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ABSTRACT Two Shigella species, Shigella flexneri and Shigella sonnei, cause approxi-
mately 90% of bacterial dysentery worldwide. While S. flexneri is the dominant
species in low-income countries, S. sonnei causes the majority of infections in
middle- and high-income countries. S. flexneri is a prototypic cytosolic bacterium;
once intracellular, it rapidly escapes the phagocytic vacuole and causes pyroptosis of
macrophages, which is important for pathogenesis and bacterial spread. In contrast,
little is known about the invasion, vacuole escape, and induction of pyroptosis dur-
ing S. sonnei infection of macrophages. We demonstrate here that S. sonnei causes
substantially less pyroptosis in human primary monocyte-derived macrophages and
THP1 cells. This is due to reduced bacterial uptake and lower relative vacuole es-
cape, which results in fewer cytosolic S. sonnei and hence reduced activation of
caspase-1 inflammasomes. Mechanistically, the O-antigen (O-Ag), which in S. sonnei
is contained in both the lipopolysaccharide and the capsule, was responsible for re-
duced uptake and the type 3 secretion system (T3SS) was required for vacuole es-
cape. Our findings suggest that S. sonnei has adapted to an extracellular lifestyle by
incorporating multiple layers of O-Ag onto its surface compared to other Shigella
species.

IMPORTANCE Diarrheal disease remains the second leading cause of death in chil-
dren under five. Shigella remains a significant cause of diarrheal disease with two
species, S. flexneri and S. sonnei, causing the majority of infections. S. flexneri are well
known to cause cell death in macrophages, which contributes to the inflammatory
nature of Shigella diarrhea. Here, we demonstrate that S. sonnei causes less cell
death than S. flexneri due to a reduced number of bacteria present in the cell cyto-
sol. We identify the O-Ag polysaccharide which, uniquely among Shigella spp., is
present in two forms on the bacterial cell surface as the bacterial factor responsible.
Our data indicate that S. sonnei differs from S. flexneri in key aspects of infection and
that more attention should be given to characterization of S. sonnei infection.
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Shigella are the causative agents of shigellosis, infecting an estimated 125 million
people annually. Children under five are most at risk with a third of all deaths due

to Shigella occurring among this age group (1). Closely related to Escherichia coli, the
genus is made up of four species; Shigella flexneri, S. sonnei, S. dysenteriae, and S. boydii.
These species are divided into serotypes based on the O-antigen (O-Ag) structure. S.
flexneri and S. sonnei are responsible for the majority of infections; however, dominance
is highly dependent on the socioeconomic status of an area. S. flexneri is associated
with poor water sanitation and hygiene in developing countries. In sub-Saharan Africa
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and Asia, S. flexneri accounts for 66% of cases and S. sonnei 24% of cases (2). However,
in areas with good socioeconomic conditions and a high gross domestic product per
capita, such as North America and Europe, S. sonnei is responsible for up to 80% of
infections (3). Transitional countries that have recently undergone socioeconomic
improvements show a shift from S. flexneri to S. sonnei as the dominant species (4–6).
As a number of large populous countries undergo this shift (e.g., Brazil, India, and
China), S. sonnei is emerging as an important pathogen.

The pathogenesis of S. sonnei is poorly understood and generally assumed to be
similar to S. flexneri. The growing importance of S. sonnei has led to a reevaluation of
its pathogenesis and has revealed some important differences from S. flexneri. These
include a novel adhesin (7, 8), an antibacterial type 6 secretion system (T6SS) (9), and
a group 4 capsule (G4C), which protects it from serum-mediated killing (10). Both
species have a homologous type 3 secretion system (T3SS) that promotes secretion of
effectors into host cells.

Unlike other Shigella species which contain multiple serotypes, there is only one S.
sonnei serotype. The genes encoding biosynthesis and export of the O-Ag are encoded
on the pSS virulence plasmid and were horizontally acquired from Plesiomonas shigel-
loides. In all other Shigella spp., these genes are located on the chromosome (11). S.
sonnei O-Ag is composed of two unusual sugars, 2-acetamido-2-deoxy-L-altruronic acid
and 2-acetamido-2-deoxy-L-fucose, which are not present in the O-Ags of other Shigella
spp. or indeed in many bacteria (12). Importantly, the G4C of S. sonnei is also composed
of the O-Ag polysaccharide, linked to an unknown lipid anchor rather than the lipid
A/core as in the lipopolysaccharide (LPS) (10). Therefore, the surface of S. sonnei is
covered with two O-Ag layers.

Pyroptotic cell death is considered an important component of S. flexneri patho-
genesis (13), allowing S. flexneri to escape macrophage-mediated killing, induce local
inflammation, and invade epithelial cells from the basolateral side (14). In the canonical
pathway for caspase-1 activation and pyroptosis, NOD and leucine-rich repeat contain-
ing proteins with CARD or PYD (NLRCs or NLRPs), AIM2-like receptors or Pyrin protein
can respond to pathogen- and/or danger-associated molecular patterns. This leads to
the assembly of the sensor, e.g., NLRP3 or NLRC4, and the adaptor protein, ASC, into a
signaling platform, known as the inflammasome, which activates caspase-1 (15). In the
noncanonical pathway, caspase-4 directly senses and is activated by cytosolic LPS (16).
Active caspase-1 and active caspase-4 can cleave gasdermin-D (GSDMD) (17). Once
cleaved, the N-terminal of GSDMD forms pores in the cell membrane to cause swelling
and membrane rupture. The proinflammatory cytokines interleukin-1� (IL-1�) and IL-18
are also cleaved by active caspase-1 into their mature forms and released (18, 19).

S. flexneri can activate the NLRC4 and NLRP3 inflammasomes (20). The T3SS needle
and rod proteins (MxiH and MxiI, respectively) are recognized by hNaip/mNaip1 and
mNaip2 proteins, which interact with NLRC4 and promote caspase-1 activation (21, 22).
NLRP3 senses decreased cytosolic potassium levels and activates caspase-1 (23). A T3SS
effector, IpaH7.8, has been shown to be important for activation of both the NLRC4 and
NLRP3 inflammasomes (20). In the case of Shigella, it is unclear whether pyroptosis
benefits the host or the bacteria. S. flexneri is thought to use pyroptosis to escape the
macrophage and infect epithelial cells. However, recent studies using Salmonella
suggest that pyroptosis results in killing of bacteria by forming pore-induced intracel-
lular traps (24) or GSDMD targeting of bacterial membranes (25). It is currently un-
known whether S. sonnei activates the same inflammasomes as S. flexneri and whether
this is beneficial for the host or bacteria.

In this study, we demonstrate for the first time that S. sonnei induces caspase-1-
dependent pyroptosis of human macrophages. However, we observed that equivalent
bacterial inocula induced much less cell death for S. sonnei than S. flexneri. We show this
is due to the O-Ag of S. sonnei, which reduces internalization and vacuole escape,
resulting in less cytosolic bacteria. Our studies reveal an important role for the S. sonnei
O-Ag in regulating bacterial interactions with macrophages, with one consequence
being a reduction in inflammatory cell death.
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RESULTS
S. sonnei induces less macrophage cell death than S. flexneri. Previous research

into the interactions of Shigella with macrophages has largely focused on S. flexneri,
which robustly induces pyroptosis in macrophages (20). To investigate whether S.
sonnei behaved in a similar manner, we infected primary human CD14� monocyte-
derived macrophages (hMDMs) and measured the uptake of propidium iodide (PI), as
an indicator of membrane damage that precedes pyroptosis. Unexpectedly, S. sonnei
induced 50% less PI uptake than S. flexneri (Fig. 1A).

Similar experiments in phorbol-12-myristate-13-acetate (PMA)-differentiated THP1
cells recapitulated the reduced PI uptake during S. sonnei infection compared to S.
flexneri (Fig. 1B). In addition, a lactate dehydrogenase (LDH) release assay comparing
lytic cell death showed S. sonnei induced less cell death than S. flexneri (Fig. 1C). To
ensure the reduced cell death was not a unique feature of the widely used S. sonnei
strain 53G, we included a recent clinical isolate, S. sonnei 381, alongside S. sonnei 53G
and compared these to two different S. flexneri strains M90T (serotype 5a) and 2457T
(serotype 2a). Notably, both S. sonnei strains induced lower PI uptake in macrophages
(Fig. 1B).

There are fewer cytosolic S. sonnei than S. flexneri. Induction of macrophage cell
death by S. flexneri requires the bacteria to be cytosolic, which entails two steps:
internalization and vacuole escape. We hypothesized that differences in these pro-
cesses between S. flexneri and S. sonnei might be responsible for the differences in cell
death observed. To investigate why S. sonnei induced less cell death, we treated
hMDMs or PMA-treated THP1 cells with 50 �M Z-VAD-fmk, a pan-caspase inhibitor, to
inhibit cell death (Fig. S1A in the supplemental material) and performed a gentamicin
protection assay to calculate the number of intracellular bacteria (Fig. 1D and E). S.
sonnei-infected macrophages had reduced numbers of intracellular bacteria compared
to S. flexneri.

As the earliest time point that can be measured in the gentamicin protection assay
is 1 h 40 min postinfection, it is possible bacteria were already killed by this time point,
which would misrepresent the relative efficiency of internalization (because internal-
ized and killed bacteria would not be detected). To address this, we enumerated
intracellular bacteria by differential staining at 40 min postinfection, which confirmed
that fewer THP1 cells harbored intracellular bacteria when infected with S. sonnei than
when infected with S. flexneri (Fig. 1F).

Internalized S. flexneri rapidly lyse the phagocytic/endosomal vacuole in order to
access the cell cytosol and escape lysosomal degradation (26). To investigate how well
S. sonnei escaped into the cytosol, we used chloroquine, an antibiotic that only
accumulates in vacuoles at high enough concentrations to kill bacteria, allowing
discrimination between cytosolic and vacuolar bacteria (27). S. sonnei showed a reduc-
tion in vacuole escape compared to S. flexneri (Fig. 1G). Taken together, these data
indicated there are less cytosolic S. sonnei compared to S. flexneri at the same multi-
plicity of infection (MOI), which may result in the reduced macrophage cell death
observed with S. sonnei. By increasing the S. sonnei MOI to obtain equivalent numbers
of cytosolic bacteria to S. flexneri (Fig. S1B), S. sonnei and S. flexneri induced similar levels
of cell death (Fig. 1H and J) and cell lysis (Fig. S1C). These findings confirm that cytosolic
bacteria are required for induction of cell death in S. sonnei and S. flexneri and that S.
sonnei does not access the cytosol as efficiently as S. flexneri.

The T3SS is required for vacuole escape but not internalization of S. sonnei. The
T3SS of S. flexneri is required for bacteria to lyse the phagocytic vacuole and access the
cytosol (28). Consistent with this, a S. sonnei T3SS mutant (ΔmxiD) had an impaired
ability to escape the vacuole (Fig. 2A) and reduced cell death measured by PI uptake
(Fig. 2B) and LDH release (Fig. S1D). The S. sonnei T3SS was required to induce vacuole
lysis and hence produce cytosolic bacteria.

It is unclear whether Shigella internalization into macrophages is predominantly
T3SS-dependent invasion or phagocytic uptake. T3SS-mediated invasion of epithelial
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cells by S. flexneri triggers extensive membrane recruitment to engulf the bacteria. To
visualize S. flexneri and S. sonnei uptake, we performed scanning electron microscopy
(SEM) on infected cells and were able to see membrane recruitment around attached
S. flexneri but not S. sonnei (Fig. 2C and D). Since phagocytic uptake and T3SS-mediated

FIG 1 S. sonnei induces less pyroptosis of macrophages than S. flexneri. (A) Primary hMDMs were infected
with the indicated Shigella strains, and cell death was measured by PI uptake at 3 h postinfection. *, P �
0.05 (by paired Student t test; n � 4 independent repeats from two donors). (B and C) THP1 cells were
infected with the indicated WT Shigella strains. Cell death was measured by PI uptake over a 3-h time
course and is plotted as the area under the curve (AUC) (n � 3) (B) or LDH release at 3 h postinfection
(n � 9) (C). ****, P � 0.0001 (by one-way ANOVA with Tukey’s multiple-comparison test) (B) or ****, P �
0.0001 (by paired Student t test (C). (D) hMDMs and (E) THP1 cells were infected with S. sonnei or S.
flexneri and gentamicin-protected intracellular bacteria determined by CFU enumeration. (D) *, P � 0.05
(by paired Student t test, n � 4 independent repeats from two donors) and (E) ***, P � 0.001 by paired
Student t test (n � 11). (F) Immunofluorescence microscopy was used to visualize intracellular/extracel-
lular bacteria, and the percentage of infected THP1 cells was calculated. **, P � 0.01 (by paired Student
t test, n � 3). (G) THP1 cells were infected with S. sonnei or S. flexneri and subsequently treated with
gentamicin alone or gentamicin/chloroquine to determine the percentage of cytosolic bacteria that have
escaped the vacuole. ***, P � 0.001 (by paired Student t test, n � 4). (H) THP1 cells were infected with
S. sonnei at an MOI of 20 or with S. flexneri at an MOI of 5. Cell death was measured by PI uptake over
a 3-h time course and is plotted as the AUC. ns, nonsignificant (by paired Student t test, n � 3). (I) hMDMs
were infected with S. sonnei at an MOI of 40 or with S. flexneri at an MOI of 10, and the PI uptake was
measured at 3 h postinfection. ns, nonsignificant (by paired Student t test, n � 4 independent repeats
from two donors).
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invasion both involve membrane rearrangement, these would be difficult to distinguish
visually. Instead, we performed gentamicin protection assays with wild-type (WT) and
T3SS mutant strains to quantify the number of intracellular bacteria in macrophages.
Our experiments showed that in both hMDMs and THP1 cells, internalization into
macrophages was T3SS dependent for S. flexneri but not S. sonnei (Fig. 2E and F). This
suggested that the majority of S. flexneri actively invaded macrophages, in contrast to
S. sonnei, which were mainly internalized by phagocytic uptake.

S. sonnei and S. flexneri induce similar pyroptosis pathways in infected mac-
rophages. Given that cytosolic bacteria induce cell death through inflammasome

FIG 2 For S. sonnei, vacuole escape and cell death are T3SS dependent, but internalization is T3SS
independent. (A) THP1 cells were infected with S. sonnei or S. flexneri and their respective T3SS mutants
and subsequently treated with gentamicin alone or gentamicin/chloroquine to determine the percent-
age of cytosolic bacteria that escaped the vacuole. ***, P � 0.001 (by one-way ANOVA with Tukey’s
multiple-comparison test, n � 4). (B) THP1 cells were infected with WT S. sonnei and S. flexneri and their
respective T3SS mutants. Cell death was measured by PI uptake over a 3-h time course and is plotted as
the AUC. ns, nonsignificant; ****, P � 0.0001 (by one-way ANOVA with Tukey’s multiple-comparison test,
n � 3). (C and D) HeLa cells were infected with WT S. sonnei and S. flexneri for 10 min before being
washed and fixed for SEM analysis. Arrows indicate bacteria attached to the cell surface. THP1 cells (E)
and hMDMs (F) were infected with WT or T3SS-deficient S. sonnei and S. flexneri, and gentamicin-
protected internalized bacteria were determined by CFU enumeration. ns, nonsignificant; *, P � 0.05; **,
P � 0.01 (by one-way ANOVA with Tukey’s multiple-comparison test, n � 4 [E] and n � 4 [F] independent
repeats from two donors).
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activation, we characterized the inflammasome pathways activated by S. sonnei. Since
the S. flexneri inflammasome activators MxiH, MxiI, and IpaH7.8 proteins are 100%
identical between S. sonnei 53G and S. flexneri M90T, we hypothesized they would
activate the NLRC4 inflammasome. At comparable levels of cytosolic bacteria, similar
activation of caspase-1 and proteolytic cleavage of GSDMD and IL-18 were observed
(Fig. 3A). The involvement of the inflammasome pathway was confirmed using ASCmRFP

THP1 cells, which revealed that both bacteria induced comparable levels of cells with
ASC-containing inflammasome foci during infection (Fig. 3B and C). Further, infected
GSDMD-silenced THP1 cells (THPGSDMD-miR, validated in Fig. S2A and B) underwent
reduced cell death, suggesting pyroptosis is the dominant type of cell death induced
by S. sonnei and S. flexneri (Fig. 3D).

Cells deficient in caspase-4 showed reduced pyroptosis (Fig. 3E), however, loss of
caspase-1 almost completely abolished pyroptosis (Fig. 3F; all knockout cells are
validated in Fig. S2C to E), indicating the canonical pathway of pyroptosis predominates
in S. sonnei- and S. flexneri-infected macrophages. Treatment with the NLRP3 inhibitor,
MCC950 (29), did not markedly affect cell death (Fig. 3G and validated in Fig. S2F),
suggesting that NLRP3 plays a minor role in pyroptosis. ASC-deficient THP1 cells
showed a partial reduction in cell death levels compared to WT THP1 cells (Fig. 3H).
Taken together, these results are consistent with NLRC4 activation contributing to
pyroptosis during S. sonnei infection of human macrophages, which is similar to
previous reports for S. flexneri.

The T6SS and LVP instability do not account for reduced cell death caused by
S. sonnei. All Shigella spp. harbor a large virulence plasmid (LVP) that encodes the T3SS,

its effectors and additional important virulence factors. The LVP of S. sonnei is less stable
than S. flexneri due to the evolution of different toxin-antitoxin systems (30). We
inserted an antibiotic resistance cassette onto the LVP to create a stabilized LVP and
used this strain to test whether LVP loss affected the amount of cell death that was
induced. The LVP stabilized S. sonnei induced similar cell lysis as WT S. sonnei, indicating
that differences in plasmid retention was not responsible for the altered interaction
with macrophages (Fig. 4A).

Even though the T6SS of S. sonnei has only been described to have antibacterial
activity (9), T6SSs from other bacteria (e.g., Francisella tularensis [31, 32]) have activity
within macrophages. We therefore created a S. sonnei T6SS mutant (ΔtssB) to determine
whether there was any contribution by the T6SS to cell death but found no difference
in LDH release (Fig. 4A), indicating that the T6SS was not responsible for the altered
interaction with macrophages. Altogether, these results ruled out the loss of LVP or a
contribution by the T6SS in the reduced cell death observed for S. sonnei.

S. sonnei O-Ag prevents internalization into macrophages. S. sonnei O-Ag is

incorporated into the G4C as well as being attached to the lipid A/core of LPS (Fig. 4B).
The incorporation of the O-Ag into LPS and G4C is genetically separable, which we
exploited to investigate their respective roles in the interaction with macrophages. The
G4C of S. sonnei reduces bacterial invasion of epithelial cells by impairing T3SS activity
(10) and could therefore play a similar role in macrophage internalization. We con-
firmed that S. sonnei ΔG4C invaded HeLa cells more efficiently (see Fig. S3B). Uptake
and pyroptosis induced by S. sonnei ΔG4C was statistically similar to WT bacteria,
although we did observe slightly greater cell death with the ΔG4C mutant (Fig. 4C and
D). This was consistent with predominantly phagocytic uptake of S. sonnei by macro-
phages.

We then deleted the O-Ag synthesis operon (genes wbgT to wbgZ) (33) to create a
strain devoid of all O-Ag (both LPS and G4C linked) (Fig. 4B). This strain (ΔO-Ag)
demonstrated increased internalization and cell death compared to S. sonnei Δg4c
(Fig. 4C and D) and WT S. sonnei. In contrast, an LPS O-Ag-deficient strain (ΔwaaL),
which retains the G4C, showed equivalent internalization as WT S. sonnei (see Fig. S3A).
Therefore, the presence of the S. sonnei O-Ag per se, rather than specifically the O-Ag
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in the capsule or attached to the lipid A/core, impedes macrophage internalization, and
its complete removal enhances bacterial internalization.

We have shown that S. sonnei cell death is T3SS dependent due to the requirement
for cytosolic bacteria. The T3SS tip accessibility has previously been shown to be

FIG 3 S. sonnei and S. flexneri induce similar pyroptosis pathways when normalized for numbers of cytosolic bacteria. (A) Immunoblots
were performed on Shigella-infected THP1 cells to visualize cleavage of caspase-1, GSDMD, and IL-18 at 3 h postinfection. (B and C)
ASCmRFP THP1 cells were infected with fluorescent Shigella (green) at the indicated MOIs and, at 3 h postinfection, the ASC focus
formation was visualized (red). DAPI staining was used to visualize DNA (blue). Representative micrographs for each strain are shown.
The area indicated by the white box in the merged panel is enlarged to show single ASC foci in infected cells and the lack of ASC foci
in uninfected cells. ASC focus formation was enumerated in panel C. ns, nonsignificant; **, P � 0.01 (by one-way ANOVA, n � 4). (D)
THP1 cells expressing nontargeting miRNA or GSDMD-targeting miRNA were infected with S. sonnei (MOI of 20) or S. flexneri (MOI of
5) for 3 h. Cell death was measured by PI uptake over a 3-h time course and is plotted as the AUC. ****, P � 0.0001 (by one-way ANOVA
with Tukey’s multiple-comparison test, n � 3). (E) Control THP1 cells (Ctrl) and THP1 cells deficient for caspase-4 (Casp4 KO) were
infected with S. sonnei (MOI of 20) or S. flexneri (MOI of 5). Cell death was measured by PI uptake over a 3-h time course and is plotted
as the AUC. ***, P � 0.001; ****, P � 0.0001 (by one-way ANOVA with Tukey’s multiple-comparison test, n � 3). (F) Control THP1 cells
(Ctrl) and THP1 cells deficient for caspase-1 (Casp1 KO) were infected with S. sonnei (MOI of 20) or S. flexneri (MOI of 5). Cell death was
measured by PI uptake over a 3-h time course and is plotted as the AUC. ****, P � 0.0001 (by one-way ANOVA with Tukey’s
multiple-comparison test, n � 3). (G) THP1 cells left untreated or treated with 5 �M MCC950 were infected with S. sonnei (MOI of 20)
or S. flexneri (MOI of 5) for 3 h. Cell death was measured by PI uptake over a 3-h time course and is plotted as the AUC. ****, P � 0.0001
(by one-way ANOVA with Tukey’s multiple-comparison test, n � 4). (H) THP1 cells and ASC-deficient THP1 cells were infected with S.
sonnei (MOI of 20) or S. flexneri (MOI of 5) for 3 h. Cell death was measured by PI uptake over a 3-h time course and is plotted as the
AUC. ****, P � 0.0001 (by one-way ANOVA Tukey’s multiple-comparison test, n � 3).
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enhanced upon removal of the G4C and further exposed by removal of the O-Ag (10).
We therefore hypothesized that the O-Ag was impeding T3SS-mediated invasion. To
test this, we created a T3SS mutant in the O-Ag-deficient strain (ΔO-AgΔmxiD). In
keeping with our hypothesis, this strain had wild-type levels of internalization (Fig. 4E)

FIG 4 The presence of S. sonnei O-Ag reduces cell death and internalization. (A) THP1 cells were infected with S. sonnei WT, LVPStabile,
or ΔT6SS strains, and cell death was measured by LDH release at 3 h postinfection. ns, nonsignificant (by one-way ANOVA with Tukey’s
multiple-comparison test, n � 3). (B) S. sonnei has O-Ag attached to the cell surface in two different forms, as the conventional O-Ag
attached to the Lipid A-core of the LPS and as an O-Ag capsule attached to the cell surface by an unknown lipid anchor. S. sonnei ΔG4C
has only O-Ag incorporated into the LPS, S. sonnei ΔO-Ag has neither G4C or LPS O-Ag, and S. sonnei �waaL has only G4C O-Ag. (C) THP1
cells were infected with S. sonnei WT, ΔG4C, or ΔO-Ag strains, and the gentamicin-protected internalized bacteria were determined by
CFU enumeration. *, P � 0.05 (by one-way ANOVA with a mixed-effect model with Sidak’s multiple-comparison test, n � 10 [wild type]
and 7 [mutants]). (D) THP1 cells were infected with S. sonnei WT, ΔG4C, or O-Ag strains. Cell death was measured by PI uptake over a
3-h time course and is plotted as the AUC. ****, P � 0.0001 (by one-way ANOVA with Tukey’s multiple-comparison test, n � 4). (E) Crude
LPS was purified from the indicated S. sonnei and S. flexneri strains, separated by 12% SDS-PAGE, and visualized by a modified silver stain.
(F) THP1 cells were infected with S. sonnei WT, S. sonnei ΔO-Ag strain, or the S. sonnei ΔO-Ag strain complemented with S. sonnei O-Ag
(pO-AgSs), the S. flexneri O-Ag (pO-AgSf5a), or the S. flexneri O-Ag, and WzzB (pO-AgSf5a/wzzB), and gentamicin-protected internalized
bacteria were determined by CFU enumeration. *, P � 0.05; **, P � 0.01 (by one-way ANOVA with Tukey’s multiple-comparison test,
n � 4). (G) THP1 cells were infected with S. sonnei WT, S. sonnei ΔO-Ag, S. sonnei ΔO-Ag plus pO-AgSs, or S. sonnei ΔO-Ag plus pO-AgSf5a.
Cell death was measured by PI uptake over a 3-h time course and is plotted as the AUC. ****, P � 0.0001 (by one-way ANOVA with Tukey’s
multiple-comparison test, n � 4).
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but impaired activation of cell death because it is unable to escape the vacuole. To
further investigate the role of the O-Ag in shielding the T3SS, we complemented the
O-Ag mutant (ΔO-Ag) with either the S. sonnei O-Ag synthesis operon (pSS) or the S.
flexneri 5a O-Ag synthesis and modification operons (pSf5a) (34–36) (Fig. 4E). Both
complemented strains impeded internalization of S. sonnei (Fig. 4F) and, as a conse-
quence, reduced the level of cell death similar to those observed with WT S. sonnei
(Fig. 4F). Interestingly, complementation with pSf5a produced a S. flexneri-like O-Ag
ladder that migrated differently on SDS-PAGE than when expressed in S. flexneri. To
determine whether this was due to different modal length of O-Ag controlled by WzzB,
we introduced the wzzBSf onto the pSf5a complementation plasmid (pSf5a/wzzB). In
this strain the modal length of the O-Ag resembled that of the WT S. flexneri; however,
a low level of expression was observed. The levels of internalization and cell death were
not reduced to the levels of the WT S. sonnei and instead resembled the levels of the
O-Ag mutant.

DISCUSSION

S. flexneri is known to induce pyroptosis in macrophages. This is considered a key
step in the pathogenesis of Shigella since it allows bacteria to infect epithelial cells from
the preferred basolateral side and leads to bacterial dissemination. In addition, pyrop-
tosis creates an inflammatory response causing the recruitment of neutrophils, which
disrupts the epithelial cell barrier and allows more Shigella to traverse the epithelial
layer (37).

Here, we present evidence that S. sonnei does not use the same mechanisms during
infection as S. flexneri (summarized in Fig. 5). In line with previous reports, we found
that S. flexneri induces rapid pyroptosis upon internalization of infected macrophages
(20, 22). However, S. sonnei induced markedly less macrophage cell death, which was

FIG 5 Model showing the interaction of S. flexneri, S. sonnei, and S. sonnei ΔO-Ag with macrophages. S.
flexneri uses T3SS-mediated invasion and vacuole rupture to reach the cytosol, where it induces
inflammasome activation, GSDMD pores, and pyroptosis. S. sonnei does not invade macrophages using
its T3SS and only becomes intracellular through phagocytosis. Combined with a decreased ability to
escape the vacuole, this reduces the number of cytosolic bacteria and leads to reduced inflammasome
activation. The T3SS becomes accessible in S. sonnei ΔO-Ag, allowing the bacteria to invade macrophages
and reach the cytosol, where they can activate the inflammasome and cause pyroptosis.
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the result of a decreased number of cytosolic bacteria through a combination of fewer
internalized S. sonnei and impaired vacuole escape. The requirement for cytosolic
bacteria in the induction of inflammasomes was consistent for both S. sonnei and S.
flexneri. Additional host responses are also likely to be affected by the reduced number
of cytosolic bacteria for S. sonnei compared to S. flexneri.

Once S. sonnei and S. flexneri cytosolic numbers were normalized, pyroptosis pro-
ceeded via similar pathways and to similar levels. For both species, cell death was
predominantly dependent on GSDMD and caspase-1, indicating the canonical inflam-
masome pathway is induced by Shigella. There may be a minor contribution to cell
death for the noncanonical pathway, since immunoblots indicated that caspase-4 was
activated by infection by both S. sonnei and S. flexneri and that caspase-4 deficiency or
NLRP3 inhibition led to less pyroptosis over time than control cells. However, this
difference was minor compared to that observed for ASC or caspase-1-deficient cells.
NLRC4 has a caspase-recruitment and activation domain (CARD), which can enable its
interaction with and activation of caspase-1 directly, bypassing the need for ASC
(38–40). This suggests that the NLRC4 inflammasome has a prominent role in the cell
death of S. sonnei-infected THP1 cells. These results are in line with those shown
previously for S. flexneri, which suggest both the NLRP3 and NLRC4 inflammasomes are
involved in S. flexneri-mediated macrophage death (20).

Interestingly, S. sonnei was able to reduce internalization into macrophages in an
O-Ag-dependent manner. The O-Ag contributes to host immune evasion, and its role in
evasion of complement mediated killing is well characterized (41). There are also
examples of the O-Ag affecting cellular interactions, including impeding recognition
and internalization by epithelial cells (Salmonella Typhimurium [42]) and macrophages
(Burkholderia cenocepacia [43]). The modal length of the O-Ag from Salmonella Typhi-
murium or S. flexneri serotype 2a is important for T3SS-mediated invasion into macro-
phages and epithelial cells, respectively (44). Similarly, glucosylation of the S. flexneri
serotype 5a O-Ag, which reduces the O-Ag length by half, enhances its invasiveness
(45).

Unexpectedly, in our study the internalization of S. sonnei into macrophages was
independent of its T3SS. This is in contrast to S. flexneri, which exhibits significant
T3SS-mediated invasion into macrophages. This suggests that macrophage internaliza-
tion is a combination of bacterium-driven invasion and phagocytic uptake for S. flexneri,
whereas S. sonnei internalization is almost exclusively due to phagocytic uptake. S.
sonnei O-Ag is incorporated into both the G4C and the LPS of S. sonnei. Only when all
of the O-Ag layers of S. sonnei are removed can S. sonnei efficiently invade macro-
phages. The accessibility of IpaB was previously shown to increase upon removal of the
G4C, and a further increase was observed for an O-Ag-deficient strain, indeed suggest-
ing that the lipid A/core-linked O-Ag also contributes to shielding of the T3SS (10). The
ability of the serotype 5a O-Ag synthesis and modification operon from S. flexneri to
prevent the internalization of O-Ag-deficient S. sonnei indicates that the composition of
the saccharides is not important for this phenotype. Furthermore, the inability of S.
flexneri O-Ag when regulated by wzzB to complement for internalization of cell death
suggests the modal length of the O-Ag is important. However, this strain also produced
a small amount of O-Ag, and we cannot discount this as the reason for the failure to
complement. Our data, and previously published data regarding the accessibility of the
T3SS, support the conclusion that the O-Ag acts as a physical barrier to T3SS-mediated
invasion rather than being antiphagocytic.

The results presented here, combined with previous investigations, indicate that S.
sonnei and S. flexneri use different infection mechanisms. These mechanisms are also
different from related Gram-negative enteric pathogens such as Salmonella spp. or
enteropathogenic Escherichia coli, which also activate distinct inflammasome pathways
in human macrophages (46–49). Increasing evidence points to S. sonnei being more
adapted to an extracellular lifestyle since, compared to S. flexneri, it invades epithelial
cells and macrophages poorly. This may partly explain the dominance of S. sonnei in
developed countries, where improved living conditions, including reduced overcrowd-
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ing and hence the person-to-person spread of pathogens, fails to lower S. sonnei
infection rates. These studies highlight that further investigation into S. sonnei is
required in order to implement appropriate measures to reduce infection rates.

MATERIALS AND METHODS
Bacterial strains and growth. Unless otherwise stated, all Shigella strains (see Table S1 in the

supplemental material) were routinely grown in tryptone soy broth (TSB) at 37°C with shaking at 200
rpm. Antibiotic selection was used when necessary as follows: 100 �g/ml ampicillin, 50 �g/ml kanamycin
(Kn), 12.5 �g/ml chloramphenicol (Cm), 100 �g/ml erythromycin, 50 �g/ml streptomycin (Sm), and
10 �g/ml gentamicin (Gm).

Cloning and mutagenesis. S. sonnei LVPStabile, ΔwaaL, ΔtssB, and ΔO-Ag strains were constructed as
follows (primer sequences are in Table S2 in the supplemental material). For S. sonnei LVPStabile nucleotides (nt)
82936 to 83715 and nt 83716 to 84215 were amplified using primers 1 and 2 and primers 3 and 4. The
chloramphenicol cassette was amplified from pKD3 using primers 21 and 22. Overlapping PCR was used to
construct the mutagenesis fragment 82936–83715-Cm-83716–84215; note that the P1-P2 fragment was
inserted in the opposite orientation). This fragment was further amplified by PCR with primers 1 and 4. Then,
2 �g of PCR product was electroporated into S. sonnei 53G/pKD46 induced with 1 mM L-arabinose for 45 min
to express Lambda Red recombinase genes. The electroporation was plated on TSB supplemented with Cm.
Genomic insertion of cat was verified by PCR using primers 5 and 22.

For the S. sonnei ΔtssB mutant, 500-bp fragments flanking tssB were amplified using primers 6 and
7 and primers 8 and 9. The kanamycin cassette was amplified from pKD4 using primers 21 and 22.
Overlapping PCR was used to construct the mutagenesis fragment consisting of 5= tssB-Kn-3= tssB. This
fragment was further amplified by PCR with the primers 6 and 9. Then, 2 �g of PCR product was
electroporated into S. sonnei 53G/pKD46 induced with 1 mM L-arabinose for 45 min to express Lambda
Red recombinase genes. The electroporation was plated on TSB supplemented with Kn. Genomic
insertion of kan was verified by PCR using the primers 10 and 22.

For the S. sonnei ΔwaaL mutant, 500-bp fragments flanking waaL were amplified using primers 11
and 12 and primers 13 and 14. The kanamycin cassette was amplified from pKD4 using primers 21 and
22. Overlapping PCR was used to construct the mutagenesis fragment consisting of 5= waaL-Kn-3= waaL.
This construct and pSEVA612S were digested with BamHI and EcoRI, ligated, and transformed into E. coli
CC118-�pir. The resulting plasmid, pSEVAΔwaaL-Kn, was conjugated into S. sonnei 53G. Briefly, 20 �l of
helper E. coli 1047 pRK2013 was incubated for 2 h at 37°C with 20 �l of the donor strain (E. coli CC118-�pir
pSEVAΔwaaL) on Luria-Bertani (LB) agar. Then, 40 �l of the receiver strain (S. sonnei 53G/pACBSR) was
added, and the plate was incubated for 4 h at 37°C. Conjugants were selected on TSB agar supplemented
with Gm and Sm. Individual colonies were grown in TSB supplemented with Sm and 0.4% (wt/vol)
L-arabinose (Sigma) for 8 h to induce expression of the I-SceI endonuclease from pACBSR and then plated
on Kn plates. Genomic deletion of waaL was verified by PCR using primers 15 and 22. The strains were
passaged several times in liquid TSB to remove pACBSR, and bacteria sensitive to Sm were selected.

S. sonnei ΔO-Ag mutant was constructed by amplifying 500-bp fragments upstream of wbgT and
downstream of wbgZ using primers 16 and 17 and primers 18 and 19. The kanamycin cassette was
amplified from pKD4 using primers 21 and 22. Overlapping PCR was used to construct the mutagenesis
fragment consisting of 5= wbgT -kan-3= wbgZ. This construct and pSEVA612S were digested with BamHI
and EcoRI, ligated, and transformed into E. coli CC118-�pir. The resulting plasmid, pSEVAΔO-Ag-Kn, was
conjugated into S. sonnei 53G, as described above. Genomic deletion of ΔO-Ag was verified by PCR using
primers 20 and 22.

Complementation vectors were constructed using standard molecular biology techniques. The 53G
O-Ag operon was amplified with primers 23 and 24. The PCR product and pSEVA471 were digested with
BamHI and ligated to create pO-AgSs. The M90T gtr operon was amplified with primers 25 and 26. The
PCR product and pSEVA471 were digested with KpnI and BamHI and ligated to create pSEVA471-gtr. The
M90T O-Ag operon was amplified with primers 27 and 28. The PCR product and pSEVA471-gtr were
digested with BamHI and XbaI and ligated to create pOAgSf5a. The M90T wzzB gene was amplified with
primers 29 and 30. The PCR product and pOAgSf5a were digested with KpnI and ligated to create
pOAgSf5a/wzzB. All complementation constructs include predicted promoters and terminators.

Cell culture and infection. THP-1 cells were maintained in Roswell Park Memorial Institute (RPMI)
medium supplemented with 10% heat-inactivated fetal bovine serum (FBS), 5 mM HEPES, 5 mM sodium
pyruvate, 100 �g/ml penicillin, and 100 �g/ml streptomycin. Cells were seeded at 7.5 � 105 cells/ml 72 h
prior to infection in complete RPMI plus 100 ng/ml PMA. At 24 h prior to infection, the medium was
replaced with phenol-red free, PMA-free complete RPMI medium. HeLa cells were maintained in
Dulbecco modified Eagle medium (1,000 mg/liter glucose) supplemented with 10% FBS. Cells were
seeded at 1 � 105 cells/ml 24 h prior to infection. All cell lines were incubated at 37°C and 5% CO2. Cells
were infected with the indicated MOI and centrifuged for 10 min at 600 � g to synchronize infection. At
30 min postcentrifugation, Gm (150 �g/ml) was added directly to wells for the remainder of the
experiment. Where indicated, inhibitors—Z-VAD-fmk (50 �M; R&D Systems) or MCC950 (5 �M; Tocris
Bioscience)—were added to cells 1 h prior to infection. To induce NLRP3-driven caspase-1 activation, the
cells were primed with ultrapure O111:B4 LPS (250 ng/ml; Invivogen) for 3 h and then treated with
nigericin (20 �M; Sigma) for 45 min. To induce caspase-4 activation, unprimed cells were transfected with
LPS (5 �g/ml) using Lipofectamine 2000 (1% [wt/vol]; Invitrogen).

Infected HeLa cells were washed and fixed in 2.5% glutaraldehyde for analysis by SEM at an
accelerating voltage of 25 kV using a JEOL JSM�5300 scanning electron microscope (JEOL, Herts, UK).
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Generation of cell lines. The THP1 GSDMDmiR cell line was described previously (50); THP1 Casp1
knockout (KO), THP1 Casp4 KO, and THP1 ASC KO cells were all kindly provided by Veit Hornung (51).

Isolation of primary hMDMs. Leukocytes cones were obtained from the NHS blood and transfusion
service (from anonymous healthy donations), as previously described (46). Blood from each donor was
diluted 1:4 with phosphate-buffered saline (PBS), transferred into a LeucoSep tube (Greiner Bio-One), and
centrifuged at 1,000 � g for 20 min at room temperature (slow acceleration and deceleration to prevent
disturbance of the layers) to obtain the buffy coat containing white blood cells. This was separated and
washed three times with RPMI. Cell were washed with MACS buffer (50 mg/ml bovine serum albumin
[BSA] and 2 mM EDTA in PBS). CD14� cells were isolated by MACS using biotinylated anti-CD14�

antibody and anti-biotin microbeads according to the manufacture’s protocol (Miltenyi Biotec). Mono-
cytes were cultured in complete RPMI plus 20 ng/ml recombinant human macrophage colony-
stimulating factor (M-CSF) for 7 days to promote differentiation into hMDMs. The medium was replaced
with complete RPMI lacking antibiotics and M-CSF 24 h prior to infection.

Internalization and vacuole escape assays. To prevent cell death, cells were treated with Z-VAD-
fmk (50 �M) 1 h prior to infection. The cells were infected with bacteria as described above. For
internalization assays, the cells were washed with serum-free RPMI and lysed with TritonX-100 (0.5%) at
1.5 h postinfection. For vacuole escape assays, the cells were treated 30 min postinfection either with
200 �g/ml chloroquine and 150 �g/ml gentamicin or with 150 �g/ml gentamicin alone for 1 h and then
lysed with Triton X-100 (0.5%). Serial dilutions were prepared, plated on LB agar, and incubated overnight
at 37°C.

PI uptake assays. Cells and bacterial strains were prepared as described above. Prior to infection, the
cells were supplemented with 5 �g/ml PI (Invitrogen). For time course assays, fluorescence was measured
at 630 nm every 10 min with a POLARStar 623 Omega plate reader (BMG Labtech) (50). Uninfected
controls treated with Triton X-100 (0.05%) were used to calculate the percent uptake.

LDH assays. Infections were performed as described above. At 3 h postinfection, supernatants were
harvested. An LDH assay was performed according to the kit instructions (CytoTox 96 nonradioactive
cytotoxicity assay; Promega). The absorbance was measured at 490 nm, and values are expressed as
percentages of the 100% lysis control. All values are normalized to the uninfected control.

Immunoblots. Infections were performed as described previously, except that prior to infection the
cells were washed with PBS and infections were done in Opti-MEM plus 5 mM sodium pyruvate. Super-
natants were precipitated in acetone (1:4 [vol/vol]) overnight at –20°C, the acetone was aspirated, and
the samples were left to air dry. Cells were lysed in radioimmunoprecipitation assay buffer (120 mM Tris
[pH 8.0], 300 mM NaCl, 2% NP-40, 1% sodium deoxycholate, 2 mM EDTA) supplemented with complete
protease inhibitor and 1 mM phenylmethylsulfonyl fluoride. Laemmli buffer and 5% 2-mercaptoethanol
were added to the lysates. Precipitated supernatants were resuspended in respective cell lysates to
create pooled samples. Mouse anti-hcaspase-1 (AdipoGen), mouse anti-caspase-4 (Santa Cruz Biotech-
nology), goat anti-hIL1� (R&D Systems), and rabbit anti-hIL18 (MBL International) were used at 1:1,000
dilutions, and mouse anti-hGSDMD (Santa Cruz Biotechnology) was used at a 1:500 dilution.

Immunofluorescence microscopy. Cells were seeded and infected as described previously. To
calculate the percentage of THP1 cells infected, in/out staining was performed as follows. At 40 min after
the addition of bacteria (T � 0), the cells were washed three times with cold PBS. Rabbit anti-sonnei
(1:100; phase 1 and 2 sera; Fisher Scientific) or rabbit anti-flexneri (1:500; serotype 5a sera; PHE) diluted
in 2% BSA–PBS was added to the cells. The cells were then incubated with antibodies on ice for 30 min.
Next, the cells were washed with cold PBS and incubated on ice with donkey anti-rabbit-Alexa 594.
(1:500; 2% BSA–PBS). Cells were fixed with 2% paraformaldehyde diluted in PBS for 20 min, washed in
PBS, and neutralized with 50 mM NH4Cl. Then, 0.1% Triton X-100 was added to cells for 8 min to
permeabilize them. Cells were incubated with DAPI (4=,6=-diamidino-2-phenylindole) (1:1,000; Invitrogen)
and phalloidin Alexa 647 (1:100; Invitrogen) in 2% BSA-PBS. Coverslips were mounted onto slides with
ProLong Gold antifade mountant and visualized using a Zeiss Axio Observer Z1 microscope. To count
ASC foci, ASCmRFP cells (46) were infected as described previously, washed in PBS at 3 h postinfection, and
fixed. The protocol was then continued as described above.

LPS preparation and visualization. Crude LPS was prepared as follows. First, 1.5 ml of overnight
culture was centrifuged, resuspended in Laemmli buffer, and boiled for 5 min. Then, proteinase K
(1 mg/ml) was added, followed by incubation for 2 h at 56°C. Next, 2-mercaptoethanol (5%) was added,
the samples were boiled for 5 min, and 5 �l of each sample was separated by 12% SDS-PAGE. The gel
was either transferred to polyvinylidene difluoride and incubated with S. flexneri serotype 5a antibody
(PHE) or S. sonnei phase I antibody (Abcam), followed by anti-rabbit horseradish peroxidase, and
developed by chemiluminescence, or fixed and silver stained as previously described (52).

Statistical analysis. The number of independent repeats performed for each experiment was
determined (indicated by “n” in the figure legends). One-way analysis of variance (ANOVA) or a Student
t test was performed to compare means, as implemented in GraphPad Prism 8. Errors bars represent the
standard errors of the means throughout.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.02654-19.
FIG S1, TIF file, 1.5 MB.
FIG S2, TIF file, 1.5 MB.
FIG S3, TIF file, 1.5 MB.
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