 �̅�

𝑧 �̅�

] [

𝐿

2

𝑦 �̅�

−𝑧 �̅�

] [

𝑥 �̅�

−
𝑊

2

𝑧 �̅�

] [
𝑥 �̅�
𝑊

2

−𝑧 �̅�
] 

Given that all equivalent subdomains of the mUC have been identified, the transformation 

matrices, the origin position vectors of all equivalent subdomains, and the coordinates of 

all equivalent points on the boundary of the mUC can be calculated, as summarised in 

Table 4.1. After obtaining the geometry relations between the mUC and its adjacent and 

physically equivalent subdomains, the procedure described in Section 4.5.2.3 can be 

applied to determine all admissible loading cases and the relating load reversal factors, as 

listed in Table 4.2. Here, it is shown that there are four loading cases that should be treated 

independently in the homogenisation of plain woven composites.  

Based on the quantities obtained above and Eq. (4.87), the PBC that should be applied to 

each pair of equivalent boundary nodes for each admissible loading case can be calculated, 

as summarised in Tables B.1 – B.4, Appendix B. Here, it should be noted that the shared 

surface between the mUC and an equivalent subdomain has been denoted using 𝑆𝑖, 𝑖 ∈

{1, 2, 3, 4, 5, 6}. Also, the equations marked with strikethroughs should not be considered 

since each of these equations correlates a point with the point itself, creating a redundant 

displacement constraint in the form of 𝑢𝑗(𝐴) − 𝑢𝑗(𝐴) = 0, 𝑗 ∈ {1, 2, 3}. Furthermore, for 
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the points located on the edges or vertices of the mUC, redundant equations may also be 

produced as they are shared by two or more surfaces. To eliminate redundant constraints, 

the technique described in [188] can be utilised. It should be further noted that the PBCs 

listed in Appendix B, including those for twill and 3D woven composites, are obtained 

based on such an LCS with its origin located at the centre of the mUC. Therefore, these 

PBCs need to be transformed back to the LCS that has been used to develop the analytical 

equations for describing the internal architecture of the mUC. 

Table 4.2: Admissible loading cases of normal plain woven composites 

 {𝛾1 𝛾2 𝛾3 𝛾4} Admissible loading 

Case 1 {1 1 1 1} [

〈𝜎11〉 0 0

0 〈𝜎22〉 0

0 0 〈𝜎33〉
] 

Case 2 {−1 −1 −1 −1} [
0 〈𝜎12〉 0

〈𝜎21〉 0 0
0 0 0

] 

Case 3 {1 −1 −1 1} [

0 0 0
0 0 〈𝜎23〉

0 〈𝜎32〉 0
] 

Case 4 
{−1 1 1 −1} 

 
[
0 0 〈𝜎13〉
0 0 0

〈𝜎31〉 0 0
] 

4.5.4 PBCs for normal twill woven composites 

The procedure for utilising the equivalence approach to obtain the PBCs for the mUC of 

twill woven composites is similar to that for the case of plain woven composites. Fig. 

4.33 shows the mUC (denoted as 𝐷) of twill woven composites, as well as its adjacent 

and physically equivalent subdomains (denoted as �̅�1, �̅�2, �̅�3 and �̅�4). Again, the lower 

and upper subdomains (i.e. �̅�5 and �̅�6) have been removed to reveal the mUC. Based on 

this figure, the geometry relations between the mUC and its equivalent subdomains are 

determined, as given in Table 4.3. Then, by enforcing the admissibility condition, as given 

in Eq. (4.81) or (4.82), all admissible loading cases are identified and the relating load 

reversal factors are obtained, as shown in Table 4.4. Here, it is shown that there are only 

two loading cases that should be treated independently. Finally, based on the quantities 
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calculated above and Eq. (4.87), the PBC that should be applied to each pair of equivalent 

boundary nodes for each admissible loading case for the normal mUC of twill woven 

composites can be derived, as summarised in Tables B.5 and B.6, Appendix B. 

 

Figure 4.33: Normal mUC & adjacent subdomains of twill woven composites 
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Table 4.4: Admissible loading cases of normal twill woven composites 

 {𝛾1 𝛾2 𝛾3 𝛾4} Admissible loading 

Case 1 {1 1 1 1} [

〈𝜎11〉 〈𝜎12〉 0
〈𝜎21〉 〈𝜎22〉 0

0 0 〈𝜎33〉
] 

Case 2 {1 −1 1 −1} [

0 0 〈𝜎13〉

0 0 〈𝜎23〉

〈𝜎31〉 〈𝜎32〉 0
] 

4.5.5 PBCs for normal 3D orthogonal woven composites 

 

Figure 4.34: Normal mUC and adjacent subdomains of 3D woven composites 

In terms of the PBCs for the mUC of 3D woven composites, they can be derived using a 

similar procedure to that for the case of plain or twill woven composites. However, after 

identifying the adjacent and physically equivalent subdomains for the mUC of 3D woven 

composites, as shown in Fig. 4.34 or Table 4.5, it can be found that the geometry relations 

between the mUC and its equivalent subdomains are different from those in the case of 
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independently, as summarised in Table 4.6. Based on the results given in Tables 4.5 and 

4.6, the PBCs for the normal mUC of 3D woven composites can be derived, as listed in 

Tables B.7 – B.10, Appendix B. 

Table 4.5: Relations between normal 3D woven mUC & adjacent subdomains 

 �̅�1 �̅�2 �̅�3 �̅�4 

𝑻𝑖 [
−1 0 0
0 1 0
0 0 1
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Table 4.6: Admissible loading cases of normal 3D woven composites 

 {𝛾1 𝛾2 𝛾3 𝛾4} Admissible loading 

Case 1 {1 1 1 1} [

〈𝜎11〉 0 0

0 〈𝜎22〉 0

0 0 〈𝜎33〉
] 

Case 2 {−1 −1 −1 −1} [
0 〈𝜎12〉 0

〈𝜎21〉 0 0
0 0 0

] 

Case 3 {1 −1 1 −1} [

0 0 0
0 0 〈𝜎23〉

0 〈𝜎32〉 0
] 

Case 4 {−1 1 −1 1} [
0 0 〈𝜎13〉
0 0 0

〈𝜎31〉 0 0
] 
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4.6 Meshfree implementation 

4.6.1 Framework of the meshfree program 

As detailed in the introduction of Chapter 2, the use of the UC modelling methodology 

for predicting the elastic properties of woven composites involves three aspects, namely, 

i) identifying a UC and modelling the internal architecture of the UC, ii) modelling the 

elastic behaviours of individual constituents, and iii) applying proper PBCs to the UC for 

subsequent calculations of the volume average quantities and thus the elastic properties. 

Given that all the above three aspects have been addressed, the final step is to implement 

the above framework by using a suitable meshfree method, i.e. the standard weak-form 

meshfree method in the case of predicting the elastic properties, and consequently to fulfil 

the aim of addressing the problems associated with analytical approaches and the FEM-

based approaches by using a meshfree-based UC modelling methodology. For this sake, 

an in-house computer program that implements the high-fidelity analytical mUC models, 

the elasticity constitutive models of the constituents and the PBCs listed in Appendix B 

has been developed in combination with the standard weak-form meshfree method, and 

it is termed as the standard meshfree program for convenience. 

The program was coded using the programming language FORTRAN, and it provides the 

user with an option of choosing one of the three shape function construction techniques 

to predict the elastic properties of plain, twill or 3D woven composites, on the condition 

of providing four types of inputs, which will be detailed later. A flow chart showing the 

basic framework of this program is given in Fig. 4.35. As is clearly seen from this figure, 

the program starts by providing it with the four types of inputs. Based on these inputs, a 

domain representing the mUC of a given type of woven composites is discretised with 

field nodes and background cells. Then, a support domain is defined for each integration 

point in each background cell, and the meshfree-based shape functions corresponding to 

the support nodes of the integration point are calculated. By using the high-fidelity mUC 

model, the relative location and consequently the material type of each integration point 

can be determined. Next, the corresponding material model can be applied to obtain the 

elasticity matrix of the integration point in the GCS and thus to calculate its nodal stiffness 

matrix, 𝐊𝐼𝐽, using Eq. (3.88). Assembling all the nodal stiffness matrices using Eq. (3.92) 

forms the global stiffness matrix, 𝐊. After that, the PBC for a given admissible loading 



4.6 Meshfree implementation  

130 

 

case is enforced to obtain the displacement constraint based system of equations, as given 

in Eq. (3.108), based on which, the displacements of all field nodes can be solved. Finally, 

the strain and stress of each integration point can be calculated using the relations of 𝜺 =

𝐋𝒖 and 𝝈 = 𝐂𝜺, and thus the volume average stress of the mUC can be obtained by using 

Eq. (2.64). By combining the volume average stress, 〈𝝈〉, and the macroscopic strain 

applied, 〈𝜀〉, the effective or homogenised elastic properties can be calculated. 
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Figure 4.35: Flow chart of the standard meshfree program 

It should be noted that the use of the standard weak-form meshfree method in the program 

has been reflected not only in discretising the mUC domain using field nodes but also in 

calculating the shape functions, the nodal stiffness matrices and the strains of all material 
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points from the displacements of field nodes. In the following four sections, the inputs of 

the meshfree program, the choice of numerical parameters, the strategy of UC domain 

discretisation and the highlights of the meshfree-based implementation will be detailed. 

4.6.2 Summary of input parameters 

The input parameters of this program are summarised in Table 4.7. As can be seen from 

the table, the inputs consist of four groups, namely, i) the geometry parameters for the 

mUCs of plain, twill and 3D woven composites, ii) the numerical parameters for domain 

discretisation, determination of support domain size and shape function calculations, iii) 

the material parameters for the polymer matrix and yarn material, and iv) the prescribed 

macroscopic strain 〈𝜺〉 for a given admissible loading case. 

Table 4.7: Summary of the inputs of the standard meshfree program 

Type Variable Description 

Geometry 

parameters 

WCT Weave type (1: plain, 2: twill, 3: 3D) 

UCT UC type (1: normal, 2: off-axis) 

𝐿,𝑊,𝐻,𝐻w, … Dimensional parameters 

 𝜆w, 𝜆fa, 𝜆fb, 𝜆b Dimensionless parameters 

Numerical 

parameters 

𝑛F𝑥, 𝑛F𝑦, 𝑛F𝑧 No. of nodes in each direction 

𝑛C𝑥, 𝑛C𝑦, 𝑛C𝑧 No. of cells in each direction 

𝛼s, 𝑑c𝑥, 𝑑c𝑦, 𝑑c𝑧 Support domain parameters 

𝜃, 𝑞, 𝑎0, 𝑎1, 𝑎2, 𝑎3 Constants for RBF and MK  

Material 

properties 

𝐸m, 𝑣m Material properties of matrix 

𝐸L, 𝐸T, 𝑣LT, 𝑣TT, 𝐺LT Material properties of yarn material 

PBC 
ALC Admissible loading case (1, 2, …) 

〈𝜺〉 Prescribed macroscopic strain 

Here, it should be noted that the use of variable WCT allows the user to choose a specific 

type of woven composites by assigning an integer, i.e. 1 for plain woven composites, 2 

for twill woven composites and 3 for 3D woven composites. It should be further noted 

that apart from including the normal mUCs presented in this chapter, which are used to 

predict the elastic properties in the normal directions, the off-axis mUCs, which will be 
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presented in Chapter 5, have also been included in this meshfree program for the sake of 

predicting the elastic properties in off-axis directions. In terms of variable ALC, it is used 

to determine the type of admissible loading case. The range of this variable is dependent 

on the woven composites being predicted. For example, if it is to predict the properties of 

normal plain woven composites, this variable should have four options, i.e. 1, 2, 3 and 4, 

as indicated in Table 4.2. 

4.6.3 Choice of numerical parameters 

Clearly, the first, third and fourth groups of parameters in Table 4.7 are fixed for a given 

type of woven composites and a given admissible loading case. However, the inputs in 

the second group are numerical parameters, and they are to be determined. Here, it should 

be noted that there is no open parameter in the MLS technique. To determine the optimum 

values of these parameters, sensitivity studies can be performed to examine the influence 

of their values on the numerical results obtained. However, since there are more than 15 

open parameters, conducting sensitivity studies for such a large number of free parameters 

would be a difficult task on one hand and exceed the main scope of the present research 

on the other hand. 

Table 4.8: Constants for the RBF and MK techniques 

RBF 
𝜃 𝑞 𝑎0 𝑎1 𝑎2 𝑎3 

0.75 0.5 0.75 1.0 1.0 1.0 

MK 
𝜃 𝑎0 𝑎1 𝑎2 𝑎3  

1 0 1/𝑑c𝑥 1/𝑑c𝑦 1/𝑑c𝑧  

For simplicity, the parameters of the RBF and MK techniques are fixed to be within the 

commonly used ranges [154], and their specific values used in this research are listed in 

Table 4.8, where the last three parameters of the MK technique are defined to be the 

reciprocals of the average nodal spacing in the X, Y and Z directions, i.e. 𝑑c𝑥, 𝑑c𝑦 and 

𝑑c𝑧. Based on the above simplification, sensitivity studies would need to be performed to 

identify the optimum values only for the remaining seven parameters (i.e. 𝑛F𝑥, 𝑛F𝑦, 𝑛F𝑧, 

𝑛C𝑥, 𝑛C𝑦, 𝑛C𝑧 and 𝛼s), which will be addressed in detail in Section 4.7.1. 
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4.6.4 Strategy of domain discretisation 

Theoretically, the domain representing the mUC can be discretised based on arbitrarily 

distributed field nodes. However, a uniform distribution of field nodes is chosen in this 

work since such a distribution produces symmetrical node pairs on the boundary of the 

domain, simplifying the procedure for enforcing PBCs. Here, it should be noted that if an 

arbitrary distribution of field nodes is used, further treatments such as that based on the 

polynomial interpolation [147] need to be imposed to ensure that the PBCs applied to the 

arbitrarily defined boundary nodes are consistent. In terms of the discretisation of the 

domain for conducting numerical integrations, a Lagrangian background grid consisting 

of regularly distributed cells is imposed for simplicity, and the first order Gauss-Legendre 

quadrature is used to calculate the integrals associated with each background cell. 

4.6.5 Highlights of meshfree-based implementation 

As discussed in the first Chapter, one of the highlights of this research is the development 

of the meshfree-based UC modelling methodology to simultaneously address the problem 

of a reduced accuracy in analytical approaches and the concern of highly complex and 

time-consuming pre-processing in the FEM-based approaches, i.e. the needs for explicitly 

creating constituent geometries of woven composites, discretising the geometries using 

high quality elements and meshes and assigning the ever-changing material orientations 

for the wavy yarns. Clearly, the problem of a reduced accuracy in analytical approaches, 

which originates from the geometry simplifications required to implement the analytical 

nature, has been naturally addressed by the development of high-fidelity mUCs with the 

internal features such as the cross-section and waviness of yarns being treated detailly. In 

terms of the complexity that inherently exists in the FEM-based approaches, it has been 

eliminated by implementing the high-fidelity mUC models using the standard weak-form 

meshfree method, as will be demonstrated in the following paragraphs.  

The elimination of the complexity associated with the FEM-based approaches by using 

the standard weak-form meshfree method can be illustrated based on Fig. 4.20. As can be 

seen in the figure, there is no need to explicitly create the geometries for the constituents 

of the woven composites of homogenisation. Instead, what needed is to firstly assume a 

domain block with its overall dimensions being the same as those of the mUC model. 

Then, this domain block is discretised using a number of field nodes, as well as a number 
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of background cells. After that, numerical integrations are performed over all background 

cells. Here, depending on the order of the integration, a number of material or integration 

points are assigned for each background cell, and a support domain and thus a number of 

support nodes are identified for each integration point, based on which the meshfree-

based shape functions corresponding to the support nodes are calculated for subsequent 

calculations of the nodal stiffness matrix, 𝐊𝐼𝐽, and thus the global stiffness matrix 𝐊.  

 

Figure 4.36: Meshfree discretisation of the domain representing the mUC 
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Integration points 
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Here, it should be noted that before calculating the nodal stiffness matrix the relative 

location of each integration point is identified based on the analytical equations developed 

for describing the surfaces of the yarns in the mUC. If an integration point is not within 

the yarns, it belongs to the polymer matrix, and the elasticity matrix for isotropic materials, 

𝐂m, as defined in Eq. (2.5), is substituted into Eq. (3.88) to calculate its nodal stiffness 

matrix. On the contrary, if an integration point belongs to a yarn, the elasticity matrix for 

transversely isotropic materials in the LCS, 𝐂𝑙, as defined in Eq. (2.13), is utilised for 

subsequent calculation of the nodal stiffness matrix. Here, it should be pointed out that if 

there exists waviness in the yarn to which the integration point belongs, its undulation 

angle (i.e. material orientation) needs to be calculated by using the analytical equation 

developed for describing the yarn’s waviness. Then, based on Eq. (2.54) or the procedure 

described in Section 2.4.3, the elasticity matrix in the LCS can be transformed into that 

in the GCS, 𝐂𝑔, which is the constitutive matrix that can be directly substituted into Eq. 

(3.88) to calculate the nodal stiffness matrix. 

From the above description, we can see that the node-based domain discretisation makes 

it possible to eliminate the needs for explicitly creating constituent geometries of woven 

composites and discretising them with elements. Also, based on the high-fidelity mUC 

models, the relative location of each integration point can be identified and thus the 

internal architecture of woven composites can be implicitly implemented in combination 

with the standard weak-form meshfree method. Furthermore, the need for assigning the 

ever-change material orientation of the wavy yarns can be effectively avoided by using 

the analytical equations developed for describing the waviness of yarns and the coordinate 

transformation defined between the elasticity matrix in the LCS and that in the GCS. In 

sum, it is the combination of the high-fidelity mUC models with the standard weak-form 

meshfree method that the problems that inherently exist in analytical approaches and the 

FEM-based approaches are simultaneously addressed. Therefore, it is expected that the 

meshfree-based UC modelling methodology is an accurate and simple approach for the 

prediction of the elastic properties of woven composites. In the next section, a number of 

numerical examples will be presented and discussed to confirm the effectiveness and 

accuracy of the meshfree-based UC modelling approach. 
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4.7 Results and discussion 

4.7.1 Examples on plain woven composites 

The examples that will be presented in this section are mainly based on EP121-C15-53, 

which is the plain woven CFRP composite material that was utilised in Section 4.1.2 to 

observe and fit the cross-section and waviness of typical yarns in woven composites. The 

geometry configuration and material inputs of this material are given in Table 4.9. In this 

table, the values of the geometry parameters are averaged ones and were obtained by 

measuring the micrographs of this material. For the material properties of the epoxy resin 

of yarn material, they were determined from the experimental tests that will be detailed 

in Section 5.5.1. 

In this section, eight numerical examples will be discussed, with the first six examples 

being based on EP121-C15-53. To be specific, the first two examples were conducted to 

predict the elastic properties in the normal and off-axis directions. In the subsequent three 

examples, numerical studies were performed to investigate the sensitivity of the predicted 

results to the open numerical parameters, i.e. the number of field nodes, the number of 

background cells and the support domain scaling coefficient. For the fifth example, it was 

designed to compare the results calculated by utilising the three types of shape function 

construction techniques, i.e. the MLS, RBF and MK techniques. In terms of the last two 

examples, two additional types of plain woven composites that have been investigated in 

the published research were considered, and the results derived by utilising the meshfree 

approach were compared with those found in the literature. 

Table 4.9: Geometry information and material inputs of EP121-C15-53 

Weave 

geometry 

𝐿 𝑊 𝐻 𝜆  

1.0 1.0 0.28 0.9  

Yarn 

property 

𝐸L 𝐸T 𝑣LT 𝑣TT 𝐺LT 

161.64 10.57 0.27 0.33 5.52 

Matrix 

property 

𝐸m 𝑣m    

3.11 0.36    
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4.7.1.1 Elastic properties in the normal directions 

In the first example, which was conducted to predict the elastic properties in the normal 

directions, the domain representing the normal plain woven mUC was discretised with a 

total number of 13×13×7 field nodes, i.e. 1183 nodes, as well as a number of 60×60×30 

background cells, i.e. 108000 cells. Also, the MK technique was utilised, and the support 

domain scaling coefficient, 𝛼s, was set to 2.5. Here, it should be noted that the values of 

the above numerical parameters were determined from the sensitivity studies that will be 

presented later. The predicted elastic properties of this material in the normal directions 

are given in Table 4.10, where in the subscripts the three numbers, 1, 2 and 3, represent 

the warp, fill and through-the-thickens directions, respectively. The reference range of 

the elastic modulus of this material in the warp or fill direction, which was adapted from 

the datasheet on the material supplier’s website [193], has also been listed in the table for 

comparison. As can be clearly seen from this table, the predicted elastic modulus in the 

warp or fill direction is in the reference range, partially validating the normal plain woven 

mUC and the meshfree-based modelling approach. 

Table 4.10: Predicted normal elastic properties of EP121-C15-53 (moduli in GPa) 

Property 𝐸1/𝐸2 𝐸3 𝑣12 𝑣23/𝑣13 𝐺12 𝐺23/𝐺31 

Predicted 53.681 9.086 0.045 0.409 3.557 2.828 

Gurit [193]  50 ~ 55 - - - - - 

4.7.1.2 Elastic properties in the off-axis directions 

In the second example, which was aimed to predict the elastic properties in the off-axis 

directions, the domain representing the off-axis plain woven mUC model, which will be 

described in Section 5.2.1, was discretised with a total number of 10×20×7 field nodes, 

i.e. 1400 nodes, as well as a number of 45×90×30 background cells, i.e. 121500 cells. 

Here, the values of these parameters were determined by simply scaling those used in 

discretising the normal mUC model. Specifically, if the number of nodes or cells used to 

discretise the domain representing the normal mUC model in the X direction is 𝑛𝑥 and 

the dimensions of the normal and off-axis mUCs in this direction are denoted as 𝐿 and 

𝐿0, respectively, the number of fields nodes utilised to discretise the domain representing 
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the off-axis mUC model is then determined as 𝑛𝑥𝐿0/𝐿. In this example, the MK technique 

was again used, and the support domain scaling coefficient, 𝛼s, was also set to 2.5. Table 

4.11 shows the predicted results, where in the subscripts the lowercase letters, a and b, 

represent the 45° and 135° directions. It is evident from this figure that the predicted 

elastic modulus in the 45° or 135° direction agrees well with the experimental value, 

which was measured from a uniaxial tension test conducted at a strain rate approximately 

of 10-5/s. This again confirms the accuracy and effectiveness of the meshfree-based UC 

modelling approach in predicting the elastic properties of plain woven composites.  

Here, it is should be noted that off-axis mUCs have also been developed for twill and 3D 

woven composites, and they will be presented in Chapter 5. However, no examples on 

predicting the off-axis elastic properties of twill or 3D woven composites will be given, 

owing to the inaccessibility of composites for conducting tests and the unavailability of 

experimental or numerical results in the published research, at the time of undertaking the 

present research. 

Table 4.11: Predicted off-axis elastic properties of EP121-C15-53 (moduli in GPa) 

Property 𝐸a/𝐸b 𝐸3 𝑣ab 𝑣b3/𝑣a3 𝐺ab 𝐺b3/𝐺3a 

Predicted 10.864 8.986 0.595 0.158 10.273 2.796 

Experiment 10.379 - - - - - 

4.7.1.3 Sensitivity to domain discretisation with field nodes 

Although the number of open parameters in Table 4.7 has been significantly reduced by 

fixing the constants of the RBF and MK techniques to their commonly used values, it is 

still not an easy task to investigate the influence of the remaining seven parameters on the 

predicted results. For further simplifying the investigation, the numbers of field nodes 

used to discretise the mUC domain in the three directions. i.e. 𝑛F𝑥, 𝑛F𝑦 and 𝑛F𝑧, were 

controlled such that they are proportional to each other, i.e. 𝑛F𝑥: 𝑛F𝑦: 𝑛F𝑧 = 2: 2: 1. The 

same treatment was also applied to the parameters relating to the numbers of background 

cells in the three directions, i.e. 𝑛C𝑥, 𝑛C𝑦 and 𝑛C𝑧, with their relative ratios being fixed 

in the same way, i.e. 𝑛C𝑥: 𝑛C𝑦: 𝑛C𝑧 = 2: 2: 1. Based on such treatments, the sensitivity 

study for the open parameters can be simplified into the following three cases: 
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1) Sensitivity study of the total number of field nodes, 𝑁F = 𝑛F𝑥 × 𝑛F𝑦 × 𝑛F𝑧; 

2) Sensitivity study of the number of background cells, 𝑁C = 𝑛C𝑥 × 𝑛C𝑦 × 𝑛C𝑧; 

3) Sensitivity study of the support domain scaling coefficient 𝛼s. 

Table 4.12: Elastic properties predicted by using different NF (moduli in GPa) 

𝑁F 𝐸1 𝐸3 𝑣12 𝑣23 𝐺12 𝐺23 

75 54.037 9.403 0.047 0.396 3.577 3.041 

196 53.925 9.260 0.046 0.404 3.572 2.968 

405 53.802 9.177 0.046 0.407 3.570 2.904 

726 53.817 9.135 0.045 0.409 3.569 2.859 

1183 53.739 9.078 0.045 0.410 3.561 2.828 

1800 53.768 9.078 0.045 0.411 3.561 2.824 

2601 53.755 9.083 0.045 0.411 3.565 2.827 

 

Figure 4.37: Variations of the predicted results on the number of field nodes 

In the sensitivity study of the number of field nodes, the number of background cells was 

set to a high value (i.e. 256000) to minimise its influence on the sensitivity study as much 

as possible. Similarly, the support domain scaling coefficient was set to be 2.5, which is 

a value in the typical range of 𝛼s, i.e. 2.0~3.0, as suggested in [154]. Table 4.12 lists the 

elastic properties predicted by varying the total number of field nodes from 75 to 2601. 
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To better examine the sensitivities of the predicted results with respect to the number of 

field nodes, all the results in Table 4.12 were normalised against those corresponding to 

the case of 𝑁F = 2601, and the resulting curves are shown in Fig. 4.37. Clearly, it can be 

seen that all the curves diverge when the number of field nodes is smaller than 1183, i.e. 

13×13×7, after which they converge to the same plateau, meaning that a total number of 

1183 field nodes should be enough for obtaining convergent results. 

4.7.1.4 Sensitivity to domain discretisation with background cells 

Table 4.13: Predicted elastic properties at different NC (moduli in GPa) 

𝑁𝐶 𝐸1 𝐸3 𝑣12 𝑣23 𝐺12 𝐺23 

4000 49.259 8.843 0.048 0.403 3.377 2.730 

13500 52.087 8.727 0.046 0.411 3.489 2.603 

32000 53.353 9.065 0.046 0.412 3.560 2.819 

62500 53.401 8.983 0.045 0.411 3.538 2.763 

108000 53.603 9.092 0.045 0.409 3.540 2.828 

171500 53.569 9.081 0.045 0.409 3.549 2.828 

256000 53.755 9.083 0.045 0.411 3.565 2.827 

 

Figure 4.38: Variations of the results on the number of background cells 
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To minimise the coupling effects caused by the other two factors in the sensitivity study 

of the number of background cells, the number of field nodes was set to a high value, i.e. 

2601, while the support domain scaling coefficient was set to 2.5. Table 4.13 shows the 

results predicted by varying the total number of background cells from 4000 to 25600. To 

better reveal the sensitivities of the predicted results on the number of background cells, 

all the results in Table 4.13 were again normalised against those corresponding to the case 

of 𝑁C = 256000, and the resulting curves are shown in Fig. 4.38. It is clearly seen in this 

figure that the predicted elastic properties converge only when the number of background 

cells exceeds a threshold of 108000, i.e. 60×60×30. 

4.7.1.5 Sensitivity to support domain size 

In the sensitivity study of the support domain scaling coefficient, 𝛼s, the number of field 

nodes and that of background cells to were fixed to their thresholds, i.e. 1183 and 108000. 

Table 4.14 lists the results predicted by varying the value of 𝛼s was varied from 2 to 4. 

Again, all the results in this table were normalised to those corresponding to the case of 

𝛼s = 2.5, and the resulting curves are shown in Fig. 4.39.  

Table 4.14: Predicted elastic properties at different αs (moduli in GPa) 

𝛼s 𝐸1 𝐸3 𝑣12 𝑣23 𝐺12 𝐺23 

2.00 53.876 9.136 0.045 0.409 3.570 2.834 

2.25 53.876 9.115 0.045 0.410 3.569 2.832 

2.50 53.681 9.086 0.045 0.409 3.557 2.828 

2.75 53.819 9.110 0.045 0.410 3.569 2.838 

3.00 53.269 9.013 0.045 0.405 3.534 2.840 

3.25 53.573 9.049 0.046 0.409 3.564 2.834 

3.50 52.677 8.725 0.045 0.405 3.469 2.659 

3.75 52.468 8.669 0.045 0.404 3.447 2.630 

4.00 49.900 8.033 0.037 0.364 3.053 2.401 

An examination of Fig 4.39 suggests that the sensitivities of the predicted results in this 

case are different from those in the former cases. Specifically, the predicted results in the 

former two cases show monotonic convergences, with the results diverging if the value 

of the parameter of investigation is smaller than the threshold and becoming convergent 
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if the threshold is exceeded. On the contrary, the predicted results in this case converge 

only when the value of 𝛼s is in a range of approximately 2.0~3.25 and diverge if the value 

of 𝛼s is not in this range. Here, it should be noted that the case of 𝛼s < 2 is not considered 

since meshfree calculations often fail owing to the presence of singularity in the moment 

matrix in the calculation of meshfree shape functions. 

 

Figure 4.39: Variations of the predicted results on the scaling coefficient (αs) 

The convergent range of the support domain scaling coefficient derived here is similar to 

that suggested in [154], which is 2.0~3.0. This finding indicates that when performing a 

meshfree analysis the size of a support domain should be defined such that it is neither 

too small nor too large. The reason for a support domain being not too small is that if it 

is not big enough, there will be an insufficient number of support nodes to approximate 

filed variables, which may result in a reduced accuracy and in some cases computational 

failures, such as the presence of singularity in the moment matrix. On the other hand, if a 

support domain is excessively large, it may include the field nodes that do not have any 

influence on the point being interpolated, leading to excessive computational costs and a 

reduced accuracy in the results obtained, as indicated in Fig. 4.39. 

In the above sensitivity analysis, the curves in Fig. 4.39 were by normalising all the results 

in Table 4.14 against those corresponding to the case of 𝛼s = 2.5. However, it should be 
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noted that the normalisation can be performed based on the results corresponding to any 

other cases since the convergences of the resulting curves do not depend on the way of 

conducting the normalisation, as suggested in Fig. 4.40, where the curves were obtained 

by normalising all the data in Table 4.14 against those corresponding to the case of 𝛼s =

3.5. As can be seen clearly in this figure, although the resulting curves have been altered 

compared to those shown in Fig. 4.39, it can be concluded that the convergent range of 

the support domain scaling coefficient is still 2.0~3.25. 

 

Figure 4.40: Results normalised to those corresponding to the case of αs = 3.5 

4.7.1.6 Comparison between MLS, RBF and MK 

In addition to the above sensitivity studies, further numerical calculations were performed 

to compare the results obtained by using the three shape function construction techniques, 

i.e. the MLS, RBF and MK techniques, and the predicted results are given in Table 4.15. 

Here in this table, the differences between the results obtained by using these techniques 

were also calculated. It is clearly shown in this table that the elastic properties predicted 

by utilising the three techniques agree reasonably well with each other, with a maximum 

difference of only 3.77%. Furthermore, it can be found that the RBF and MK techniques 

are able to produce closer predictions, compared to the MLS technique. It is believed that 

the presence of smaller differences by using the RBF and MK techniques is due to the 
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fact that both the RBF and MK techniques possess the Kronecker delta function property, 

whereas the MLS technique does not. 

Table 4.15: Results predicted by using MLS, RBF & MK (moduli in GPa) 

Property 𝐸1/𝐸2 𝐸3 𝑣12 𝑣23/𝑣13 𝐺12 𝐺23/𝐺31 

A: MLS 53.681 9.086 0.045 0.409 3.557 2.828 

B: RBF 53.097 9.119 0.046 0.410 3.574 2.935 

C: MK 53.083 9.106 0.046 0.410 3.566 2.894 

|(A-B)/A| 1.09% 0.36% 2.02% 0.29% 0.48% 3.77% 

|(A-C)/A| 1.11% 0.22% 1.80% 0.34 0.26% 2.35% 

|(B-C)/A| 0.03% 0.13% 0.22% 0.05% 0.22% 1.42% 

4.7.1.7 Comparison of the meshfree method with other methods 

Table 4.16: Inputs for CF-Composite-A (adapted from [131] & [194]) 

Weave 

geometry 

𝐿 𝑊 𝐻 𝜆  

2.0 2.0 0.196 0.911  

Yarn 

property 

𝐸L 𝐸T 𝑣LT 𝑣TT 𝐺LT 

137.3 10.79 0.26 0.46 5.394 

Matrix 

property 

𝐸m 𝑣m    

4.511 0.38    

To further validate the meshfree-based modelling approach and the normal plain woven 

mUC model, two additional types of plain woven composites that have been examined in 

the published research were considered in the present work, and their elastic properties 

were calculated by using the meshfree method. The first type of material was based on 

the plain woven composites investigated by Tanov and Tabiei [131] and Jiang et al. [194] 

using analytical approaches. For convenience, this material is denoted as CF-Composite-

A. The inputs for this material are listed in Table 4.16, and they were adapted from [131] 

and [194]. Here, the dimensionless parameter, 𝜆, was calculated by using Eq. (4.17), and 

the yarn volume fraction used in calculating 𝜆 was 0.58. For easy comparison, the elastic 

properties predicted using the meshfree method, as well those found in the literature, are 
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listed in Table 4.17. As can be seen from this table, the meshfree-based predictions agree 

well with both the analytical results and the experimental data. 

Table 4.17:  Summary of outputs for CF-Composite-A (moduli in GPa) 

Approach 𝐸1/𝐸2 𝐸3 𝑣12 𝑣23/𝑣13 𝐺12 𝐺23/𝐺31 

Four-cell [131] 45.08 10.12 0.056 0.464 3.8 2.763 

Sub-cell [194] 46.35 - 0.052 - 3.83 - 

Exp. [195] 49.80 - 0.068 - 3.83 - 

MLS 45.896 10.120 0.058 0.465 3.654 3.017 

RBF 46.131 10.104 0.057 0.465 3.641 2.836 

MK 46.038 10.104 0.057 0.466 3.642 2.843 

Table 4.18: Inputs for CF-Composite-B (adapted from [95]) 

Weave 

geometry 

𝐿 𝑊 𝐻 𝜆  

1.0 1.0 0.188 1.0  

Yarn 

property 

𝐸L 𝐸T 𝑣LT 𝑣TT 𝐺LT 

170.0 12.84 0.33 0.27 9.06 

Matrix 

property 

𝐸m 𝑣m    

4.35 0.36    

Table 4.19: Summary of outputs for CF-Composite-B (moduli in GPa) 

Approach 𝐸1/𝐸2 𝐸3 𝑣12 𝑣23/𝑣13 𝐺12 𝐺23/𝐺31 

FEM [95] 69.646 11.289 0.042 0.417 7.007 4.372 

Exp. [196] 67.5 - - - - - 

MLS 66.029 11.401 0.046 0.395 6.743 4.052 

RBF 65.282 11.413 0.046 0.395 6.751 4.278 

MK 65.679 11.397 0.046 0.395 6.741 4.087 

The second type of material was based on the plain woven CFRP composites investigated 

by Bacarreza et al. [95] using the FEM. The inputs for this material, which is here referred 

to as CF-Composite-B, were adapted from [95], and they are listed in Table 4.18. Table 
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4.19 shows the resulted derived by utilising different types of methods, from which it can 

be found that the meshfree-based predictions are in good agreement with the FEM results 

and the experimental data. 

4.7.2 An example on twill woven composites 

To validate the normal twill woven mUC model, a meshfree example was performed by 

considering the twill woven CFRP composites investigated by Dixit et al. [98]. The inputs 

for this material, which were adapted from [98], are detailed in Table 4.20, and the 

meshfree-based results are presented in Table 4.21, in comparison with the FEM results 

[98] and the experimental values given in [96]. Clearly, the meshfree-based results show 

reasonable agreements with both the FEM and experimental results. 

Table 4.20: Inputs for the twill woven composites (adapted from [98]) 

Weave 

geometry 

𝐿 𝑊 𝐻 𝜆  

1.0 1.0 0.22 0.4  

Yarn 

property 

𝐸L 𝐸T 𝑣LT 𝑣TT 𝐺LT 

220.69 13.79 0.20 0.25 8.97 

Matrix 

property 

𝐸m 𝑣m    

3.10 0.39    

Table 4.21: Outputs for the twill woven composites (moduli in GPa) 

Approach 𝐸1/𝐸2 𝐸3 𝑣12 𝑣23/𝑣13 𝐺12 𝐺23/𝐺31 

FEM [98] 56.97 8.81 0.062 0.406 4.05 2.31 

Exp. [96] 55.25 - 0.055 - 3.55 - 

MLS 58.355 9.010 0.057 0.396 4.015 2.588 

RBF 58.466 8.947 0.055 0.398 3.755 2.365 

MK 58.598 8.930 0.056 0.401 3.749 2.415 

4.7.3 An example on 3D woven composites 

To validate the improved normal mUC model for 3D orthogonal woven composites in 

terms of predicting the elastic properties, a meshfree example was also conducted based 
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on the composites investigated by Li et al. [145] and Bogdanovich [101]. The inputs for 

this type of material are given in Table 4.22, where the dimensionless parameter for each 

type of yarn was determined as the ratio of the width of the yarn with respect to the 

dimension of the mUC. Furthermore, it is worth noting that the geometry parameter, 𝐻b, 

is not included since it is not an independent variable, i.e. 𝐻b = 𝐻 − 2𝐻w − 𝐻fa − 𝐻fb. 

Table 4.23 shows the results predicted by using the improved mUC model in combination 

with the meshfree method, as well as those found in the literature. Here, it can be found 

that the meshfree-based results are in good agreements with the FEM and experimental 

results, confirming the accuracy and effectiveness of the improved mUC model and the 

meshfree-based UC modelling approach. 

Table 4.22: Inputs for the 3D woven composites (adapted from [145] & [101]) 

Weave 

geometry 

𝐿 𝑊 𝐻 𝜆w 𝜆fa 

2.309 2.54 2.472 0.821 0.667 

𝜆fb 𝜆b 𝐻w 𝐻fa 𝐻fb 

0.937 0.179 0.637 0.292 0.614 

Yarn 

property 

𝐸L 𝐸T 𝑣LT 𝑣TT 𝐺LT 

53.12 14.46 0.266 0.268 4.24 

Matrix 

property 

𝐸m 𝑣m    

3.17 0.35    

Table 4.23: Outputs for the 3D woven composites (moduli in GPa) 

Approach 𝐸1 𝐸2 𝐸3 𝑣12 𝑣23 𝑣13 𝐺12 𝐺23 𝐺31 

Ref. [145] 24.61 22.38 10.78 0.132 0.319 0.316 3.11 3.69 3.37 

FEM [101] 27.31 25.70 9.98 0.125 0.448 0.432 3.58 3.52 3.34 

Exp. [101] 24.68 20.75 - 0.11 - - - - - 

MLS 24.162 21.512 10.470 0.133 0.324 0.312 3.083 3.341 3.079 

RBF 24.185 21.468 10.502 0.134 0.327 0.315 3.086 3.393 3.117 

MK 24.067 21.317 10.471 0.132 0.325 0.314 3.077 3.391 3.118 
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4.8 Summary 

In this chapter, some basic concepts and assumptions in the geometry modelling of woven 

composites were firstly introduced. Then, the high-fidelity normal mUC models that have 

been developed for plain, twill and 3D woven composites were detailed. Here, analytical 

equations were formulated for describing the internal architecture of each type of woven 

composites, and the flexibility of some of these models was evaluated in comparison with 

the models found in the literature. Following the geometry modelling, the main concepts 

and the basic equations in the equivalence approach were briefed. Based on this approach, 

the PBCs for the normal mUC models under each admissible loading case were derived. 

After that, an in-house computer program which implements the mUC models using the 

standard weak-form meshfree method was introduced from the perspectives of its basic 

framework, the input parameters, the determination of the numerical parameters and the 

strategy for discretising the domain of homogenisation. Following the description of this 

program, it was argued that the combination of the high-fidelity mUCs with the meshfree 

method is capable of addressing the problems that exist in analytical approaches and the 

FEM-based approaches. Finally, a number of numerical examples conducted using the 

meshfree-based program to predict the normal and/or off-axis elastic properties of plain, 

twill and 3D orthogonal woven composites were presented. Good agreements were found 

between the meshfree-based predictions and those found in the literature, confirming the 

accuracy and effectiveness of the meshfree-based UC modelling approach and the high-

fidelity mUC models. In some of these examples, the sensitivities of the predicted results 

to the open numerical parameters were also examined. It was found that the utilisation of 

higher numbers of field nodes and background cells generally produces better predictions, 

while the support domain scaling coefficient should be chosen in a relatively small range 

(i.e. 2.0 - 3.25) to maintain a reasonable degree of accuracy in the predictions. In addition, 

it was shown that the three types of shape function construction techniques were able to 

produce reasonable predictions, although the results predicted using the MLS technique 

were of slight differences compared to those obtained using the RBF and MK techniques. 

It is believed that the presence of the small discrepancies is as a consequence of the lack 

of the Kronecker delta function property only in the MLS technique.
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CHAPTER 5: MECHANICAL RESPONSE 

PREDICTION 

 

5.1 Introduction 

Apart from the prediction of the elastic properties of woven composites, which has been 

addressed in the previous chapter, another significant part of the present work is to extend 

the meshfree-based unit cell (UC) modelling approach for predicting the overall response 

of woven composites, and the corresponding procedure again involves three similar steps, 

namely, geometry modelling, constitutive modelling and overall response calculation. 

Clearly, for geometry modelling, the normal minimum unit cell (mUC) models presented 

in Chapter 4 can be directly used to predict the overall response under normal loading 

conditions, e.g. a load is applied in the warp direction. However, since woven composites 

feature different behaviours if loaded in different directions, off-axis mUC models have 

also been developed to evaluate the overall response under off-axis loading scenarios, 

which will be addressed in the second section of this chapter. For constitutive modelling, 

the inelastic behaviours of the constituents such as the nonlinear and strain rate-dependent 

behaviour of the polymer matrix and the anisotropic post-failure of the yarn material must 

be characterised to ensure an accurate prediction of the overall response, which will be 

detailed in Section 5.3. In terms of the last step, it involves implementing the mUC models 

and the constitutive models based on the explicit weak-form meshfree method and thus 

calculating the overall response for a prescribe history of periodic boundary conditions 

(PBCs), which will be discussed in Section 5.4. Following the above sections, a number of 

numerical examples for predicting the overall response of woven composites will be 

presented, and the predicted results will be discussed in comparison with experimental 

results, if applicable. 

Here, it should be noted that woven composites may have different geometry dimensions 

in the warp and weft directions. An example of such type of woven composites is shown 
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in Fig. 5.1a, from where it can be seen that the length of periodicity in the warp direction 

is not equal to that in the weft direction, i.e. 𝐿 ≠ 𝑊. For convenience, this type of woven 

composites is often termed as non-balanced woven composites. From Fig. 5.1a, it is also 

indicated that the non-balanced nature necessitates the use of a non-orthogonal coordinate 

system and thus creates a non-rectangular unit cell (UC), complicating the derivation of 

PBCs and the enforcement of off-axis loading conditions. In view of such complexity in 

non-balanced woven composites, the prediction of the off-axis properties or response in the 

present research is restricted to balanced woven composites since their off-axis mUCs can 

still be modelled in orthogonal coordinate systems, as illustrated in Fig. 5.2a. 

 

(a) Non-balanced woven composites and off-axis UC 

 

(b) Balanced woven composites and off-axis UC 

Figure 5.1: Comparison of non-balanced & balanced woven composites 
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5.2 Off-axis mUCs and PBCs 

5.2.1 Plain woven composites 

5.2.1.1 Off-axis mUC for plain woven composites 

Similar to identifying the normal mUC for plain woven composites, the off-axis mUC can 

be obtained by exploiting all the symmetries in a step-by-step manner, as shown in Fig. 

5.2. Here, it should be noted that the off-axis mUC is only 1/8 of the full-size UC. 

 

(a) Composite ply → full-size UC by using translational symmetries 

 

(b) Full-size UC → 𝟏
𝟒
UC by using reflectional symmetries 

 

(c) 𝟏
𝟒
UC → 𝟏

𝟖
UC by using rotational symmetries 

Figure 5.2: Domain reduction for off-axis plain woven composites 
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Figure 5.3: The off-axis mUC model for plain woven composites 

Due to the off-axis nature, it is problematic to directly describe the internal architecture of 

an mUC in its local coordinate system (LCS), i.e. OXYZ, as indicated in Fig. 5.3. To 

simplify this process, the description of an mUC can be initially addressed in the global 

coordinate system (GCS) of the composite material, i.e. O'X'Y'Z', based on which, the 

equations for describing the internal architecture of the off-axis mUC in the GCS can be 

rotated back to the LCS. Since the two coordinate systems can be brought together by 

rotating the LCS anti-clockwise with respect to its Z-axis for 45º, the transformation 

between the coordinate vectors of any given point, A, in the two coordinate systems can be 

expressed as follows: 
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where {𝑥′ 𝑦′ 𝑧′}T and {𝑥 𝑦 𝑧}T are the coordinate vectors of point A in the GCS and the 

LCS, respectively. 

Using the transformation defined in Eq. (5.1) and combining the analytical equations that 

have been developed for describing the internal architecture of the normal mUC of plain 

woven composites, as detailed in Section 4.2, the analytical equations for describing the 

off-axis mUC of plain woven composites can be easily deduced, as summarised in Table 

C.1, Appendix C. 

5.2.2.2 PBCs for off-axis plain woven composites 

By comparing Fig. 5.2 and Fig. 4.2, it can be found that the symmetries used to obtain the 

off-axis mUC are not the same as those utilised in the case of obtaining the normal mUC. 

Thus, the PBCs derived for the normal mUC are not applicable to the off-axis mUC. Here, 

the equivalence approach is again employed to obtain the PBCs for the off-axis mUC of 

plain woven composites. However, it must be pointed out that the generic form of PBC 

equation, which has been defined in Eq. (4.87) and does not include the time dimension, 

are not directly applicable to the case of predicting the overall response. This is because in 

predicting the overall response of woven composites, a history of time-dependent PBCs 

needs to be prescribed to create an external dynamic loading such that a time-dependent 

relation between the volume average stress and strain can be subsequently derived, which 

consequently forms the overall response of the woven composites of homogenisation. To 

enable the equivalence approach for deriving PBCs for the case of predicting the overall 

response, Eq. (4.87) should be modified by including the time dimension, as follows: 

 𝒖(𝐴, 𝑡) − 𝛾𝐓𝒖(�̅�, 𝑡) = −〈𝜺(𝑡)〉𝐓𝒙O�̅� (5.2) 

However, it can be found by comparing the above equation with Eq. (4.87) that the only 

difference is the addition of a time variable in Eq. (5.2). This means that the PBCs for the 

case of predicting the overall response can be alternatively obtained by initially applying 

Eq. (4.87) to derive time-independent PBC equations and subsequently including the time 
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variables within the equations. Given that the only difference between the PBCs of the two 

cases is time, the time variable will be neglected for simplicity when presenting the PBCs 

for the case of predicting the overall response.  

 

Figure 5.4: Off-axis mUC & adjacent subdomains of plain woven composites 

Table 5.1: Relations between off-axis plain woven mUC & adjacent subdomains 
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Fig. 5.4 identifies the off-axis mUC (denoted as 𝐷), as well as its adjacent and physically 

equivalent subdomains (denoted as �̅�1, �̅�2, �̅�3 and �̅�4). The lower and upper subdomains 

have been again excluded to reveal the mUC. Based on this figure, the geometry relations 

between the off-axis mUC and its adjacent subdomains can be determined, as detailed in 

Table 5.1. Here, it should be noted that the symbols, 𝐿o and 𝑊o, denote the overall length 

and width of the off-axis mUC, and they are equal to 𝐿 √2⁄  and √2𝐿, as indicated in Fig. 

5.3. Then, by enforcing the admissibility condition, as defined in Eq. (4.81) or (4.82), all 

admissible loading cases can be identified and the relating load reversal factors can be 

obtained, as shown in Table 5.2. Finally, based on the quantities calculated above and Eq. 

(4.87) or (5.2), the PBC that should be applied to each pair of equivalent boundary nodes 

for each admissible loading case for the off-axis mUC of plain woven composites can be 

derived, as summarised in Tables D.1~D.4, Appendix D. 

Table 5.2: Admissible loading cases of off-axis plain woven composites 

 {𝛾1 𝛾2 𝛾3 𝛾4} Admissible loading 

Case 1 {1 1 1 1} [

〈𝜎11〉 0 0

0 〈𝜎22〉 0

0 0 〈𝜎33〉
] 

Case 2 {−1 1 −1 −1} [
0 〈𝜎12〉 0

〈𝜎21〉 0 0
0 0 0

] 

Case 3 {−1 1 1 1} [

0 0 0
0 0 〈𝜎23〉

0 〈𝜎32〉 0
] 

Case 4 {1 1 −1 −1} [
0 0 〈𝜎13〉
0 0 0

〈𝜎31〉 0 0
] 

5.2.2 Twill woven composites 

5.2.2.1 Off-axis mUC for twill woven composites 

For twill woven composites, its off-axis mUC can be obtained by performing the domain 

reduction operations detailed in Fig. 5.5. Again, the off-axis mUC is only 1/8 of the full 

off-axis UC as no symmetry can be further exploited. To ease the description of the yarns, 

the off-axis mUC model is initially addressed in the normal coordinate system of twill 
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woven composites and then rotated back to the LCS of the off-axis mUC, as demonstrated 

in Fig. 5.6. Here, it should be noted that each of the yarns in this mUC is comprised of a 

straight part and a wavy part, and thus should be described using two sets of equations. 

Using the transformation defined in Eq. (5.1) and combining the normal mUC developed 

for twill woven composites, as detailed in Section 4.3, each yarn in the off-axis mUC of 

twill woven composites can be described, as summarised in Tables C.2 – C.3, Appendix C. 

Here, when describing a yarn, the part that is not currently being addressed is shaded in 

grey. Also, the subscripts, 𝑠 and 𝑤, denote the straight and wavy parts, respectively.  

 

(a) Composite ply → full-size UC by using translational symmetries 

 

(b) Full-size UC → 𝟏
𝟒
UC by using translational & reflectional symmetries 

 

(c) 𝟏
𝟒
UC → 𝟏

𝟖
UC by using rotational symmetries only 

Figure 5.5: Domain reduction for off-axis twill woven composites 
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Figure 5.6: The off-axis mUC model for twill woven composites 

5.2.2.2 PBCs for off-axis twill woven composites 
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admissible loading case for the off-axis mUC of twill woven composites is derived, as 

summarised in Tables D.5~D.8, Appendix D. 

 

Figure 5.7: Off-axis mUC & adjacent subdomains of twill woven composites 
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Table 5.4: Admissible loading cases of off-axis twill woven composites 

 {𝛾1 𝛾2 𝛾3 𝛾4} Admissible loading 

Case 1 {1 1 1 1} [

〈𝜎11〉 0 0

0 〈𝜎22〉 0

0 0 〈𝜎33〉
] 

Case 2 {−1 −1 1 1} [
0 〈𝜎12〉 0

〈𝜎21〉 0 0
0 0 0

] 

Case 3 {−1 −1 −1 −1} [

0 0 0
0 0 〈𝜎23〉

0 〈𝜎32〉 0
] 

Case 4 {1 1 −1 −1} [
0 0 〈𝜎13〉
0 0 0

〈𝜎31〉 0 0
] 

5.2.3 3D woven composites 

5.2.3.1 Off-axis mUC for 3D woven composites 

 

(a) Composite ply → full UC by using translational symmetries 

 

(b) Full-size UC → 𝟏
𝟐
UC by using rotational symmetries only 

Figure 5.8: Domain reduction for off-axis 3D orthogonal woven composites 
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The procedure for identifying the off-axis mUC for 3D orthogonal woven composites is 

illustrated in Fig. 5.8. Here, it is clearly suggested that the full-size UC can be reduced only 

into a half-size UC and no symmetry can be further exploited. For facilitating the geometry 

description, the approach of initially addressing the off-axis mUC in the normal coordinate 

system and then rotating the resulting equations for describing the yarns back to the LCS 

of the off-axis mUC is again employed, as illustrated in Fig. 5.9, where it is shown that the 

overall length and width of this mUC are √2𝐿 and 2√2𝐿, respectively. For clarity, the 

warp, fill and binder yarns are numbered in black, red and white colours. 

 

Figure 5.9: The off-axis mUC model for 3D woven composites 
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Compared to the normal mUC of 3D woven composites, the off-axis mUC is much more 

complex as it contains over ten yarns. In addition, some of the yarns are comprised of two 

or more parts that should be described using different sets of equations. The yarns falling 

into this type are fill yarns 1, 3, 4 & 6 and binder yarn 1. The equations for describing the 

surfaces and waviness of the yarns in the off-axis mUC are summarised in Tables C4 – C8, 

Appendix C. 

5.2.3.2 PBCs for off-axis 3D woven composites 

 

Figure 5.10: Off-axis mUC & adjacent subdomains of 3D woven composites 
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woven composites are detailed in Table D.9, Appendix D. 
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Table 5.5: Relations between off-axis 3D woven mUC & adjacent subdomains 
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Table 5.6: Admissible loading case of off-axis 3D woven composites 

 {𝛾1 𝛾2 𝛾3 𝛾4} Admissible loading 

Case 1 {1 1 1 1} [

〈𝜎11〉 〈𝜎12〉 〈𝜎13〉

〈𝜎21〉 〈𝜎22〉 〈𝜎23〉

〈𝜎31〉 〈𝜎32〉 〈𝜎33〉
] 

5.3 Material modelling 

The overall response of a woven composite material is determined by not only the internal 

architecture but also many other factors, such as the type of fibre or polymer matrix used, 

the surface treatment made to the fibres and the manufacturing process for fabricating the 

composite material. For instance, in carbon fibre-reinforced polymer (CFRP) composites, 

electrochemical treatment is often employed to partially oxidise carbon fibre surface so as 

to promote the adhesion of fibres to the resin matrix and thus to improve the transverse 

behaviour of the composite material. However, instead of considering all the factors that 

may influence the overall response of woven composites, the present work focuses on the 
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most dominant ones, i.e. the material behaviours of resin matrix and yarns. In addition, as 

it is not practical to develop a single material model that suits various kinds of woven 

composites, the material modelling in the present work is addressed only for the most 

commonly used constituents, i.e. polymer matrix and glass/carbon fibre yarns. 

Similar to unidirectional composites, woven composites feature distinct responses when 

loaded in different directions. In the fibre directions (e.g. the warp direction), the material 

behaviour is primarily driven by yarns, typically exhibiting linearly elastic response prior 

to failure, followed by anisotropic post failure behaviour. Depending on the type of fibre 

yarns used, the initial elastic response can be accompanied by a different degree of strain-

rate sensitivity. For example, woven composites with glass-fibre yarns are often found to 

be strain-rate dependent, while those with carbon-fibre yarns are generally insensitive to 

strain rate. In terms of the material behaviour in bias directions, particularly in 45° to the 

warp or fill direction, woven composites often show strong nonlinear and rate-dependent 

response. It is commonly believed that such kind of behaviour is closely associated with 

that of polymer matrix, which consists of long chain molecules with a chain length of up 

to 10⁵ atoms and behaves viscoelastically at small strains and becomes nonlinear when the 

strain applied is large enough. 

Based on the above analysis, the present research assumes that the yarn material in woven 

composites can be treated as unidirectional composites in the local material coordinate 

system, and thus it will be modelled as a transversely isotropic material with linearly elastic 

response prior to failure and anisotropic post-failure behaviour. Since some types of yarns 

in woven composites may be sensitive to loading rate, the strain-rate dependence of the 

yarn material in the fibre directions will also be considered. Due to the presence of intra-

yarn polymer matrix, the yarn material in woven composites may contribute to some degree 

of nonlinearity and strain-rate dependence in the transverse directions. However, it is 

believed that such nonlinearity and rate-dependence are insignificant compared to those of 

the polymer matrix outside of yarns. Therefore, in this work, the nonlinearity and rate-

dependence of the yarn material in the transverse directions will not be considered 

independently. Instead, it will be compensated in the utilisation of a viscoplasticity model 

to describe the nonlinear, rate-dependent response of the polymer matrix. In the following 

four sections, the material modelling in the present research will be detailed from the 

perspectives of i) the nonlinearity and strain-rate dependence of the polymer matrix, ii) the 
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rate-dependence of the yarn material in the fibre directions, iii) the failure criteria for 

identifying the damage initiation of the yarn material and iv) the analytical formulation for 

describing the damage evolution of the yarn material. 

5.3.1 Nonlinearity and rate-dependence of polymer matrix 

Extensive studies have been conducted by many researchers to model the nonlinear, rate-

dependent behaviour of the polymer matrix in composites. The commonly used methods 

can be categorised into physically-based approaches and phenomenological approaches. In 

the former type of approaches, the response of a polymer is often modelled based on the 

physical mechanisms that drive the deformation. For instance, the deformation of a 

polymer is often assumed to be as a result of the motion of molecular chains over potential 

barriers [197] or the unwinding of molecular kinks [198], and the degree of change in the 

material state due to these molecular mechanisms is assumed to be associated with the 

competition between the applied stress (which drives the material away from its original 

state) and the internal stress (which is defined to model the resistance to deformation and 

tends to drive the material back to its original state, and is often assumed to evolve with 

stress, inelastic strain and inelastic strain rate). In general, this type of approaches models 

the nonlinear, rate-dependent deformation of a polymer on one hand as a function of some 

molecular parameters, such as activation energy and volume, molecular radius, angle of 

molecular rotation and thermal constants, and meanwhile as a function of state variables 

representing the resistance to deformation. Since these approaches address the modelling 

of the deformation of polymers from a molecular perspective, they are also referred to as 

molecular approaches. 

In the latter category of approaches, the nonlinearity and rate-dependence of polymers are 

often phenomenologically described by directly using or modifying a plasticity-based or 

viscoplasticity-based theory that has been developed for metals. For example, without 

making any modification, Zhang and Moore [199] and Valisetty and Teply [200] adopted 

the techniques that were originally developed for metals to predict the uniaxial tensile 

response of polymers. Another notable example is that the viscoplasticity theory based on 

overstress (VBO), which was originally formulated by Krempl and Ho [201] for metals, 

was modified by Bordonaro [202] to characterise the response of polymers under a variety 

of loading conditions such as creep, relaxation and unloading. In the modified model, the 
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phenomena that are encountered in the deformation of polymers but not in that of metals, 

e.g. nonlinear unloading, were also considered. Recently, in order to model the nonlinear, 

strain-rate dependent response of the matrix constituent in polymer matrix composites, 

Goldberg and Stouffer [42] modified the constitutive equations of a viscoplasticity-based 

model that was initially developed by Ramaswamy and Stouffer [203] for metals. In their 

work, the original equations defining the effective stress, the effective inelastic strain and 

the inelastic strain tensor in the classical J2 plasticity theory were reasonable modified to 

account for the effect of loading rate on the response of the polymer matrix. Since these 

approaches model the deformation of polymers by adapting a viscoplasticity-based theory, 

they are also referred to as viscoplasticity-based approaches. 

In this research, instead of trying to develop new constitutive models, the model developed 

by Goldberg and Stouffer [42], which will be termed as the Goldberg-Stouffer model in 

this thesis, is adopted to describe the nonlinear, rate-dependent response of the polymer 

matrix in woven composites. The main reason for choosing this model is that it is not as 

complex as the models developed using molecular approaches, where a relatively large 

number of molecular parameters need to be obtained before they can be utilised. Another 

reason for using the Goldberg-Stouffer model is that it has been found to correlate well 

with experimental data [42] and that its effectiveness in predicting the nonlinear, rate-

dependent response of polymer matrix in composite materials has been validated by many 

other researchers including Tabiei et al. [130, 135, 136] and Gerlach et al. [18]. 

5.3.1.1 The Goldberg-Stouffer model 

In the Goldberg-Stouffer model, the total strain rate, 𝜀�̇�𝑗, is considered to be a sum of the 

inelastic strain rate, 𝜀�̇�𝑗
I , and the elastic strain rate, 𝜀�̇�𝑗

E , which is defined by �̇�𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝜀�̇�𝑙
E , 

where �̇�𝑖𝑗 is the stress rate and 𝑐𝑖𝑗𝑘𝑙 is the elasticity tensor. For the inelastic strain rate, it is 

modelled as a function of the applied stress and the internal stress, as follows: 

 𝜀�̇�𝑗
I = 𝐷0exp (−

1

2
(
𝑍0
2

3𝐽2
)
𝑛r
)
𝑆𝑖𝑗−Ω𝑖𝑗

√𝐽2
 (5.3) 

where 𝐷0 is a material constant denoting the maximum inelastic strain rate; 𝑍0 represents 

the initial hardness of polymer matrix; 𝑛r is a parameter describing the dependence of the 

response of polymer matrix on strain rate; 𝑆𝑖𝑗  refers to as the deviatoric stress; Ω𝑖𝑗  is a 
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tensorial state variable; the term, 𝑆𝑖𝑗 − Ω𝑖𝑗, which is the difference between the deviatoric 

stress and the tensorial state variable, is termed as the overstress, and  𝐽2 is the second 

invariant of overstress. Here, the deviatoric stress and the second invariant of overstress 

take the following classical forms, as follows, where 𝛿𝑖𝑗 is the Kronecker delta tensor: 

 𝑆𝑖𝑗 = 𝜎𝑖𝑗 −
𝜎𝑘𝑘

3
𝛿𝑖𝑗 (5.4) 

 𝐽2 =
1

2
(𝑆𝑖𝑗 − Ω𝑖𝑗)(𝑆𝑖𝑗 − Ω𝑖𝑗) (5.5) 

The use of the tensorial state variable in Eq. (5.3) is to model the resistance to molecular 

flow in polymer matrix, and thus this variable is also termed as the “internal stress”, which 

is an analogy to the concept of “back stress” in metals. This internal stress is assumed to 

be equal to zero if the polymer matrix is in the original state and evolve with the inelastic 

strain, as follows: 

 Ω̇𝑖𝑗 =
2

3
𝑞Ωm𝜀�̇�𝑗

I − 𝑞Ω𝑖𝑗𝜀ėff
I  (5.6) 

where 𝑞 is a material parameter representing the “hardening” rate of polymer matrix; Ωm 

is the value of the internal stress at “saturation”, which is the point where the stress-strain 

curve becomes flat; and 𝜀ėff
I  is the effective inelastic strain rate, which defined by: 

 𝜀ėff
I = √

2

3
𝜀�̇�𝑗
I 𝜀�̇�𝑗

I  (5.7) 

5.3.1.2 Determination of material constants 

To employ the above viscoplasticity-based model, all material constants (i.e. 𝐷0, 𝑍0, 𝑛r, 𝑞 

and Ωm) must be determined. For parameter 𝐷0, it is the limiting value of the inelastic 

strain rate and can be assumed to be 10⁴ times the maximum applied total strain rate, as 

suggested in [42]. For the remaining parameters, they can be determined based on the 

uniaxial forms of Eqs. (5.3) and (5.6), as follows [42]: 

 𝜀̇I =
2

√3
𝐷0exp (−

1

2
(

𝑍0

|𝜎−Ω|
)
2𝑛r
)
𝜎−Ω

|𝜎−Ω|
 (5.8) 

 Ω̇ = 𝑞Ωm𝜀̇
I − 𝑞Ω|𝜀̇I| (5.9) 
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where 𝜀̇I is the uniaxial strain rate, 𝜎 is the uniaxial stress, Ω is the uniaxial form of the 

internal stress, and Ω̇ is the uniaxial form of the internal stress rate. 

To determine 𝑍0, 𝑛r and Ωm, natural logarithm operations are performed on both sides of 

Eq. (5.8), which results in: 

 ln (
√3�̇�I

2𝐷0
) = −

1

2
(

𝑍0

|𝜎−Ω|
)
2𝑛r

+ ln (
𝜎−Ω

|𝜎−Ω|
) (5.10) 

Here, it should be noted that the second term of the right side of this equation vanishes as 

it has been assumed to be under uniaxial tensile loading. Assume the test for determining 

these parameters has been conducted to the state of saturation. By substituting the values 

of the inelastic strain rate, the uniaxial stress and the internal stress at saturation, i.e. 𝜀0̇, 𝜎s 

and Ωm, back into Eq. (5.10), it yields: 

 ln [−2ln (
√3�̇�0

2𝐷0
)] = −2𝑛rln(𝜎s − Ωm) + 2𝑛rln(𝑍0) (5.11) 

The above equation can be rewritten as: 

 𝑦 = −2𝑛r𝑥 + 2𝑛rln(𝑍0) (5.12) 

where 

 𝑥 = ln(𝜎s − Ωm) (5.13) 

 𝑦 = ln [−2ln (
√3�̇�0

2𝐷0
)] (5.14) 

As Eq. (5.12) correlates 𝑥 with 𝑦, a number of uniaxial tensile tests (e.g. 𝑛 tests) can be 

conducted at several constant strain rates. Based on these tests, a set of data pairs, 𝑥𝑖 and 

𝑦𝑖 (𝑖 = 1, 2, … , 𝑛), can be obtained to perform a least-squares regression analysis. Then, 

the values of 𝑛r and 𝑍0 can be derived since the slope and the intercept of the best fit line 

are equal to −2𝑛r and 2𝑛rln(𝑍0). Here, it should be noted that in calculating 𝑥𝑖, the value 

of Ωm can be initially estimated to be 50% ~ 75% of the highest value of the uniaxial 

stresses at saturation [42], and the value of Ωm should be adjusted until an optimal fit to 

the data is reached. 
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In terms of 𝑞, it can be determined based on Eq. (5.9). It is often assumed that the internal 

stress reaches a maximum if the polymer matrix is at saturation, which means that the 

exponential term in Eq. (5.8) approaches zero. Moreover, it is assumed that the condition 

at saturation [42] is: 

 exp(−𝑞𝜀s
I ) = 0.01 (5.15) 

where 𝜀s
I is the inelastic strain at saturation.  

Solving the above equation determines the value of 𝑞. Here, it should be noted that if the 

inelastic strains at saturation in the tensile tests vary with the loading rate, all the values of 

𝑞 should be calculated for subsequent regression analysis. Alternatively, the value of 𝑞 can 

be determined from the average value of the inelastic strains at saturation. 

5.3.1.3 Solution algorithm for the Goldberg-Stouffer model  

The constitutive equations in the Goldberg-Stouffer model, i.e. Eqs. (5.3) ~ (5.7), generate 

either a differential equation for each component of the tensorial variables or a first-order 

tensorial differential equation that does not have a closed-form solution. To approximate 

the solutions of these equations, one of the techniques that can be utilised is the iterative, 

implicit trapezoidal rule integration procedure described in [42]. However, as this model 

will be implemented using the explicit weak-form meshfree method, the four-step Runge-

Kutta method described in [135] is adopted to explicitly estimate solutions. Before using 

this solution technique, the rate forms of the constitutive equations should be transformed 

into the incremental forms, as follows, where 𝑑𝑡 is time increment: 

 𝑑𝜀𝑖𝑗
I = [𝐷0exp (−

1

2
(
𝑍0
2

3𝐽2
)
𝑛r
)
𝑆𝑖𝑗−Ω𝑖𝑗

√𝐽2
] 𝑑𝑡  (5.16) 

 𝑑Ω𝑖𝑗 =
2

3
𝑞Ωm𝑑𝜀𝑖𝑗

I − 𝑞Ω𝑖𝑗𝑑𝜀eff
I  (5.17) 

 𝑑𝜀eff
I = √

2

3
𝑑𝜀𝑖𝑗

I 𝑑𝜀𝑖𝑗
I  (5.18) 

Essentially, when utilising the explicit weak-form meshfree method to predict the overall 

response of woven composites, the four-step Runge-Kutta technique estimates the values 
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of the tensorial variables at the current step from those at the previous step. At the current 

step, the following variables are known and can be used to as input parameters: 

1) The stress σ𝑖𝑗
(𝑛)

 at the previous step 

2) The internal stress Ω𝑖𝑗
(𝑛)

 at the previous step 

3) The inelastic strain 𝜀𝑖𝑗
I(𝑛)

 at the previous step 

4) The total strain 𝜀𝑖𝑗
(𝑛)

 at the previous step 

5) The total strain 𝜀𝑖𝑗
(𝑛+1)

 at the current step 

6) The total strain rate 𝜀�̇�𝑗
(𝑛+1)

 at the current step 

Based on the above input parameters, the four-step Runge-Kutta method can be advanced 

in a four-step manner, as follows. In the first step, it is assumed that: 

 𝜎𝑖𝑗 = 𝜎𝑖𝑗
(𝑛) & Ω𝑖𝑗 = Ω𝑖𝑗

(𝑛)
 (5.19) 

By substituting 𝜀�̇�𝑗
(𝑛+1)

, 𝜎𝑖𝑗 and Ω𝑖𝑗 into Eqs. (5.16) ~ (5.18), the unknown variables, 𝑑𝜀𝑖𝑗
I  

and 𝑑Ω𝑖𝑗, can be calculated and are denoted as: 

 𝑑𝜀𝑖𝑗
I1 = 𝑑𝜀𝑖𝑗

I  & 𝑑Ω𝑖𝑗
1 = 𝑑Ω𝑖𝑗 (5.20) 

Then, the inelastic strain, the tensorial stress and the internal stress can be initially updated, 

as follows: 

 𝜀𝑖𝑗
I1 = 𝜀𝑖𝑗

I(𝑛) +
1

2
𝑑𝜀𝑖𝑗

I1 (5.21) 

 𝜎𝑖𝑗
1 = c𝑖𝑗𝑘𝑙(𝜀𝑘𝑙

(𝑛+1) − 𝜀𝑘𝑙
I1) (5.22) 

 Ω𝑖𝑗
1 = Ω𝑖𝑗

(𝑛) +
1

2
𝑑Ω𝑖𝑗

1  (5.23) 

At the second step, the tensorial stress and the internal stress updated in the first step are 

used as the input parameters and substituted into Eqs. (5.16) ~ (5.18), and the results are 

denoted as: 

 𝑑𝜀𝑖𝑗
I2 = 𝑑𝜀𝑖𝑗

I  & 𝑑Ω𝑖𝑗
2 = 𝑑Ω𝑖𝑗 (5.24) 
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Again, the inelastic strain, the tensorial stress and the internal stress can be updated in a 

similar way, as follows: 

 𝜀𝑖𝑗
I2 = 𝜀𝑖𝑗

I(𝑛) +
1

2
𝑑𝜀𝑖𝑗

I2 (5.25) 

 𝜎𝑖𝑗
2 = c𝑖𝑗𝑘𝑙(𝜀𝑘𝑙

(𝑛+1) − 𝜀𝑘𝑙
I2) (5.26) 

 Ω𝑖𝑗
2 = Ω𝑖𝑗

(𝑛) +
1

2
𝑑Ω𝑖𝑗

2  (5.27) 

After that, the tensorial stress and the internal stress calculated in Eqs. (5.26) and (5.27) are 

accepted as the input parameters for the third step to update Eqs. (5.16) ~ (5.18), which 

results in:  

 𝑑𝜀𝑖𝑗
I3 = 𝑑𝜀𝑖𝑗

I  & 𝑑Ω𝑖𝑗
3 = 𝑑Ω𝑖𝑗 (5.28) 

 𝜀𝑖𝑗
I3 = 𝜀𝑖𝑗

I(𝑛) + 𝑑𝜀𝑖𝑗
I3 (5.29) 

 𝜎𝑖𝑗
3 = c𝑖𝑗𝑘𝑙(𝜀𝑘𝑙

(𝑛+1) − 𝜀𝑘𝑙
I3) (5.30) 

 Ω𝑖𝑗
3 = Ω𝑖𝑗

(𝑛) + 𝑑Ω𝑖𝑗
3  (5.31) 

At the last step, the incremental variables can be updated again by substituting the results 

obtained in the third step into Eqs. (5.16) ~ (5.18), which gives: 

 𝑑𝜀𝑖𝑗
I4 = 𝑑𝜀𝑖𝑗

I  & 𝑑Ω𝑖𝑗
4 = 𝑑Ω𝑖𝑗 (5.32) 

After completing the above four-step calculations, the inelastic strain, the tensorial stress 

and the internal stress at the current step can be approximated, as follows: 

 𝜀𝑖𝑗
I(𝑛+1) = 𝜀𝑖𝑗

I(𝑛) +
1

6
𝑑𝜀𝑖𝑗

I1 +
1

3
𝑑𝜀𝑖𝑗

I2 +
1

3
𝑑𝜀𝑖𝑗

I3 +
1

6
𝑑𝜀𝑖𝑗

I4 (5.33) 

 𝜎𝑖𝑗
(𝑛+1) = c𝑖𝑗𝑘𝑙(𝜀𝑘𝑙

(𝑛+1) − 𝜀𝑘𝑙
I(𝑛+1)) (5.34) 

 Ω𝑖𝑗
(𝑛+1) = Ω𝑖𝑗

(𝑛) +
1

6
𝑑Ω𝑖𝑗

1 +
1

3
𝑑Ω𝑖𝑗

2 +
1

3
𝑑Ω𝑖𝑗

3 +
1

6
𝑑Ω𝑖𝑗

4  (5.35) 

 



Chapter 5: Mechanical response prediction 

171 

 

5.3.2 Rate-dependence of yarn material 

In the present work, the logarithm scaling approach that was initially proposed by Weeks 

and Sun [204] is employed to model the rate-dependent behaviour of the yarn material in 

the fibre/longitudinal direction. Specifically, the rate-dependence in the fibre direction is 

described by scaling the longitudinal Young’s modulus, as follows: 

 𝐸L = {
𝐸L0 (1 + 𝐶ELln

|�̇�|

�̇�0
) |𝜀̇| ≥ 𝜀0̇

𝐸L0 |𝜀̇| < 𝜀0̇
 (5.36) 

where 𝐸L denotes the rate-dependent elastic modulus, 𝜀0̇ stands for the reference strain-rate 

and is often taken as a relatively low strain-rate, such as 10ˉ⁵/s, 𝐸L0 is the longitudinal 

elastic modulus measured at the reference strain-rate, 𝜀̇ is the average strain-rate applied to 

the yarn material, and 𝐶EL is a scaling parameter which describes the rate-dependence of 

the yarn material in the fibre direction and needs to be fitted against experimental results. 

Here, it should be noted that the above formulation is exclusively designed for strain-rate 

sensitive yarn materials, such as glass-fibre yarns. In terms of strain-rate insensitive yarn 

materials, such as carbon-fibre yarns, no rate-dependence in the elastic modulus should be 

taken into account. 

As the above formulation is aimed to describe the rate-dependent behaviour of the yarn 

constituent in woven composites, conducting experimental tests at the scale of the yarn 

constituent to tune the scaling parameter would be problematic. A more practical solution 

is to firstly fabricate unidirectional composite specimens with the same types of material 

constituents as those in the yarn material. Then, a number of uniaxial tensile tests should 

be conducted at different constant strain rates to obtain experimental data pairs, i.e. 𝑥𝑖 =

log𝜀�̇� − log𝜀0̇ and 𝑦𝑖 = (𝐸L)𝑖. Here, it should be noted that if the volume fraction of the 

unidirectional composite specimens is different from that of the yarn material, these data 

pairs need to be normalised. Finally, based on the normalised data pairs, a least-squares 

regression analysis can be performed to obtain the best fit line, and the scaling parameter, 

𝐶EL, can be fitted as 𝐸L0 is known and the slope of the best fit line is equal to 𝐸L0𝐶EL. 

5.3.3 Damage initiation and evolution of constituents 

5.3.3.1 Damage initiation of yarn material 
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As the yarn material in woven composites is assumed to be unidirectional composites in 

the local material coordinate system, its failure can be largely identified by adapting the 

criteria developed for unidirectional composites. In the present research, the well-known  

Hashin’s failure criteria [205], which were developed for unidirectional composites, are 

generalised to identify the damage initiation of the yarn material in woven composites. 

Specifically, six failure modes are defined for the yarn material, and each failure mode is 

assumed to initiate if the failure function reaches unity. In the following paragraphs, the 

six failure modes and the corresponding failure functions will be detailed. For simplicity, 

the meaning of the quantities in the failure functions are summarised in advance. 𝜎𝑖𝑖 and 

𝜏𝑖𝑗 denotes the normal and shear stress components; 𝑋T and 𝑋C represent the tensile and 

compressive strengths in the longitudinal or fibre direction; 𝑌T and 𝑌C refer to the tensile 

and compressive strengths in the in-plane transverse direction; 𝑍T and 𝑍C are the tensile 

and compressive strengths in the out-of-plane transverse direction; 𝑆LT, 𝑆TT and 𝑆TL are the 

shear strengths of the yarn material in the corresponding action planes; and the symbol 

“〈   〉” denotes the Macaulay brackets. Since this symbol is exactly the same as the volume 

average operator, see in Eq. (2.64), it should be noted that the utilisation of this symbol in 

this section only suggests that the Macaulay bracket operation is performed, i.e.: 

 〈𝜎〉  = {
𝜎 𝜎 ≥ 0
0 𝜎 < 0

 (5.37) 

 Mode 1: Tensile fibre failure in the fibre direction (𝜎11 ≥ 0) 

In the fibre direction, the response of the yarn material in woven composites is primarily 

driven by the fibres, and the failure in this direction occurs typically in the form of tensile 

fibre fracture. The main contributing factor to this failure mode is the tensile stress in the 

fibre direction, whose increase promotes the failure. However, when defining the failure 

function, the contribution from the in-plane shear stress and the out-of-plane stress should 

not be neglected as they are parallel to the fibre direction. Therefore, in a similar way of 

defining failure in Hashin’s damage model [205], tensile fibre failure in the yarn material 

is assumed to be as a result of the quadratic interactions between the longitudinal tensile 

and shear stresses, and the failure function is defined as follows: 

 𝑓1fT = (
〈𝜎11〉

𝑋T
)
2

+
𝜏12
2

𝑆LT
2 +

𝜏31
2

𝑆TL
2 = 1 (5.38) 
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 Mode 2: Compressive fibre failure in the fibre direction (𝜎11 < 0) 

When subjected to compression in the longitudinal direction, the dominant failure mode 

shown in the yarn material is compressive fibre failure (e.g. buckling and kinking of fibres). 

Under compression, the increase of the compressive stress in the fibre direction promotes 

the presence of this failure mode. However, the compressive stresses in the in-plane and 

out-of-plane transverse directions tend to prevent the fibres from buckling or kinking and 

thus discourage the presence of compressive fibre failure. Therefore, the failure function 

for this failure mode is defined based on the competition between the compressive stress 

in the fibre direction (𝜎11 < 0) and those in the transverse directions, as follows: 

 𝑓1fC = (
−𝜎11−〈−

𝜎22+𝜎33
2

〉

𝑋C
)

2

= 1 (5.39) 

 Mode 3: Matrix cracking under in-plane transverse tension (𝜎22 ≥ 0) 

If the yarn material in woven composites is loaded in transverse directions, the potential 

failure modes include intra-yarn matrix cracking, matrix shear and matrix-fibre interface 

debonding, which is still a matrix-dominated failure mode [206]. However, in the case of 

in-plane transverse tension, the dominant failure mode is matrix cracking, and it is often 

believed that this failure mode is closely associated with the tensile loading, as well as the 

shear forces in the in-plane transverse direction. Therefore, the function for this failure 

mode is defined based on the transverse tensile and shear stresses, as follows: 

 𝑓2mC = (
〈𝜎22〉

𝑌T
)
2

+
𝜏12
2

𝑆LT
2 +

𝜏23
2

𝑆TT
2 = 1 (5.40) 

 Mode 4: Matrix shear under in-plane transverse compression (𝜎22 < 0) 

In the case of in-plane transverse compression, the predominant failure mode of the yarn 

material becomes matrix shear failure, which is as a consequence of randomly distributed 

fibres running through the matrix. In the present research, the failure criterion formulated 

by Hashin [205] for identifying matrix compression failure in unidirectional composites is 

directly employed, as follows: 

 𝑓2mS = (
〈−𝜎22〉

2𝑆TT
)
2

+ [(
𝑌C

2𝑆TT
)
2

− 1]
𝜎22

𝑌C
+

𝜏12
2

𝑆LT
2 = 1 (5.41) 
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 Mode 5: Matrix cracking under out-of-plane transverse tension (𝜎33 ≥ 0) 

For the yarn material in woven composites, the potential failure modes in the out-of-plane 

direction and the contributing factors to these failure modes are similar to those in the in-

plane direction. Therefore, the failure function for identifying matrix cracking under out-

of-plane transverse tension can be defined in a similar way, as follows: 

 𝑓3mC = (
〈𝜎33〉

𝑍T
)
2

+
𝜏23
2

𝑆TT
2 +

𝜏31
2

𝑆TL
2 = 1 (5.42) 

 Mode 6: Matrix shear under out-of-plane transverse compression (𝜎33 < 0) 

Under out-of-plane transverse compression, the failure in the yarn material is primarily in 

the form of matrix shear, which is similar to failure mode 4. Thus, the failure function for 

this failure mode is defined in a similar form to Eq. (5.41), as follows: 

 𝑓3mS = (
〈−𝜎33〉

2𝑆TT
)
2

+ [(
𝑍C

2𝑆TT
)
2

− 1]
𝜎33

𝑍C
+

𝜏31
2

𝑆TL
2 = 1 (5.43) 

5.3.3.2 Damage initiation of polymer matrix 

It should be noted that the Goldberg model discussed above describes only the deformation 

of a polymer prior to failure, suitable functions should be defined to characterise the post-

failure behaviour. Considering that polymers exhibit a low degree of stress variation after 

saturation, the maximum strain criterion is used to identify the point where damage in the 

polymer matrix initiates, as follows, where 𝜀mf stands for the failure strain, and 𝜀eff is the 

total effective strain: 

 𝑓m = (
𝜀eff

𝜀mf
)
2

= 1 (5.44) 

After implementing this failure criterion for homogenising the overall response of woven 

composites, the total effective strain 𝜀eff, and the failure function 𝑓m will be calculated at 

each time step. If this failure condition is met for a material point in the polymer matrix, 

the elasticity matrix defined in Eq. (2.13) should be updated by reducing the values of the 

elastic and shear moduli uniformly based on the degree of damage, which will be addressed 

later in Section 5.3.3.4. When using the criterion defined in Eq. (5.44), it should be noted 

that the failure strain of a polymer matrix may vary with strain-rate as a result of the rate-
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dependence of the polymer matrix. To take such a phenomenon into account, the following 

logarithm formulation can be used to scale the failure strain: 

 𝜀mf = {
𝜀m0 (1 ± 𝐶mεln

|�̇�|

�̇�0
) |𝜀̇| ≥ 𝜀0̇

𝜀m0 |𝜀̇| < 𝜀0̇
 (5.45) 

where 𝜀mf refers to the rate-dependent failure strain, 𝜀0̇ represents the reference strain-rate, 

𝜀m0 stands for the failure strain measured at the reference strain-rate, 𝜀̇ denotes the average 

strain rate applied to the polymer matrix, and 𝐶mε is a material parameter describing the 

rate-dependence of the failure strain against the strain-rate. Here, this material parameter 

should be fitted by using a procedure similar to that in Section 5.3.2. Also, it should be 

noted that the positive sign should be utilised if the failure strain is found to increase with 

strain-rate; otherwise, the negative sign should be used. 

5.3.3.3 Damage evolution of yarn material 

 Formulations based on Weibull distribution 

To accurately predict the overall response of woven composites, it is critical to identify 

how damage will develop after damage initiation. One of the commonly used techniques 

is to employ a Weibull function based formulation [207] to phenomenologically describe 

the damage evolution as a function of the applied stress or strain, see [130, 131, 135, 136, 

208]. The uniaxial form of the commonly used Weibull function based formulation for 

describing the damage evolution in composite materials can be written as: 

 𝜔 = 1 − exp [−
1

𝛼exp (1)
(
𝐸|𝜀|

𝑋
)
𝛼

] (5.46) 

where 𝜀 refers to the strain, 𝑋 denotes the strength, 𝐸 is Young’s modulus, 𝛼 is a material 

parameter used to describe the rate of damage evolution, 𝜔 is the damage variable, with 

the value of 0 representing the undamaged or virgin state and the value of 1 denoting the 

state of complete failure. 

However, it can be found after taking a closer examination that there are two problems in 

the above formulation. On one hand, if a failure criterion is applied to identify the point 

where damage initiates, the use of this formulation means that damage will initiate at zero 
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stress or strain, which is generally not desirable. On the other hand, if a failure criterion is 

utilised, e.g. 𝐸|𝜀| = 𝑋, the value of the damage calculated using this formulation for the 

point of damage initiation, where the damage is expected to be zero, is not equal to zero: 

 𝜔0 = 1 − exp (−
1

𝛼exp (1)
) ≠ 0 (5.47) 

To eliminate the above limitations, an improved formulation is proposed in the present 

work for predicting the damage evolution of the yarn material in woven composites. The 

uniaxial form of the proposed formulation is written as follows: 

 𝜔 = {
0 𝐸|𝜀| < 𝑋

1 − exp {−
1

exp (1)
[(
𝐸|𝜀|

𝑋
)
𝛽

− 1]} 𝐸|𝜀| ≥ 𝑋
 (5.48) 

where 𝛽 is a material parameter used to describe the rate of damage evolution. Here, it is 

interesting to note that the proposed formulation still complies with the standard Weibull 

function based formulation to some extent. Specifically, the proposed formulation can be 

rewritten into a special case of the standard Weibull function based formulation by setting 

𝛼 as 1, as follows: 

 𝜔 = {

0 𝐸|𝜀| < 𝑋

1 − exp {−
1

𝛼exp (1)
[(
𝐸|𝜀|

X
)
𝛽

− 1]
𝛼

} 𝐸|𝜀| ≥ 𝑋
 (5.49) 

 

Figure 5.11: Comparison between the standard and improved formulations 

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

D
a
m

a
g
e 

v
a
ri

a
b

le
 (
ω

)

Strain (%)

Original (α=3.0)

Improved (β=1.5)

Improved (β=2.0)

Improved (β=2.5)
ω₀≠0



Chapter 5: Mechanical response prediction 

177 

 

Fig. 5.11 shows a comparison between the standard and the improved formulations, where 

the same values of 𝐸 and 𝑋 were utilised to produce the curves based on Eqs. (5.46) and 

(5.48), respectively. It is clearly demonstrated in this figure that both the problem of non-

zero damage at the point of damage initiation and that of damage propagating from zero 

stress or strain have been effectively avoided by utilising the improved formulation. Also, 

this figure suggests that by changing the value of the material parameter, 𝛽, the rate of 

damage evolution can be easily adjusted for the yarn material of investigation. 

In the present work, the improved formulation given in Eq. (5.48) is extended to model the 

damage evolutions associated with the six failure modes, as previously described in Section 

5.3.3.1. Specifically, the functions to be used to represent the damage evolution of the six 

failure modes of the yarn material are defined as follows: 

 𝜔1fT = {
0 𝑓1fT < 1

1 − exp{− [(𝑓1fT)
𝛽1 − 1] exp(1)⁄ } 𝑓1fT ≥ 1

 (5.50) 

 𝜔1fC = {
0 𝑓1fC < 1

1 − exp{− [(𝑓1fC)
𝛽2 − 1] exp(1)⁄ } 𝑓1fC ≥ 1

 (5.51) 

 𝜔2mC = {
0 𝑓2mC < 1

1 − exp{− [(𝑓2mC)
𝛽3 − 1] exp(1)⁄ } 𝑓2mC ≥ 1

 (5.52) 

 𝜔2mS = {
0 𝑓2mS < 1

1 − exp{− [(𝑓2mS)
𝛽4 − 1] exp(1)⁄ } 𝑓2mS ≥ 1

 (5.53) 

 𝜔3mC = {
0 𝑓3mC < 1

1 − exp{− [(𝑓3mC)
𝛽5 − 1] exp(1)⁄ } 𝑓3mC ≥ 1

 (5.54) 

 𝜔3mS = {
0 𝑓3mS < 1

1 − exp{− [(𝑓3mS)
𝛽6 − 1] exp(1)⁄ } 𝑓3mS ≥ 1

 (5.55) 

where 𝛽1 ~ 𝛽6 are the material parameters used to describe the rates of damage evolution 

corresponding to the six failure modes. Here, each constant can be fitted from a uniaxial 

test. For example, the 𝑖th parameter 𝛽𝑖 (𝑖 = 1,2, … ,6) can be determined by minimising a 

least-squares function that is based on the differences between the stresses measured at the 

post-failure stage, 𝜎𝑗  (𝑗 = 1,2, … , 𝑛), and the predicted stresses, �̂�𝑗: 
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 𝑔(𝛽𝑖) = √(𝜎1 − �̂�1)2 +⋯+ (𝜎𝑗 − �̂�𝑗)
2
+⋯+ (𝜎𝑛 − �̂�𝑛)2 (5.56) 

where �̂�𝑗 can be calculated based on the measured post-failure strain, 𝜀𝑗, as follows: 

 �̂�𝑗 = exp {− [(𝐸|𝜀𝑗|/X)
𝛽𝑖
− 1] exp(1)⁄ } 𝐸𝜀𝑗 (5.57) 

 Calculation of the damaged elasticity matrix 

To account for the degradation of material stiffness resulted from the damage evolution in 

the yarn material, the concept of the damaged elasticity matrix, 𝐂(𝜔), is employed to 

replace the original elasticity matrix. For simplicity, the damaged elasticity matrix can be 

defined using its inverse, i.e. 𝐒(𝜔), which can be divided into a direct part 𝐒d(𝜔) and a 

shear part 𝐒s(𝜔), as follows: 

 𝐂(𝜔) = 𝐒−1(𝜔) = [
𝐒d
−1(𝜔) 𝐎

𝐎 𝐒s
−1(𝜔)

] (5.58) 

 𝐒d(𝜔) =

[
 
 
 
 

1

𝐸L(1−𝜔1)
−

𝑣LT

𝐸L√(1−𝜔1)(1−𝜔2)
−

𝑣TL

𝐸T√(1−𝜔1)(1−𝜔3)

−
𝑣LT

𝐸L√(1−𝜔1)(1−𝜔2)

1

𝐸T(1−𝜔2)
−

𝑣TT

𝐸T√(1−𝜔2)(1−𝜔3)

−
𝑣TL

𝐸T√(1−𝜔1)(1−𝜔3)
−

𝑣TT

𝐸T√(1−𝜔2)(1−𝜔3)

1

𝐸T(1−𝜔3) ]
 
 
 
 

 (5.59) 

 𝐒s(𝜔) = ⌈
1

𝐺LT(1−𝜔4)

1

𝐺TT(1−𝜔5)

1

𝐺TL(1−𝜔6)
⌋ (5.60) 

where 

 𝜔1 = (𝜔1fT〈𝜎11〉 − 𝜔1fC〈−𝜎11〉)/𝜎11 (5.61) 

 𝜔2 = (𝜔2mC〈𝜎22〉 − 𝜔2mS〈−𝜎22〉)/𝜎22 (5.62) 

 𝜔3 = (𝜔3mC〈𝜎33〉 − 𝜔3mS〈−𝜎33〉)/𝜎33 (5.63) 

 𝜔4 = 1 − (1 − 𝜔1fT)(1 − 𝜔1fC)(1 − 𝜔2mC)(1 − 𝜔2mS) (5.64) 

 𝜔5 = 1 − (1 − 𝜔2mC)(1 − 𝜔2mS)(1 − 𝜔3mC)(1 − 𝜔3mS) (5.65) 

 𝜔6 = 1 − (1 − 𝜔3mC)(1 − 𝜔3mS)(1 − 𝜔1fT)(1 − 𝜔1fC) (5.66) 
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5.3.3.4 Damage evolution of polymer matrix 

In terms of the damage evolution of the polymer matrix, it is assumed to follow a similar 

formulation to the yarn material, as follows: 

 𝜔m = {
0 |𝑓m| ≤ 1

1 − exp{− [(|𝑓m|)
𝛽m − 1] exp(1)⁄ } |𝑓m| > 1

 (5.67) 

where 𝛽m is a constant used to describe the rate of damage evolution. The degradation of 

the stiffness of the polymer matrix due to damage can be taken into account by modifying 

the elasticity matrix into Cm(1 − 𝜔m). 

5.3.4 Deformation of woven fabric under shear 

Under in-plane tension in the warp or fill direction, the straightening effects of yarns in 

plain woven composites is limited due to a low degree of waviness. However, as a result 

of a low stiffness of the matrix phase, plain woven composites are susceptible to in-plane 

shear loading, causing reorientations in the warp and fill yarns the mutually perpendicular 

state to a fully locked position. In this work, the approach developed by Tabiei and Ivanov 

[209] for describing the deformation of a flexible woven fabric is adapted. Specifically, the 

reorientation of woven yarns under shear is modelled by modifying the in-plane shear 

modulus 𝐺LT into μ𝐺LT, where μ is a discount factor. For plain woven composites, this 

factor is assumed to have a value of 𝐺m 𝐺LT⁄  if the warp and fill yarns are in the original 

state and linearly increase to unity when the yarns are compacted to a fully locked position. 

Considering the geometrical relations of the yarns in the fully locked positions, the value 

of this factor at different strain values can be determined, as follows, where 𝐺m is the shear 

modulus of the matrix, and 〈𝜀11〉 is the volume average strain applied in the X direction: 

 μ =

{
 

 
(𝐺LT−𝐺m)〈𝜀11〉+𝐺m𝜀a

𝐺LT𝜀a
𝜀a ≤ 〈𝜀11〉 < 0

(𝐺LT−𝐺m)〈𝜀11〉+𝐺m𝜀b

𝐺LT𝜀b
𝜀b > 〈𝜀11〉 ≥ 0

1 Otherwise

 (5.68) 

 𝜀a = √2sin(0.5arcsin (𝜆)) − 1 (5.69) 

 𝜀b = √2cos(0.5arcsin (𝜆)) − 1 (5.70) 
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5.4 Meshfree implementation 

5.4.1 Framework of the meshfree program 

Similar to the case of predicting the elastic properties of woven composites, an in-house 

computer program implementing the high-fidelity mUC models and the material models 

described in Section 5.3 has been developed in combination with the explicit weak-form 

meshfree method for predicting the overall response of woven composites. This program, 

which will be termed as the explicit meshfree program, was coded using the programming 

language FORTRAN. It allows the user to predict the overall response of plain, twill or 3D 

woven composites, on the condition of providing four types of inputs, i.e. geometry 

configurations, numerical parameters, material properties and loading conditions, which 

will be discussed later.  

Fig. 5.12 details the flow chart of this computer program. Clearly, the upper-left block of 

this program is similar to the left block of the standard meshfree program (see Fig. 4.35), 

except that the lumped mass matrix, 𝐌L, rather than the global stiffness matrix should be 

calculated. Then, based on the quantities calculated initially and the loading condition 

prescribed, the meshfree-based explicit time integration is performed. Here, at each time 

step, the acceleration, velocity and displacement of all field nodes are computed directly, 

and thus the strains of all integration points can be derived for the subsequent calculation 

of the stresses of all material points. For the points located within the yarns, the material 

model for identifying the damage initiation and evolution in the yarn material is utilised to 

calculate the stresses; otherwise, the viscoplasticity-based model is used to determine the 

material state of the polymer matrix and calculate the stresses, as detailed in Fig. 5.13, 

where it is shown that the four-step Runge-Kutta method has been utilised to obtain stable 

solutions of the inelastic strain, the internal stress and the total stress based on the results 

from the previous step. After completing the calculations for all the time steps, a history of 

the volume average stress can be derived, and its combination with the history of the strain 

prescribed yields the overall response of the woven composites of prediction. It is worth 

noting that the quantities in the upper-left block of Fig. 5.12 are independent of time. 

Therefore, this part of codes should be executed only once, before the execution of the 

subsequent explicit time integration. On the other hand, the codes corresponding to the 

remaining parts of the meshfree program should be performed for all the time steps. 
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Figure 5.12: Flow chart of the explicit meshfree program 
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Figure 5.13: Flow chart of the viscoplasticity-based model 

5.4.2 Further details of the meshfree program 

Table 5.7 lists the input parameters of the explicit meshfree program, which also consist of 

the geometry parameters for the mUC models of the three types of woven composites, the 

numerical parameters for domain discretisation, determination of support domain and 

shape function calculations, iii) the material parameters for the polymer matrix and yarn 

material, and iv) the prescribed strain. Here, it should be noted that the use of the explicit 

meshfree program in this work for predicting the overall response of woven composites is 

based on the domain discretisation strategy previously detailed in Section 4.6.4. Thus, the 

numerical parameters can be determined by directly performing the procedures discussed 

in Sections 4.6 and 4.7. However, to save computational time and costs, the conclusions 

that have been summarised in Section 4.7 can also be used for the determination of the 

open numerical parameters for the case of homogenising the overall response of woven 

composites. 
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Table 5.7: Inputs for the computer program for overall response prediction 

Type Variable Description 

Geometry 

parameters 

WCT Weave type (1: plain, 2: twill, 3: 3D) 

UCT UC type (1: normal, 2: off-axis) 

𝐿,𝑊,𝐻,𝐻w, … Dimensional parameters 

 𝜆w, 𝜆fa, 𝜆fb, 𝜆b Dimensionless parameters 

Numerical 

parameters 

𝑛F𝑥, 𝑛F𝑦, 𝑛F𝑧 No. of nodes in each direction 

𝑛C𝑥, 𝑛C𝑦, 𝑛C𝑧 No. of cells in each direction 

𝛼s, 𝑑c𝑥, 𝑑c𝑦, 𝑑c𝑧 Support domain parameters 

𝜃, 𝑞, 𝑎0, 𝑎1, 𝑎2, 𝑎3 Constants for RBF and MK 

Material 

properties 

𝐸m, 𝑣m, 𝐶mε, 𝜀m0, 𝛽m, 𝜌m Material properties of polymer matrix 

𝐷0, 𝑍0, 𝑛r, 𝑞, Ωm Viscoplasticity model parameters 

𝐸L, 𝐸T, 𝑣LT, 𝑣TT, 𝐺LT, 𝐶EL, 𝜌y Material properties of yarn material 

𝑋T, 𝑋C, 𝑌T, 𝑌C, 𝑍T, 𝑍C, 𝑆LT, … Material strengths of yarn material 

𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6 Parameters for the damage evolution  

PBC 
ALC Admissible loading case (1, 2, 3 or 4) 

〈𝜺(𝑡)〉 Prescribed macroscopic strain 

5.5 Results and discussion 

5.5.1 Examples on plain woven composites 

To evaluate the accuracy and effectiveness of the UC models, the material models and the 

meshfree-based UC modelling methodology for predicting the overall response of woven 

composites, two sets of numerical examples were conducted for a plain woven composite 

material under in-plain normal and off-axis tensile loading conditions, as detailed in Table 

5.8. The first set of numerical simulations was based on the normal mUC of plain woven 

composites and to predict the responses of the composites subjected to tension in the warp 

direction (0°) with three different strain rates, i.e. 10-1/s, 10-3/s and 10-5/s, while the second 

set of simulations was based on the off-axis mUC and to predict the responses subjected to 

tension in the off-axis direction (45°) with the three strain rates. 
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Table 5.8: Details of the two sets of numerical simulations for EP121-C15-53 

Simulation Rate (s−1) Loading direction mUC PBC 
S

et
 A

 

A1 10-1 Warp (0°) Normal See Table B.1 

A2 10-3 Warp (0°) Normal See Table B.1 

A3 10-5 Warp (0°) Normal See Table B.1 

S
et

 B
 

B1 10-1 Off-axis (45°) Off-axis See Table D.1 

B2 10-3 Off-axis (45°) Off-axis See Table D.1 

B3 10-5 Off-axis (45°) Off-axis See Table D.1 

5.5.1.1 Geometry information and numerical parameters 

The composite material of prediction here is the one that has been previously utilised in 

Sections 4.1.2 and 4.7.1, and it is based on the EP121-C15-53 prepreg. Further details of 

this composite material can be found on the supplier website [193]. Thus, the geometry 

inputs for the two sets of numerical simulations are the same as those listed in Table 4.9. 

To determine the values of the open numerical parameters that have been employed in the 

two sets of simulations, sensitivity studies of all the parameters to the predicted response 

should be performed. However, to save computational time, the conclusions summarised 

from the sensitivity studies presented in Section 4.7.1 were directly utilised to determine 

the values of these parameters in the simulations in Set A, as shown in Table 5.9. In terms 

of the numerical parameters in the simulations in Set B, the numbers of field nodes and 

background cells were scaled based on the ratios of the overall dimensions of the off-axis 

mUC to those of the normal mUC. For example, if the ratio of the length of the off-axis 

mUC to that of the normal mUC is 𝑟L and the number of field nodes in the length direction 

of the normal mUC is 𝑛F𝑥, the number of field nodes in the length direction of the off-axis 

mUC will be 𝑛F𝑥 × 𝑟L. 

Table 5.9: Numerical inputs for the two sets of numerical simulations 

Set Set A Set B 

No. of field nodes 13×13×7 10×20×7 

No. of background cells 60×60×30 45×90×30 

Domain scaling parameter 𝛼s = 2.5 𝛼𝑠 = 2.5 



Chapter 5: Mechanical response prediction 

185 

 

5.5.1.2 Determination of matrix properties and viscoplastic parameters 

To determine the material properties and parameters in the viscoplasticity-based material 

model, a number of uniaxial tensile tests were conducted on the polymer matrix of the 

composites system of investigation, i.e. EP 121 matrix, according to the testing standard 

ASTM D638-14 [210] and the fitting procedure described in Section 5.3.1.2. The tests were 

comprised of six samples, with each sample further consisting of five specimens tested at 

the same constant strain rate to obtain averaged results. 

Table 5.10: The averaged results of the six uniaxial tensile tests for EP 121 

Sample #1 #2 #3 #4 #5 #6 

𝜀0̇ 10-5 10-4 10-3 10-2 10-1 1 

𝜎s 72.32 72.91 74.68 77.85 80.07 85.54 

𝜀s
I 4.56% 4.61% 4.47% 4.42% 4.39% 4.25% 

𝜀mf 7.13% 7.21% 7.00% 6.92% 6.86% 6.65% 

𝑥 2.373 2.427 2.572 2.789 2.917 3.176 

𝑦 3.731 3.614 3.482 3.329 3.149 2.929 

 

Figure 5.14: Regression analysis for determining the viscoplastic parameters 
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Table 5.10 shows the results of the six samples of tests, where 𝜀0̇ denotes the testing strain 

rate, 𝜎s and 𝜀s
I stand for the stress and inelastic strain at saturation, 𝜀mf represents the stain 

at failure initiation. Here, it should be noted that the values of (𝑥, 𝑦) were calculated based 

on Eqs. (5.13) and (5.14). Also, when calculating 𝑥 and 𝑦, 𝐷0 was chosen to be 104 times 

the maximum strain-rate, and Ωm was estimated to be 68% of the maximum saturation 

stress. Based on the data in Table 5.10, a least-squares regression analysis was performed, 

and the equation of the best fit line is shown in Fig. 5.14. By comparing the best fit line 

against Eq. (5.12), the values of 𝑛r and 𝑍0 were calculated, i.e. 𝑛r = 0.586 and 𝑍0 = 330 

MPa. In terms of parameter 𝑞, its value was calculated by solving Eq. (5.15), where the 

value of the inelastic strain used in this calculation was chosen to be the average of the 

tested values of 𝜀s
I. 

 

Figure 5.15: Least-squares regression analysis for determining parameter Cmε 

The results of the above uniaxial tests were employed to determine the elastic modulus, 

Poisson’s ratio of the polymer matrix, and also the failure strain scaling coefficient, 𝐶mε, 

whose value was determined after performing the regression analysis shown in Fig. 5.15. 
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using the parameter fitting approach previously described in Section 5.3.3.3. The material 

properties and parameters of the resin matrix are summarised in Table 5.11. 

Table 5.11: Material inputs of EP121-C15-53 (Modulus in GPa, Strength in MPa) 

E
P

 1
2
1

 

ep
o
x
y
 r

es
in

 

𝐸m 𝑣m 𝜀m0 𝐶mε 𝛽m 𝜌m(g/cm
3) 

3.11 0.36 7.13% 0.014 3.8 1.264 

𝐷0 (s
−1) 𝑍0 𝑛r 𝑞 Ωm  

10000 330 0.586 103 58  

3
k
 H

T
A

4
0

 

ca
rb

o
n
-f

ib
re

 y
ar

n
 

𝐸L 𝐸T 𝑣LT 𝑣TT 𝐺LT 𝜌y(g/cm
3) 

161.64 10.57 0.27 0.33 5.52 1.614 

𝑋T/𝑋C 𝑌T/𝑌C 𝑍T/𝑍C 𝑆LT 𝑆TT 𝑆TL 

2687/1622 58/263 58/263 95 78 80 

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 

9.0 7.6 4.7 2.8 4.7 2.8 

5.5.1.3 Determination of yarn properties and damage parameters 

The yarn material in this plain woven composite was made from 3k HTA40 carbon fibres. 

Due to the unavailability of experimental facilities and the difficulty of conducting in-site 

tests at the yarn scale at the time of undertaking this research, all material properties of this 

yarn material were determined from testing unidirectional composite specimens that have 

the same material constituents and FVF as the yarn material. The basic properties such as 

the elastic moduli and strength parameters were directly obtained based on uniaxial tension, 

compression and shear tests. However, these tests were performed to determine only the 

in-plane properties. For the out-of-plane properties such as 𝑍T, they were assumed to be 

the same as those in the in-plane transverse direction, as given in Table 5.11. 

In terms of the parameters in the damage evolution model, they were also approximated 

using uniaxial tests, where the specimens were loaded to complete failure, and both stress 

and strain data were collected to perform the least-squares procedure described in Section 

5.3.3.3. Specifically, for the parameter corresponding to the damage evolution of tensile 

fibre failure, 𝛽1, uniaxial tensile tests were performed on specimens in the longitudinal 



5.5 Results and discussion  

188 

 

direction. Based on the recorded strain data, the predicted stresses were computed using 

Eq. (5.57). In combination with the measured stress data, Eq. (5.56) was applied to form a 

least-squares function of 𝛽1, which can be determined by minimising the function. For the 

parameter associated with compressive fibre failure, 𝛽2, it was determined by conducting 

compression tests in the longitudinal direction. In terms of the parameters associated with 

matrix cracking and shear due to in-plane tensile and compressive loading, i.e. 𝛽3 and 𝛽4, 

they were evaluated after doing in-plane tension and compressive tests in the transverse 

direction, respectively. However, no test was performed for parameters 𝛽5 and 𝛽6 as the 

associated failure modes are similar to modes 3 and 4, and their values were assumed to be 

the same as 𝛽3 and 𝛽4. For clarity, the values of these damage evolution parameters are 

detailed in the last row of Table 5.11. However, it should be pointed out that the values 

determined using uniaxial tests on unidirectional specimens are with approximations since 

the failure modes in the tested unidirectional composites may not be completely identical 

to those in the yarn material of investigation. 

5.5.1.4 Experimental tests for validating the two sets of numerical simulations 

 

Figure 5.16: Fabrication of composite panels using a hot-press machine 

8 layers of prepreg   

Curing with a hot-press 
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To experimentally evaluate the two sets of meshfree-based simulations, composite panels 

based on 8 layers of EP121-C15-53 prepreg were fabricated by using a hot-press machine, 

as shown in Fig. 5.16. The panels were cured under the conditions of a dwell temperature 

of 135 °C for approximately 70 min and a pressure of 2 bars, and then cut into 0° and 45° 

specimens on a waterjet cutting machine, the use of which was to reduce the damage that 

may cause to the specimens during cutting. 

 

Figure 5.17: Uniaxial tensile tests on a hydraulic Instron machine 

According to ASTM D3039 [2] and the loading conditions in the two sets of numerical 

simulations, as detailed in Table 5.8, two sets of experimental tests were conducted on an 

Instron testing machine, as shown in Fig. 5.17. Here, the first set was comprised of three 

uniaxial tensile tests conducted on 0° specimens subjected to strain rates of approximately 

10-1/s, 10-3/s and 10-5/s, respectively, and the geometry configuration of these specimens 

are illustrated in Fig. 5.18a, where it is shown that glass fibre-reinforced plastic (GFRP) 

tabs were adhered to the testing specimens with a two-component epoxy resin for the sake 

of minimising gripping damage to the specimens. In terms of the second set of tests, they 
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were designed to obtain the overall responses of the plain woven composites subjected to 

the three strain rates of loading (10-1/s, 10-3/s and 10-5/s) in the off-axis direction, i.e. 45° 

to the warp direction. The geometry configuration of the 45° specimens is shown in Fig. 

5.18b. For each loading rate, three repeated tests were conducted, aiming to reduce the 

influence of uncertainties on the experimental results. 

 

(a) Geometry configuration of 0° specimen (unit: mm) 

 

(b) Geometry configuration of 45° specimen (unit: mm) 

Figure 5.18: Geometry configurations of the composite specimens 

5.5.1.5 Comparison of meshfree simulations with experiment results 

Fig. 5.19 compares the predicted and measured stress-strain responses of the plain woven 

CFRP composites subjected to the three rates of tensile loading in the warp/0° direction. In 

this figure, only the responses predicted based on the MLS technique are presented for 

clarity (a comparison among the MLS, RBF and MK techniques in terms of their accuracy 
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in the predictions will be discussed later). Clearly, the stress-strain curves predicted by 

using the meshfree-based UC modelling approach are generally in good agreement with 

those measured by the experimental tests, with the stress exhibiting a linear increase with 

the strain before reaching a maximum point. After this point, the stress drops instantly to 

zero, which is associated with the presence of fibre fracture, as highlighted in Fig. 5.20.  

 

Figure 5.19: Meshfree-based predictions & experimental results for 0° tension 

 

Figure 5.20: Typical failure mode of the CFRP composites after 0° tension 
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it is also confirmed that the rate-independent behaviour of this type of woven composites 

in the warp direction, as observed in the tests, has been effectively captured by the use of 

the meshfree-based UC approach. 

 

Figure 5.21: Meshfree-based predictions and experimental results for 45° tension 

Fig. 5.21 shows the predicted stress-strain curves of the plain woven CFRP composites 

under the three rates of loading in the off-axis/45° direction, as well as the corresponding 

experimental results. Again, the stress-strain curves predicted using the meshfree-based 

UC approach agree reasonably well with the experimental results. In particular, both the 

strain rate-dependent behaviour and the nonlinear response in the off-axis direction of this 

composite material have been successfully captured. Also, it is evident that the feature of 

the notably increased maximum stress with increasing strain rate, as well as that of the 

moderately decreased failure strain with increasing strain rate, have been predicted by the 

use of the meshfree-based approach. Furthermore, it is interesting to note that the above 

rate-dependent features are similar to those observed in the tests that were conducted for 

determining the material properties and viscoplasticity-based parameters of the polymer 

matrix. Therefore, it is established that the material behaviour of woven composite in the 

off-axis direction is primarily associated with that of the polymer matrix. 
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Apart from the above findings, it should be noted that the failure strain of this type of 

composites, either obtained by the meshfree-based predictions or the experimental tests, is 

within the range of around 22% - 25%, which is much larger than both that of the polymer 

matrix (approximately 7%) and that of the carbon fibres (approximately 1.7%). It is 

believed that such a large deformation in the off-axis direction of the composites was due 

to the fact that the presence of matrix cracking and shear, as evidenced in a typically failed 

specimen shown in Fig. 5.22, reduced its constraint on the woven fabric, leading to an 

exceptionally large degree of deformation in the off-axis direction of the composites. 

 

Figure 5.22: Typical failure mode of the CFRP composites after 45° tension 

The evidence demonstrated above, i.e. good agreements between the predicted responses 

and the corresponding experimental results, clearly suggests that the meshfree-based UC 

modelling approach is effective in predicting the responses of plain woven composites 

subjected to different rates of loading in both the normal and off-axis directions. Thus, it is 

theoretically expected that this approach would be able to predict the overall response of 

any other type of woven composites in any direction, as long as a matching UC model is 

developed and suitable material models are applied to describe the behaviours of the 

material constituents. Apart from this, it should be pointed out that although the modelling 

approach discussed in this chapter is based on the explicit weak-form meshfree method, 

the nature of the meshfree-based implementation here is essentially the same as that based 

on the standard weak-form meshfree method, as discussed in the last chapter. Thus, one of 

the highlights of the research presented in this chapter is its capability of addressing the 

problem of a reduced accuracy in the analytical approaches and eliminating the concern of 

having highly complex and time-consuming pre-processing in the FEM-based approaches, 

making it an accurate but simple approach. Another evident highlight of the research in 

this chapter is that it has extended the capability of the UC modelling methodology from 
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traditionally the homogenisation of the elastic properties to the prediction of the overall 

response of woven composites at the scale of UC. 

5.5.1.6 Comparison among the MLS, RBF and MK techniques 

To compare the difference in the MLS, RBF and MK techniques, numerical simulations 

were also conducted based on the three techniques to predict the responses of the plain 

woven CFRP composites under a strain rate of 10-1/s loaded in the normal and off-axis 

directions. Fig. 5.23 shows the stress-strain curves predicted for the case of 0 tension, as 

well as the experiment result. Clearly, all the predicted responses exhibit good agreement 

with the experiment result. Also, it can be seen that the RBF and MK techniques produce 

very close predictions, while the MLS technique gives a slightly different result, with its 

predicted value of the ultimate failure strain being higher than those obtained based on the 

other two techniques.  

The overall response predicted for the case of 45 tension is shown in Fig. 5.24. Again, the 

RBF and MK techniques generate closer predictions than the MLS technique does. It is 

believed that the presence of the slightly different predictions when using the MLS 

technique is as a consequence of the lack of the Kronecker delta function property in the 

MLS technique. 

 

Figure 5.23: The 0 tensile response predicted based on MLS, MK and RBF 
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Figure 5.24: The 45 tensile response predicted based on MLS, MK and RBF 

5.5.2 Application to plain, twill and 3D woven composites 

Obtaining prior knowledge of the influences of fibre tow size and weaving architecture on 

the overall response is often essential for the successful design of woven composite 

materials and structures. For this reason, the meshfree-based UC approach was applied to 

analyse the responses of plain, twill and 3D woven composites, as follows. However, due 

to the unavailability of material data for twill and 3D woven composites, the numerical 

examples that will be presented were based on the same set of material data, as given in 

Table 5.11. Furthermore, to save computational time, all the numerical simulations were 

performed using the same type of shape function approximation technique (i.e. the MLS 

technique) and at a relatively high strain rate (i.e. 10-1/s) 

5.5.2.1 Influence of fibre tow width on the response 

The first example was to investigate the influence of fibre tow width on the responses of 

twill woven composites subjected to 0 and 45 tensile loadings. For each loading case, 

three meshfree-based simulations were conducted on 2/2 twill woven composites with an 

overall dimension of 1mm × 1mm × 0.32mm and its fibre tow size being 0.8mm, 0.9 mm 
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dimensionless parameter, 𝜆, being 0.4, 0.45 and 0.5, and the yarn volume fractions being 

50.93%, 57.29% and 63.66%, respectively.  

 

Figure 5.25: Variation of the 0 tensile response on fibre tow width (or λ) 

Fig. 5.25 shows the stress-strain responses predicted for the twill woven composites under 

0 tensile loading, which clearly illustrated that both the maximum stress and the elastic 

modulus increase with the increase of 𝜆. To analyse the underlying mechanism that drives 

the presence of this phenomenon, the values of the elastic moduli, the differences in these 

values and the differences in the values of the dimensionless parameter are calculated, as 

listed in Table 5.12. From this table, it can be seen that the elastic modulus in the case of 

𝜆 = 0.5 is over 20% higher than that in the case of 𝜆 = 0.4. However, it is interesting to 

find that the percentages of the increases in the elastic modulus are similar to those of the 

increases in the dimensionless parameter, which are equivalent to the same percentages of 

the increases in tow width. Such a finding again confirms that the behaviour of woven 

composites in the fibre directions is primarily driven by that of the yarn material.  

Apart from the above findings, it should be noted that the predicted value of the failure 

strain (approximately 1.75%) is almost independent of fibre yarn’s width, as indicated in 

Fig. 5.25. This is believed to be due to the fact that the increase in fibre yarn’s width does 

not change the overall dimension (i.e. the size of the UC) of the composites, and thus it 

would not produce significant influence on the value of the failure strain. 
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Table 5.12: Variation of the elastic modulus on tow width the value of λ 

Case 𝐸 ∆𝐸% ∆𝜆% 

𝜆 = 0.4 54.85 - - 

𝜆 = 0.45 60.81 10.86% 12.5% 

𝜆 = 0.5 67.71 23.45% 25.0% 

Fig. 5.26 shows the predicted stress-strain responses of the twill woven composites under 

45 tensile loading. Unlike in the case of 0 tension, the increase of fibre tow size in this 

case does not generate significant variation in the maximum stress and the initial elastic 

modulus. In general, this is attributed to the fact that the response of woven composites in 

the off-axis direction is mainly dominated by the polymer matrix, and consequently the 

influence of the change in tow width on the response in this direction is reduced. Another 

feature of the results given in Fig. 5.26 is that the predicted failure strain shows a slight 

decrease with increasing yarn width, which can be explained by the fact that the increase 

of the yarn width leaves less space between adjacent yarns in the woven fabric, reducing 

the easiness of the deformation of the composites in the off-axis direction. 

 

Figure 5.26: Variation of the 45 tensile response on fibre tow width (or λ)  
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5.5.2.2 Influence of weave architecture on the response 

The second example was to numerically investigate the influence of weave architecture on 

the response of woven composites subjected to 0 and 45 tensile loading conditions. For 

this sake, meshfree-based simulations were performed for plain, twill and 3D woven 

composites. In these simulations, the same yarn volume fraction (i.e. 50.93%) was utilised 

to exclude the influence of yarn’s volume fraction on the response. The geometry inputs 

for the three types of woven composites are detailed in Table 5.13.  

Table 5.13: Geometry inputs for the three types of woven composites 

Plain 
𝐿 𝑊 𝐻 𝜆  

1.0 1.0 0.32 0.8  

Twill 
𝐿 𝑊 𝐻 𝜆  

1.0 1.0 0.32 0.4  

3D 

𝐿 𝑊 𝐻 𝜆w 𝜆fa 

1.0 1.0 1.0 0.85 0.45 

𝜆fb 𝜆b 𝐻w 𝐻fa 𝐻fb 

0.9 0.25 0.25 0.125 0.25 

 

Figure 5.27: Variation of the 0 tensile response on weave structure 
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Fig 5.27 shows the stress-strain responses predicted for the case of 0 tension. Here, it is 

evident that 3D woven composites appear to be stiffer than both the other two types of 

woven composites, and twill woven composites are stiffer than plain woven composites. 

Since the three types of woven composites have the same yarn volume, the presence of 

different stiffness can be explained by the difference in the percentage of straight yarns in 

warp/0 direction. Specifically, the percentages of straight yarns are 0% in plain woven 

composites, 50% in twill woven composites and up to 90% in 3D woven composites, as 

indicated in Figs. 4.9, 4.14 and 4.21. Given that the average waviness in the warp direction 

is highest in plain woven composites and lowest in 3D woven composites and that the 

presence of waviness in woven composites has led to a reduction in the material stiffness 

in the fibre direction, the results presented in Fig. 5.27 can thus be justified. 

 

Figure 5.28: Variation of the 40 tensile response on weave structure 

The overall stress-strain curves predicted for the case of 45 tension is shown in Fig. 5.28. 

Here, it can be clearly seen that the response of plain woven composites in this direction is 

almost identical to that of twill woven composites, while 3D woven composites tend to 

have an increased failure strain and a lower maximum stress. The presence of a decreased  

overall stiffness of 3D woven composites in the off-axis direction may be explained by the 

fact that there is no interlacing between the warp and weft yarns, which results in an easier 

deformation in the fabric of 3D woven composites, in comparison to that in both plain and 

twill woven composites. 
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5.6 Summary 

In this chapter, the off-axis mUC models of the three types of woven composites, as well 

as the corresponding PBCs, were firstly detailed. Then, the material models for describing 

the behaviours of the two constituents in woven composites were described. Specifically, 

a viscoplasticity-based model was selected to characterise the nonlinear, rate-dependent 

behaviour of the polymer matrix. For the yarn material, Hashin’s damage criteria were 

extended to identify the damage initiations of six failure modes and an improved Weibull 

function based formulation was proposed to describe the damage evolutions associated 

with the six failure modes. After that, an in-house computer program which implements 

the mUCs and the material models based on the explicit weak-form meshfree method was 

introduced. This computer program, which is referred to as the explicit meshfree program, 

was then applied to predict the responses of plain woven CFRP composites subjected to 

tension in the normal and off-axis directions and under different strain rates. It was shown 

that the meshfree-based predictions agree reasonably well with the experimental results, 

validating the accuracy and effectiveness of the meshfree-based UC approach in terms of 

predicting the overall response of woven composites. Finally, additional examples were 

presented to demonstrate the capability of the meshfree-based UC modelling in terms of 

predicting the overall response of all three types of woven composites, based on which an 

understanding of the influences of fibre tow width and weave structure on the overall 

response of woven composites was qualitatively achieved. 

Based on the numerical examples given in this chapter, it was concluded that one of the 

highlights of the research in this chapter is that the use of the meshfree-based approach 

simultaneously addresses the problem of a reduced accuracy in analytical approaches and 

the concern of the complexity in explicitly creating the geometries of the constituents and 

the subsequent pre-processing in the FEM-based approaches. Also, it was highlighted that 

the proposed approach extends the capability of the UC modelling methodology from the 

homogenisation of the elastic properties to the prediction of the overall response of woven 

composites at the scale of UC. 
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CHAPTER 6: CONCLUSION AND FUTURE 

WORK 

 

6.1 Main conclusions 

In this research, a meshfree-based unit cell (UC) modelling approach has been proposed 

for predicting both the elastic properties and the overall response of woven composites in 

the normal and off-axis directions. In the course of developing such an approach, high-

fidelity UC models have been proposed to describe the internal features or architecture of 

three commonly used types of woven composites, and in-house computer programs have 

been coded to implement and discretise the UC models by using the standard and explicit 

weak-form meshfree methods. Since the UC models developed are capable of describing 

the internal features of woven composites in high-fidelity and meanwhile the meshfree-

based discretisation is able to avoid the needs for explicitly creating the geometries of the 

constituents and the subsequent time-consuming pre-processing, the main contribution of 

this research is from a methodological point of view that it has successfully addressed the 

problems inherently existing in traditional UC modelling approaches, i.e. the concern of 

a reduced accuracy in analytical approaches and the problem of high complexity in the 

finite element method (FEM)-based approaches. In the numerical examples presented in 

Chapters 4 and 5, it has been shown that the meshfree-based predictions for the elastic 

properties and the overall responses of woven composites agree reasonably well with the 

experimental data and those found in the relevant literature. Thus, the main contribution 

of this research can also be interpreted from a practical point of view as an extension of 

the capability of the UC modelling methodology in the modelling of woven composites, 

from only the homogenisation of the elastic properties in the normal directions to that of 

the elastic properties in both the normal and off-axis directions, as well as to the prediction 

of the responses including the nonlinear, rate-dependent behaviour of woven composites 

subjected to in-plane loading in both the normal and off-axis directions. According to the 



6.1 Main conclusions  

202 

 

evidence discussed above, it can be concluded that the two research questions posed in 

Section 1.2 have been reasonably answered, and thus the aim of the present research has 

been successfully achieved. 

Given that the meshfree-based modelling approach is effective for predicting the elastic 

properties and the overall responses of woven composites and considering that the high-

fidelity nature in modelling the geometries of woven composites lose the possibility of 

adapting this approach for multiscale or numerical analysis up to the structural scale, due 

to the limited computational power available today, one of the practical implications of 

the present research is that the proposed approach can be utilised as a simple but accurate 

approach for identifying whether a simplified UC model is accurate enough if it is used 

to conduct a multiscale analysis. Another practical implication is that the meshfree-based 

models are very effective to perform qualitative analysis for different woven composites, 

as shown in Section 5.5.2, which makes it useful for obtaining an initial understanding 

and thus facilitating the design of woven composites in the early stage. 

Apart from the above conclusions, the findings and results in the development of high-

fidelity UC models, the implementation of UC models using meshfree methods and the 

constitutive modelling for the overall response prediction of woven composites will also 

be concluded in detail in the following three sections. 

6.1.1 Development of high-fidelity UC models 

In developing high-fidelity UC models for woven composites, a UC should be defined as 

small as possible to reduce the number of yarns to be described using analytical equations 

and more importantly to reduce the domain of homogenisation and thus the computational 

costs. In general, the smallest or minimum unit cell (mUC) of a woven composite material 

can be identified by exploiting the symmetries in a step-by-step manner, from initially the 

composite ply, the full-size UC, the medium UC(s) to the smallest UC. In such a process, 

the symmetries that can be utilised are comprised of translation, rotation, reflection and/or 

a combination of them. As a result of conducting a homogenisation based on the mUC, 

the standard form of PBC cannot be applied. Instead, it should be modified in accordance 

with the reductions that have been performed to obtain the mUC. However, a desirable 

way is to employ the equivalence approach as it is capable of deriving the PBCs of a UC 

at any size in a generic manner. 
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To analytically describe the internal features of woven composites as accurate as possible, 

it is would be beneficial to fabricate composite specimens to observe the microstructures 

including the cross-sections and waviness of yarns, based on which analytical functions 

can be proposed to fit these features. For instance, it has been shown in Section 4.1 that 

trigonometric functions are generally adequate to describe the cross-sectional shapes and 

waviness of both the warp and fill yarns in woven composites. However, for binder yarns, 

hyperbolic tangent functions should be employed to allow for an adequate description of 

the high variation in the waviness of this type of yarns. Furthermore, it has been suggested 

that each yarn of woven composites can be generally assumed to have a constant cross-

sectional shape throughout the whole yarn. The main advantage of this assumption is that 

it facilitates the description of the lower and upper surfaces of yarns. 

In this research, the geometry modelling of an mUC, i.e. the development of analytical 

equations for describing the lower and upper surfaces and the waviness of each yarn, has 

been performed in a manner of initially describing the cross-section and waviness of each 

yarn separately and then combining the analytical equations together. This means that it 

would be very flexible and straightforward to accommodate this approach for developing 

high-fidelity analytical UCs for not only the commonly used woven composites but also 

textile composites with complex internal architectures, as long as the cross-sections and 

waviness of fibre yarns are properly described. 

6.1.2 Implementation with meshfree methods 

As concluded earlier in this chapter, the most significant highlight of combining meshfree 

methods and the UC modelling methodology is that it allows to maintain a high degree 

of accuracy in the predictions by the use of high-fidelity UC models and meanwhile avoid 

the complexity and time-consuming pre-processing in the FEM-based approaches, i.e. the 

needs for explicitly creating the geometries of the constituents, discretising the geometries 

using high-quality elements and assigning the ever-changing material orientations for the 

wavy yarns. However, it should be noted that the meshfree method for homogenising the 

elastic properties must be different from that for predicting the overall response of woven 

composites. Specifically, for the former case, which can be treated as a static problem of 

linear elasticity, the standard weak-form meshfree method should be employed. In terms 

of the latter case, which should be treated as a dynamic problem with initial conditions, 
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the explicit weak-form meshfree method must be utilised. Here, the dynamic loading in 

the latter case is achieved by prescribing time-dependent PBCs on the boundaries of the 

mUC of prediction. In addition, since the PBCs applied to the mUC of homogenisation 

in both cases are treated as external loading and they are presented mainly in the form of 

displacement constraints, they must be implemented by using the displacement constraint 

elimination methods described in Sections 3.6.2 and 3.6.3. 

Apart from the above findings, it has been found from the numerical examples presented 

in this thesis that the accuracy of the meshfree-based predictions depends on the choice 

of the open numerical parameters, i.e. the total number of field nodes, the total number of 

background cells and the support domain scaling coefficient. In general, the increase in 

the number of field nodes or background cells tends to produce convergent predictions. 

However, the value of the support domain scaling coefficient must be carefully chosen in 

a relatively small range from approximately 2.0 to 3.25. If the value of this coefficient is 

smaller the lower value of this range, it can cause singularity problems in the calculation 

of the moment matrix. On the contrary, if its value is larger than the upper value of this 

range, the convergence of the predicted results may not be always guaranteed. In addition 

to the choice of the numerical parameters, it has been found that the use of different shape 

function construction techniques generally produce similar predictions as far as the open 

numerical parameters are properly chosen. 

6.1.3 Material modelling for overall response prediction 

For homogenising the elastic properties of woven composites, it is adequate to assume 

the polymer matrix to be an isotropic and linearly elastic material and the yarn material 

to have a transversely isotropic and linearly elastic behaviour. However, for predicting 

the overall responses of woven composites, the nonlinear and rate-dependent response of 

the polymer matrix and the failure behaviour of the yarn material must be considered. In 

general, the nonlinearity and rate-dependence of the polymer matrix can be described by 

using the viscoplasticity-based model detailed in Section 5.3.1. For the yarn material, the 

damage initiations can be identified by generalising Hashin’s failure criteria from 2D to 

3D and the damage evolutions can be characterised using the improved Weibull function 

based formulations, as discussed in Section 5.3.3. 
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Due to the consideration of yarn’s waviness in developing UCs for homogenising the 

elastic properties of woven composites, it is preferable to initially address the mechanics 

quantities of wavy yarns in their local coordinate system (LCS) and then transform the 

LCS-based quantities back to the global coordinate system (GCS) of the UC. In the case 

of predicting the overall responses of woven composites, the same approach should also 

be employed to facilitate the determination of the damage state of the yarn material, i.e. 

the identification of the damage initiations and the calculation of the associated damage 

evolutions. 

6.2 Future work 

As concluded in the last section, the meshfree-based UC modelling approach is effective 

for predicting the elastic properties and overall responses of woven composites. However, 

as the development of such an approach involves various aspects of knowledge including 

geometry modelling of woven composites, meshfree methods and constitutive modelling 

of composites, there are inevitably some limitations that have not been well addressed in 

this research. Thus, in the following several paragraphs, recommendations for future work 

will be summarised from the perspective of eliminating these limitations. 

One of the limitations of this research is that the off-axis mUC models developed are only 

applicable to balanced woven composites, which are a class of woven composites whose 

dimension in the warp direction has to be equal to that in the fill direction. Thus, the first 

recommendation for future work is to improve the off-axis models so that they are suitable 

for predicting the properties and response of non-balanced woven composites. To achieve 

this goal, non-orthogonal coordinate systems such as the one shown in Fig. 5.1a may be 

employed, and coordinate transformations between the orthogonal coordinate system (see 

Fig. 5.1b) and the non-orthogonal coordinate system must be defined. 

Second, the meshfree methods in this research are based on weak-form formulations. This 

means that there is a need for using background cells to conduct numerical integrations, 

which makes the meshfree-based UC modelling approach computationally expensive on 

one hand and not truly meshfree on the other hand. In contrast to weak-form meshfree 

methods, strong-form meshfree methods such as the meshfree collocation methods [154, 

182] do not require the use of background meshes for numerical integrations. Thus, it is 
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worth to replace the weak-form meshfree methods with strong-form ones and investigate 

the applicability of strong-form meshfree methods for the homogenisation of the elastic 

properties and the prediction of the overall responses of woven composites. 

Another limitation of the present research is that the yarn material in woven composites 

is assumed to be transversely isotropic, without modelling the debonding of fibre-matrix 

interface. Since the transverse response of the yarn material is determined jointly by the 

two constituents and the bonding behaviour of fibre-matrix interface, it is beneficial to 

develop or employ a cohesive model to reasonably account for the bonding behaviour of 

fibre-matrix interface. 

Finally, the material models given in Chapter 5 are valid only for predicting the overall 

response of woven composites under in-plane tensile loading conditions and at relatively 

low strain rates. Using the same models for predicting the compressive response could be 

problematic owing to the fact that the deformation responses and failure mechanisms of 

woven composites under compression are generally different from those under tension. 

Thus, a future direction of the present research would be improving the current material 

models such that they can be applied to predict the responses of woven composites under 

more complex loading conditions including compression. Another important direction is 

to test and adapt the current models for higher strain rate applications. The significance 

of improving the material models for higher strain rate applications would be that the 

need for performing time-consuming and financially prohibitive experimental trials (e.g. 

split Hopkinson pressure bar tests) for the sake of characterising high strain-rate responses 

of woven composites can be partially mitigated. 

 



 

207 

 

 

REFERENCES 

 

    [1] R. D. Rawlings and F. L. Matthews, Composite Materials: Engineering and 

Science. Woodhead Publishing, 1999. 

    [2] Standard Test Method for Tensile Properties of Polymer Matrix Composite 

Materials, ASTM D3039/D3039M-14, 2014. 

    [3] Standard Test Method for Compressive Properties of Polymer Matrix Composite 

Materials with Unsupported Gage Section by Shear Loading, ASTM 

D3410/D3410M-16, 2016. 

    [4] Standard Test Method for Compressive Properties of Polymer Matrix Composite 

Materials Using a Combined Loading Compression (CLC) Test Fixture, ASTM 

D6641/D6641M-14, 2014. 

    [5] Standard Test Method for in-Plane Shear Properties of Polymer Matrix 

Composite Materials by the Rail Shear Method, ASTM D4255/D4255M-15A, 

2015. 

    [6] Standard Test Method for Shear Properties of Composite Materials by the V-

Notched Beam Method, ASTM D5379/D5379M-12, 2012. 

    [7] Standard Test Method for Flexural Properties of Polymer Matrix Composite 

Materials, ASTM D7264/D7264M-15, 2015. 

    [8] B. Song, W. N. Chen, and T. Weerasooriya, "Quasi-static and dynamic 

compressive behaviors of a S-2 glass/SC15 composite," Journal of Composite 

Materials, vol. 37, no. 19, pp. 1723-1743, 2003. 

    [9] F. Fereshteh-Saniee, G. H. Majzoobi, and M. Bahrami, "An experimental study 

on the behavior of glass-epoxy composite at low strain rates," Journal of Materials 

Processing Technology, vol. 162-163, pp. 39-45, 2005. 

  [10] E. Sevkat, B. Liaw, F. Delale, and B. B. Raju, "Drop-weight impact of plain-

woven hybrid glass-graphite/toughened epoxy composites," Composites Part A, 

vol. 40, no. 8, pp. 1090-1110, 2009. 

  [11] I. M. Daniel, B. T. Werner, and J. S. Fenner, "Strain-rate-dependent failure criteria 

for composites," Composites Science and Technology, vol. 71, no. 3, pp. 357-364, 

2011. 



References 

208 

 

  [12] N. Perogamvros, T. Mitropoulos, and G. Lampeas, "Drop tower adaptation for 

medium strain rate tensile testing," Experimental Mechanics, vol. 56, no. 3, pp. 

419-436, 2016. 

  [13] Z. Xu, F. Yang, Z. W. Guan, and W. J. Cantwell, "An experimental and numerical 

study on scaling effects in the low velocity impact response of CFRP laminates," 

Composite Structures, vol. 154, pp. 69-78, 2016. 

  [14] H. Zhao and G. Gary, "An experimental investigation of compressive failure 

strength of fibre-reinforced polymer-matrix composite plates under impact 

loading," Composites Science and Technology, vol. 57, no. 3, pp. 287-292, 1997. 

  [15] H. Eskandari and J. A. Nemes, "Dynamic testing of composite laminates with a 

tensile split Hopkinson bar," Journal of Composite Materials, vol. 34, no. 4, pp. 

260-273, 2000. 

  [16] A. Gilat, R. K. Goldberg, and G. D. Roberts, "Experimental study of strain-rate-

dependent behavior of carbon/epoxy composite," Composites Science and 

Technology, vol. 62, no. 10-11, pp. 1469-1476, 2002. 

  [17] A. Haque, "High strain rate responses and failure analysis in polymer matrix 

composites - An experimental and finite element study," Journal of Composite 

Materials, vol. 39, no. 5, pp. 423-450, 2005. 

  [18] R. Gerlach, C. R. Siviour, N. Petrinic, and J. Wiegand, "Experimental 

characterisation and constitutive modelling of RTM-6 resin under impact 

loading," Polymer, vol. 49, no. 11, pp. 2728-2737, 2008. 

  [19] R. Gerlach et al., "The interface between matrix pockets and fibre bundles under 

impact loading," Composites Science and Technology, vol. 69, no. 11-12, pp. 

2024-2026, 2009. 

  [20] R. Gerlach, C. R. Siviour, N. Petrinic, and J. Wiegand, "Experimental 

characterisation of the strain rate dependent failure and damage behaviour of 3D 

composites," presented at the DYMAT International Conferences, 2009.  

  [21] R. Gerlach, C. Kettenbeil, and N. Petrinic, "A new split Hopkinson tensile bar 

design," International Journal of Impact Engineering, vol. 50, pp. 63-67, 2012. 

  [22] R. Gerlach, C. R. Siviour, J. Wiegand, and N. Petrinic, "In-plane and through-

thickness properties, failure modes, damage and delamination in 3D woven carbon 

fibre composites subjected to impact loading," Composites Science and 

Technology, vol. 72, no. 3, pp. 397-411, 2012. 

  [23] R. Gerlach, C. R. Siviour, J. Wiegand, and N. Petrinic, "The strain rate dependent 

material behavior of S-GFRP extracted from GLARE," Mechanics of Advanced 

Materials and Structures, vol. 20, no. 7, pp. 505-514, 2013. 

  [24] N. Wang and C. Cho, "Dynamic compressive behaviors of multi directional 

woven composite laminates at different strain rates," Polymers & Polymer 

Composites, vol. 22, no. 2, pp. 169-175, 2014. 



References 

209 

 

  [25] H. Koerber, J. Xavier, P. P. Camanho, Y. E. Essa, and F. M. de la Escalera, "High 

strain rate behaviour of 5-harness-satin weave fabric carbon-epoxy composite 

under compression and combined compression-shear loading," International 

Journal of Solids and Structures, vol. 54, pp. 172-182, 2015. 

  [26] J. T. Tzeng and A. S. Abrahamian, "An experimental method for compressive 

properties of laminated composites at high rates of loading," Journal of 

Thermoplastic Composite Materials, vol. 11, no. 2, pp. 133-143, 1998. 

  [27] M. P. Flanagan, M. A. Zikry, J. W. Wall, and A. El-Shiekh, "An experimental 

investigation of high velocity impact and penetration failure modes in textile 

composites," Journal of Composite Materials, vol. 33, no. 12, pp. 1080-1103, 

1999. 

  [28] J. M. Boteler, A. M. Rajendran, and D. Grove, "Shock wave profiles in polymer 

matrix composite," 2000, vol. 505, no. 1, pp. 563-566. 

  [29] S. Beard and F. K. Chang, "Design of braided composites for energy absorption," 

Journal of Thermoplastic Composite Materials, vol. 15, no. 1, pp. 3-12, 2002. 

  [30] F. P. Yuan, L. Tsai, V. Prakash, D. P. Dandekar, and A. M. Rajendran, "Dynamic 

shear strength of S2 glass fiber reinforced polymer composites under shock 

compression," Journal of Applied Physics, vol. 103, no. 10, 2008. 

  [31] T. J. Copponnex, "Analysis and evaluation of the single-fibre fragmentation test,"  

Composites Science and Technology, vol. 56, no. 8, pp. 893-909, 1996. 

  [32] G. Désarmot and J. P. Favre, "Advances in pull-out testing and data analysis," 

Composites Science and Technology, vol. 42, no. 1-3, pp. 151-187, 1991. 

  [33] P. J. Herrerafranco and L. T. Drzal, "Comparison of methods for the measurement 

of fiber matrix adhesion in composites," Composites, vol. 23, no. 1, pp. 2-27, 

1992. 

  [34] S. Sockalingam, "Fiber-matrix interface characterization through the microbond 

test," International Journal of Aeronautical and Space Sciences, vol. 13, no. 3, 

pp. 282-295, 2012. 

  [35] I. Verpoest, M. Desaeger, J. Ivens, and M. Wevers, "Interfaces in polymer matrix 

composites - from micromechanical tests to macromechanical properties," 

Makromolekulare Chemie-Macromolecular Symposia, vol. 75, pp. 85-98, 1993. 

  [36] S. Zhandarov and E. Mader, "Characterization of fiber/matrix interface strength: 

Applicability of different tests, approaches and parameters," Composites Science 

and Technology, vol. 65, no. 1, pp. 149-160, 2005. 

  [37] X. F. Zhou, H. D. Wagner, and S. R. Nutt, "Interfacial properties of polymer 

composites measured by push-out and fragmentation tests," Composites Part A, 

vol. 32, no. 11, pp. 1543-1551, 2001. 



References 

210 

 

  [38] H. T. Hahn and S. W. Tsai, "Nonlinear elastic behavior of unidirectional 

composite laminae," Journal of Composite Materials, vol. 7, no. 1, pp. 102-118, 

1973. 

  [39] H. T. Hahn, "Nonlinear behavior of laminated composites," Journal of Composite 

Materials, vol. 7, no. 2, pp. 257-271, 1973. 

  [40] J. Aboudi, "The nonlinear behavior of unidirectional and laminated composites - 

A micromechanical approach," Journal of Reinforced Plastics and Composites, 

vol. 9, no. 1, pp. 13-32, 1990. 

  [41] S. V. Thiruppukuzhi and C. T. Sun, "Models for the strain-rate-dependent 

behavior of polymer composites," Composites Science and Technology, vol. 61, 

no. 1, pp. 1-12, 2001. 

  [42] R. K. Goldberg and D. C. Stouffer, "Strain rate dependent analysis of a polymer 

matrix composite utilizing a micromechanics approach," Journal of Composite 

Materials, vol. 36, no. 7, pp. 773-793, 2002. 

  [43] M. Vogler, R. Rolfes, and P. P. Camanho, "Modeling the inelastic deformation 

and fracture of polymer composites - Part I: Plasticity model," Mechanics of 

Materials, vol. 59, pp. 50-64, 2013. 

  [44] U. Santhosh and J. Ahmad, "An approach for nonlinear modeling of polymer  

matrix composites," Journal of Composite Materials, vol. 48, no. 14, pp. 1755-

1765, 2014. 

  [45] J. J. Ye, Y. Y. Qiu, Z. Zhai, and X. F. Chen, "Strain rate influence on nonlinear 

response of polymer matrix composites," Polymer Composites, vol. 36, no. 5, pp. 

800-810, 2015. 

  [46] M. Kashtalyan and C. Soutis, "Modelling off-axis ply matrix cracking in 

continuous fibre-reinforced polymer matrix composite laminates," Journal of 

Materials Science, vol. 41, no. 20, pp. 6789-6799, 2006. 

  [47] F. Lachaud, C. Espinosa, L. Michel, P. Rahme, and R. Piquet, "Modelling 

strategies for simulating delamination and matrix cracking in composite 

laminates," Applied Composite Materials, vol. 22, no. 4, pp. 377-403, 2015. 

  [48] T. Sadowski and K. Osina, "Stress induced damage theory in application to 

modelling of matrix cracking in laminate polymer composites," Computational 

Materials Science, vol. 43, no. 1, pp. 51-58, 2008. 

  [49] P. A. Smith and S. L. Ogin, "Characterization and modelling of matrix cracking 

in a (0/90)(2s) GFRP laminate loaded in flexure," Proceedings of the Royal 

Society A - Mathematical Physical and Engineering Sciences, vol. 456, no. 2003, 

pp. 2755-2770, 2000. 

  [50] N. A. Pertsev, A. E. Romanov, and V. I. Vladimirov, "Disclination-dislocation 

model for the kink bands in polymers and fiber composites," Journal of Materials 

Science, vol. 16, no. 8, pp. 2084-2090, 1981. 



References 

211 

 

  [51] P. S. Steif, "A model for kinking in fiber composites II: Kink band formation," 

International Journal of Solids and Structures, vol. 26, no. 5-6, pp. 563-569, 1990. 

  [52] N. A. Fleck, L. Deng, and B. Budiansky, "Prediction of kink width in compressed 

fiber composites," Journal of Applied Mechanics, vol. 62, no. 2, pp. 329-337, 

1995. 

  [53] J. Lankford, "Compressive failure of fiber-reinforced composites - Buckling, 

kinking, and the role of the interphase," Journal of Materials Science, vol. 30, no. 

17, pp. 4343-4348, 1995. 

  [54] X. H. Liu, P. M. Moran, and C. F. Shih, "The mechanics of compressive kinking 

in unidirectional fiber reinforced ductile matrix composites," Composites Part B, 

vol. 27, no. 6, pp. 553-560, 1996. 

  [55] R. M. Christensen and S. J. DeTeresa, "The kink band mechanism for the 

compressive failure of fiber composite materials," Journal of Applied Mechanics, 

vol. 64, no. 1, pp. 1-6, 1997. 

  [56] A. R. Atilgan, "A nonlinear model for the kinking behavior of unidirectional 

polymer matrix composites," Journal of Applied Mathematics and Mechanics, 

vol. 78, no. 3, pp. 212-216, 1998. 

  [57] Y. B. Fu and Y. T. Zhang, "Continuum-mechanical modelling of kink-band 

formation in fibre-reinforced composites," International Journal of Solids and 

Structures, vol. 43, no. 11-12, pp. 3306-3323, 2006. 

  [58] S. T. Pinho, L. Iannucci, and P. Robinson, "Physically-based failure models and 

criteria for laminated fibre-reinforced composites with emphasis on fibre kinking 

- Part I: Development," Composites Part A, vol. 37, no. 1, pp. 63-73, 2006. 

  [59] S. T. Pinho, L. Iannucci, and P. Robinson, "Physically-based failure models and 

criteria for laminated fibre-reinforced composites with emphasis on fibre kinking 

- Part II: FE implementation," Composites Part A, vol. 37, no. 5, pp. 766-777, 

2006. 

  [60] A. K. Ataabadi, S. Ziaei-Rad, and H. Hosseini-Toudeshky, "Compression failure 

and fiber-kinking modeling of laminated composites," Steel and Composite 

Structures, vol. 12, no. 1, pp. 53-72, 2012. 

  [61] O. Allix, N. Feld, E. Baranger, J. M. Guimard, and C. Ha-Minh, "The compressive 

behaviour of composites including fiber kinking: Modelling across the scales," 

Meccanica, vol. 49, no. 11, pp. 2571-2586, 2014. 

  [62] J. L. Wind, S. Steffensen, and H. M. Jensen, "Comparison of a composite model 

and an individually fiber and matrix discretized model for kink band formation," 

International Journal of Non-Linear Mechanics, vol. 67, pp. 319-325, 2014. 

  [63] L. Lammerant and I. Verpoest, "Modelling of the interaction between matrix 

cracks and delaminations during impact of composite plates," Composites Science 

and Technology, vol. 56, no. 10, pp. 1171-1178, 1996. 



References 

212 

 

  [64] A. Corigliano, M. Ricci, and R. Frassine, "Rate-Dependent Interface Models for 

the Analysis of Delamination in Polymer-Matrix Composites," in Computational 

Mechanics: New Trends and Applications, H. P. Rossmanith, Ed. Rotterdam: 

Balkema, 1997, pp. 139-146. 

  [65] S. M. Lee, "Mode II delamination failure mechanisms of polymer matrix 

composites," Journal of Materials Science, vol. 32, no. 5, pp. 1287-1295, 1997. 

  [66] F. Shen, K. H. Lee, and T. E. Tay, "Modeling delamination growth in laminated 

composites," Composites Science and Technology, vol. 61, no. 9, pp. 1239-1251, 

2001. 

  [67] L. Greve and A. K. Pickett, "Delamination testing and modelling for composite 

crash simulation," Composites Science and Technology, vol. 66, no. 6, pp. 816-

826, 2006. 

  [68] A. Riccio, M. Zarrelli, and N. Tessitore, "A numerical model for delamination 

growth simulation in non-crimp fabric composites," Composites Science and 

Technology, vol. 67, no. 15-16, pp. 3345-3359, 2007. 

  [69] I. Tawk, P. Navarro, J. F. Ferrero, J. J. Barrau, and E. Abdullah, "Composite 

delamination modelling using a multi-layered solid element," Composites Science 

and Technology, vol. 70, no. 2, pp. 207-214, 2010. 

  [70] I. Guiamatsia and G. D. Nguyen, "A generic approach to constitutive modelling 

of composite delamination under mixed-mode loading conditions," Composites 

Science and Technology, vol. 72, no. 2, pp. 269-277, 2012. 

  [71] C. Santiuste, A. Olmedo, X. Soldani, and H. Miguelez, "Delamination prediction 

in orthogonal machining of carbon long fiber-reinforced polymer composites," 

Journal of Reinforced Plastics and Composites, vol. 31, no. 13, pp. 875-885, 2012. 

  [72] P. Upadhyaya, S. Roy, M. H. Haque, and H. Lu, "A micromechanical viscoelastic 

cohesive layer model for predicting delamination in high temperature polymer 

matrix composites," Proceedings of the American Society for Composites, 2013. 

  [73] K. Friedrich, T. Goda, K. Varadi, and B. Wetzel, "Finite element simulation of the 

fiber-matrix debonding in polymer composites produced by a sliding indentor: 

Part I - Normally oriented fibers," Journal of Composite Materials, vol. 38, no. 

18, pp. 1583-1606, 2004. 

  [74] T. Goda, K. Varadi, B. Wetzel, and K. Friedrich, "Finite element simulation of the 

fiber-matrix debonding in polymer composites produced by a sliding indentor: 

Part II - Parallel and anti-parallel fiber orientation," Journal of Composite 

Materials, vol. 38, no. 18, pp. 1607-1618, 2004. 

  [75] M. Zabihpoor and S. Adibnazari, "Simulation of fiber/matrix debonding in 

unidirectional composites under fatigue loading," Journal of Reinforced Plastics 

and Composites, vol. 26, no. 8, pp. 743-760, 2007. 



References 

213 

 

  [76] T. J. Vaughan and C. T. McCarthy, "Micromechanical modelling of the transverse 

damage behaviour in fibre reinforced composites," Composites Science and 

Technology, vol. 71, no. 3, pp. 388-396, 2011. 

  [77] W. S. Yang, Y. Pan, and A. A. Pelegri, "Multiscale modeling of matrix cracking 

coupled with interfacial debonding in random glass fiber composites based on 

volume elements," Journal of Composite Materials, vol. 47, no. 27, pp. 3389-

3400, 2013. 

  [78] B. Nedjar, "Plasticity-based modelling of fibre/matrix debonding in unidirectional 

composites," Composite Structures, vol. 108, pp. 41-48, 2014. 

  [79] Q. H. Meng and Z. Q. Wang, "Theoretical model of fiber debonding and pull-out 

in unidirectional hybrid-fiber-reinforced brittle-matrix composites," Journal of 

Composite Materials, vol. 49, no. 14, pp. 1739-1751, 2015. 

  [80] B. Nedjar, "Directional damage gradient modeling of fiber/matrix debonding in 

viscoelastic UD composites," Composite Structures, vol. 153, pp. 895-901, 2016. 

  [81] T. Arabatti, N. K. Parambil, and S. Gururaja, "Micromechanical modeling of 

damage development in polymer composites," Advanced Composites Letters, vol. 

25, no. 3, pp. 56-62, 2016. 

  [82] E. J. Barbero, G. F. Abdelal, and A. Caceres, "A micromechanics approach for 

damage modeling of polymer matrix composites," Composite Structures, vol. 67, 

no. 4, pp. 427-436, 2005. 

  [83] M. Lidgett, R. Brooks, N. Warrior, and K. A. Brown, "Virtual modelling of 

microscopic damage in polymer composite materials at high rates of strain," 

Plastics Rubber and Composites, vol. 40, no. 6-7, pp. 324-332, 2011. 

  [84] F. Wang, Y. Q. Wei, and Z. Q. Chen, "Micromechanical modeling of the effect of 

progressive damage on the tensile behavior in fiber-reinforced polymer 

composites," Multi-Functional Materials and Structures II, vol. 79-82, pp. 1347-

1350, 2009. 

  [85] T. Ishikawa and T. W. Chou, "Stiffness and strength behaviour of woven fabric 

composites," Journal of Materials Science, vol. 17, pp. 3211-3220, 1982. 

  [86] T. Ishikawa, "Antisymmetric elastic properties of composite plates of satin weave 

cloth," Fibre Science and Technology, vol. 15, pp. 127-145, 1981. 

  [87] T. Ishikawa and T. W. Chou, "Elastic behavior of woven hybrid composites," 

Journal of Composite Materials, vol. 16, pp. 2-19, 1982. 

  [88] T. Ishikawa and T. W. Chou, "One-dimensional micromechanical analysis of 

woven fabric composites," AIAA Journal, vol. 21, no. 12, pp. 1714-1721, 1983. 

  [89] T. J. Whitney and T. W. Chou, "Modeling of 3-D angle-interlock textile structural 

composites," Journal of Composite Materials, vol. 23, pp. 890-911, 1989. 



References 

214 

 

  [90] N. K. Naik and P. S. Shembekar, "Elastic behavior of woven fabric composites: I 

- Lamina analysis," Journal of Composite Materials, vol. 26, no. 15, pp. 2196-

2225, 1992. 

  [91] N. K. Naik and P. S. Shembekar, "Elastic behavior of woven fabric composites: 

III - Laminate design," Journal of Composite Materials, vol. 26, no. 17, pp. 2522-

2541, 1992. 

  [92] P. S. Shembekar and N. K. Naik, "Elastic behavior of woven fabric composites: 

II - Laminate analysis," Journal of Composite Materials, vol. 26, no. 15, pp. 2226-

2246, 1992. 

  [93] P. W. Chung and K. K. Tamma, "Woven fabric composites - Developments in 

engineering bounds, homogenization and application," International Journal for 

Numerical Methods in Engineering, vol. 45, no. 12, pp. 1757-1790, 1999. 

  [94] P. H. Wen and M. H. Aliabadi, "Mesh-free micromechanical model for woven 

fabric composite elastic moduli," Journal of Multiscale Modelling, vol. 1, no. 2, 

pp. 303-319, 2009. 

  [95] O. Bacarreza, D. Abe, M. H. Aliabadi, and N. K. Ragavan, "Micromechanical 

modeling of advanced composites," Journal of Multiscale Modelling, vol. 04, no. 

02, pp. 2-20, 2012. 

  [96] S. P. Ng, P. C. Tse, and K. J. Lau, "Numerical and experimental determination of 

in-plane elastic properties of 2/2-twill weave fabric composites," Composites Part 

B, vol. 29, no. 6, pp. 735-744, 1998. 

  [97] J. Whitcomb and X. D. Tang, "Effective moduli of woven composites," Journal 

of Composite Materials, vol. 35, no. 23, pp. 2127-2144, 2001. 

  [98] A. Dixit, H. S. Mali, and R. K. Misra, "A micromechanical unit cell model of 2 × 2 

twill woven fabric textile composite for multi scale analysis," Journal of The 

Institution of Engineers (India): Series E, vol. 95, no. 1, pp. 1-9, 2014. 

  [99] P. Tan, L. Long, and G. P. Steven, "Modelling approaches for orthogonal woven 

composites," Journal of Reinforced Plastics and Composites, vol. 17, no. 6, pp. 

545-577, 1998. 

[100] C. S. Lee, S. W. Chung, H. Shin, and S. J. Kim, "Virtual material characterization 

of 3D orthogonal woven composite materials by large-scale computing," Journal 

of Composite Materials, vol. 39, no. 10, pp. 851-863, 2005. 

[101] A. E. Bogdanovich, "Multi-scale modeling, stress and failure analyses of 3-D 

woven composites," Journal of Materials Science, vol. 41, no. 20, pp. 6547-6590, 

2006. 

[102] S. V. Lomov et al., "Mathematical modelling of internal geometry and 

deformability of woven preforms," International Journal of Forming Processes, 

vol. 6, no. 3-4, pp. 413-442, 2003. 



References 

215 

 

[103] S. V. Lomov and I. Verpoest, "Compression of woven reinforcements: A 

mathematical model," Journal of Reinforced Plastics and Composites, vol. 19, no. 

16, pp. 1329-1350, 2000. 

[104] B. El Said, S. D. Green, and S. R. Hallett, "Kinematic modelling of 3D woven 

fabric deformation for structural scale features," Composites Part A, vol. 57, pp. 

95-107, 2014. 

[105] S. D. Green, M. Y. Matveev, A. C. Long, D. Ivanov, and S. R. Hallett, 

"Mechanical modelling of 3D woven composites considering realistic unit cell 

geometry," Composite Structures, vol. 118, pp. 284-293, 2014. 

[106] Y. Mahadik and S. Hallett, "Effect of fabric compaction and yarn waviness on 3D 

woven composite compressive properties," Composites Part A, vol. 42, no. 11, 

pp. 1592-1600, 2011. 

[107] S. D. Green, A. C. Long, B. EI Said, and S. R. Hallett, "Numerical modelling of 

3D woven preform deformations," Composite Structures, vol. 108, pp. 747-756, 

2013. 

[108] D. Durville, "Numerical simulation of entangled materials mechanical 

properties," Journal of Materials Science vol. 40, no. 22, pp. 5941-5948, 2005. 

[109] D. Durville, "Simulation of the mechanical behaviour of woven fabrics at the scale 

of fibers," International Journal of Material Forming, vol. 3, pp. 1241-1251, 

2010. 

[110] S. V. Lomov, A. V. Gusakov, G. Huysmans, A. Prodromou, and I. Verpoest, 

"Textile geometry preprocessor for meso-mechanical models of woven 

composites," Composites Science and Technology, vol. 60, no. 11, pp. 2083-2095, 

2000. 

[111] S. V. Lomov and I. Verpoest, "Integrated model of textile composite 

reinforcements," Advances in Composite Materials and Structures VII, vol. 9, pp. 

367-376, 2000. 

[112] University of Nottingham - Textile Composites Research. (11/2016). TexGen - An 

open source software for modelling the geometry of textile structures. Available: 

http://texgen.sourceforge.net/index.php/Main_Page 

[113] M. Sherburn, F. Robitaille, A. Long, and C. Rudd, "Geometric pre-processor for 

the calculation of physical properties of textiles," presented at the 2nd 

International Industrial Simulation Conference 2004, Malaga, 2004.  

[114] M. Sherburn, "Geometric and Mechanical Modelling of Textiles," PhD, 

University of Nottingham, 2007. 

[115] D. Abe, "Micromechanical Modelling of Woven Composites for the Evaluation 

of Elastic Moduli," MSc, Imperial College London, 2011. 

http://texgen.sourceforge.net/index.php/Main_Page


References 

216 

 

[116] LSTC. (11/2016). LS-DYNA keywords user's manual (Version 971). Available: 

http://lstc.com/pdf/ls-dyna_971_manual_k.pdf 

[117] University of Delaware - Center for Composite Materials. (11/2016). MAT162 

Software. Available: http://www.ccm.udel.edu/software/mat162/ 

[118] A. Matzenmiller, J. Lubliner, and R. L. Taylor, "A constitutive model for 

anisotropic damage in fiber-composites," Mechanics of Materials, vol. 20, no. 

125-152, 1995. 

[119] B. A. Gama and J. W. Gillespie, "Finite element modeling of impact, damage 

evolution and penetration of thick-section composites," International Journal of 

Impact Engineering, vol. 38, no. 4, pp. 181-197, 2011. 

[120] B. Z. Haque and J. W. Gillespie, "Progressive composite damage modeling in LS-

DYNA using MAT162: Part A - Properties and parameters," presented at the 

Proceedings of the American Society for Composites: Thirtieth Technical 

Conference, East Lansing, 2015.  

[121] B. Z. Haque and J. W. Gillespie, "Progressive composite damage modeling in LS-

DYNA using MAT162: Part B - Model validating experiments," presented at the 

Proceedings of the American Society for Composites: Thirtieth Technical 

Conference, East Lansing, 2015.  

[122] S. T. Jenq, H. S. Jing, and C. Chung, "Predicting the ballistic limit for plain woven 

glass epoxy composite laminate," International Journal of Impact Engineering, 

vol. 15, no. 4, pp. 451-464, 1994. 

[123] L. E. Schwer and R. G. Whirley, "Impact of a 3D woven textile composite thin 

panel: Damage and failure modeling," Mechanics of Composite Materials and 

Structures, vol. 6, no. 1, pp. 9-30, 1999. 

[124] L. Iannucci, "Progressive failure modelling of woven carbon composite under 

impact," International Journal of Impact Engineering, vol. 32, no. 6, pp. 1013-

1043, 2006. 

[125] L. Iannucci and M. L. Willows, "An energy based damage mechanics approach to 

modelling impact onto woven composite materials - Part I: Numerical models," 

Composites Part A, vol. 37, no. 11, pp. 2041-2056, 2006. 

[126] L. Iannucci and M. L. Willows, "An energy based damage mechanics approach to 

modelling impact onto woven composite materials - Part II: Experimental and 

numerical results," Composites Part A, vol. 38, no. 2, pp. 540-554, 2007. 

[127] N. K. Naik, P. Shrirao, and B. C. K. Reddy, "Ballistic impact behaviour of woven 

fabric composites: Parametric studies," Materials Science and Engineering A - 

Structural Materials Properties Microstructure and Processing, vol. 412, no. 1-

2, pp. 104-116, 2005. 

http://lstc.com/pdf/ls-dyna_971_manual_k.pdf
http://www.ccm.udel.edu/software/mat162/


References 

217 

 

[128] N. K. Naik, P. Shrirao, and B. C. K. Reddy, "Ballistic impact behaviour of woven 

fabric composites: Formulation," International Journal of Impact Engineering, 

vol. 32, no. 9, pp. 1521-1552, 2006. 

[129] W. K. Binienda and R. K. Goldberg, "Dynamic testing and characterization of 

woven/braided polymer composites: A review," Applied Mechanics Reviews, vol. 

64, no. 5, 2011. 

[130] S. B. Aminjikarai and A. Tabiei, "A strain-rate dependent 3-D micromechanical 

model for finite element simulations of plain weave composite structures," 

Composite Structures, vol. 81, no. 3, pp. 407-418, 2007. 

[131] R. Tanov and A. Tabiei, "Computationally efficient micromechanical models for 

woven fabric composite elastic moduli," Journal of Applied Mechanics - 

Transactions of the ASME, vol. 68, no. 4, pp. 553-560, 2001. 

[132] O. Bacarreza, M. H. Aliabadi, and A. Apicella, "Multi-scale failure analysis of 

plain-woven composites," The Journal of Strain Analysis for Engineering Design, 

vol. 47, no. 6, pp. 379-388, 2012. 

[133] L. Raimondo and M. H. Aliabadi, "Multiscale progressive failure analysis of 

plain-woven composite materials," Journal of Multiscale Modelling, vol. 1, no. 2, 

pp. 263–301, 2009. 

[134] A. Tabiei and I. Ivanov, "Materially and geometrically non-linear woven 

composite micro-mechanical model with failure for finite element simulations," 

International Journal of Non-Linear Mechanics, vol. 39, no. 2, pp. 175-188, 2004. 

[135] A. Tabiei and I. Ivanov, "Micro-mechanical model with strain-rate dependency 

and damage for impact simulation of woven fabric composites," Mechanics of 

Advanced Materials and Structures, vol. 14, no. 5, pp. 365-377, 2007. 

[136] A. Tabiei, W. T. Yia, and R. Goldberg, "Non-linear strain rate dependent micro-

mechanical composite material model for finite element impact and 

crashworthiness simulation," International Journal of Non-Linear Mechanics, 

vol. 40, no. 7, pp. 957-970, 2005. 

[137] B. Z. Sun, Y. K. Liu, and B. H. Gu, "A unit cell approach of finite element 

calculation of ballistic impact damage of 3-D orthogonal woven composite," 

Composites Part B, vol. 40, no. 6, pp. 552-560, 2009. 

[138] J. Z. Mao, X. S. Sun, M. Ridha, V. B. C. Tan, and T. E. Tay, "A modeling approach 

across length scales for progressive failure analysis of woven composites," 

Applied Composite Materials, vol. 20, no. 3, pp. 213-231, 2012. 

[139] M. Pankow, A. M. Waas, C. F. Yen, and S. Ghiorse, "Modeling the response, 

strength and degradation of 3D woven composites subjected to high rate loading," 

Composite Structures, vol. 94, no. 5, pp. 1590-1604, 2012. 



References 

218 

 

[140] P. Römelt and P. R. Cunningham, "A multi-scale finite element approach for 

modelling damage progression in woven composite structures," Composite 

Structures, vol. 94, no. 3, pp. 977-986, 2012. 

[141] O. Cousigné, D. Moncayo, D. Coutellier, P. Camanho, and H. Naceur, "Numerical 

modeling of nonlinearity, plasticity and damage in CFRP-woven composites for 

crash simulations," Composite Structures, vol. 115, pp. 75-88, 2014. 

[142] E. Obert, F. Daghia, P. Ladevèze, and L. Ballere, "Micro and meso modeling of 

woven composites: Transverse cracking kinetics and homogenization," 

Composite Structures, vol. 117, pp. 212-221, 2014. 

[143] B. A. Bednarcyk, B. Stier, J. W. Simon, S. Reese, and E. J. Pineda, "Meso- and 

micro-scale modeling of damage in plain weave composites," Composite 

Structures, vol. 121, pp. 258-270, 2015. 

[144] C. C. Jr, H. B. Dexter, and I. S. Raju, "A review of the NASA textile composites 

research," NASA Langley Research Center, Hampton, Virginia 2004, Available: 

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20040105589.pdf. 

[145] L. Y. Li, P. H. Wen, and M. H. Aliabadi, "Meshfree modeling and homogenization 

of 3D orthogonal woven composites," Composites Science and Technology, vol. 

71, no. 15, pp. 1777-1788, 2011. 

[146] R. Hill, "A self-consistent mechanics of composite materials," Journal of the 

Mechanics and Physics of Solids, vol. 13, no. 4, pp. 213-222, 1965. 

[147] V. D. Nguyena, E. Bécheta, C. Geuzaineb, and L. Noelsa, "Imposing periodic 

boundary condition on arbitrary meshes by polynomial interpolation," 

Computational Materials Science, pp. 1-28, 2011. 

[148] S. Hazanov, "Hill condition and overall properties of composites," Archive of 

Applied Mechanics, vol. 68, pp. 385-394, 1998. 

[149] M. Amieur, S. Hazanov, and C. Huet, "Numerical and Experimental Assessment 

of the Size and Boundary Conditions Effects for the Overall Properties of Granular 

Composite Bodies Smaller Than the Representative Volume," in IUTAM 

Symposium on Anisotropy, Inhomogeneity and Nonlinearity in Solid Mechanics, 

vol. 39, D. F. Parker and A. H. England, Eds. Dordrecht: Springer, 1995, pp. 149-

154. 

[150] S. Hazanov and C. Huet, "Order relationships for boundary conditions effect in 

heterogeneous bodies smaller than the representative volume," Journal of the 

Mechanics and Physics of Solids, vol. 42, no. 12, pp. 1995-2011, 1994. 

[151] F. Larsson, K. Runesson, S. Saroukhani, and R. Vafadari, "Computational 

homogenization based on a weak format of micro-periodicity for RVE-problems," 

Computer Methods in Applied Mechanics and Engineering vol. 200, no. 1-4, pp. 

11-26, 2011. 

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20040105589.pdf


References 

219 

 

[152] T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, "Determination of the 

size of the representative volume element for random composites: Statistical and 

numerical approach," International Journal of Solids and Structures, vol. 40, no. 

13-14, pp. 3647–3679, 2003. 

[153] K. Terada, M. Hori, T. Kyoya, and N. Kikuchi, "Simulation of the multi-scale 

convergence in computational homogenization approaches," International 

Journal of Solids and Structures, vol. 37, no. 16, pp. 2285–2311, 2000. 

[154] G. R. Liu and Y. T. Gu, An Introduction to Meshfree Methods and Their 

Programming. Dordrecht: Springer, 2005. 

[155] P. Lancaster and K. Salkauskas, "Surfaces generated by moving least squares 

methods," Mathematics of Computation, vol. 37, no. 155, pp. 141-158, 1981. 

[156] B. Nayroles, G. Touzot, and P. Villon, "Generalizing the finite element method: 

Diffuse approximation and diffuse elements," Computational Mechanics, vol. 10, 

no. 5, pp. 307-318, 1992. 

[157] T. Belytschko, Y. Y. Lu, and L. Gu, "Element-free Galerkin methods," 

International Journal for Numerical Methods in Engineering, vol. 37, no. 2, pp. 

229-256, 1994. 

[158] G. R. Liu, Meshfree Methods: Moving Beyond the Finite Element Method, 2nd ed. 

Boca Raton: CRC Press, 2012. 

[159] R. L. Hardy, "Theory and applications of the multiquadric-biharmonic method (20 

years of discovery 1968–1988)," Computers & Mathematics with Applications, 

vol. 19, no. 8-9, pp. 163-208, 1990. 

[160] L. Gu, "Moving kriging interpolation and element-free Galerkin method," 

International Journal for Numerical Methods in Engineering, vol. 56, no. 1, pp. 

1-11, 2003. 

[161] D. G. Krige, "A statistical approach to some basic mine valuation problems on the 

Witwatersrand," Journal of the Chemical, Metallurgical and Mining Society of 

South Africa, vol. 52, no. 6, pp. 119-139, 1951. 

[162] G. Matheron, "Principles of geostatistics," Economic Geology, vol. 58, pp. 1246-

1266, 1963. 

[163] J. Sacks, S. Schiller, and W. J. Welch, "Design for computer experiments," 

Technometrics, vol. 31, no. 1, pp. 41-47, 1989. 

[164] C. Snell, D. G. Vesey, and P. Mullord, "The application of a general finite 

difference method to some boundary value problems," Computers & Structures, 

vol. 13, no. 4, pp. 547-552, 1981. 

[165] V. Girault, "Theory of a GDM on irregular networks," SIAM Journal on 

Numerical Analysis, vol. 11, pp. 260-282, 1974. 



References 

220 

 

[166] V. Pavlin and N. Perrone, "Finite difference energy techniques for arbitrary 

meshes applied to linear plate problems," International Journal for Numerical 

Methods in Engineering, vol. 14, no. 5, pp. 647-664, 1979. 

[167] T. Liszka and J. Orkisz, "The finite difference method at arbitrary irregular grids 

and its application in applied mechanics," Computers & Structures, vol. 11, no. 1-

2, pp. 83-95, 1983. 

[168] E. J. Kansa, "Multiquadrics - A scattered data approximation scheme with 

applications to computational fluid-dynamics - I: Surface approximations and 

partial derivative estimates," Computers & Mathematics with Applications, vol. 

19, no. 8-9, pp. 127-145, 1990. 

[169] X. Liu, G.R. Liu, K. Tai, and K.Y. Lam, "Radial point interpolation collocation 

method (RPICM) for partial differential equations," Computers & Mathematics 

with Applications, vol. 50, no. 8-9, pp. 1425-1442, 2005. 

[170] X. Zhang, K. Z. Song, M. W. Lu, and X. Liu, "Meshless methods based on 

collocation with radial basis functions," Computational Mechanics, vol. 26, no. 4, 

pp. 333-343, 2000. 

[171] Z. Wu, "Hermite-Birkhoff interpolation of scattered data by radial basis 

functions," Approximation Theory and its Applications, vol. 8, no. 2, pp. 1-10, 

1992. 

[172] E. Oñate, S. Idelsohn, O. Z. Zienkiewicz, and R. L. Taylor, "A finite point method 

in computational mechanics - Applications to convective transport and fluid 

flow," International Journal for Numerical Methods in Engineering, vol. 39, no. 

22, pp. 3839–3866, 1996. 

[173] E. Oñate, "Derivation of stabilized equations for numerical solution of advective-

diffusive transport and fluid flow problems," Computer Methods in Applied 

Mechanics and Engineering, vol. 151, no. 1-2, pp. 233-265, 1998. 

[174] E. Oñate, F. Perazzo, and J. Miquel, "A finite point method for elasticity problem," 

Computers & Structures, vol. 79, no. 22-25, pp. 2151-2163, 2001. 

[175] G. R. Liu and Y. T. Gu, "A point interpolation method for two-dimensional 

solids," International Journal for Numerical Methods in Engineering, vol. 50, no. 

4, pp. 937-951, 2001. 

[176] J. G. Wang and G. R. Liu, "A point interpolation meshless method based on radial 

basis functions," International Journal for Numerical Methods in Engineering, 

vol. 54, no. 11, pp. 1623-1648, 2002. 

[177] W. K. Liu, S. Jun, and Y. F. Zhang, "Reproducing kernel particle methods," 

International Journal for Numerical Methods in Engineering, vol. 20, pp. 1081-

1106, 1995. 



References 

221 

 

[178] S. N. Atluri and T. L. Zhu, "A new meshless local Petrov-Galerkin (MLPG) 

approach in computational mechanics," Computational Mechanics, vol. 22, no. 2, 

pp. 117-127, 1998. 

[179] S. N. Atluri and T. L. Zhu, "A new meshless local Petrov-Galerkin (MLPG) 

approach to nonlinear problems in computer modeling and simulation," Computer 

Modeling and Simulation in Engineering, vol. 3, no. 3, pp. 187-196, 1998. 

[180] S. N. Atluri and T. L. Zhu, "The meshless local Petrov-Galerkin (MLPG) 

approach for solving problems in elsto-statics," Computational Mechanics, vol. 

25, no. 2-3, pp. 169-179, 2000. 

[181] G. R. Liu and Y. T. Gu, "A local radial point interpolation method (LR-PIM) for 

free vibration analyses of 2-D solids," Journal of Sound and Vibration, vol. 246, 

no. 1, pp. 29-46, 2001. 

[182] G. R. Liu, L. Yan, J. G. Wang, and Y. T. Gu, "Point interpolation method based 

on local residual formulation using radial basis functions," Structural Engineering 

and Mechanics, vol. 14, no. 6, pp. 713-732, 2002. 

[183] G. R. Liu and Y. T. Gu, "A truly meshless method based on the strong-weak 

form," in Advances in Meshfree and X-FEM Methods, Singapore, 2002, pp. 259-

261. 

[184] G. R. Liu and Y. T. Gu, "A meshfree method: Meshfree weak-strong (MWS) form 

method for 2D solids," Computational Mechanics, vol. 33, no. 1, pp. 2-14, 2003. 

[185] L. B. Lucy, "A numerical approach to the testing of the fission hypothesis," 

Astronomical Journal, vol. 82, pp. 1013-1024, 1977. 

[186] R. A. Gingold and J. J. Monaghan, "Smoothed particle hydrodynamics - Theory 

and application to non-spherical stars," Monthly Notices of the Royal 

Astronomical Society, vol. 181, pp. 375-389, 1977. 

[187] B. N. Cox and G. Flanagan, Handbook of Analytical Methods for Textile 

Composites. NASA CR 45770, 1997. 

[188] S. Li, C. Zhou, H. Yu, and L. Li, "Formulation of a unit cell of a reduced size for 

plain weave textile composites," Computational Materials Science, vol. 50, no. 5, 

pp. 1770-1780, 2011. 

[189] X. D. Tang and J. D. Whitcomb, "General techniques for exploiting periodicity 

and symmetries in micromechanics analysis of textile composites," Journal of 

Composite Materials, vol. 37, no. 13, pp. 1167-1189, 2003. 

[190] J. D. Whitcomb, C. D. Chapman, and X. D. Tang, "Derivation of boundary 

conditions for micromechanics analyses of plain and satin weave composites," 

Journal of Composite Materials, vol. 34, no. 9, pp. 724-747, 2000. 

[191] N. V. De Carvalho, S. T. Pinho, and P. Robinson, "Reducing the domain in the 

mechanical analysis of periodic structures, with application to woven 



References 

222 

 

composites," Composites Science and Technology, vol. 71, no. 7, pp. 969-979, 

2011. 

[192] N. V. De Carvalho, S. T. Pinho, and P. Robinson, "A mathematical framework for 

reducing the domain in the mechanical analysis of periodic structures," pp. 1-18 

[193] Gurit. Datasheet/EP121 - Epoxy prepreg co-curable with phenolics (v3) [Online]. 

Available: https://www.gurit.com/-/media/Gurit/Datasheets/ep-121.pdf 

[194] Y. W. Jiang, A. Tabiei, and G. J. Simitses, "A novel micromechanics-based 

approach to the derivation of constitutive equations for local/global analysis of a 

plain-weave fabric composite," Composites Science and Technology, vol. 60, no. 

9, pp. 1825–1833, 2000. 

[195] T. Ishikawa, M. Matsushima, Y. Hayashi, and T. W. Chou, "Experimental 

confirmation of the theory of elastic moduli of fabric composites," Journal of 

Composite Materials, vol. 19, no. 5, pp. 443-458, 1985. 

[196] US Department of Defense, Composite Materials Handbook - Polymer Matrix 

Composites - Material Properties, 2002. [Online]. Available. 

[197] I. M. Ward and J. Sweeney, Mechanical Properties of Solid Polymers. West 

Sussex: JohnWiley & Sons, Ltd, 2013. 

[198] M. C. Boyce, D. M. Parks, and A. S. Argon, "Large inelastic deformation of glassy 

polymers: Part I - Rate dependent constitutive model," Mechanics of Materials, 

vol. 7, pp. 15-33, 1988. 

[199] C. Zhang and I. D. Moor, "Nonlinear mechanical response of high density 

polyethylene: Part II - Uniaxial constitutive model," Mechanics of Materials, vol. 

37, pp. 414-420, 1997. 

[200] R. R. Valisetty and J. L. Teply, "Overall instantaneous viscoplastic properties of 

composites," Journal of Composite Materials, vol. 26, pp. 1708-1724, 1992. 

[201] E. Krempl and K. Ho, "An Overstress Model for Solid Polymer Deformation 

Behavior Applied to Nylon 66," Time Dependent and Nonlinear Effects in 

Polymers and Composites, R. Schapery and C. Sun, Eds.: ASTM International, 

2000. [Online]. Available. 

[202] C. M. Bordonaro, "Rate Dependent Mechanical Behavior of High Strength 

Plastics: Experiment and Modeling," PhD, Rensselaer Polytechnic Institute, 1995. 

[203] D. C. Stouffer and L. T. Dame, Inelastic Deformation of Metals: Models, 

Mechanical Properties, and Metallurgy. New York: John Wiley and Sons, 1996. 

[204] C. A. Weeks and C. T. Sun, "Modelling non-linear rate-dependent behaviour in 

fibre-reinforced composites," Composites Science and Technology, vol. 58, pp. 

603-611, 1998. 

https://www.gurit.com/-/media/Gurit/Datasheets/ep-121.pdf


References 

223 

 

[205] Z. Hashin, "Failure criteria for unidirectional fiber composites," Journal of 

Applied Mechanics, vol. 47, pp. 329-334, 1980. 

[206] A. C. Prickett, "Intralaminar Cracking of Fibre Reinforced Composites: A 

Fracture Mechanics and ToF-SIMS Study," PhD, University of Surrey, 2001. 

[207] W. Weibull, A Statistical Theory of the Strength of Materials. Stockholm: 

Generalstabens Litografiska Anstalts Förlag, 1939. 

[208] P. H. Wen and M. H. Aliabadi, "Damage mechanics analysis of plain woven fabric 

composite micromechanical model for mesh-free simulations," Journal of 

Composite Materials, vol. 46, pp. 2239-2253, 2012. 

[209] A. Tabiei and I. Ivanov, "Computational micro-mechanical model of flexible 

woven fabric for finite element impact simulation," International Journal for 

Numerical Methods in Engineering, vol. 53, pp. 1259-1276, 2002. 

[210] Standard Test Method for Tensile Properties of Plastics, ASTM D638-14, 2014. 





 

225 

 

 

APPENDIX A 

 

A.1 I/O data for the MLS example 

Table A.1: I/O data for the MLS calculations at the central point 

Field nodes Linear polynomial Quadratic polynomial 

No. x y 𝜙𝐼(𝒙) 𝜕𝜙𝐼/𝜕𝑥 𝜕𝜙𝐼/𝜕𝑦 𝜙𝐼(𝒙) 𝜕𝜙𝐼/𝜕𝑥 𝜕𝜙𝐼/𝜕𝑦 

1 -0.50 -0.50 0.009 -0.050 -0.050 0.012 -0.063 -0.063 

2 -0.50 -0.25 0.020 -0.111 -0.092 0.023 -0.119 -0.097 

3 -0.50 0.00 0.037 -0.199 0.000 0.040 -0.201 0.000 

4 -0.50 0.25 0.020 -0.111 0.092 0.023 -0.119 0.097 

5 -0.50 0.50 0.009 -0.050 0.050 0.012 -0.063 0.063 

6 -0.25 -0.50 0.020 -0.092 -0.111 0.023 -0.097 -0.119 

7 -0.25 -0.25 0.045 -0.204 -0.204 0.045 -0.184 -0.184 

8 -0.25 0.00 0.082 -0.368 0.000 0.075 -0.310 0.000 

9 -0.25 0.25 0.045 -0.204 0.204 0.045 -0.184 0.184 

10 -0.25 0.50 0.020 -0.092 0.111 0.023 -0.097 0.119 

11 0.00 -0.50 0.037 0.000 -0.199 0.040 0.000 -0.201 

12 0.00 -0.25 0.082 0.000 -0.368 0.075 0.000 -0.310 

13 0.00 0.00 0.147 0.000 0.000 0.127 0.000 0.000 

14 0.00 0.25 0.082 0.000 0.368 0.075 0.000 0.310 

15 0.00 0.50 0.037 0.000 0.199 0.040 0.000 0.201 

16 0.25 -0.50 0.020 0.092 -0.111 0.023 0.097 -0.119 

17 0.25 -0.25 0.045 0.204 -0.204 0.045 0.184 -0.184 

18 0.25 0.00 0.082 0.368 0.000 0.075 0.310 0.000 

19 0.25 0.25 0.045 0.204 0.204 0.045 0.184 0.184 

20 0.25 0.50 0.020 0.092 0.111 0.023 0.097 0.119 

21 0.50 -0.50 0.009 0.050 -0.050 0.012 0.063 -0.063 

22 0.50 -0.25 0.020 0.111 -0.092 0.023 0.119 -0.097 

23 0.50 0.00 0.037 0.199 0.000 0.040 0.201 0.000 

24 0.50 0.25 0.020 0.111 0.092 0.023 0.119 0.097 

25 0.50 0.50 0.009 0.050 0.050 0.012 0.063 0.063 

   Σ𝜙𝐼 = 1   Σ𝜙𝐼 = 1   
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A.2 I/O data for the RBF example 

Table A.2: I/O data for the RBF calculations at the central point 

Field nodes MQF method GQF method 

No. x y 𝜙𝐼(𝒙) 𝜕𝜙𝐼/𝜕𝑥 𝜕𝜙𝐼/𝜕𝑦 𝜙𝐼(𝒙) 𝜕𝜙𝐼/𝜕𝑥 𝜕𝜙𝐼/𝜕𝑦 

1 -0.50 -0.50 0.000 -0.052 -0.052 0.000 0.000 0.000 

2 -0.50 -0.25 0.000 -0.062 0.055 0.000 0.000 0.000 

3 -0.50 0.00 0.000 0.798 0.000 0.000 0.374 0.000 

4 -0.50 0.25 0.000 -0.062 -0.055 0.000 0.000 0.000 

5 -0.50 0.50 0.000 -0.052 0.052 0.000 0.000 0.000 

6 -0.25 -0.50 0.000 0.055 -0.062 0.000 0.000 0.000 

7 -0.25 -0.25 0.000 0.051 0.051 0.000 0.000 0.000 

8 -0.25 0.00 0.000 -3.320 0.000 0.000 -2.750 0.000 

9 -0.25 0.25 0.000 0.051 -0.051 0.000 0.000 0.000 

10 -0.25 0.50 0.000 0.055 0.062 0.000 0.000 0.000 

11 0.00 -0.50 0.000 0.000 0.798 0.000 0.000 0.374 

12 0.00 -0.25 0.000 0.000 -3.320 0.000 0.000 -2.750 

13 0.00 0.00 1.000 0.000 0.000 1.000 0.000 0.000 

14 0.00 0.25 0.000 0.000 3.320 0.000 0.000 2.750 

15 0.00 0.50 0.000 0.000 -0.798 0.000 0.000 -0.374 

16 0.25 -0.50 0.000 -0.055 -0.062 0.000 0.000 0.000 

17 0.25 -0.25 0.000 -0.051 0.051 0.000 0.000 0.000 

18 0.25 0.00 0.000 3.320 0.000 0.000 2.750 0.000 

19 0.25 0.25 0.000 -0.051 -0.051 0.000 0.000 0.000 

20 0.25 0.50 0.000 -0.055 0.062 0.000 0.000 0.000 

21 0.50 -0.50 0.000 0.052 -0.052 0.000 0.000 0.000 

22 0.50 -0.25 0.000 0.062 0.055 0.000 0.000 0.000 

23 0.50 0.00 0.000 -0.798 0.000 0.000 -0.374 0.000 

24 0.50 0.25 0.000 0.062 -0.055 0.000 0.000 0.000 

25 0.50 0.50 0.000 0.052 0.052 0.000 0.000 0.000 

   Σ𝜙𝐼 = 1   Σ𝜙𝐼 = 1   
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A.3 I/O data for the MK example 

Table A.3: I/O data for the MK calculations at the central point 

Field nodes Linear polynomial Quadratic polynomial 

No. x y 𝜙𝐼(𝒙) 𝜕𝜙𝐼/𝜕𝑥 𝜕𝜙𝐼/𝜕𝑦 𝜙𝐼(𝒙) 𝜕𝜙𝐼/𝜕𝑥 𝜕𝜙𝐼/𝜕𝑦 

1 -0.50 -0.50 0.000 -0.103 -0.103 0.000 -0.103 -0.103 

2 -0.50 -0.25 0.000 0.158 0.085 0.000 0.158 0.085 

3 -0.50 0.00 0.000 0.401 0.000 0.000 0.401 0.000 

4 -0.50 0.25 0.000 0.158 -0.085 0.000 0.158 -0.085 

5 -0.50 0.50 0.000 -0.103 0.103 0.000 -0.103 0.103 

6 -0.25 -0.50 0.000 0.085 0.158 0.000 0.085 0.158 

7 -0.25 -0.25 0.000 -0.130 -0.130 0.000 -0.130 -0.130 

8 -0.25 0.00 0.000 -2.930 0.000 0.000 -2.930 0.000 

9 -0.25 0.25 0.000 -0.130 0.130 0.000 -0.130 0.130 

10 -0.25 0.50 0.000 0.085 -0.158 0.000 0.085 -0.158 

11 0.00 -0.50 0.000 0.000 0.401 0.000 0.000 0.401 

12 0.00 -0.25 0.000 0.000 -2.930 0.000 0.000 -2.930 

13 0.00 0.00 1.000 0.000 0.000 1.000 0.000 0.000 

14 0.00 0.25 0.000 0.000 2.930 0.000 0.000 2.930 

15 0.00 0.50 0.000 0.000 -0.401 0.000 0.000 -0.401 

16 0.25 -0.50 0.000 -0.085 0.158 0.000 -0.085 0.158 

17 0.25 -0.25 0.000 0.130 -0.130 0.000 0.130 -0.130 

18 0.25 0.00 0.000 2.930 0.000 0.000 2.930 0.000 

19 0.25 0.25 0.000 0.130 0.130 0.000 0.130 0.130 

20 0.25 0.50 0.000 -0.085 -0.158 0.000 -0.085 -0.158 

21 0.50 -0.50 0.000 0.103 -0.103 0.000 0.103 -0.103 

22 0.50 -0.25 0.000 -0.158 0.085 0.000 -0.158 0.085 

23 0.50 0.00 0.000 -0.401 0.000 0.000 -0.401 0.000 

24 0.50 0.25 0.000 -0.158 -0.085 0.000 -0.158 -0.085 

25 0.50 0.50 0.000 0.103 0.103 0.000 0.103 0.103 

   Σ𝜙𝐼 = 1   Σ𝜙𝐼 = 1   
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B.1 PBCs for normal plain woven mUC 

B.1.1 Normal loading case 〈σ₁₁〉, 〈σ₂₂〉 and 〈σ₃₃〉 

Table B.1: PBCs for normal plain woven composites under normal loading 

  𝒖(𝐴) − 𝛾𝐓𝒖(�̅�) = −〈𝜺〉𝐓𝒙O�̅� 

𝑆1  

 [
 
 
 
 𝑢1 (−

𝐿

2
, 𝑦, z)

𝑢2 (−
𝐿

2
, 𝑦, z)

𝑢3 (−
𝐿

2
, 𝑦, z)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (−

𝐿

2
, 𝑦, z)

𝑢2 (−
𝐿

2
, 𝑦, z)

𝑢3 (−
𝐿

2
, 𝑦, z) ]

 
 
 
 

 = [
−𝐿〈𝜀11〉

0
0

] 

𝑆2 

 [
 
 
 
 𝑢1 (

𝐿

2
, 𝑦, −𝑧)

𝑢2 (
𝐿

2
, 𝑦, −𝑧)

𝑢3 (
𝐿

2
, 𝑦, −𝑧)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (

𝐿

2
, 𝑦, 𝑧)

𝑢2 (
𝐿

2
, 𝑦, 𝑧)

−𝑢3 (
𝐿

2
, 𝑦, 𝑧)]

 
 
 
 

 = [
𝐿〈𝜀11〉
0
0

] 

𝑆3 

 [
 
 
 
 𝑢1 (𝑥, −

𝑊

2
, 𝑧)

𝑢2 (𝑥, −
𝑊

2
, 𝑧)

𝑢3 (𝑥, −
𝑊

2
, 𝑧)]
 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥, −

𝑊

2
, 𝑧)

−𝑢2 (𝑥, −
𝑊

2
, 𝑧)

𝑢3 (𝑥, −
𝑊

2
, 𝑧) ]

 
 
 
 

 = [
0

−𝑊〈𝜀22〉
0

] 

𝑆4 

 [
 
 
 
 𝑢1 (𝑥,

𝑊

2
, −𝑧)

𝑢2 (𝑥,
𝑊

2
, −𝑧)

𝑢3 (𝑥,
𝑊

2
, −𝑧)]

 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥,

𝑊

2
, 𝑧)

−𝑢2 (𝑥,
𝑊

2
, 𝑧)

−𝑢3 (𝑥,
𝑊

2
, 𝑧)]
 
 
 
 

 = [
0

𝑊〈𝜀22〉
0

] 

𝑆5 & 𝑆6 

 [
 
 
 
 𝑢1 (𝑥, 𝑦,

𝐻

2
)

𝑢2 (𝑥, 𝑦,
𝐻

2
)

𝑢3 (𝑥, 𝑦,
𝐻

2
)]
 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥, 𝑦, −

𝐻

2
)

𝑢2 (𝑥, 𝑦, −
𝐻

2
)

𝑢3 (𝑥, 𝑦, −
𝐻

2
)]
 
 
 
 

 = [
0
0

𝐻〈𝜀33〉
] 
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B.1.2 Shear loading case 〈σ₁₂〉 

Table B.2: PBCs for normal plain woven composites under shear loading 〈σ₁₂〉 

  𝒖(𝐴) − 𝛾𝐓𝒖(�̅�) = −〈𝜺〉𝐓𝒙O�̅� 

𝑆1  

 [
 
 
 
 𝑢1 (−

𝐿

2
, 𝑦, z)

𝑢2 (−
𝐿

2
, 𝑦, z)

𝑢3 (−
𝐿

2
, 𝑦, z)]

 
 
 
 

−

[
 
 
 
 𝑢1 (−

𝐿

2
, 𝑦, z)

−𝑢2 (−
𝐿

2
, 𝑦, z)

−𝑢3 (−
𝐿

2
, 𝑦, z)]

 
 
 
 

 = [
0

−𝐿〈𝜀12〉
0

] 

𝑆2 

 [
 
 
 
 𝑢1 (

𝐿

2
, 𝑦, −𝑧)

𝑢2 (
𝐿

2
, 𝑦, −𝑧)

𝑢3 (
𝐿

2
, 𝑦, −𝑧)]

 
 
 
 

−

[
 
 
 
 𝑢1 (

𝐿

2
, 𝑦, 𝑧)

−𝑢2 (
𝐿

2
, 𝑦, 𝑧)

𝑢3 (
𝐿

2
, 𝑦, 𝑧) ]

 
 
 
 

 = [
0

𝐿〈𝜀12〉
0

] 

𝑆3 

 [
 
 
 
 𝑢1 (𝑥, −

𝑊

2
, 𝑧)

𝑢2 (𝑥, −
𝑊

2
, 𝑧)

𝑢3 (𝑥, −
𝑊

2
, 𝑧)]
 
 
 
 

−

[
 
 
 
 −𝑢1 (𝑥, −

𝑊

2
, 𝑧)

𝑢2 (𝑥, −
𝑊

2
, 𝑧)

−𝑢3 (𝑥, −
𝑊

2
, 𝑧)]
 
 
 
 

 = [
−𝑊〈𝜀12〉

0
0

] 

𝑆4 

 [
 
 
 
 𝑢1 (𝑥,

𝑊

2
, −𝑧)

𝑢2 (𝑥,
𝑊

2
, −𝑧)

𝑢3 (𝑥,
𝑊

2
, −𝑧)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (𝑥,

𝑊

2
, 𝑧)

𝑢2 (𝑥,
𝑊

2
, 𝑧)

𝑢3 (𝑥,
𝑊

2
, 𝑧) ]

 
 
 
 

 = [
𝑊〈𝜀12〉
0
0

] 

𝑆5 & 𝑆6 

 [
 
 
 
 𝑢1 (𝑥, 𝑦,

𝐻

2
)

𝑢2 (𝑥, 𝑦,
𝐻

2
)

𝑢3 (𝑥, 𝑦,
𝐻

2
)]
 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥, 𝑦, −

𝐻

2
)

𝑢2 (𝑥, 𝑦, −
𝐻

2
)

𝑢3 (𝑥, 𝑦, −
𝐻

2
)]
 
 
 
 

 = [
0
0
0
] 
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B.1.3 Shear loading case 〈σ₂₃〉 

Table B.3: PBCs for normal plain woven composites under shear loading 〈σ₂₃〉 

  𝒖(𝐴) − 𝛾𝐓𝒖(�̅�) = −〈𝜺〉𝐓𝒙O�̅� 

𝑆1  

 [
 
 
 
 𝑢1 (−

𝐿

2
, 𝑦, z)

𝑢2 (−
𝐿

2
, 𝑦, z)

𝑢3 (−
𝐿

2
, 𝑦, z)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (−

𝐿

2
, 𝑦, z)

𝑢2 (−
𝐿

2
, 𝑦, z)

𝑢3 (−
𝐿

2
, 𝑦, z) ]

 
 
 
 

 = [
0
0
0
] 

𝑆2 

 [
 
 
 
 𝑢1 (

𝐿

2
, 𝑦, −𝑧)

𝑢2 (
𝐿

2
, 𝑦, −𝑧)

𝑢3 (
𝐿

2
, 𝑦, −𝑧)]

 
 
 
 

−

[
 
 
 
 𝑢1 (

𝐿

2
, 𝑦, 𝑧)

−𝑢2 (
𝐿

2
, 𝑦, 𝑧)

𝑢3 (
𝐿

2
, 𝑦, 𝑧) ]

 
 
 
 

 = [
0
0
0
] 

𝑆3 

 [
 
 
 
 𝑢1 (𝑥, −

𝑊

2
, 𝑧)

𝑢2 (𝑥, −
𝑊

2
, 𝑧)

𝑢3 (𝑥, −
𝑊

2
, 𝑧)]
 
 
 
 

−

[
 
 
 
 −𝑢1 (𝑥, −

𝑊

2
, 𝑧)

𝑢2 (𝑥, −
𝑊

2
, 𝑧)

−𝑢3 (𝑥, −
𝑊

2
, 𝑧)]
 
 
 
 

 = [
0
0

−𝑊〈𝜀23〉
] 

𝑆4 

 [
 
 
 
 𝑢1 (𝑥,

𝑊

2
, −𝑧)

𝑢2 (𝑥,
𝑊

2
, −𝑧)

𝑢3 (𝑥,
𝑊

2
, −𝑧)]

 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥,

𝑊

2
, 𝑧)

−𝑢2 (𝑥,
𝑊

2
, 𝑧)

−𝑢3 (𝑥,
𝑊

2
, 𝑧)]
 
 
 
 

 = [
0
0

𝑊〈𝜀23〉
] 

𝑆5 & 𝑆6 

 [
 
 
 
 𝑢1 (𝑥, 𝑦,

𝐻

2
)

𝑢2 (𝑥, 𝑦,
𝐻

2
)

𝑢3 (𝑥, 𝑦,
𝐻

2
)]
 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥, 𝑦, −

𝐻

2
)

𝑢2 (𝑥, 𝑦, −
𝐻

2
)

𝑢3 (𝑥, 𝑦, −
𝐻

2
)]
 
 
 
 

 = [
0

𝐻〈𝜀23〉
0

] 
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B.1.4 Shear loading case 〈σ₁₃〉 

Table B.4: PBCs for normal plain woven composites under shear loading 〈σ₁₃〉 

  𝒖(𝐴) − 𝛾𝐓𝒖(�̅�) = −〈𝜺〉𝐓𝒙O�̅� 

𝑆1  

 [
 
 
 
 𝑢1 (−

𝐿

2
, 𝑦, z)

𝑢2 (−
𝐿

2
, 𝑦, z)

𝑢3 (−
𝐿

2
, 𝑦, z)]

 
 
 
 

−

[
 
 
 
 𝑢1 (−

𝐿

2
, 𝑦, z)

−𝑢2 (−
𝐿

2
, 𝑦, z)

−𝑢3 (−
𝐿

2
, 𝑦, z)]

 
 
 
 

 = [
0
0

−𝐿〈𝜀13〉
] 

𝑆2 

 [
 
 
 
 𝑢1 (

𝐿

2
, 𝑦, −𝑧)

𝑢2 (
𝐿

2
, 𝑦, −𝑧)

𝑢3 (
𝐿

2
, 𝑦, −𝑧)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (

𝐿

2
, 𝑦, 𝑧)

𝑢2 (
𝐿

2
, 𝑦, 𝑧)

−𝑢3 (
𝐿

2
, 𝑦, 𝑧)]

 
 
 
 

 = [
0
0

𝐿〈𝜀13〉
] 

𝑆3 

 [
 
 
 
 𝑢1 (𝑥, −

𝑊

2
, 𝑧)

𝑢2 (𝑥, −
𝑊

2
, 𝑧)

𝑢3 (𝑥, −
𝑊

2
, 𝑧)]
 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥, −

𝑊

2
, 𝑧)

−𝑢2 (𝑥, −
𝑊

2
, 𝑧)

𝑢3 (𝑥, −
𝑊

2
, 𝑧) ]

 
 
 
 

 = [
0
0
0
] 

𝑆4 

 [
 
 
 
 𝑢1 (𝑥,

𝑊

2
, −𝑧)

𝑢2 (𝑥,
𝑊

2
, −𝑧)

𝑢3 (𝑥,
𝑊

2
, −𝑧)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (𝑥,

𝑊

2
, 𝑧)

𝑢2 (𝑥,
𝑊

2
, 𝑧)

𝑢3 (𝑥,
𝑊

2
, 𝑧) ]

 
 
 
 

 = [
0
0
0
] 

𝑆5 & 𝑆6 

 [
 
 
 
 𝑢1 (𝑥, 𝑦,

𝐻

2
)

𝑢2 (𝑥, 𝑦,
𝐻

2
)

𝑢3 (𝑥, 𝑦,
𝐻

2
)]
 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥, 𝑦, −

𝐻

2
)

𝑢2 (𝑥, 𝑦, −
𝐻

2
)

𝑢3 (𝑥, 𝑦, −
𝐻

2
)]
 
 
 
 

 = [
𝐻〈𝜀13〉
0
0

] 
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B.2 PBCs for normal twill woven mUC 

B.2.1 Normal/shear loading case 〈σ₁₁〉, 〈σ₂₂〉, 〈σ₃₃〉 and 〈σ₁₂〉 

Table B.5: PBCs for normal twill woven composites under normal/shear loading 

  𝒖(𝐴) − 𝛾𝐓𝒖(�̅�) = −〈𝜺〉𝐓𝒙O�̅� 

𝑆1  

 [
 
 
 
 𝑢1 (−

𝐿

2
, −𝑦,−z)

𝑢2 (−
𝐿

2
, −𝑦,−z)

𝑢3 (−
𝐿

2
, −𝑦,−z)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (−

𝐿

2
, 𝑦, z)

−𝑢2 (−
𝐿

2
, 𝑦, z)

−𝑢3 (−
𝐿

2
, 𝑦, z)]

 
 
 
 

 = [
−𝐿〈𝜀11〉

−𝐿〈𝜀12〉
0

] 

𝑆2 

 [
 
 
 
 𝑢1 (

𝐿

2
, −𝑦, 𝑧)

𝑢2 (
𝐿

2
, −𝑦, 𝑧)

𝑢3 (
𝐿

2
, −𝑦, 𝑧)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (

𝐿

2
, 𝑦, 𝑧)

−𝑢2 (
𝐿

2
, 𝑦, 𝑧)

𝑢3 (
𝐿

2
, 𝑦, 𝑧) ]

 
 
 
 

 = [
𝐿〈𝜀11〉

𝐿〈𝜀12〉
0

] 

𝑆3 

 [
 
 
 
 𝑢1 (−𝑥, −

𝑊

2
, −𝑧)

𝑢2 (−𝑥, −
𝑊

2
, −𝑧)

𝑢3 (−𝑥, −
𝑊

2
, −𝑧)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (𝑥, −

𝑊

2
, 𝑧)

−𝑢2 (𝑥, −
𝑊

2
, 𝑧)

−𝑢3 (𝑥, −
𝑊

2
, 𝑧)]
 
 
 
 

 = [
−𝑊〈𝜀12〉

−𝑊〈𝜀22〉
0

] 

𝑆4 

 [
 
 
 
 𝑢1 (−𝑥,

𝑊

2
, 𝑧)

𝑢2 (−𝑥,
𝑊

2
, 𝑧)

𝑢3 (−𝑥,
𝑊

2
, 𝑧)]
 
 
 
 

−

[
 
 
 
 −𝑢1 (𝑥,

𝑊

2
, 𝑧)

−𝑢2 (𝑥,
𝑊

2
, 𝑧)

𝑢3 (𝑥,
𝑊

2
, 𝑧) ]

 
 
 
 

 = [
𝑊〈𝜀12〉

𝑊〈𝜀22〉
0

] 

𝑆5 & 𝑆6 

 [
 
 
 
 𝑢1 (𝑥, 𝑦,

𝐻

2
)

𝑢2 (𝑥, 𝑦,
𝐻

2
)

𝑢3 (𝑥, 𝑦,
𝐻

2
)]
 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥, 𝑦, −

𝐻

2
)

𝑢2 (𝑥, 𝑦, −
𝐻

2
)

𝑢3 (𝑥, 𝑦, −
𝐻

2
)]
 
 
 
 

 = [
0
0

𝐻〈𝜀33〉
] 
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B.2.2 Shear loading case 〈σ₂₃〉 and 〈σ₁₃〉 

Table B.6: PBCs for normal twill woven composites under shear loading 

  𝒖(𝐴) − 𝛾𝐓𝒖(�̅�) = −〈𝜺〉𝐓𝒙O�̅� 

𝑆1  

 [
 
 
 
 𝑢1 (−

𝐿

2
, −𝑦,−z)

𝑢2 (−
𝐿

2
, −𝑦,−z)

𝑢3 (−
𝐿

2
, −𝑦,−z)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (−

𝐿

2
, 𝑦, z)

−𝑢2 (−
𝐿

2
, 𝑦, z)

−𝑢3 (−
𝐿

2
, 𝑦, z)]

 
 
 
 

 = [
0
0

−𝐿〈𝜀13〉
] 

𝑆2 

 [
 
 
 
 𝑢1 (

𝐿

2
, −𝑦, 𝑧)

𝑢2 (
𝐿

2
, −𝑦, 𝑧)

𝑢3 (
𝐿

2
, −𝑦, 𝑧)]

 
 
 
 

−

[
 
 
 
 𝑢1 (

𝐿

2
, 𝑦, 𝑧)

𝑢2 (
𝐿

2
, 𝑦, 𝑧)

−𝑢3 (
𝐿

2
, 𝑦, 𝑧)]

 
 
 
 

 = [
0
0

𝐿〈𝜀13〉
] 

𝑆3 

 [
 
 
 
 𝑢1 (−𝑥, −

𝑊

2
, −𝑧)

𝑢2 (−𝑥, −
𝑊

2
, −𝑧)

𝑢3 (−𝑥, −
𝑊

2
, −𝑧)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (𝑥, −

𝑊

2
, 𝑧)

−𝑢2 (𝑥, −
𝑊

2
, 𝑧)

−𝑢3 (𝑥, −
𝑊

2
, 𝑧)]
 
 
 
 

 = [
0
0

−𝑊〈𝜀23〉
] 

𝑆4 

 [
 
 
 
 𝑢1 (−𝑥,

𝑊

2
, 𝑧)

𝑢2 (−𝑥,
𝑊

2
, 𝑧)

𝑢3 (−𝑥,
𝑊

2
, 𝑧)]
 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥,

𝑊

2
, 𝑧)

𝑢2 (𝑥,
𝑊

2
, 𝑧)

−𝑢3 (𝑥,
𝑊

2
, 𝑧)]
 
 
 
 

 = [
0
0

𝑊〈𝜀23〉
] 

𝑆5 & 𝑆6 

 [
 
 
 
 𝑢1 (𝑥, 𝑦,

𝐻

2
)

𝑢2 (𝑥, 𝑦,
𝐻

2
)

𝑢3 (𝑥, 𝑦,
𝐻

2
)]
 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥, 𝑦, −

𝐻

2
)

𝑢2 (𝑥, 𝑦, −
𝐻

2
)

𝑢3 (𝑥, 𝑦, −
𝐻

2
)]
 
 
 
 

 = [
𝐻〈𝜀13〉

𝐻〈𝜀23〉
0

] 
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B.3 PBCs for normal 3D woven mUC 

B.3.1 Normal loading case 〈σ₁₁〉, 〈σ₂₂〉 and 〈σ₃₃〉 

Table B.7: PBCs for normal 3D woven composites under normal loading 

  𝒖(𝐴) − 𝛾𝐓𝒖(�̅�) = −〈𝜺〉𝐓𝒙O�̅� 

𝑆1  

 
[
 
 
 
 𝑢1 (−

𝐿

2
, 𝑦, z)

𝑢2 (−
𝐿

2
, 𝑦, z)

𝑢3 (−
𝐿

2
, 𝑦, z)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (−

𝐿

2
, 𝑦, z)

𝑢2 (−
𝐿

2
, 𝑦, z)

𝑢3 (−
𝐿

2
, 𝑦, z) ]

 
 
 
 

 = [
−𝐿〈𝜀11〉

0
0

] 

𝑆2 

 
[
 
 
 
 𝑢1 (

𝐿

2
, 𝑦, −𝑧)

𝑢2 (
𝐿

2
, 𝑦, −𝑧)

𝑢3 (
𝐿

2
, 𝑦, −𝑧)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (

𝐿

2
, 𝑦, 𝑧)

𝑢2 (
𝐿

2
, 𝑦, 𝑧)

−𝑢3 (
𝐿

2
, 𝑦, 𝑧)]

 
 
 
 

 = [
𝐿〈𝜀11〉
0
0

] 

𝑆3 

 
[
 
 
 
 𝑢1 (𝑥, −

𝑊

2
, −𝑧)

𝑢2 (𝑥, −
𝑊

2
, −𝑧)

𝑢3 (𝑥, −
𝑊

2
, −𝑧)]

 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥, −

𝑊

2
, 𝑧)

−𝑢2 (𝑥, −
𝑊

2
, 𝑧)

−𝑢3 (𝑥, −
𝑊

2
, 𝑧)]
 
 
 
 

 = [
0

−𝑊〈𝜀22〉
0

] 

𝑆4 

 
[
 
 
 
 𝑢1 (𝑥,

𝑊

2
, 𝑧)

𝑢2 (𝑥,
𝑊

2
, 𝑧)

𝑢3 (𝑥,
𝑊

2
, 𝑧)]
 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥,

𝑊

2
, 𝑧)

−𝑢2 (𝑥,
𝑊

2
, 𝑧)

𝑢3 (𝑥,
𝑊

2
, 𝑧) ]

 
 
 
 

 = [
0

𝑊〈𝜀22〉
0

] 

𝑆5 & 𝑆6 

 
[
 
 
 
 𝑢1 (𝑥, 𝑦,

𝐻

2
)

𝑢2 (𝑥, 𝑦,
𝐻

2
)

𝑢3 (𝑥, 𝑦,
𝐻

2
)]
 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥, 𝑦, −

𝐻

2
)

𝑢2 (𝑥, 𝑦, −
𝐻

2
)

𝑢3 (𝑥, 𝑦, −
𝐻

2
)]
 
 
 
 

 = [
0
0

𝐻〈𝜀33〉
] 
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B.3.2 Shear loading case 〈σ₁₂〉 

Table B.8: PBCs for normal 3D woven composites under shear loading 〈σ₁₂〉 

  𝒖(𝐴) − 𝛾𝐓𝒖(�̅�) = −〈𝜺〉𝐓𝒙O�̅� 

𝑆1  

 
[
 
 
 
 𝑢1 (−

𝐿

2
, 𝑦, z)

𝑢2 (−
𝐿

2
, 𝑦, z)

𝑢3 (−
𝐿

2
, 𝑦, z)]

 
 
 
 

−

[
 
 
 
 𝑢1 (−

𝐿

2
, 𝑦, z)

−𝑢2 (−
𝐿

2
, 𝑦, z)

−𝑢3 (−
𝐿

2
, 𝑦, z)]

 
 
 
 

 = [
0

−𝐿〈𝜀12〉
0

] 

𝑆2 

 
[
 
 
 
 𝑢1 (

𝐿

2
, 𝑦, −𝑧)

𝑢2 (
𝐿

2
, 𝑦, −𝑧)

𝑢3 (
𝐿

2
, 𝑦, −𝑧)]

 
 
 
 

−

[
 
 
 
 𝑢1 (

𝐿

2
, 𝑦, 𝑧)

−𝑢2 (
𝐿

2
, 𝑦, 𝑧)

𝑢3 (
𝐿

2
, 𝑦, 𝑧) ]

 
 
 
 

 = [
0

𝐿〈𝜀12〉
0

] 

𝑆3 

 
[
 
 
 
 𝑢1 (𝑥, −

𝑊

2
, −𝑧)

𝑢2 (𝑥, −
𝑊

2
, −𝑧)

𝑢3 (𝑥, −
𝑊

2
, −𝑧)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (𝑥, −

𝑊

2
, 𝑧)

𝑢2 (𝑥, −
𝑊

2
, 𝑧)

𝑢3 (𝑥, −
𝑊

2
, 𝑧) ]

 
 
 
 

 = [
−𝑊〈𝜀12〉

0
0

] 

𝑆4 

 
[
 
 
 
 𝑢1 (𝑥,

𝑊

2
, 𝑧)

𝑢2 (𝑥,
𝑊

2
, 𝑧)

𝑢3 (𝑥,
𝑊

2
, 𝑧)]
 
 
 
 

−

[
 
 
 
 −𝑢1 (𝑥,

𝑊

2
, 𝑧)

𝑢2 (𝑥,
𝑊

2
, 𝑧)

−𝑢3 (𝑥,
𝑊

2
, 𝑧)]
 
 
 
 

 = [
𝑊〈𝜀12〉
0
0

] 

𝑆5 & 𝑆6 

 
[
 
 
 
 𝑢1 (𝑥, 𝑦,

𝐻

2
)

𝑢2 (𝑥, 𝑦,
𝐻

2
)

𝑢3 (𝑥, 𝑦,
𝐻

2
)]
 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥, 𝑦, −

𝐻

2
)

𝑢2 (𝑥, 𝑦, −
𝐻

2
)

𝑢3 (𝑥, 𝑦, −
𝐻

2
)]
 
 
 
 

 = [
0
0
0
] 
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B.3.3 Shear loading case 〈σ₂₃〉 

Table B.9: PBCs for normal 3D woven composites under shear loading 〈σ₂₃〉 

  𝒖(𝐴) − 𝛾𝐓𝒖(�̅�) = −〈𝜺〉𝐓𝒙O�̅� 

𝑆1  

 
[
 
 
 
 𝑢1 (−

𝐿

2
, 𝑦, z)

𝑢2 (−
𝐿

2
, 𝑦, z)

𝑢3 (−
𝐿

2
, 𝑦, z)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (−

𝐿

2
, 𝑦, z)

𝑢2 (−
𝐿

2
, 𝑦, z)

𝑢3 (−
𝐿

2
, 𝑦, z) ]

 
 
 
 

 = [
0
0
0
] 

𝑆2 

 
[
 
 
 
 𝑢1 (

𝐿

2
, 𝑦, −𝑧)

𝑢2 (
𝐿

2
, 𝑦, −𝑧)

𝑢3 (
𝐿

2
, 𝑦, −𝑧)]

 
 
 
 

−

[
 
 
 
 𝑢1 (

𝐿

2
, 𝑦, 𝑧)

−𝑢2 (
𝐿

2
, 𝑦, 𝑧)

𝑢3 (
𝐿

2
, 𝑦, 𝑧) ]

 
 
 
 

 = [
0
0
0
] 

𝑆3 

 
[
 
 
 
 𝑢1 (𝑥, −

𝑊

2
, −𝑧)

𝑢2 (𝑥, −
𝑊

2
, −𝑧)

𝑢3 (𝑥, −
𝑊

2
, −𝑧)]

 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥, −

𝑊

2
, 𝑧)

−𝑢2 (𝑥, −
𝑊

2
, 𝑧)

−𝑢3 (𝑥, −
𝑊

2
, 𝑧)]
 
 
 
 

 = [
0
0

−𝑊〈𝜀23〉
] 

𝑆4 

 
[
 
 
 
 𝑢1 (𝑥,

𝑊

2
, 𝑧)

𝑢2 (𝑥,
𝑊

2
, 𝑧)

𝑢3 (𝑥,
𝑊

2
, 𝑧)]
 
 
 
 

−

[
 
 
 
 −𝑢1 (𝑥,

𝑊

2
, 𝑧)

𝑢2 (𝑥,
𝑊

2
, 𝑧)

−𝑢3 (𝑥,
𝑊

2
, 𝑧)]
 
 
 
 

 = [
0
0

𝑊〈𝜀23〉
] 

𝑆5 & 𝑆6 

 
[
 
 
 
 𝑢1 (𝑥, 𝑦,

𝐻

2
)

𝑢2 (𝑥, 𝑦,
𝐻

2
)

𝑢3 (𝑥, 𝑦,
𝐻

2
)]
 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥, 𝑦, −

𝐻

2
)

𝑢2 (𝑥, 𝑦, −
𝐻

2
)

𝑢3 (𝑥, 𝑦, −
𝐻

2
)]
 
 
 
 

 = [
0

𝐻〈𝜀23〉
0

] 
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B.3.4 Shear loading case 〈σ₁₃〉 

Table B.10: PBCs for normal 3D woven composites under shear loading 〈σ₁₃〉 

  𝒖(𝐴) − 𝛾𝐓𝒖(�̅�) = −〈𝜺〉𝐓𝒙O�̅� 

𝑆1  

 
[
 
 
 
 𝑢1 (−

𝐿

2
, 𝑦, z)

𝑢2 (−
𝐿

2
, 𝑦, z)

𝑢3 (−
𝐿

2
, 𝑦, z)]

 
 
 
 

−

[
 
 
 
 𝑢1 (−

𝐿

2
, 𝑦, z)

−𝑢2 (−
𝐿

2
, 𝑦, z)

−𝑢3 (−
𝐿

2
, 𝑦, z)]

 
 
 
 

 = [
0
0

−𝐿〈𝜀13〉
] 

𝑆2 

 
[
 
 
 
 𝑢1 (

𝐿

2
, 𝑦, −𝑧)

𝑢2 (
𝐿

2
, 𝑦, −𝑧)

𝑢3 (
𝐿

2
, 𝑦, −𝑧)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (

𝐿

2
, 𝑦, 𝑧)

𝑢2 (
𝐿

2
, 𝑦, 𝑧)

−𝑢3 (
𝐿

2
, 𝑦, 𝑧)]

 
 
 
 

 = [
0
0

𝐿〈𝜀13〉
] 

𝑆3 

 
[
 
 
 
 𝑢1 (𝑥, −

𝑊

2
, −𝑧)

𝑢2 (𝑥, −
𝑊

2
, −𝑧)

𝑢3 (𝑥, −
𝑊

2
, −𝑧)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (𝑥, −

𝑊

2
, 𝑧)

𝑢2 (𝑥, −
𝑊

2
, 𝑧)

𝑢3 (𝑥, −
𝑊

2
, 𝑧) ]

 
 
 
 

 = [
0
0
0
] 

𝑆4 

 
[
 
 
 
 𝑢1 (𝑥,

𝑊

2
, 𝑧)

𝑢2 (𝑥,
𝑊

2
, 𝑧)

𝑢3 (𝑥,
𝑊

2
, 𝑧)]
 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥,

𝑊

2
, 𝑧)

−𝑢2 (𝑥,
𝑊

2
, 𝑧)

𝑢3 (𝑥,
𝑊

2
, 𝑧) ]

 
 
 
 

 = [
0
0
0
] 

𝑆5 & 𝑆6 

 
[
 
 
 
 𝑢1 (𝑥, 𝑦,

𝐻

2
)

𝑢2 (𝑥, 𝑦,
𝐻

2
)

𝑢3 (𝑥, 𝑦,
𝐻

2
)]
 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥, 𝑦, −

𝐻

2
)

𝑢2 (𝑥, 𝑦, −
𝐻

2
)

𝑢3 (𝑥, 𝑦, −
𝐻

2
)]
 
 
 
 

 = [
𝐻〈𝜀13〉
0
0

] 
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APPENDIX C 

 

C.1 Off-axis mUC for plain woven composites 

Table C.1: Analytical equations for the off-axis plain woven mUC 

Yarn type In Off-axis CS (XYZ) In normal CS (XY'Z') 

Warp yarn 

 

{|𝑥 − 𝑦| ≤ √2𝜆𝑊} 

𝑧wp
l =

𝐻

4
(2 + cos𝐴1 − cos

𝐵1
𝜆
) 

𝑧wp
u =

𝐻

4
(2 + cos𝐴1 + cos

𝐵1
𝜆
) 

𝜃wp = tan
1 (−

π𝐻

8𝐿
sin𝐴1) 

{|𝑦′| ≤ 𝜆𝑊} 

𝑧wp
l =

𝐻

4
(2 + cos

π𝑥′

2𝐿
− cos

π𝑦′

2𝜆𝑊
) 

𝑧wp
u =

𝐻

4
(2 + cos

π𝑥′

2𝐿
+ cos

π𝑦′

2𝜆𝑊
) 

𝜃wp = tan 1 (−
π𝐻

8𝐿
sin

π𝑥′

2𝐿
) 

Fill 1 

 

{0 ≤ (𝑥 + 𝑦) ≤ √2𝜆𝐿} 

𝑧f1
l =

𝐻

4
(2 − cos

𝐴1
𝜆
− cos𝐵1) 

𝑧f1
u =

𝐻

4
(2 + cos

𝐴1
𝜆
− cos𝐵1) 

𝜃f1 = tan
−1 (−

π𝐻

8𝑊
sin𝐵1) 

{0 ≤ 𝑥′ ≤ 𝜆𝐿} 

𝑧f1
l =

𝐻

4
(2 − cos

π𝑥′

2𝜆𝐿
− cos

π𝑦′

2𝑊
) 

𝑧f1
u =

𝐻

4
(2 + cos

π𝑥′

2𝜆𝐿
− cos

π𝑦′

2𝑊
) 

𝜃f1 = tan−1 (
π𝐻

8𝑊
sin

π𝑦′

2𝑊
) 

Fill 2 

 

{(𝑥 + 𝑦) ≥ √2(2 − 𝜆)𝐿} 

𝑧f2
l =

𝐻

4
(2 − cos

𝐴1 − π

𝜆
+ cos𝐵1) 

𝑧f2
u =

𝐻

4
(2 + cos

𝐴1 − π

𝜆
+ cos𝐵1) 

𝜃f2 = tan
−1 (

π𝐻

8𝑊
sin𝐵1) 

{𝑥′ ≥ (2 − 𝜆)𝐿} 

𝑧f2
l =

𝐻

4
(2 − cos (

π𝑥′

2𝜆𝐿
−
π

𝜆
) + cos

π𝑦′

2𝑊
) 

𝑧f2
u =

𝐻

4
(2 + cos (

π𝑥′

2𝜆𝐿
−
π

𝜆
) + cos

π𝑦′

2𝑊
) 

𝜃f2 = tan−1 (−
π𝐻

8𝑊
sin

π𝑦′

2𝑊
) 

 𝐴1 =
√2π(𝑥+𝑦)

4𝐿
 , 𝐵1 =

√2π(𝑥−𝑦)

4𝑊
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C.2 Off-axis mUC for twill woven composites 

Table C.2: Analytical equations for warp yarns in the Off-axis twill woven mUC 

Yarn type In Off-axis CS (XYZ) In normal CS (XY'Z') 

Warp 1 (wavy) 

 

{(𝑥 + 𝑦) ≤ √2𝐿} & 

{|𝑥 − 𝑦| ≤ √2𝜆𝑊} 

𝑧w1,w
l =

𝐻

4
(2 + cos 𝐴2 − cos

𝐵1
𝜆
) 

𝑧w1,w
u =

𝐻

4
(2 + cos 𝐴2 + cos

𝐵1
𝜆
) 

𝜃w1,w = tan
1 (−

π𝐻

4𝐿
sin 𝐴2) 

{𝑥′ ≤ 𝐿} & {|𝑦′| ≤ 𝜆𝑊} 

𝑧w1,w
l =

𝐻

4
(2 + cos

π𝑥′

𝐿
− cos

π𝑦′

2𝜆𝑊
) 

𝑧w1,w
u =

𝐻

4
(2 + cos

π𝑥′

𝐿
+ cos

π𝑦′

2𝜆𝑊
) 

𝜃w1,w = tan 1 (−
π𝐻

4𝐿
sin

π𝑥′

𝐿
) 

Warp 1 (straight) 

 

{(𝑥 + 𝑦) ≥ √2𝐿} & 

{|𝑥 − 𝑦| ≤ √2𝜆𝑊} 

𝑧w1,s
l =

𝐻

4
−
𝐻

4
cos

𝐵1
𝜆

 

𝑧w1,s
u =

𝐻

4
+
𝐻

4
cos

𝐵1
𝜆

 

{𝑥′ ≥ 𝐿} & {|𝑦′| ≤ 𝜆𝑊} 

𝑧w1,s
l =

𝐻

4
−
𝐻

4
cos

π𝑦′

2𝜆𝑊
 

𝑧w1,s
u =

𝐻

4
+
𝐻

4
cos

π𝑦′

2𝜆𝑊
 

Warp 2 (wavy) 

 

{(𝑥 + 𝑦) ≥ √2𝐿} & 

{(𝑥 − 𝑦) ≤ √2(𝜆 − 1)𝑊} 

𝑧w2,w
l =

𝐻

4
(2 + cos𝐴2 − cos

2𝐵1 + π

2𝜆
) 

𝑧w2,w
u =

𝐻

4
(2 + cos𝐴2 + cos

2𝐵1 + π

2𝜆
) 

𝜃w2,w = tan−1 (−
π𝐻

4𝐿
sin𝐴2) 

{𝑥′ ≥ 𝐿} & {𝑦′ ≥ (1 − 𝜆)𝑊} 

𝑧w2,w
l =

𝐻

4
(2 + cos

π𝑥′

𝐿
− cos

π(𝑦′ −𝑊)

2𝜆𝑊
) 

𝑧w2,w
u =

𝐻

4
(2 + cos

π𝑥′

𝐿
+ cos

π(𝑦′ −𝑊)

2𝜆𝑊
) 

𝜃w2,w = tan
−1 (−

π𝐻

4𝐿
sin

π𝑥′

𝐿
) 

Warp 2 (straight) 

 

{(𝑥 + 𝑦) ≤ √2𝐿} & 

{(𝑥 − 𝑦) ≤ √2(𝜆 − 1)𝑊} 

𝑧w2,s
l =

𝐻

4
−
𝐻

4
cos

2𝐵1 + π

2𝜆
 

𝑧w2,s
u =

𝐻

4
+
𝐻

4
cos

2𝐵1 + π

2𝜆
 

{𝑥′ ≤ 𝐿} & {𝑦′ ≥ (1 − 𝜆)𝑊} 

𝑧w2,s
l =

𝐻

4
−
𝐻

4
cos

π(𝑦′ −𝑊)

2𝜆𝑊
 

𝑧w2,s
u =

𝐻

4
+
𝐻

4
cos

π(𝑦′ −𝑊)

2𝜆𝑊
 

 𝐴2 =
√2π(𝑥+𝑦)

2𝐿
 , 𝐵1 =

√2π(𝑥−𝑦)

4𝑊
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Table C.3: Analytical equations for fill yarns in the Off-axis twill woven mUC 

Yarn type In Off-axis CS (XYZ) In normal CS (XY'Z') 

Fill 1 (wavy) 

 

{(𝑥 + 𝑦) ≤ √2𝜆𝐿} & 

{(𝑥 − 𝑦) ≤ 0} 

𝑧f1,w
l =

𝐻

4
(2 − cos

𝐴1
𝜆
− cos 𝐵2) 

𝑧f1,w
u =

𝐻

4
(2 + cos

𝐴1
𝜆
− cos 𝐵2) 

𝜃f1,w = tan
−1 (−

π𝐻

4𝑊
sin𝐵2) 

{𝑥′ ≤ 𝜆𝐿} & {𝑦′ ≥ 0} 

𝑧f1,w
l =

𝐻

4
(2 − cos

π𝑥′

2𝜆𝐿
− cos

π𝑦′

𝑊
) 

𝑧f1,w
u =

𝐻

4
(2 + cos

π𝑥′

2𝜆𝐿
− cos

π𝑦′

𝑊
) 

𝜃f1,w = tan−1 (
π𝐻

4𝑊
sin

π𝑦′

𝑊
) 

Fill 1 (straight) 

 

{(𝑥 + 𝑦) ≤ √2𝜆𝐿} & 

{(𝑥 − 𝑦) ≥ 0} 

𝑧f1,s
l =

𝐻

4
−
𝐻

4
cos

𝐴1
𝜆

 

𝑧f1,s
u =

𝐻

4
+
𝐻

4
cos

𝐴1
𝜆

 

{𝑥′ ≤ 𝜆𝐿} & {𝑦′ ≤ 0} 

𝑧f1,s
l =

𝐻

4
−
𝐻

4
cos

π𝑥′

2𝜆𝐿
 

𝑧f1,s
u =

𝐻

4
+
𝐻

4
cos

π𝑥′

2𝜆𝐿
 

Fill 2 (wavy) 

 

{(𝑥 + 𝑦) ≥ √2(1 − 𝜆)𝐿} & 

{(𝑥 − 𝑦) ≥ 0} 

𝑧f2,w
l =

𝐻

4
(2 − cos

2𝐴1 − π

2𝜆
+ cos 𝐵2) 

𝑧f2,w
u =

𝐻

4
(2 + cos

2𝐴1 − π

2𝜆
+ cos 𝐵2) 

𝜃f2,w = tan−1 (
π𝐻

4𝑊
sin𝐵2) 

{𝑥′ ≥ (1 − 𝜆)𝐿} & {𝑦′ ≤ 0} 

𝑧f2,w
l =

𝐻

4
(2 − cos

π(𝑥′ − 𝐿)

2𝜆𝐿
+ cos

π𝑦′

𝑊
) 

𝑧f2,w
u =

𝐻

4
(2 + cos

π(𝑥′ − 𝐿)

2𝜆𝐿
+ cos

π𝑦′

𝑊
) 

𝜃f2,w = tan−1 (−
π𝐻

4𝑊
sin

π𝑦′

𝑊
) 

Fill 2 (straight) 

 

{(𝑥 + 𝑦) ≥ √2(1 − 𝜆)𝐿} & 

{(𝑥 − 𝑦) ≤ 0} 

𝑧f2,s
l =

3𝐻

4
−
𝐻

4
cos

2𝐴1 − π

2𝜆
 

𝑧f2,s
u =

3𝐻

4
+
𝐻

4
cos

2𝐴1 − π

2𝜆
 

{𝑥′ ≥ (1 − 𝜆)𝐿} & {𝑦′ ≥ 0} 

𝑧f2,s
l =

3𝐻

4
−
𝐻

4
cos

π(𝑥′ − 𝐿)

2𝜆𝐿
 

𝑧f2,s
u =

3𝐻

4
+
𝐻

4
cos

π(𝑥′ − 𝐿)

2𝜆𝐿
 

 𝐴1 =
√2π(𝑥+𝑦)

4𝐿
 , 𝐵2 =

√2π(𝑥−𝑦)

2𝑊
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C.3 Off-axis mUC for 3D woven composites 

Table C.4: Analytical equations for warp yarns in the Off-axis 3D woven mUC 

Yarn type In Off-axis CS (XYZ) In normal CS (XY'Z') 

Warp 1 

 

{|𝑥 − 𝑦| ≤ √2𝜆w𝑊} 

𝑧w1
l = 𝐻1 −

𝐻w
2
cos

𝐵1
𝜆w

 

𝑧w1
u = 𝐻1 +

𝐻w
2
cos

𝐵1
𝜆w

 

{|𝑦′| ≤ 𝜆w𝑊} 

𝑧w1
l = 𝐻1 −

𝐻w
2
cos

π𝑦′

2𝜆w𝑊
 

𝑧w1
u = 𝐻1 +

𝐻w
2
cos

π𝑦′

2𝜆w𝑊
 

Warp 2 

 

{|𝑥 − 𝑦| ≤ √2𝜆w𝑊} 

𝑧w2
l = 𝐻2 −

𝐻w
2
cos

𝐵1
𝜆w

 

𝑧w2
u = 𝐻2 +

𝐻w
2
cos

𝐵1
𝜆w

 

{|𝑦′| ≤ 𝜆w𝑊} 

𝑧w2
l = 𝐻2 −

𝐻w
2
cos

π𝑦′

2𝜆w𝑊
 

𝑧w2
u = 𝐻2 +

𝐻w
2
cos

π𝑦′

2𝜆w𝑊
 

Warp 3 

 

{(𝑥 − 𝑦) ≤ √2(𝜆w − 2)𝑊} 

𝑧w3
l = 𝐻1 −

𝐻w
2
cos

𝐵1 + π

𝜆w
 

𝑧w3
u = 𝐻1 +

𝐻w
2
cos

𝐵1 + π

𝜆w
 

{𝑦′ ≥ (2 − 𝜆w)𝑊} 

𝑧w3
l = 𝐻1 −

𝐻w
2
cos (

π𝑦′

2𝜆w𝑊
−
π

𝜆w
) 

𝑧w3
u = 𝐻1 +

𝐻w
2
cos (

π𝑦′

2𝜆w𝑊
−
π

𝜆w
) 

Warp 4 

 

{(𝑥 − 𝑦) ≤ √2(𝜆w − 2)𝑊} 

𝑧w4
l = 𝐻2 −

𝐻w
2
cos

𝐵1 + π

𝜆w
 

𝑧w4
u = 𝐻2 +

𝐻w
2
cos

𝐵1 + π

𝜆w
 

{𝑦′ ≥ (2 − 𝜆w)𝑊} 

𝑧w4
l = 𝐻2 −

𝐻w
2
cos (

π𝑦′

2𝜆w𝑊
−
π

𝜆w
) 

𝑧w4
u = 𝐻2 +

𝐻w
2
cos (

π𝑦′

2𝜆w𝑊
−
π

𝜆w
) 

 𝐵1 =
√2π(𝑥−𝑦)

4𝑊
 ; 

 𝐻1 = 𝐻fa +
𝐻w

2
, 𝐻2 = 𝐻fa + 𝐻fb +

3𝐻w

2
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Table C.5: Analytical equations for fills 1, 2 & 3 in the Off-axis 3D woven mUC 

Yarn type In Off-axis CS (XYZ) In normal CS (XY'Z') 

Fill 1 (wavy) 

 

{(𝑥 + 𝑦) ≤ √2𝜆fa𝐿} & {(𝑥 − 𝑦) ≤ 0} 

𝑧f1,w
l = 𝐻3 −

𝐻fa
2
cos

𝐴1
𝜆fa

− 𝜆𝐻bcos
𝐵1
𝜆

 

𝑧f1,w
u = 𝐻3 +

𝐻fa
2
cos

𝐴1
𝜆fa

− 𝜆𝐻bcos
𝐵1
𝜆

 

𝜃f1,w = tan
−1 (−

π𝐻b
2𝑊

sin
𝐵1
𝜆
) 

{𝑥′ ≤ 𝜆fa𝐿} & {𝑦
′ ≥ 0} 

𝑧f1,w
l = 𝐻3 −

𝐻fa
2
cos

π𝑥′

2𝜆fa𝐿
− 𝜆𝐻b cos

π𝑦′

2𝜆𝑊
 

𝑧f1,w
u = 𝐻3 +

𝐻fa
2
cos

π𝑥′

2𝜆fa𝐿
− 𝜆𝐻b cos

π𝑦′

2𝜆𝑊
 

𝜃f1,w = tan
−1 (

π𝐻b
2𝑊

sin
π𝑦′

2𝜆𝑊
) 

Fill 1 (straight) 

 

{(𝑥 + 𝑦) ≤ √2𝜆fa𝐿} & {(𝑥 − 𝑦) ≥ 0} 

𝑧f1,s
l =

𝐻fa
2
−
𝐻fa
2
cos

𝐴1
𝜆fa

 

𝑧f1,s
u =

𝐻fa
2
+
𝐻fa
2
cos

𝐴1
𝜆fa

 

{𝑥′ ≤ 𝜆fa𝐿} & {𝑦
′ ≤ 0} 

𝑧f1,s
l =

𝐻fa
2
−
𝐻fa
2
cos

π𝑥′

2𝜆fa𝐿
 

𝑧f1,s
u =

𝐻fa
2
+
𝐻fa
2
cos

π𝑥′

2𝜆fa𝐿
 

Fill 2 

 

{(𝑥 + 𝑦) ≤ √2𝜆fb𝐿} 

𝑧f2
l = 𝐻4 −

𝐻fb
2
cos

𝐴1
𝜆fb

 

𝑧f2
u = 𝐻4 +

𝐻fb
2
cos

𝐴1
𝜆fb

 

{𝑥′ ≤ 𝜆fb𝐿} 

𝑧f2
l = 𝐻4 −

𝐻fb
2
cos

π𝑥′

2𝜆fb𝐿
 

𝑧f2
u = 𝐻4 +

𝐻fb
2
cos

π𝑥′

2𝜆fb𝐿
 

Fill 3 (wavy) 

 

{(𝑥 + 𝑦) ≤ √2𝜆fa𝐿} & {(𝑥 − 𝑦) ≥ 0} 

𝑧f3,w
l = 𝐻5 −

𝐻fa
2
cos

𝐴1
𝜆fa

+ 𝜆𝐻bcos
𝐵1
𝜆

 

𝑧f3,w
u = 𝐻5 +

𝐻fa
2
cos

𝐴1
𝜆fa

+ 𝜆𝐻bcos
𝐵1
𝜆

 

𝜃f3,w = tan
−1 (

π𝐻b
2𝑊

sin
𝐵1
𝜆
) 

{𝑥′ ≤ 𝜆fa𝐿} & {𝑦
′ ≤ 0} 

𝑧f3,w
l = 𝐻5 −

𝐻fa
2
cos

π𝑥′

2𝜆fa𝐿
+ 𝜆𝐻b cos

π𝑦′

2𝜆𝑊
 

𝑧f3,w
u = 𝐻5 +

𝐻fa
2
cos

π𝑥′

2𝜆fa𝐿
+ 𝜆𝐻b cos

π𝑦′

2𝜆𝑊
 

𝜃f3,w = tan−1 (−
π𝐻b
2𝑊

sin
π𝑦′

2𝜆𝑊
) 

Fill 3 (straight) 

 

{(𝑥 + 𝑦) ≤ √2𝜆fa𝐿} & {(𝑥 − 𝑦) ≤ 0} 

𝑧f3,s
l = 𝐻 −

𝐻fa
2
−
𝐻fa
2
cos

𝐴1
𝜆fa

 

𝑧f3,s
u = 𝐻 −

𝐻fa
2
+
𝐻fa
2
cos

𝐴1
𝜆fa

 

{𝑥′ ≤ 𝜆fa𝐿} & {𝑦
′ ≥ 0} 

𝑧f3,s
l =  𝐻 −

𝐻fa
2
−
𝐻fa
2
cos

π𝑥′

2𝜆fa𝐿
 

𝑧f3,s
u =  𝐻 −

𝐻fa
2
+
𝐻fa
2
cos

π𝑥′

2𝜆fa𝐿
 

 𝐴1 =
√2π(𝑥+𝑦)

4𝐿
 , 𝐵1 =

√2π(𝑥−𝑦)

4𝑊
; 

 𝐻3 =
𝐻fa

2
+  𝜆𝐻b, 𝐻4 = 𝐻fa + 𝐻w +

𝐻fb

2
, 𝐻5 = 𝐻 −

𝐻fa

2
−  𝜆𝐻b 
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Table C.6: Analytical equations for fills 4 & 5 in the Off-axis 3D woven mUC 

Yarn type In Off-axis CS (XYZ) In normal CS (XY'Z') 

Fill 4 (wavy) 

 

{(𝑥 + 𝑦) ≥ √2(2 − 𝜆fa)𝐿} & 

{(𝑥 − 𝑦) ≥ 0} 

𝑧f4,w
l = 𝐻3 −

𝐻fa
2
cos

𝐴1 − π

𝜆fa
− 𝜆𝐻b cos

𝐵1
𝜆

 

𝑧f4,w
u = 𝐻3 +

𝐻fa
2
cos

𝐴1 − π

𝜆fa
− 𝜆𝐻b cos

𝐵1
𝜆

 

𝜃f4,w = tan
−1 (−

π𝐻b
2𝑊

sin
𝐵1
𝜆
) 

{𝑥′ ≥ (2 − 𝜆fa)𝐿} & {𝑦
′ ≤ 0} 

𝑧f4,w
l = 𝐻3 −

𝐻fa
2
cos

π(𝑥′ − 2𝐿)

2𝜆fa𝐿
− 𝜆𝐻b cos

π𝑦′

2𝜆𝑊
 

𝑧f4,w
u = 𝐻3 +

𝐻fa
2
cos

π(𝑥′ − 2𝐿)

2𝜆fa𝐿
− 𝜆𝐻b cos

π𝑦′

2𝜆𝑊
 

= tan−1 (
π𝐻b
2𝑊

sin
π𝑦′

2𝜆𝑊
) 

Fill 4 (straight) 

 

{(𝑥 + 𝑦) ≥ √2(2 − 𝜆fa)𝐿} & 

{(𝑥 − 𝑦) ≤ 0} 

𝑧f4,s
l =

𝐻fa
2
−
𝐻fa
2
cos

𝐴1 − π

𝜆fa
 

𝑧f4,s
u =

𝐻fa
2
+
𝐻fa
2
cos

𝐴1 − π

𝜆fa
 

{𝑥′ ≥ (2 − 𝜆fa)𝐿} & {𝑦
′ ≥ 0} 

𝑧f4,s
l =

𝐻fa
2
−
𝐻fa
2
cos

π(𝑥′ − 2𝐿)

2𝜆fa𝐿
 

𝑧f4,s
u =

𝐻fa
2
+
𝐻fa
2
cos

π(𝑥′ − 2𝐿)

2𝜆fa𝐿
 

Fill 5 

 

{(𝑥 + 𝑦) ≥ √2(2 − 𝜆fb)𝐿} 

𝑧f5
l = 𝐻4 −

𝐻fb
2
cos

𝐴1 − π

𝜆fb
 

𝑧f5
u = 𝐻4 +

𝐻fb
2
cos

𝐴1 − π

𝜆fb
 

{𝑥′ ≥ (2 − 𝜆fb)𝐿} 

𝑧f5
l = 𝐻4 −

𝐻fb
2
cos

π(𝑥′ − 2𝐿)

2𝜆fb𝐿
 

𝑧f5
u = 𝐻4 +

𝐻fb
2
cos

π(𝑥′ − 2𝐿)

2𝜆fb𝐿
 

 𝐴1 =
√2π(𝑥+𝑦)

4𝐿
 , 𝐵1 =

√2π(𝑥−𝑦)

4𝑊
; 

 𝐻3 =
𝐻fa

2
+  𝜆𝐻b , 𝐻4 = 𝐻fa +𝐻w +

𝐻fb

2
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Table C.7: Analytical equations for fill 6 in the Off-axis 3D woven mUC 

Yarn type In Off-axis CS (XYZ) In normal CS (XY'Z') 

Fill 6 (part A) 

 

{|𝑥 + 𝑦 − 2√2𝐿| ≤ √2𝜆fa𝐿} & 

{(𝑥 − 𝑦) ≤ √2(𝜆 − 2)𝑊} 

𝑧f6,A
l = 𝐻5 −

𝐻fa
2
cos𝐴λ1 + 𝜆𝐻bcos𝐵λ1 

𝑧f6,A
u = 𝐻5 +

𝐻fa
2
cos𝐴λ1 + 𝜆𝐻bcos𝐵λ1 

𝜃f6,A = tan−1 (
π𝐻b
2𝑊

sin𝐵λ1) 

{|𝑥′ − 2𝐿| ≤ 𝜆fa𝐿} & {𝑦
′ ≥ (2 − 𝜆)𝑊} 

𝑧f6,A
l = 𝐻5 −

𝐻fa
2
cos

π(𝑥′ − 2𝐿)

2𝜆fa𝐿
+ 𝜆𝐻b cos

π(𝑦′ − 2𝑊)

2𝜆𝑊
 

𝑧f6,A
u = 𝐻5 +

𝐻fa
2
cos

π(𝑥′ − 2𝐿)

2𝜆fa𝐿
+ 𝜆𝐻b cos

π(𝑦′ − 2𝑊)

2𝜆𝑊
 

𝜃f6,A = tan
−1 (−

π𝐻b
2𝑊

sin
π(𝑦′ − 2𝑊)

2𝜆𝑊
) 

Fill 6 (part B) 

 

{|𝑥 + 𝑦 − 2√2𝐿| ≤ √2𝜆fa𝐿} & 

{|𝑥 − 𝑦 + √2𝑊| ≤ √2(1 − 𝜆)𝑊} 

𝑧f6,B
l = 𝐻5 −

𝐻fa
2
cos 𝐴λ1 − 𝐻𝜆 cos 𝐵λ2 

𝑧f6,B
u = 𝐻5 +

𝐻fa
2
cos 𝐴λ1 − 𝐻𝜆 cos 𝐵λ2 

𝜃f6,B = tan−1 (−
π𝐻b
2𝑊

sin 𝐵λ2) 

{|𝑥′ − 2𝐿| ≤ 𝜆fa𝐿} & {|𝑦
′ −𝑊| ≤ (1 − 𝜆)𝑊} 

𝑧f6,B
l = 𝐻5 −

𝐻fa
2
cos

π(𝑥′ − 2𝐿)

2𝜆fa𝐿
− 𝐻𝜆 cos

π(𝑦′ −𝑊)

2(1 − 𝜆)𝑊
 

𝑧f6,B
u = 𝐻5 +

𝐻fa
2
cos

π(𝑥′ − 2𝐿)

2𝜆fa𝐿
− 𝐻𝜆 cos

π(𝑦′ −𝑊)

2(1 − 𝜆)𝑊
 

𝜃f6,B = tan
−1 (

π𝐻b
2𝑊

sin
π(𝑦′ −𝑊)

2(1 − 𝜆)𝑊
) 

Fill 6 (part C) 

 

{|𝑥 + 𝑦 − 2√2𝐿| ≤ √2𝜆fa𝐿} & 

{−√2𝜆𝑊 ≤ (𝑥 − 𝑦) ≤ 0} 

𝑧f6,C
l = 𝐻5 −

𝐻fa
2
cos 𝐴λ1 + 𝜆𝐻bcos

𝐵1
𝜆

 

𝑧f6,C
u = 𝐻5 +

𝐻fa
2
cos 𝐴λ1 + 𝜆𝐻bcos

𝐵1
𝜆

 

𝜃f6,C = tan−1 (
π𝐻b
2𝑊

sin
𝐵1
𝜆
) 

{|𝑥′ − 2𝐿| ≤ 𝜆fa𝐿} & {0 ≤ 𝑦
′ ≤ 𝜆𝑊} 

𝑧f6,C
l = 𝐻5 −

𝐻fa
2
cos

π(𝑥′ − 2𝐿)

2𝜆fa𝐿
+ 𝜆𝐻b cos

π𝑦′

2𝜆𝑊
 

𝑧f6,C
u = 𝐻5 +

𝐻fa
2
cos

π(𝑥′ − 2𝐿)

2𝜆fa𝐿
+ 𝜆𝐻b cos

π𝑦′

2𝜆𝑊
 

𝜃f6,C = tan
−1 (−

π𝐻b
2𝑊

sin
π𝑦′

2𝜆𝑊
) 

Fill 6 (part D) 

 

{|𝑥 + 𝑦 − 2√2𝐿| ≤ √2𝜆fa𝐿} & 

{(𝑥 − 𝑦) ≥ 0} 

𝑧f6,D
l = 𝐻 −

𝐻fa
2
−
𝐻fa
2
cos 𝐴λ1 

𝑧f6,D
u = 𝐻 −

𝐻fa
2
+
𝐻fa
2
cos 𝐴λ1 

{|𝑥′ − 2𝐿| ≤ 𝜆fa𝐿} & {𝑦
′ ≤ 0} 

𝑧f6,D
l = 𝐻 −

𝐻fa
2
−
𝐻fa
2
cos

π(𝑥′ − 2𝐿)

2𝜆fa𝐿
 

𝑧f6,D
u = 𝐻 −

𝐻fa
2
+
𝐻fa
2
cos

π(𝑥′ − 2𝐿)

2𝜆fa𝐿
 

 𝐴1 =
√2π(𝑥+𝑦)

4𝐿
 , 𝐵1 =

√2π(𝑥−𝑦)

4𝑊
; 

 𝐴λ1 =
𝐴1−π

𝜆fa
, 𝐵λ1 =

𝐵1+π

𝜆
, 𝐵λ2 =

2𝐵1+π

2(1−𝜆)
; 

 𝐻5 = 𝐻 −
𝐻fa

2
−  𝜆𝐻b, 𝐻𝜆 = (1 − 𝜆)𝐻b 
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Table C.8: Analytical equations for binder yarns in the Off-axis 3D woven mUC 

Yarn type Surfaces & waviness in off-axis & normal coordinate systems  

Binder 1 

(part A) 

 

In
 O

ff
-a

x
is

 C
S

 
{(𝑥 + 𝑦) ≤ 2√2𝐿} & {|𝑥 − 𝑦 + √2𝑊| ≤ √2𝜆b𝑊} 

𝑧b1,A
l =

𝐻

2
+
𝐻b
2
−
𝐻b
2
cos

2𝐵1 + π

2𝜆b
+𝑚0 tanh[𝑠0((𝑥 + 𝑦) √2⁄ − 𝐿)] − |

𝐻b
2sin𝜃0

| 

𝑧b1,A
u =

𝐻

2
−
𝐻b
2
+
𝐻b
2
cos

2𝐵1 + π

2𝜆b
+𝑚0 tanh[𝑠0((𝑥 + 𝑦) √2⁄ − 𝐿)] + |

𝐻b
2sin𝜃0

| 

𝜃b1,A = tan
−1 {𝑚0𝑠0{1 − tanh

2[𝑠0((𝑥 + 𝑦) √2⁄ − 𝐿)]}} 

In
 n

o
rm

al
 C

S
 

{𝑥′ ≤ 2𝐿} & {|𝑦′ −𝑊| ≤ 𝜆b𝑊} 

𝑧b1,A
l =

𝐻

2
+
𝐻b
2
−
𝐻b
2
cos

π(𝑦′ −𝑊)

2𝜆b𝑊
+𝑚0 tanh[𝑠0(𝑥

′ − 𝐿)] − |
𝐻b

2sin𝜃0
| 

𝑧b1,A
u =

𝐻

2
−
𝐻b
2
+
𝐻b
2
cos

π(𝑦′ −𝑊)

2𝜆b𝑊
+𝑚0 tanh[𝑠0(𝑥

′ − 𝐿)] + |
𝐻b

2sin𝜃0
| 

𝜃b1,A = tan
−1{𝑚0𝑠0{1 − tanh

2[𝑠0(𝑥
′ − 𝐿)]}} 

Binder 1 

(part B) 

 

In
 O

ff
-a

x
is

 C
S

 

{(𝑥 + 𝑦) ≥ 2√2𝐿} & {|𝑥 − 𝑦 + √2𝑊| ≤ √2𝜆b𝑊} 

𝑧b1,B
l =

𝐻

2
+
𝐻b
2
−
𝐻b
2
cos

2𝐵1 + π

2𝜆b
−𝑚0 tanh[𝑠0((𝑥 + 𝑦) √2⁄ − 3𝐿)] − |

𝐻b
2sin𝜃1

| 

𝑧b1,B
u =

𝐻

2
−
𝐻b
2
+
𝐻b
2
cos

2𝐵1 + π

2𝜆b
−𝑚0 tanh[𝑠0((𝑥 + 𝑦) √2⁄ − 3𝐿)] + |

𝐻b
2sin𝜃1

| 

𝜃b1,B = −tan
−1 {𝑚0𝑠0{1 − tanh

2[𝑠0((𝑥 + 𝑦) √2⁄ − 3𝐿)]}} 

In
 n

o
rm

al
 C

S
 

{𝑥′ ≥ 2𝐿} & {|𝑦′ −𝑊| ≤ 𝜆b𝑊} 

𝑧b1,B
l =

𝐻

2
+
𝐻b
2
−
𝐻b
2
cos

π(𝑦′ −𝑊)

2𝜆b𝑊
−𝑚0 tanh[𝑠0(𝑥

′ − 3𝐿)] − |
𝐻b

2sin𝜃1
| 

𝑧b1,B
u =

𝐻

2
−
𝐻b
2
+
𝐻b
2
cos

π(𝑦′ −𝑊)

2𝜆b𝑊
−𝑚0 tanh[𝑠0(𝑥

′ − 3𝐿)] + |
𝐻b

2sin𝜃1
| 

𝜃b1,B = −tan
−1{𝑚0𝑠0{1 − tanh

2[𝑠0(𝑥
′ − 3𝐿)]}} 

Binder 2 

 

In
 O

ff
-a

x
is

 C
S

 

{|𝑥 − 𝑦 − √2𝑊| ≤ √2𝜆b𝑊} 

𝑧b2
l =

𝐻

2
+
𝐻b
2
−
𝐻b
2
cos

2𝐵1 − π

2𝜆b
−𝑚0 tanh[𝑠0((𝑥 + 𝑦) √2⁄ − 𝐿)] − |

𝐻b
2sin𝜃0

| 

𝑧b2
u =

𝐻

2
−
𝐻b
2
+
𝐻b
2
cos

2𝐵1 − π

2𝜆b
−𝑚0 tanh[𝑠0((𝑥 + 𝑦) √2⁄ − 𝐿)] + |

𝐻b
2sin𝜃0

| 

𝜃b2 = −tan
−1 {𝑚0𝑠0{1 − tanh

2[𝑠0((𝑥 + 𝑦) √2⁄ − 𝐿)]}} 

In
 n

o
rm

al
 C

S
 

 {|𝑦′ +𝑊| ≤ 𝜆b𝑊} 

𝑧b2
l =

𝐻

2
+
𝐻b
2
−
𝐻b
2
cos

π(𝑦′ +𝑊)

2𝜆b𝑊
−𝑚0 tanh[𝑠0(𝑥

′ − 𝐿)] − |
𝐻b

2sin𝜃0
| 

𝑧b2
u =

𝐻

2
−
𝐻b
2
+
𝐻b
2
cos

π(𝑦′ +𝑊)

2𝜆b𝑊
−𝑚0 tanh[𝑠0(𝑥

′ − 𝐿)] + |
𝐻b

2sin𝜃0
| 

𝜃b2 = −tan
−1{𝑚0𝑠0{1 − tanh

2[𝑠0(𝑥
′ − 𝐿)]}} 

 𝐵1 =
√2π(𝑥−𝑦)

4𝑊
, 𝜃0 = −tan−1 {

1

𝑚0𝑠0{1−tanh
2[𝑠0(𝑥

′−𝐿)]}
}, 𝜃1 = −tan

−1 {
1

𝑚0𝑠0{1−tanh
2[𝑠0(𝑥

′−3𝐿)]}
} 
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APPENDIX D 

 

D.1 PBCs for off-axis plain woven mUC 

D.1.1 Normal loading case 〈σ₁₁〉, 〈σ₂₂〉 and 〈σ₃₃〉 

Table D.1: PBCs for off-axis plain woven composites under normal loading 

  𝒖(𝐴) − 𝛾𝐓𝒖(�̅�) = −〈𝜺〉𝑻𝒙O�̅� 

𝑆1  

 [
 
 
 
 𝑢1 (−

𝐿o
2
, 𝑦, −z)

𝑢2 (−
𝐿o
2
, 𝑦, −z)

𝑢3 (−
𝐿o
2
, 𝑦, −z)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (−

𝐿o
2
, 𝑦, z)

𝑢2 (−
𝐿o
2
, 𝑦, z)

−𝑢3 (−
𝐿o
2
, 𝑦, z)]

 
 
 
 

 = [
−𝐿o〈𝜀11〉

0
0

] 

𝑆2 

 [
 
 
 
 𝑢1 (

𝐿o
2
, −𝑦,−𝑧)

𝑢2 (
𝐿o
2
, −𝑦, −𝑧)

𝑢3 (
𝐿o
2
, −𝑦, −𝑧)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (

𝐿o
2
, 𝑦, 𝑧)

−𝑢2 (
𝐿o
2
, 𝑦, 𝑧)

−𝑢3 (
𝐿o
2
, 𝑦, 𝑧)]

 
 
 
 

 = [
𝐿o〈𝜀11〉
0
0

] 

𝑆3 

 [
 
 
 
 𝑢1 (𝑥, −

𝑊o
2
, −𝑧)

𝑢2 (𝑥, −
𝑊o
2
, −𝑧)

𝑢3 (𝑥, −
𝑊o
2
, −𝑧)]

 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥, −

𝑊o
2
, 𝑧)

−𝑢2 (𝑥, −
𝑊o
2
, 𝑧)

−𝑢3 (𝑥, −
𝑊o
2
, 𝑧)]
 
 
 
 

 = [
0

−𝑊o〈𝜀22〉
0

] 

𝑆4 

 [
 
 
 
 𝑢1 (𝑥,

𝑊o
2
, −𝑧)

𝑢2 (𝑥,
𝑊o
2
, −𝑧)

𝑢3 (𝑥,
𝑊o
2
, −𝑧)]

 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥,

𝑊o
2
, 𝑧)

−𝑢2 (𝑥,
𝑊o
2
, 𝑧)

−𝑢3 (𝑥,
𝑊o
2
, 𝑧)]
 
 
 
 

 = [
0

𝑊o〈𝜀22〉
0

] 

𝑆5 & 𝑆6 

 [
 
 
 
 𝑢1 (𝑥, 𝑦,

𝐻

2
)

𝑢2 (𝑥, 𝑦,
𝐻

2
)

𝑢3 (𝑥, 𝑦,
𝐻

2
)]
 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥, 𝑦, −

𝐻

2
)

𝑢2 (𝑥, 𝑦, −
𝐻

2
)

𝑢3 (𝑥, 𝑦, −
𝐻

2
)]
 
 
 
 

 = [
0
0

𝐻〈𝜀33〉
] 
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D.1.2 Shear loading case 〈σ₁₂〉 

Table D.2: PBCs for off-axis plain woven composites under shear loading 〈σ₁₂〉 

  𝒖(𝐴) − 𝛾𝐓𝒖(�̅�) = −〈𝜺〉𝐓𝒙O�̅� 

𝑆1  

 [
 
 
 
 𝑢1 (−

𝐿o
2
, 𝑦, −z)

𝑢2 (−
𝐿o
2
, 𝑦, −z)

𝑢3 (−
𝐿o
2
, 𝑦, −z)]

 
 
 
 

−

[
 
 
 
 𝑢1 (−

𝐿o
2
, 𝑦, z)

−𝑢2 (−
𝐿o
2
, 𝑦, z)

𝑢3 (−
𝐿o
2
, 𝑦, z) ]

 
 
 
 

 = [
0

−𝐿o〈𝜀12〉
0

] 

𝑆2 

 [
 
 
 
 𝑢1 (

𝐿o
2
, −𝑦,−𝑧)

𝑢2 (
𝐿o
2
, −𝑦, −𝑧)

𝑢3 (
𝐿o
2
, −𝑦, −𝑧)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (

𝐿o
2
, 𝑦, 𝑧)

−𝑢2 (
𝐿o
2
, 𝑦, 𝑧)

−𝑢3 (
𝐿o
2
, 𝑦, 𝑧)]

 
 
 
 

 = [
0

𝐿o〈𝜀12〉
0

] 

𝑆3 

 [
 
 
 
 𝑢1 (𝑥, −

𝑊o
2
, −𝑧)

𝑢2 (𝑥, −
𝑊o
2
, −𝑧)

𝑢3 (𝑥, −
𝑊o
2
, −𝑧)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (𝑥, −

𝑊o
2
, 𝑧)

𝑢2 (𝑥, −
𝑊o
2
, 𝑧)

𝑢3 (𝑥, −
𝑊o
2
, 𝑧) ]

 
 
 
 

 = [
−𝑊o〈𝜀12〉

0
0

] 

𝑆4 

 [
 
 
 
 𝑢1 (𝑥,

𝑊o
2
, −𝑧)

𝑢2 (𝑥,
𝑊o
2
, −𝑧)

𝑢3 (𝑥,
𝑊o
2
, −𝑧)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (𝑥,

𝑊o
2
, 𝑧)

𝑢2 (𝑥,
𝑊o
2
, 𝑧)

𝑢3 (𝑥,
𝑊o
2
, 𝑧) ]

 
 
 
 

 = [
𝑊o〈𝜀12〉
0
0

] 

𝑆5 & 𝑆6 

 [
 
 
 
 𝑢1 (𝑥, 𝑦,

𝐻

2
)

𝑢2 (𝑥, 𝑦,
𝐻

2
)

𝑢3 (𝑥, 𝑦,
𝐻

2
)]
 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥, 𝑦, −

𝐻

2
)

𝑢2 (𝑥, 𝑦, −
𝐻

2
)

𝑢3 (𝑥, 𝑦, −
𝐻

2
)]
 
 
 
 

 = [
0
0
0
] 
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D.1.3 Shear loading case 〈σ₂₃〉 

Table D.3: PBCs for off-axis plain woven composites under shear loading 〈σ₂₃〉 

  𝒖(𝐴) − 𝛾𝐓𝒖(�̅�) = −〈𝜺〉𝐓𝒙O�̅� 

𝑆1  

 [
 
 
 
 𝑢1 (−

𝐿o
2
, 𝑦, −z)

𝑢2 (−
𝐿o
2
, 𝑦, −z)

𝑢3 (−
𝐿o
2
, 𝑦, −z)]

 
 
 
 

−

[
 
 
 
 𝑢1 (−

𝐿o
2
, 𝑦, z)

−𝑢2 (−
𝐿o
2
, 𝑦, z)

𝑢3 (−
𝐿o
2
, 𝑦, z) ]

 
 
 
 

 = [
0
0
0
] 

𝑆2 

 [
 
 
 
 𝑢1 (

𝐿o
2
, −𝑦,−𝑧)

𝑢2 (
𝐿o
2
, −𝑦, −𝑧)

𝑢3 (
𝐿o
2
, −𝑦, −𝑧)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (

𝐿o
2
, 𝑦, 𝑧)

−𝑢2 (
𝐿o
2
, 𝑦, 𝑧)

−𝑢3 (
𝐿o
2
, 𝑦, 𝑧)]

 
 
 
 

 = [
0
0
0
] 

𝑆3 

 [
 
 
 
 𝑢1 (𝑥, −

𝑊o
2
, −𝑧)

𝑢2 (𝑥, −
𝑊o
2
, −𝑧)

𝑢3 (𝑥, −
𝑊o
2
, −𝑧)]

 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥, −

𝑊o
2
, 𝑧)

−𝑢2 (𝑥, −
𝑊o
2
, 𝑧)

−𝑢3 (𝑥, −
𝑊o
2
, 𝑧)]
 
 
 
 

 = [
0
0

−𝑊o〈𝜀23〉
] 

𝑆4 

 [
 
 
 
 𝑢1 (𝑥,

𝑊o
2
, −𝑧)

𝑢2 (𝑥,
𝑊o
2
, −𝑧)

𝑢3 (𝑥,
𝑊o
2
, −𝑧)]

 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥,

𝑊o
2
, 𝑧)

−𝑢2 (𝑥,
𝑊o
2
, 𝑧)

−𝑢3 (𝑥,
𝑊o
2
, 𝑧)]
 
 
 
 

 = [
0
0

𝑊o〈𝜀23〉
] 

𝑆5 & 𝑆6 

 [
 
 
 
 𝑢1 (𝑥, 𝑦,

𝐻

2
)

𝑢2 (𝑥, 𝑦,
𝐻

2
)

𝑢3 (𝑥, 𝑦,
𝐻

2
)]
 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥, 𝑦, −

𝐻

2
)

𝑢2 (𝑥, 𝑦, −
𝐻

2
)

𝑢3 (𝑥, 𝑦, −
𝐻

2
)]
 
 
 
 

 = [
0

𝐻〈𝜀23〉
0

] 
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D.1.4 Shear loading case 〈σ₁₃〉 

Table D.4: PBCs for off-axis plain woven composites under shear loading 〈σ₁₃〉 

  𝒖(𝐴) − 𝛾𝐓𝒖(�̅�) = −〈𝜺〉𝐓𝒙O�̅� 

𝑆1  

 [
 
 
 
 𝑢1 (−

𝐿o
2
, 𝑦, −z)

𝑢2 (−
𝐿o
2
, 𝑦, −z)

𝑢3 (−
𝐿o
2
, 𝑦, −z)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (−

𝐿o
2
, 𝑦, z)

𝑢2 (−
𝐿o
2
, 𝑦, z)

−𝑢3 (−
𝐿o
2
, 𝑦, z)]

 
 
 
 

 = [
0
0

−𝐿o〈𝜀13〉
] 

𝑆2 

 [
 
 
 
 𝑢1 (

𝐿o
2
, −𝑦,−𝑧)

𝑢2 (
𝐿o
2
, −𝑦, −𝑧)

𝑢3 (
𝐿o
2
, −𝑦, −𝑧)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (

𝐿o
2
, 𝑦, 𝑧)

−𝑢2 (
𝐿o
2
, 𝑦, 𝑧)

−𝑢3 (
𝐿o
2
, 𝑦, 𝑧)]

 
 
 
 

 = [
0
0

𝐿o〈𝜀13〉
] 

𝑆3 

 [
 
 
 
 𝑢1 (𝑥, −

𝑊o
2
, −𝑧)

𝑢2 (𝑥, −
𝑊o
2
, −𝑧)

𝑢3 (𝑥, −
𝑊o
2
, −𝑧)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (𝑥, −

𝑊o
2
, 𝑧)

𝑢2 (𝑥, −
𝑊o
2
, 𝑧)

𝑢3 (𝑥, −
𝑊o
2
, 𝑧) ]

 
 
 
 

 = [
0
0
0
] 

𝑆4 

 [
 
 
 
 𝑢1 (𝑥,

𝑊o
2
, −𝑧)

𝑢2 (𝑥,
𝑊o
2
, −𝑧)

𝑢3 (𝑥,
𝑊o
2
, −𝑧)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (𝑥,

𝑊o
2
, 𝑧)

𝑢2 (𝑥,
𝑊o
2
, 𝑧)

𝑢3 (𝑥,
𝑊o
2
, 𝑧) ]

 
 
 
 

 = [
0
0
0
] 

𝑆5 & 𝑆6 

 [
 
 
 
 𝑢1 (𝑥, 𝑦,

𝐻

2
)

𝑢2 (𝑥, 𝑦,
𝐻

2
)

𝑢3 (𝑥, 𝑦,
𝐻

2
)]
 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥, 𝑦, −

𝐻

2
)

𝑢2 (𝑥, 𝑦, −
𝐻

2
)

𝑢3 (𝑥, 𝑦, −
𝐻

2
)]
 
 
 
 

 = [
𝐻〈𝜀13〉
0
0

] 
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D.2 PBCs for off-axis twill woven mUC 

D.2.1 Normal loading case 〈σ₁₁〉, 〈σ₂₂〉 and 〈σ₃₃〉 

Table D.5: PBCs for off-axis twill woven composites under normal loading 

  𝒖(𝐴) − 𝛾𝐓𝒖(�̅�) = −〈𝜺〉𝐓𝒙O�̅� 

𝑆1  

 [
 
 
 
 𝑢1 (−

𝐿o
2
, 𝑦, −z)

𝑢2 (−
𝐿o
2
, 𝑦, −z)

𝑢3 (−
𝐿o
2
, 𝑦, −z)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (−

𝐿o
2
, 𝑦, z)

𝑢2 (−
𝐿o
2
, 𝑦, z)

−𝑢3 (−
𝐿o
2
, 𝑦, z)]

 
 
 
 

 = [
−𝐿o〈𝜀11〉

0
0

] 

𝑆2 

 [
 
 
 
 𝑢1 (

𝐿o
2
, 𝑦, −𝑧)

𝑢2 (
𝐿o
2
, 𝑦, −𝑧)

𝑢3 (
𝐿o
2
, 𝑦, −𝑧)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (

𝐿o
2
, 𝑦, 𝑧)

𝑢2 (
𝐿o
2
, 𝑦, 𝑧)

−𝑢3 (
𝐿o
2
, 𝑦, 𝑧)]

 
 
 
 

 = [
𝐿o〈𝜀11〉
0
0

] 

𝑆3 & 𝑆4 

 [
 
 
 
 𝑢1 (𝑥,

𝑊o
2
, −𝑧)

𝑢2 (𝑥,
𝑊o
2
, −𝑧)

𝑢3 (𝑥,
𝑊o
2
, −𝑧)]

 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥, −

𝑊o
2
, 𝑧)

𝑢2 (𝑥, −
𝑊o
2
, 𝑧)

−𝑢3 (𝑥, −
𝑊o
2
, 𝑧)]
 
 
 
 

 = [
0

𝑊o〈𝜀22〉
0

] 

𝑆5 & 𝑆6 

 [
 
 
 
 𝑢1 (𝑥, 𝑦,

𝐻

2
)

𝑢2 (𝑥, 𝑦,
𝐻

2
)

𝑢3 (𝑥, 𝑦,
𝐻

2
)]
 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥, 𝑦, −

𝐻

2
)

𝑢2 (𝑥, 𝑦, −
𝐻

2
)

𝑢3 (𝑥, 𝑦, −
𝐻

2
)]
 
 
 
 

 = [
0
0

𝐻〈𝜀33〉
] 
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D.2.2 Shear loading case 〈σ₁₂〉 

Table D.6: PBCs for off-axis twill woven composites under shear loading 〈σ₁₂〉 

  𝒖(𝐴) − 𝛾𝐓𝒖(�̅�) = −〈𝜺〉𝐓𝒙O�̅� 

𝑆1  

 [
 
 
 
 𝑢1 (−

𝐿o
2
, 𝑦, −z)

𝑢2 (−
𝐿o
2
, 𝑦, −z)

𝑢3 (−
𝐿o
2
, 𝑦, −z)]

 
 
 
 

−

[
 
 
 
 𝑢1 (−

𝐿o
2
, 𝑦, z)

−𝑢2 (−
𝐿o
2
, 𝑦, z)

𝑢3 (−
𝐿o
2
, 𝑦, z) ]

 
 
 
 

 = [
0

−𝐿o〈𝜀12〉
0

] 

𝑆2 

 [
 
 
 
 𝑢1 (

𝐿o
2
, 𝑦, −𝑧)

𝑢2 (
𝐿o
2
, 𝑦, −𝑧)

𝑢3 (
𝐿o
2
, 𝑦, −𝑧)]

 
 
 
 

−

[
 
 
 
 𝑢1 (

𝐿o
2
, 𝑦, 𝑧)

−𝑢2 (
𝐿o
2
, 𝑦, 𝑧)

𝑢3 (
𝐿o
2
, 𝑦, 𝑧) ]

 
 
 
 

 = [
0

𝐿o〈𝜀12〉
0

] 

𝑆3 & 𝑆4 

 [
 
 
 
 𝑢1 (𝑥,

𝑊o
2
, −𝑧)

𝑢2 (𝑥,
𝑊o
2
, −𝑧)

𝑢3 (𝑥,
𝑊o
2
, −𝑧)]

 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥, −

𝑊o
2
, 𝑧)

𝑢2 (𝑥, −
𝑊o
2
, 𝑧)

−𝑢3 (𝑥, −
𝑊o
2
, 𝑧)]
 
 
 
 

 = [
𝑊o〈𝜀12〉
0
0

] 

𝑆5 & 𝑆6 

 [
 
 
 
 𝑢1 (𝑥, 𝑦,

𝐻

2
)

𝑢2 (𝑥, 𝑦,
𝐻

2
)

𝑢3 (𝑥, 𝑦,
𝐻

2
)]
 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥, 𝑦, −

𝐻

2
)

𝑢2 (𝑥, 𝑦, −
𝐻

2
)

𝑢3 (𝑥, 𝑦, −
𝐻

2
)]
 
 
 
 

 = [
0
0
0
] 
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D.2.3 Shear loading case 〈σ₂₃〉 

Table D.7: PBCs for off-axis twill woven composites under shear loading 〈σ₂₃〉 

  𝒖(𝐴) − 𝛾𝐓𝒖(�̅�) = −〈𝜺〉𝐓𝒙O�̅� 

𝑆1  

 [
 
 
 
 𝑢1 (−

𝐿o
2
, 𝑦, −z)

𝑢2 (−
𝐿o
2
, 𝑦, −z)

𝑢3 (−
𝐿o
2
, 𝑦, −z)]

 
 
 
 

−

[
 
 
 
 𝑢1 (−

𝐿o
2
, 𝑦, z)

−𝑢2 (−
𝐿o
2
, 𝑦, z)

𝑢3 (−
𝐿o
2
, 𝑦, z) ]

 
 
 
 

 = [
0
0
0
] 

𝑆2 

 [
 
 
 
 𝑢1 (

𝐿o
2
, 𝑦, −𝑧)

𝑢2 (
𝐿o
2
, 𝑦, −𝑧)

𝑢3 (
𝐿o
2
, 𝑦, −𝑧)]

 
 
 
 

−

[
 
 
 
 𝑢1 (

𝐿o
2
, 𝑦, 𝑧)

−𝑢2 (
𝐿o
2
, 𝑦, 𝑧)

𝑢3 (
𝐿o
2
, 𝑦, 𝑧) ]

 
 
 
 

 = [
0
0
0
] 

𝑆3 & 𝑆4 

 [
 
 
 
 𝑢1 (𝑥,

𝑊o
2
, −𝑧)

𝑢2 (𝑥,
𝑊o
2
, −𝑧)

𝑢3 (𝑥,
𝑊o
2
, −𝑧)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (𝑥, −

𝑊o
2
, 𝑧)

−𝑢2 (𝑥, −
𝑊o
2
, 𝑧)

𝑢3 (𝑥, −
𝑊o
2
, 𝑧) ]

 
 
 
 

 = [
0
0

𝑊o〈𝜀23〉
] 

𝑆5 & 𝑆6 

 [
 
 
 
 𝑢1 (𝑥, 𝑦,

𝐻

2
)

𝑢2 (𝑥, 𝑦,
𝐻

2
)

𝑢3 (𝑥, 𝑦,
𝐻

2
)]
 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥, 𝑦, −

𝐻

2
)

𝑢2 (𝑥, 𝑦, −
𝐻

2
)

𝑢3 (𝑥, 𝑦, −
𝐻

2
)]
 
 
 
 

 = [
0

𝐻〈𝜀23〉
0

] 
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D.2.4 Shear loading case 〈σ₁₃〉 

Table D.8: PBCs for off-axis twill woven composites under shear loading 〈σ₁₃〉 

  𝒖(𝐴) − γ𝐓𝒖(�̅�) = −〈𝜺〉𝐓𝒙O�̅� 

𝑆1  

 [
 
 
 
 𝑢1 (−

𝐿o
2
, 𝑦, −z)

𝑢2 (−
𝐿o
2
, 𝑦, −z)

𝑢3 (−
𝐿o
2
, 𝑦, −z)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (−

𝐿o
2
, 𝑦, z)

𝑢2 (−
𝐿o
2
, 𝑦, z)

−𝑢3 (−
𝐿o
2
, 𝑦, z)]

 
 
 
 

 = [
0
0

−𝐿o〈𝜀13〉
] 

𝑆2 

 [
 
 
 
 𝑢1 (

𝐿o
2
, 𝑦, −𝑧)

𝑢2 (
𝐿o
2
, 𝑦, −𝑧)

𝑢3 (
𝐿o
2
, 𝑦, −𝑧)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (

𝐿o
2
, 𝑦, 𝑧)

𝑢2 (
𝐿o
2
, 𝑦, 𝑧)

−𝑢3 (
𝐿o
2
, 𝑦, 𝑧)]

 
 
 
 

 = [
0
0

𝐿o〈𝜀13〉
] 

𝑆3 & 𝑆4 

 [
 
 
 
 𝑢1 (𝑥,

𝑊o
2
, −𝑧)

𝑢2 (𝑥,
𝑊o
2
, −𝑧)

𝑢3 (𝑥,
𝑊o
2
, −𝑧)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (𝑥, −

𝑊o
2
, 𝑧)

−𝑢2 (𝑥, −
𝑊o
2
, 𝑧)

𝑢3 (𝑥, −
𝑊o
2
, 𝑧) ]

 
 
 
 

 = [
0
0
0
] 

𝑆5 & 𝑆6 

 [
 
 
 
 𝑢1 (𝑥, 𝑦,

𝐻

2
)

𝑢2 (𝑥, 𝑦,
𝐻

2
)

𝑢3 (𝑥, 𝑦,
𝐻

2
)]
 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥, 𝑦, −

𝐻

2
)

𝑢2 (𝑥, 𝑦, −
𝐻

2
)

𝑢3 (𝑥, 𝑦, −
𝐻

2
)]
 
 
 
 

 = [
𝐻〈𝜀13〉
0
0

] 
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D.3 PBCs for off-axis 3D woven mUC 

Table D.9: PBCs for off-axis 3D woven composites under normal/shear loading 

  𝒖(𝐴) − 𝛾𝐓𝒖(�̅�) = −〈𝜺〉𝐓𝒙O�̅� 

𝑆1  

 [
 
 
 
 𝑢1 (−

𝐿o
2
, −𝑦,−z)

𝑢2 (−
𝐿o
2
, −𝑦,−z)

𝑢3 (−
𝐿o
2
, −𝑦,−z)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (−

𝐿o
2
, 𝑦, z)

−𝑢2 (−
𝐿o
2
, 𝑦, z)

−𝑢3 (−
𝐿o
2
, 𝑦, z)]

 
 
 
 

 = [

−𝐿o〈𝜀11〉

−𝐿o〈𝜀12〉

−𝐿o〈𝜀13〉
] 

𝑆2 

 [
 
 
 
 𝑢1 (

𝐿o
2
, −𝑦,−𝑧)

𝑢2 (
𝐿o
2
, −𝑦, −𝑧)

𝑢3 (
𝐿o
2
, −𝑦, −𝑧)]

 
 
 
 

−

[
 
 
 
 −𝑢1 (

𝐿o
2
, 𝑦, 𝑧)

−𝑢2 (
𝐿o
2
, 𝑦, 𝑧)

−𝑢3 (
𝐿o
2
, 𝑦, 𝑧)]

 
 
 
 

 = [

𝐿o〈𝜀11〉

𝐿o〈𝜀12〉

𝐿o〈𝜀13〉
] 

𝑆3 & 𝑆4 

 [
 
 
 
 𝑢1 (𝑥,

𝑊o
2
, 𝑧)

𝑢2 (𝑥,
𝑊o
2
, 𝑧)

𝑢3 (𝑥,
𝑊o
2
, 𝑧)]
 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥, −

𝑊o
2
, 𝑧)

𝑢2 (𝑥, −
𝑊o
2
, 𝑧)

𝑢3 (𝑥, −
𝑊o
2
, 𝑧)]
 
 
 
 

 = [

𝑊o〈𝜀12〉

𝑊o〈𝜀22〉

𝑊o〈𝜀23〉
] 

𝑆5 & 𝑆6 

 [
 
 
 
 𝑢1 (𝑥, 𝑦,

𝐻

2
)

𝑢2 (𝑥, 𝑦,
𝐻

2
)

𝑢3 (𝑥, 𝑦,
𝐻

2
)]
 
 
 
 

−

[
 
 
 
 𝑢1 (𝑥, 𝑦, −

𝐻

2
)

𝑢2 (𝑥, 𝑦, −
𝐻

2
)

𝑢3 (𝑥, 𝑦, −
𝐻

2
)]
 
 
 
 

 = [

𝐻〈𝜀13〉

𝐻〈𝜀23〉

𝐻〈𝜀33〉
] 
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