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Abstract 

Oxygen vacancies are ubiquitous in metal oxides and critical to performance, yet the impact 

of these states upon charge carrier dynamics important for photoelectrochemical and 

photocatalytic applications, remains contentious and poorly understood. A key challenge is 

the unambiguous identification of spectroscopic fingerprints which can be used to track their 

function. Herein, we employ five complementary techniques to modulate the electronic 

occupancy of states associated with oxygen vacancies in situ in BiVO4 photoanodes, allowing 

us to identify a spectral signature for the ionisation of these states. We obtain an activation 

energy of   ̴0.2 eV for this ionisation process, with thermally activated electron de-trapping 

from these states determining the kinetics of electron extraction, consistent with improved 

photoelectrochemical performance at higher temperatures. Bulk, un-ionised states however, 

function as deep hole traps, with such trapped holes being energetically unable to drive water 

oxidation. These observations help address recent controversies in the literature over oxygen 

vacancy function, providing new insights into their impact upon photoelectrochemical 

performance.  

Introduction 

Thermodynamically stable defect states are an ever-present problem in many energy 

conversion technologies. Structural defects can severely impact upon the performance of 

optoelectronic devices such as solar cells and photoelectrochemical (PEC) cells.1,2 Thus, great 

effort has been devoted to understand defect chemistry in the materials employed in such 

devices. In metal oxide based PECs, one of the most prominent types of defects are due to 
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oxygen vacancies (Vo) created when an oxygen atom is removed from the lattice, leading to 

the transfer of two electrons to adjacent metallic sites.3–8 These defects typically generate 

shallow sub-bandgap states responsible for n-type doping9 and substantially impact upon 

materials and device performance, as has been widely discussed for hematite (α-Fe2O3),2,10 

tungsten oxide (WO3)11,12, strontium titanate (SrTiO3)13–15 and bismuth vanadate (BiVO4).3–5 

However, whilst the importance of oxygen vacancies has become established, the specific 

impact of these states on PEC (and photocatalytic) performance remains controversial and 

poorly understood.  

 

Metal oxide oxygen vacancies have been proposed to impact on PEC performance through 

several mechanisms. On the positive side, they have been reported to improve light 

absorption,16 increase the concentration of bulk carriers,5,9 thus aiding transport.9 The 

intrinsic doping resulting from these states enables space-charge layer generation at the 

metal oxide/electrolyte junction17 which can drive charge separation under operational 

conditions.18–20 On the other hand, such defects can induce detrimental structural and phase 

changes,21 and have been reported to act as recombination centres that reduce quantum 

yields.2 Most importantly, surface oxygen vacancies are often proposed to have a direct role 

in catalytic processes like water oxidation, impacting upon photocurrent onset potentials2,10 

and enabling surface adsorption processes that accelerate reactivity.22,23 To date, most of the 

studies have focused on measuring the impact of oxygen vacancies on the overall PEC 

performance, often correlated with computational analyses of the electronic properties of 

these states. Studies that directly probe the impact of these vacancies upon the charge carrier 

separation, recombination, trapping, transport and interfacial catalytic processes which 

underlie PEC function have been relatively limited, and are often contradictory to date, 

thereby limiting our understanding of the impact of these states on PEC performance. Such 

studies have in particular been complicated by a lack of consensus over the spectral 

signatures of these states, resulting in significant ambiguities in the interpretation of 

spectroscopic analyses of oxygen vacancy function.  

 

In this work, we employ a suite of complementary in situ modulation measurements to 

elucidate unambiguously the energetics of oxygen-vacancy-associated states in the widely 

studied metal oxide, BiVO4, and the impact of the electronic occupancy of these states upon 
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the charge carrier processes that determine PEC water oxidation activity. BiVO4 is a promising 

ternary oxide which has yielded record water oxidation photocurrents in excess of 6 mA cm-2 

at 1.23 VRHE.24 Its conduction band is mainly of vanadium 3d character,25,26 with oxygen 

vacancy formation leading to the localisation of electrons on neighbouring vanadium sites,8 

reducing them from V5+ to V4+ (in-depth study of the electronic structure can be found in 

references 25 and 26). We refer to these localised electronic states as V𝑂𝑂𝑂𝑂5+/V𝑂𝑂𝑂𝑂4+ oxygen 

vacancy states to distinguish them from conduction band (CB) states, which for simplicity we 

label: V𝐶𝐶𝐶𝐶4+ (occupied CB state) and V𝐶𝐶𝐶𝐶5+ (unoccupied CB states).  

In the study herein, we focus on a strong optical feature observed in transient spectroscopic 

studies of BiVO4 around its bandgap (λ = 470 nm, see Figure 2 below).27–29 This feature appears 

spectroscopically analogous to a similar feature observed in α-Fe2O3 (λ = 580 nm), which we 

have previously suggested to originate from unoccupied oxygen vacancy states in α-Fe2O3.30,31 

There is however considerable dispute over the assignment of these features in both metal 

oxides, with other studies relating this spectral feature to photogenerated holes that undergo 

water oxidation,27,32–35 or suggesting this feature results from structural changes resulting 

from thermal effects of pulsed laser excitation.28,36 Such controversies are symptomatic of 

our limited understanding of the optical signals observed following optical excitation of these 

metal oxides. Herein, we address these ambiguities by directly modulating the population of 

V𝑂𝑂𝑂𝑂5+/V𝑂𝑂𝑂𝑂4+ states in BiVO4 using five complementary electrochemical, thermal and all-optical 

methods. Remarkable agreement between these techniques allow us to identify the 

spectroscopic fingerprint for these states, their energetics and their impact upon charge 

carrier dynamics. Our combined optical and electrochemical data demonstrates that these 

oxygen vacancies do not have a direct catalytic activity towards water oxidation. Rather, we 

find that occupied V𝑂𝑂𝑂𝑂4+ states are the primary loss pathway for photogenerated valence band 

holes, whilst unoccupied V𝑂𝑂𝑂𝑂5+ states function as shallow electron traps and control the 

extraction of conduction band electrons (the majority carriers) to the external circuit.  

Results and Discussion 

This study employs flat, dense BiVO4 photoanodes fabricated by metal-organic decomposition 

with a monoclinic scheelite structure as determined by X-ray diffraction (XRD) (see Figure S1 

for XRD and UV-Vis data). X-ray photoelectron spectroscopy (XPS), a surface sensitive 
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technique, reveals that ~3-4% of all surface vanadium centres are in the V4+ state, indicating 

a surface oxygen vacancy density tentatively on the order of 1-2% per V centre (see Figure S2 

for details). Photoelectrochemical (PEC) measurements reported herein were conducted in a 

three-electrode cell, unless stated otherwise. Photoelectrochemical water oxidation 

performance of the photoanodes is presented in Figure S3b, and is typical of such 

photoanodes reported in the literature.19,37 

 
Figure 1| Schematic representation of sub-bandgap states associated with oxygen 
vacancies (amplified for illustration) in BiVO4. a, Sub-bandgap states in relation to band 
edges. For illustration the yellow shaded regions represent occupied (reduced) states (VOV4+).   
b, Density of states (DOS), arising from the V𝑂𝑂𝑂𝑂5+/V𝑂𝑂𝑂𝑂4+redox couple associated with these 
defects, determined through capacitance data from impedance spectroscopy (green). c, 
DOS derived from spectroelectrochemistry measurements, tracking the optical absorbance 
at 470 nm as a function of applied bias (blue) (relative to the open-circuit potential of 0.6 
VRHE). d, Illustration showing the oxidation of VOV4+ to VOV5+ within the space-charge layer 
(WSCL) at the semiconductor/electrolyte interface; yellow and grey circles represent 
occupied and unoccupied oxygen vacancy states, respectively. 
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Dark electrochemical impedance analysis of our BiVO4 photoanodes reveals the presence of 

a capacitance peak at   ̴0.8 VRHE, as illustrated in Figure 1b (green trace) and Figure S3a. This 

capacitance is positive of the electrode flat band potential (Efb   ̴0.35 VRHE, Figure S3c) and 

coincides with the onset of photocurrent generation in these photoanodes (Figure S3b), both 

indicative of it being associated with space-charge layer formation at the electrode surface. 

Given that n-type doping of BiVO4 primarily results from oxygen vacancies, this space charge 

layer formation, and the associated capacitance can be assigned to the depletion of V𝑂𝑂𝑂𝑂4+ 

states, resulting in the formation of unoccupied (ionised) V𝑂𝑂𝑂𝑂5+ states. This assignment is 

consistent with DFT calculations indicating shallow donor levels induced by oxygen vacancies 

in BiVO4.9,38 Therefore, the observed capacitance is assigned, as previously,39 to the V𝑂𝑂𝑂𝑂5+/V𝑂𝑂𝑂𝑂4+ 

couple.  

To probe further the oxidation/reduction of VOV5+/VOV4+ states and their impact upon charge 

carrier dynamics, we performed a series of differential absorption spectroscopy 

measurements. We start by modifying the sample electrochemically. We observe that the 

electrochemical oxidation of the BiVO4 photoanode in the dark results in a strong absorption 

peak at 470 nm (Figure 2a). This absorption feature grows in amplitude with increasing anodic 

potential (Figure S4a). Differentiation of the optical signal as a function of applied potential 

allows us to determine the associated density of states (Figure 1c, see SI for details). Strikingly, 

we observe that the population distribution obtained from these spectroelectrochemical 

measurements correlates closely with the distribution of the VOV5+/VOV4+ states obtained 

through impedance spectroscopy. This redox process, observed optically to correlate with an 

increase in unoccupied electronic states (VOV5+) below the conduction band (Figure 1c) is 

unlikely to be observed for the case of an electron polaron (discussed further in ESI, section 

12), although we note that electrons trapped at oxygen vacancies are likely to induce wider 

lattice deformations analogous to those associated with such polarons.  Based on this, we 

conclude that the 470 nm signal tracks the oxidation of the vanadium ions adjacent to oxygen 

vacancy sites from VOV4+ to VOV5+ and therefore is a direct probe of the VOV5+ concentration. 

Consistent with this assignment, the dependence of the magnitude of this feature upon 

applied bias is in reasonable agreement with the expected potential dependence of the space-

charge layer width attributed to oxygen vacancy ionisation (see Figure S3d and below for 

further discussion of this assignment). In the literature, charge localisation in BiVO4 has been 

Page 5 of 19

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6 
 

proposed to lead to the formation of lattice distortions or polarons centred on vanadium 

atoms with several studies trying to identify these states. While the experiments we report 

herein do not provide structural information, the sensitivity of the 470 nm optical signal to 

the concentration of the VOV5+/VOV4+ linked to oxygen vacancies can provide a powerful tool to 

explore phenomena directly influenced by the presence of such defects as well as their impact 

on catalysis.  

In addition to applied bias, an alternative route widely used to modulate the ionisation of 

shallow dopant species in semiconductors is thermal heating, monitored most typically as a 

thermally induced increase in electrical conductivity.40–42 In Figure 2b and S4b, we monitor 

 
Figure 2| Difference spectra showing the optical absorption feature at 470 nm observed 
following the increase in the 𝐕𝐕𝐎𝐎𝐎𝐎𝟓𝟓+ concentration, modulated using four different 
techniques. a, Bias induced spectroelectrochemical difference spectrum, measured at 1.4 
VRHE relative to the spectrum at the open circuit potential (0.6 VRHE) and assigned to the 
electrochemical oxidation of VOV4+ to VOV5+. b, Thermally induced difference absorption 
spectrum measured at 301 K with respect to 295 K, assigned to thermal excitation of 
electrons from VOV4+ to the conduction band. c, Transient absorption difference spectrum at 
20 ps in electrolyte following excitation with λex(pump) at 355 nm, assigned to oxidation of 
V𝑂𝑂𝑂𝑂4+ states to V𝑂𝑂𝑂𝑂5+ due to hole trapping into V𝑂𝑂𝑂𝑂4+ states. d, 3-pulse UV pump – IR push – 
visible probe transient optical data, showing push ON minus push OFF spectrum measured 
at a 4 ps push-probe time delay, and assigned to electron excitation from V𝑂𝑂𝑂𝑂4+ states into 
the conduction band by the IR (2060 nm, 0.6 eV) push pulse. All spectra were measured in 
0.1 M phosphate buffer apart from d, which was measured in air. Further difference spectra 
as function of applied potential, temperature and time delay are shown in ESI (Figure S4). 
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the dependence of the BiVO4 absorption spectrum as a function of temperature, under open-

circuit conditions in electrolyte. Increasing the temperature from 295 K to 301 K resulted in 

the appearance of an absorption at 470 nm, indistinguishable in shape from that induced 

electrochemically under anodic bias (see Figure S4b for data as a function of temperature). 

This thermally induced feature is therefore assigned to the thermally induced excitation of 

electrons from VOV4+ states into the BiVO4 conduction band (forming the VOV5+ associated with 

the 470 nm feature as assigned above). Our observation that a small incremental increase in 

temperature results in a large optical signal (greater response than application of bias where 

oxidation is limited to the WSCL, see Figures S4 for comparison between electrochemical vs. 

thermal response) confirms that these V𝑂𝑂𝑂𝑂4+ states are energetically close to the conduction 

band edge. This is consistent with the density of states (DOS) determined through impedance 

and spectroelectrochemistry measurements (Figure 1), and with previous DFT calculations.9,38 

Furthermore, the similarity in the density of VOV4+ states oxidised thermally and 

electrochemically (Figure S6) is a strong indication of the bulk distribution of the oxygen 

vacancy defects. 

We now turn to transient absorption (TA) changes resulting from pulsed laser excitation of a 

BiVO4 photoanode under open-circuit conditions. As shown in Figure 2c, the same   ̴470 nm 

spectral feature is observed in the transient absorption spectrum at 20 ps following bandgap 

excitation of BiVO4 (see Figure S4c for the time delay dependence of this feature). Based on 

the thermal and electrochemical data reported above, this transient feature indicates that a 

photoinduced increase in concentration of  VOV5+ states (i.e. due to oxidation of VOV4+ states) 

takes place shortly after photoexcitation. We rationalise this in terms of ultra-fast hole 

trapping of some photoinduced valence band holes into bulk VOV4+ states, as illustrated in 

Figure 2 and discussed further below. This deep trapping process could also be described as 

equivalent to a recombination process between valence band holes and electrons trapped in 

shallow oxygen vacancy defect sites. This trapping/recombination process is likely to be a key 

determinant of bulk hole diffusion lengths in BiVO4 (typically measured as   ̴100 nm).40 

The final technique we employed to modulate the occupancy of BiVO4 oxygen vacancy defect 

states is an optical,  UV pump - IR push – visible probe technique, 43–45 a method previously 

applied to organic semiconductors,43 but not to metal oxide photoelectrodes. This approach 

is similar to pump-probe, but uses the third low energy (2060 nm, 0.6 eV) push pulse to 
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selectively excite trapped electrons from shallow defect/dopant states into the conduction 

band. Figure 2d shows an enhancement of the feature at 470 nm in the push on-off TA 

spectrum in air, consistent with electron excitation out of VOV4+ states (see Figures S7 for 

details). The ability of a 0.6 eV IR light pulse to excite electrons out of these oxygen vacancy 

states into the conduction band further confirms the assignment of the 470 nm optical feature 

to VOV5+ concentration and also confirms that they are energetically close to the conduction 

band edge, as shown in Figure 1.  

The results above allow us to explicitly assign the 470 nm optical absorption observed in our 

range of in situ modulation studies to VOV5+/VOV4+ states located energetically close to the BiVO4 

conduction band. This near-edge absorption peak is analogous to an absorption feature 

observed in α-Fe2O3 at 580 nm, which we have previously associated with oxygen vacancy 

induced shallow trap states. 30,31,46 Our spectroelectrochemical data allows us to rule out that 

this feature results exclusively from thermally induced structural changes in BiVO4, as 

suggested elsewhere.28,36 The magnitude of change in the absorption signal following modest 

thermal heating indicates that these states are not confined to the BiVO4 surface, but results 

from bulk oxygen vacancies. Crucially, the energetic location of these states, close to the 

conduction band, and different from those previously observed under ultra-high vacuum 

conditions,47 allows us to rule out that this optical signal is associated with states directly 

involved in water oxidation, as suggested in several studies. 27,29,32–34 In particular, the 470 nm 

transient absorption feature has previously been reported for BiVO4, but assigned to surface 

trapped holes that participate in water oxidation catalysis.27,29 Similar conclusions have also 

been reported for the analogous feature in α-Fe2O3.32–34 However, our impedance, 

spectroelectrochemical, thermally induced and IR push data all indicate that this feature 

originates from states lying energetically close to the conduction band edge (within ~0.2 eV, 

discussed below). As such, holes trapped in these states associated with this optical feature 

(i.e.  VOV5+ species) will be energetically unable to drive water oxidation (more negative than 

the thermodynamic water oxidation potential of 1.23 VRHE). This conclusion is also consistent 

with our recent studies of charge trapping in oxygen vacancy states in tungsten oxide and 

points toward a general behaviour amongst n-type metal oxides.12 We note the actual 

spectroscopic origin of the 470 nm signal we observe is less clear. Previously we have 

associated an analogous feature in α-Fe2O3,30,31 to the optical excitation from the valence 
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band to ionised oxygen vacancies. However in BiVO4, the energetics and the derivative-like 

nature of the spectral response suggest that the feature may be due to phenomena such as 

electroabsorbance effects, as suggested elsewhere.28 Whilst further work is necessary to 

understand the exact spectroscopic origin of this optical feature, our experimental 

observations strongly correlate this spectral fingerprint to changes in the concentration of 

VOV4+/VOV5+ oxidation states thus providing a means to reveal important information about the 

function of these states.  

 

We now consider the kinetics of charge trapping and de-trapping into and out of BiVO4 oxygen 

vacancy states. Typical pump and pump-push induced transient absorption kinetics monitored 

at 470 nm are shown in Figure 3 (see Figures S7 – S9 for additional data, including 

measurements under anodic bias). The kinetics of the 470 nm absorption following bandgap 

excitation (Figure 3a, red trace and Figure S7a) are biphasic, exhibiting an instrument 

response limited (~200 fs) rise followed by a smaller ~10 ps increase in absorption. These rise 

kinetics are assigned to partial, deep hole trapping into bulk VOV4+ states. This photo-induced 

absorption decays on the nanosecond timescale, and evolves on the microsecond timescale 

 
Figure 3| Kinetics associated with charge trapping into oxygen vacancy states. a, 3-pulse 
pump-push-probe measurement in air, showing the enhancement of the signal at 470 nm 
following push with 2060 nm pulse (3 mJ cm-2) at a pump-probe time delay of 10.4 ps, 
following the initial pump excitation at 400 nm (200 μJ cm-2). b, Normalised transient 
absorption kinetics spanning from fs-ns timescale probed at 470 nm, to the μs-s timescale 
probed at 460 nm (the dotted line is added to guide the eye). The film was excited with 355 
nm (300 μJ cm-2) under open circuit conditions in 0.1 M phosphate buffer. 
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into a transient bleach signal assigned to electron trapping into VOV5+ states within the BiVO4 

space charge layer (Figure 3b and Figure S8). In agreement with this assignment, the 

magnitude of this long-lived bleach signal increases with anodic bias (Figure S9). The recovery 

of this bleach signal exhibits similar kinetics to those measured for charge extraction (Figure 

S9b), consistent with our assignment, and indicates that electron extraction is associated with 

electron release from VOV4+ states. We note that these assignments and process timescales are 

in qualitative agreement with those reported previously for α-Fe2O3 and WO3.30,31,46,48 The 

additional 470 nm absorption induced by the IR push pulse decays on the nanosecond 

timescale (Figure S7a), indicating that the BiVO4 CB electrons generated by this IR pulse tend 

to relax relatively slowly back into the ionised oxygen vacancy state from which they were 

excited. We also note that polaron formation is also likely to impact upon these charge carrier 

kinetics,41,42,49 including the timescale of charge trapping into Vov states, although a detailed 

discussion of such polaronic effects is beyond the scope of this study.  

 
Figure 4| Temperature dependence of electron extraction and bimolecular 
recombination. a, Transient electron extraction from the BiVO4 photoanode obtained with 
transient photocurrent measurements, measured at 0.6 VRHE in 0.1 M phosphate buffer (pH 
7) with λex: 355 nm (300 μJ cm-2). b, Activation energy for the electron extraction process. 
c, Transient absorption kinetics of holes in BiVO4 in inert atmosphere (Ar) with λpump: 355 
nm and λprobe: 550 nm. d, Activation energy for the bulk recombination process.  
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Our results place BiVO4 oxygen vacancy states energetically in close proximity to the CB edge, 

such that de-trapping of electrons from these states (i.e. ionisation of VOV4+ to generate VCB5+ 

states) is thermally activated, consistent with the thermally induced absorption changes 

reported above (Figure 2b). In order to investigate the importance of such thermally activated 

de-trapping on the PEC function of BiVO4, we undertook further temperature dependence 

studies of charge extraction and recombination in BiVO4. Figure 4a shows the temperature 

dependence of charge extraction (i.e. integrated photocurrent), measured at an applied bias 

near the photocurrent onset (0.6 VRHE) where charge extraction is critically limited by electron 

de-trapping (Figure S9). It is apparent that with increasing temperature, the kinetics of charge 

extraction accelerate (Figure S10a) and the yield of extracted charge increases (Figure 4a). 

From the temperature dependence of the extraction half-time, we obtain an activation 

barrier of Ea,extraction   ̴ 0.22 eV (Figure 4b). As these extraction kinetics also track the recovery 

of the transient bleach signal discussed above (Figure S9), this activation energy can be 

assigned to thermally induced release of electrons trapped as VOV4+ to generate mobile charge 

carriers (most likely mobile small polarons). Figure 4c shows the decay kinetics of 

photoinduced bulk valence band holes in BiVO4 measured in an inert atmosphere as a 

function of temperature, assigned to charge recombination. Again, the kinetics are observed 

to accelerate with increasing temperature (Figure S10b) with a very similar activation barrier 

(Ea,recombination   ̴ 0.18 eV, Figure 4d). The similarity of these two activation energies suggests 

the kinetics of both processes are controlled by the thermal excitation of electrons from 

occupied oxygen vacancy states, enabling transport either to the external back contact (for 

electron extraction) or recombination with holes. Similar charge transport activation energies 

have previously been reported for BiVO4 from thermal conductivity and current-voltage 

spectroscopy studies, although in these cases it was assigned to thermally activated small 

polaron hopping transport.42,50 This   ̴0.2 eV activation energy we measure might explain why 

oxygen vacancies in BiVO4 have a low doping efficiency, with the measured density of mobile 

electrons typically being several orders of magnitude lower than the measured density of 

oxygen vacancy sites. From a functional perspective, this ~0.2 eV activation energy can 

indicate that the doping efficiency of such photoelectrodes may be affected by the 

localisation of electrons in dopant (oxygen vacancy) states,  thus limiting bulk conductivity,51 

which can be overcome at elevated temperatures. This is further reflected in the enhanced 

photoelectrochemical performance of BiVO4 photoanodes operating at higher temperatures, 
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as shown in Figure S10c and reported previously.52 Given that we observe accelerated 

electron extraction at elevated temperatures, we can attribute this higher performance of 

the BiVO4 photoanodes to enhanced electron transport with increasing temperature. 

 

Conclusions 

Scheme 1 summarises some of the key functional processes underlying water oxidation in 

BiVO4 photoanodes, and the role oxygen vacancies play. In addition to their role in space-

charge layer formation and n-type doping of bulk BiVO4 to reduce resistance losses during 

bulk charge transport, oxygen vacancy states participate in the trapping of photogenerated 

electrons and holes. In the bulk, hole trapping is a significant loss pathway, as this deep 

trapping is strongly exothermic, with the resultant oxidised oxygen vacancy states being 

energetically unable to drive water oxidation. On the other hand, electron trapping is 

reversible, with a de-trapping activation energy of ~0.2 eV.  Such electron trapping occurs 

particularly in the space-charge layer, where most oxygen vacancies are ionised (unoccupied) 

in the dark, resulting in a thermally activated electron extraction into the external circuit. 

 
Scheme 1| Schematic illustration of the role of oxygen vacancies in charge carrier 
trapping and electron transport in BiVO4 from the timescale of light absorption to water 
oxidation. Following charge generation, valence band holes trap into bulk VOV4+ states 
leading to a positive TA signal (ps – ns). Within microseconds, electrons trap into VOV5+ states 
within the space-charge layer causing the TA signal to bleach.  On the millisecond timescale 
electrons are extracted though the electrical circuit causing the bleach to recover and the 
accumulated holes oxidise water. The charge extraction process takes place via thermal de-
trapping from VOV4+ with an activation barrier (Ea) of   ̴0.2 eV. For illustration, yellow states 
represent occupied VOV4+ states, whereas grey states represent un-occupied VOV5+ states. 
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Thermally activated electron extraction is consistent with enhanced PEC water splitting 

performance at higher temperatures, important for technological application of such 

photoanodes under one sun or concentrated sunlight. Given the prevalence of oxygen 

vacancy formation in metal oxides and their impact on the electronic structure,11,30,31 the 

optimisation of oxygen vacancy ionisation may be used as a tool to increase the performance 

of metal oxide-based water splitting devices.   
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