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ABSTRACT
We apply Bayesian statistics to perform model selection on different reionisation sce-
narios via the Multinest algorithm. Initially, we recover the results shown by 21CMMC
for the parameter estimation of 21cmFAST models. We proceed to test several toy
models of the Epoch of Reionisation (EoR) defined in contrasting morphology and
scale. We find that LOFAR observations are unlikely to allow model selection even
with long integration times. HERA would require 61 dipoles to perform the same anal-
ysis in 1080 hours, and becomes comparable to the SKA with 217 dipoles. We find
the SKA requires only 324 hours of observation to conclusively distinguish between
our models. Once model selection is achievable, an analysis of observational priors is
performed finding that neutral fraction checks at specific redshifts add little to no
inference. We show the difficulties in model selection at the level of distinguishing
fiducial parameters within a model or distinguishing galaxies with a constant versus
power law mass-to-light ratio. Finally, we explore the use of the Savage-Dickey density
ratio to show the redundancy of the parameter Rmfp within 21cmFAST.

Key words: Cosmology: dark ages, reionization, first stars. Galaxies: fundamental
parameters. Galaxies: statistics. Instrumentation: interferometers. Methods: statisti-
cal.

1 INTRODUCTION

The Epoch of Reionisation (EoR) is the most recent phase
change of the Universe. During this process, the hydrogen
(HI) in the intergalactic medium (IGM) that has not formed
stars and galaxies becomes heated by these very objects and
eventually becomes ionised. We expect to uncover astro-
physics involving radiative transfer, star formation, X-ray
heating and the percolation of ionised hydrogen (HII) bub-
bles. Due to a lack of observation however, we remain in the
dark.

An absorption signal in the Cosmic Microwave Back-
ground (CMB) radiation at 78 MHz was claimed to be ob-
served for the first time by the EDGES team (Bowman et al.
2018) in February 2018. Around the same time an upper
bound of (79.6 mk)2 on the EoR power spectrum has been
achieved by the LOFAR team with a 13 hour observation of
the NCP field within the redshift range z = 9.6 − 10.6 at
k = 0.053 h cMpc−1 (Patil et al. 2017).

Although these limits on the power spectrum are still
several orders of magnitude larger than the signal, this paves
the way for the first observations of the EoR with a new
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generation of radio interferometer. The Square Kilometre
Array (SKA) will be capable of tomographically mapping
primordial hydrogen from z = 6 to 27 (Mellema et al. 2013;
Koopmans et al. 2015). The aim of this work is to explore
the application of Bayesian model selection in the context of
EoR models to explore the possibility for ruling out specific
reionisation scenarios.

The redshifted 21cm line is set to be a powerful tool
for analysing the high redshift universe (Furlanetto 2006a).
This atomic line originates from the spin-flip transition of
the coupled magnetic moments between the proton and the
electron in a hydrogen atom, releasing a 21cm (lab frame)
wavelength photon which is then redshifted by the Hubble
flow. The CMB acts as the initial backlight for the transi-
tion. By observing the signal at different frequencies, a to-
mographical image of how the primordial hydrogen evolves
can be constructed. This methodology allows us to trace the
formation of the first stars and galaxies. For a full discussion
of how physically informative the 21cm signal could be, see
e.g. Pritchard & Loeb (2012).

The current cosmological picture is bound by two
sources of observational data: The CMB, at z ∼ 1100 and
high-redshift quasars z ∼< 7. The Big Bang model suggests
that protons and electrons form separately. By z ∼ 1090
the expanding universe has cooled enabling 99.9999% of the
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2 T. Binnie and J.R.Pritchard

universe’s baryonic matter to form hydrogen atoms (Peebles
1968; Zeldovich & Sunyaev 1969). Currently this is thought
to remain the case until stars start to form ∼ 150Myr after
the Big Bang. The latter source of data includes measuring
the Gunn-Peterson trough (Gunn & Peterson 1965) within
quasar spectra. This shows that by z ∼ 6, 99.96 ± 0.03%
of the hydrogen in the IGM is ionised (Fan et al. 2006). In
between these two milestones the universe re-ionises the hy-
drogen left over from recombination. A defining feature of
EoR toy models is the morphology of reionisation (Furlan-
etto et al. 2004; Miralda-Escudé et al. 2000). In this work
we consider two possibilities:

• Inside-Out - Where low density gas is ionised last, due
to star formation being most dominant in dense regions of
gas. The density field and radiation field correlate with po-
sition.
• Outside-In - Where high density gas is ionised last, due

to the recombination rate of dense gas dominating over ra-
diation. The density field and radiation field anti-correlate
with position (in the IGM).

The other is the scale on which these behaviours are associ-
ated with:

• Local - Implementation of the ionisation criteria is per-
formed pixel by pixel in the simulation. i.e. with no depen-
dency on the surrounding area.
• Global - A scale dependency is included when imple-

menting the ionisation criteria. Typically the surrounding
region is influenced up to the mean free path of a photon.

These descriptions are approximate. In reality reionisation
will progress with a variety of these behaviours at differ-
ent times and scales, as is observed in detailed simulations
(Finlator et al. 2018). For a detailed description of the astro-
physics involved in the EoR, please see e.g. Loeb & Furlan-
etto (2013) or Dayal & Ferrara (2018).

Data is now becoming available from instruments such
as LOFAR (Patil et al. 2017), MWA (Dillon et al. 2015), PA-
PER (Ali et al. 2015), and HERA (DeBoer et al. 2017); all of
which hope to detect the 21cm power spectrum (Chapman
et al. 2012). In the meantime mock data is created by sim-
ulations. The convention for finding the best fit parameters
for these models is done using Markov Chain Monté Carlo
(MCMC) algorithms (Hassan et al. 2017; Greig & Mesinger
2015). Our sampler of choice is called Multinest (Feroz
et al. 2009), a nested sampling algorithm. This subset of the
MCMC family focuses on calculating the Bayesian Evidence,
a quantity which measures how well a model fits a data set -
see e.g. Sivia & Skilling (2006) for a comprehensive introduc-
tion to MCMC statistical analyses. Unfortunately full radia-
tive transfer simulations are too computationally expensive
for the number of samples required for an MCMC analy-
sis1 (Zahn et al. 2011). Instead semi-numerical simulations,
such as 21cmFAST (Mesinger & Furlanetto 2007; Mesinger
et al. 2011) are used. These use approximate techniques,
often combined with observations, to save on computation
time - whilst producing consistent results to the full radia-
tive transfer codes (Fialkov et al. 2012; Santos et al. 2010).

1 Typically ∼ 104 samples guarantees convergence in this con-
text.

Interestingly the application of machine learning algorithms,
such as Convolutional Neural Networks, are beginning to
show promise in reducing the computation times of these
simulations even further (Gillet et al. 2018; Shimabukuro
& Semelin 2017; La Plante & Ntampaka 2018; Kern et al.
2017; Hassan et al. 2019). With the first light on the SKA
due around 2024, next generation radio interferometers are
sure to reveal many secrets from the unseen universe. We
are entering into an age of precision astrophysics and cos-
mology, particularly if synergies between telescopes such as
SPICA2 and JWST3 can be achieved. Sophisticated analy-
sis techniques, such as Bayesian Inference, are becoming a
necessity.

This paper is structured as follows: Section 2 introduces
the base of this work, 21CMMC, including a summary of the
recipes used for simulating the 21cm data; Section 3 high-
lights 21cmNest - the additions made to 21CMMC including
the toy models; Section 4 is an introduction to the Bayesian
Evidence and how it can be used for model selection. The
results are split into seven subsections: Initially, we show
agreement between the 21CMMC and Multinest in param-
eter estimation (Section 6.1), including cross checks of the
methodology; then we perform model selection with LO-
FAR, HERA and SKA; in the context of HERA we success-
fully distinguish between EoR scenarios (Section 6.3) and
show the redundancy of average neutral fraction checks as
a way of ruling out toy models (Section 6.4); Finally, we
attempt to distinguish two parameterisations of 21cmFAST
(Section 6.7) - including the use of nested models in estab-
lishing redundant parameters with the Savage-Dickey den-
sity ratio (Section 6.7.1).

The main aims of this work look at the feasibility of
ruling out toy models with the three selected observatories
- These can be neatly summarised as the following three
questions:

• How long would observations need to be to effectively
distinguish between the toy models with LOFAR? (Section
6.2)
• Given a fixed observing timescale (1080 hours) how

many dipoles are necessary to effectively distinguish between
the toy models with HERA? (Section 6.5)
• What is the minimum observation time needed to effec-

tively distinguish between the toy models with SKA? (Sec-
tion 6.6).

We assume a ΛCDM cosmology throughout this work
with the following parameters: (ΩM , ΩΛ, Ωb, nS , σ8, H0)
= (0.27, 0.73, 0.046, 0.96, 0.82, 70 km s−1 Mpc−1) (Planck
Collaboration et al. 2016a).

2 THE STATE OF THE ART: 21CMMC

21CMMC is a Bayesian parameter estimation tool for the
EoR (Greig & Mesinger 2015). It combines Cosmohammer
(Akeret et al. 2013) - a framework for using the affine in-
variant MCMC algorithm Emcee (Foreman-Mackey et al.
2013); with 21cmFAST (Mesinger et al. 2011) - a numerical

2 http://www.spica-mission.org/
3 https://www.jwst.nasa.gov/

MNRAS 000, 000–000 (0000)



21CMNest 3

implementation of the analytic model described by Furlan-
etto, Zaldarraiga, and Hernquist (Furlanetto et al. 2004),
referred to as FZH.

A streamlined version of 21cmFAST is used, where
evolved matter density (δ) and velocity (dvr/dr) fields are
pre-calculated for the IGM. The 21cm signal intensity is
directly proportional to the differential brightness tempera-
ture δTb which can be approximated (Furlanetto et al. 2006)
as

δTb ≈ 27xHI (1 + δ)

(
H

dvr
dr

+H

)(
1− TCMB

Ts

)

×
(

1 + z

10

0.15

ΩMh2

) 1
2
(

Ωbh
2

0.023

)
mK.

(1)

where xHI is the hydrogen neutral fraction; TCMB is the
CMB temperature; Ts is the spin temperature; and all other
parameters follow the convention of a ΛCDM cosmology. In
this original version of 21CMMC the simplifying assump-
tion of Ts � TCMB is used to ease computation (see Greig
& Mesinger (2017a) for the inclusion of Ts and X-ray heat-
ing - which is also omitted here). This is valid during most
of reionisation z ∼ [6, 10] (Furlanetto 2006b; Baek, S. et al.
2010; Chen & Miralda-Escudé 2004) and is known as the
post-heating regime.

This model uses the excursion set formalism in order
to identify HII regions. A smoothing scale (R) is iterated
down from the photon mean free path, Rmfp to the size of
the cell. This parameter is called the photon mean free path
for historical reasons. It is more accurately a photon’s mean
horizon since only the photons whose path are stopped by
ionising HI are important in the EoR - a simple way to ac-
count for recombinations in the ionised IGM4. What’s im-
portant is the number of ionising photons verses the number
of HI per smoothing scale. For a more complete discussion
please see Greig & Mesinger (2015, 2017a). The defined cri-
teria for ionisation is

ζfcoll(x, z, R, M̄min) > 1. (2)

with x being position and M̄min as the minimum virial halo
mass defined by the atomic cooling threshold. The collapse
fraction is dependent on the virial temperature through the
virial mass. We assume the relationship derived in Barkana

& Loeb (2001) where Mvir ∼ T
2
3

vir. fcoll is the fraction of
matter collapsed into dark matter halos (Press & Schechter
1974; Bond et al. 1991; Sheth & Tormen 1999) and is cal-
culated by the following integral of the Press-Schechter halo
mass function (a numerical correction factor to return on
average the Sheth-Tormen result for ellipsoidal dark matter
halo collapse is applied)

fcoll =
1

ρM

∫ ∞
Mvir

m
dn

dm
dm, (3)

where ρM is the matter density of the chosen cosmol-
ogy. ζ is the ionising efficiency of galaxies at high redshift,
performed via a step function

4 The newest 21CMMC version (Park et al. 2018) computes in-
homogeneous recombinations explicitly.

ζ =

{
ζ0, if Tvir > T feed

vir

0, otherwise
(4)

where Tvir is the virial temperature and

ζ0 = 30

(
fesc

0.3

)(
f?

0.05

)(
Nγ

4000

)(
2

1 + nrec

)
(5)

to encompass general astrophysical properties of galaxies:
A‘turn-on’ mass is defined by the aforementioned atomic
cooling threshold, T feed

vir = 104K (Barkana & Loeb 2001);
Nγ is the number of ionising photon per baryon within a
star, for popII stars only - Nγ ≈ 4000 which is currently
assumed to be the case during the EoR (Barkana & Loeb
2005); nrec is the typical number of recombinations per hy-
drogen atom, assumed to be nrec ≈ 1 (Sobacchi & Mesinger
2014) for a photon-starved end point for the EoR; f? is the
fraction of galactic gas in stars, which is taken to be 0.05
(Ferrara & Loeb 2013); and fesc is the fraction of ionising
photons escaping into the IGM. Since both f? and fesc are
observationally uncertain (Gnedin et al. 2008; Wise & Cen
2009; Ferrara & Loeb 2013). We will return to these in Sec-
tion 5, when we discuss the parameter priors.

21CMMC features the option to relax the single galaxy
population assumed so far i.e. to depart from a constant ζ.
This is done by the addition of a 4th parameter, α, enabling
a power law relationship between ζ and Tvir as,

ζ =

ζ0
(
Tvir

T feed
vir

)α
, if Tvir > T feed

vir

0, otherwise.
(6)

During the MCMC analysis the likelihood is defined
to be a χ2 statistic between a mock 21cm observed power
spectra and a theoretically calculated one, which is com-
bined with observational priors (2.1). The mock power spec-
trum uses a fiducial choice of parameters while the theoret-
ical models’ best fit parameters are found via the MCMC
analysis. This is done for 8 k bins from a foreground cor-
ruption limit of k = 0.15 Mpc−1 to a shot noise limit of
k = 1.0 Mpc−1 - this is maintained in this work unless spec-
ified otherwise.

The spherically averaged power spectrum, ∆2
21, is cho-

sen to be the aforementioned likelihood statistic and is de-
fined via the brightness temperature as

∆21(k)2 ≡ k3

2π2V
δTb

2
(z)〈|δ21(k, z)|2〉mK2 (7)

δ21(x, z) ≡ δTb(x, z)

δTb(z)
− 1.

The bar denotes a spatial average, while the angular
brackets denote a k-space average. This likelihood compu-
tation chain is summarised in Figure 1.

2.1 Observational data priors

Depending on the choice of redshift range 21CMMC imple-
ments up to three observational checks:

• The Thomson optical depth of the IGM was observed
by Planck to be: τ = 0.058 ± 0.012, assuming an instanta-
neous EoR (Planck Collaboration et al. 2016b). During each

MNRAS 000, 000–000 (0000)
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MCMC call, 21cmFAST can produce estimates of τ by in-
terpolating the neutral hydrogen fraction across the desired
redshifts. This allows testing between the observed and sim-
ulated values of τ .

• The location of the Gunn-Peterson trough in QSO Ly-α
forest data: McGreer et al. (2015) show that the EoR must
be > 90% complete by z = 5.9. Therefore for all z 6 5.9,
xHI = 0, and for z > 5.9 the estimated neutral HI fraction is
tested against an half-Gaussian with mean x̄HI = 0.06 and
variance σ2 = 0.05.

• The Red Ly-α damping wing allows the estimation of
the xHI surrounding QSO ULASJ1120+0641 (Greig et al.
2017). Provided z = 7.08 is included in the redshift interpo-
lation range, the neutral fraction at this redshift is checked
against the observational measurement x̄HI = 0.4+0.41

−0.32 at
2σ.

All tests are performed with a χ2 between xHI (and τ) which
are then combined into the likelihood linearly as: lnL =
χ2

21cm + χ2
Planck + χ2

McGreer + χ2
Greig.

2.2 Telescope sensitivity with 21cmSense

The Python code 21cmSense5 (Pober 2016) is used through-
out this work to calculate the telescope noise profiles. In each
U-V bin the thermal noise is modelled as:

∆2
N(k) ≈ X2Y

k3

2π2

ΩEff

2tint
T 2

sys. (8)

Where X2Y converts the solid angle of observing bandwidth
to a comoving distance, ΩEff represents the effective beam
solid angle as derived in Parsons et al. (2014). tint is the
total integration time (per observed frequency). Tsys is the
sum of the sky temperature (Thompson et al. 2017) and
the receiver temperature TR. Cosmic variance is included
assuming it is a Gaussian error - we can express the total
uncertainty by spherically averaging an inversely weighted
summation across all the k modes. Hence in Sections 6.2
and 6.6 (when tint is altered) we expect the telescope noise
to scale roughly as t−0.5

int . The specifications of LOFAR are
taken from (van Haarlem et al. 2013). We use the 48 core
high-band antenna stations only. HERA’s dipoles are struc-
tured in a filled hexagon (Dillon & Parsons 2016; Beards-
ley et al. 2015). For the SKA we follow the specifications
of LOW Phase 1 with 512 stations6. The middle 224 sta-
tions are randomly distributed in a circular core (∼ 400m
in radius) with the remaining 288 stations split in three
spiral arms extending outwards. For all telescopes, unless
stated otherwise, we assume 6 hours of observing per day for
180 days for tint. The cosmological bandwidth is assumed
to be 8 MHz throughout. The telescope details are sum-
marised in Table 1. Fundamental concerns with detecting
the 21cm signal are due to foregrounds eg. Pober (2015).
We adopt the ‘Moderate’ foreground setting within 21cm-
Sense7. This means that all baselines are added coherently

5 https://github.com/jpober/21cmSense, 21cmSense uses heav-
ily the Astrophysical Interferometry Python code AIPY

https://github.com/AaronParsons/aipy.
6 https://www.skatelescope.org/key-documents/
7 The other options are: Pessimistic - Where baselines are added

incoherently and no k modes are included in the horizon or the

Parameter LOFAR HERA SKA-Central

Number of dipole 48 331 296

Stations

Station Diameter [m] 31 14 35

Collecting Area [m2] 35,762 50,953 492,602

TR[K] 140 100 40 +
Tsky

10

Observing Range [110,240] [50,250] [50,350]

[MHz]

Observation Time 1080 1080 1080

[hrs]

Scan Type 1-hr Track Drift 1-hr Track

Table 1. A summary of the different telescope specifications
used in this paper. Note that of the SKA’s 512 stations we only

simulate using the ‘central’ 296 stations, where sensitivity to the

EoR frequencies is dominant.

but no k modes from the horizon or a buffer zone (chosen
to be the default 0.1hMpc−1) are used. See e.g. Pober et al.
(2013, 2014a,b) for more detail.

3 21CMNEST

The primary objective of this work8 is to apply Bayesian
model comparison to EoR scenarios. This has been achieved
with two alterations to the 21CMMC framework. Firstly,
we add various toy models (detailed in Section 3.1); and
secondly we replace the Emcee sampler (Foreman-Mackey
et al. 2013) (from Cosmohammer) with pyMultinest (Section
4).

3.1 Flexibility and toy EoR models

Since there is still uncertainty in the detailed physics of the
EoR we explore several toy models. These toy models are
explained below. Initially we use the same four models as
Watkinson & Pritchard (2014), summarised in Table 2. See
Figure 2 for a slice of brightness temperature from each mod-
els’ box at z = 8 for x̄HI = 0.5. Figure 3 shows the corre-
sponding 21cm power spectra and EoR ionisation histories
for these slices. Although Table 2 contains physical motiva-
tions for all the models, we stress here that only the FZH and
MHR models are physically liable - the others are included
to test the proof-of-concept for Bayesian model selection.
Reionisation may begin with the local outside-in scenario
but global inside-out reionisation will eventually dominate
assuming UV radiation drives reionisation (Garaldi et al.
2019). Given we understand the fluctuations of the IGM den-
sity on linear (Mpc) scales, this is easy to show by comparing
the recombination and ionisation rates with e.g. 21cmFAST.
Table 3 shows the maximum a posteriori (MAP) parameters

buffer zone; or Optimistic - All k modes in the primary field of
view are used.
8 https://binnietom@bitbucket.org/binnietom/21cmnest 1.0.git
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The	Likelihood	
Computation	Chain	

Model	Specific	
	Simulation	Driver	
(56, . . . , 59, :)	

Power	Spectrum:		Δ@6		

ABC		

Input	Power	Spectra		
(Mock	Observational	Data	and	Error)	

ΔDEFG	, 	ΔHIIEI			

Loop	per	:		
	
	

J@6@ = L
Δ@6 −	ΔDEFG	

NΔHIIEI@ + (ΜΔ@6)@
Q
@

	

	

Observational	Checks:	R =
	J@6@ JS@JT

@JD@ 	
	
	

Planck:	US	McGreer:	ABCD 	

Greig:	ABCT 	

Figure 1. The likelihood computation chain as performed by
21CMMC and 21cmNest. M is a user defined model uncertainty.

All other quantities are defined throughout the text.

for the toy models fit to the Greig, McGreer and Planck pri-
ors detailed in Section 2.1. Before 21cm data is included the
allowed EoR parameter space is ample (Greig & Mesinger
2017b).

3.1.1 FZH

The 21cmFAST simulation is a numerical implementation
of the model developed by Furlanetto, Hernquist and Zal-
darriagan (FZH), as summarised in Section 2. This assumes9

that the mass of the collapsed object is relatable to the mass
of the ionised region by the ionising efficiency (ζ) as follows,

mion = ζmgal. (9)

Using the Press-Schechter collapse fraction, fcoll (Equa-
tion 3) can be written as

fcoll = erfc

{
δcrit − δ√

2[σ2(mmin)− σ2(m)]

}
. (10)

This implies that the barrier for ionisation can be rewritten
as a density constraint instead:

δ > δcrit −
√

2[σ2
min(mmin)− σ2(m)] erfc−1

(
1− 1

ζ

)
. (11)

Note that the factor of 2 in Equations 10 and 11 comes
from a symmetry argument. For every excursion that reaches
the critical barrier, only half of these will collapse to form
virialised objects due to the nature of random walks.

Numerically, FZH is applied by smoothing around each
pixel from large to small scale. If Equation 11 is achieved be-
fore the filter scale reaches the pixel size is met the central
pixel is flagged as ionised. Since this is a global prescription,

9 The simplest scenario (Barkana & Loeb 2001).

not all regions are purely ionised or neutral. After the fil-
tering scale has reached the pixel size 21cmFAST sets the
neutral fraction of xHI = 1 − ζfcoll−per−pixel to each pixel
that is yet to be fully ionised10.

3.1.2 Inverted (Inv) FZH

Inverting the ionisation threshold (Equation 11) allows us
to produce an outside-in model sensitive to global scales.
Within this model underdense regions will be ionised first to
form bubbles, the edge of which will remain in equilibrium11

until the background ionising radiation increases. Eventually
this will dominate over the recombination rate in overdense
regions anticipating the completion of reionisation. Firstly
we redefine ζ as ζ′ in order to keep the parameter frame-
work within 21CMMC unchanged. ζ′ is now the background
ionising radiation efficiency. Next we must turn to the crit-
ical barrier definition, which we choose to be δ′crit = −δcrit.
Assuming Gaussian perturbations for our regions of over-
density, as is done for the FZH models (see the form of
Equation 3 becomes 10), all we need to do is calculate the
fraction of matter that satisfies δ < δ′crit. In other words a
new collapse fraction f ′coll, below which HI structures are
sparse enough to be ionised. This can be done by changing
the limits of the original fcoll integral as is shown below

f ′coll = 1
ρM

∫Mvir

0
m dn

dm
dm (12)

= erfc

[
δcrit+δ√

2(σ2(mmin)−σ2(m))

]
. (13)

Now we have an analogous ionisation threshold, f ′collζ
′ > 1.,

that can be implemented easily within the 21CMMC frame-
work. As before, any partially ionised pixels left after using
the excursion set formalism are assigned xHI = 1− ζ′f ′coll.

3.1.3 MHR

For an alternate method of implementing ionisation we turn
to the work of Miralda-Escudé, Haenelt and Rees referred
to as MHR (Miralda-Escudé et al. 2000). This allows us to a
produce local outside-in model of reionisation - underdense
regions of the IGM are ionised first due to a recombination
rate that is dependent on the density of the gas. The idea is
that the denser a region of gas, the faster it can recombine
and therefore the dense regions of the IGM are ionised last.
Circumgalactic gas, within the halo, is ionised first allowing
ionising photons to seep into the IGM. HII regions then
expand in the directions of low gas density and the EoR is
defined to end when these regions overlap. Typically this is
achieved with a background of X-ray photons, due to their
large mean free paths. Firstly, to define the aforementioned
ionisation threshold we prescribe a neutral fraction x̄HI =
1 − fcollζ. Secondly, we order the pixels by HI density. We
then ensure consistency between the xHI by finding the i’th
pixel (of total Np) that satisfies

i

Np
= 1− x̄HI. (14)

10 This includes rounding to 0 if xHI < 0 and 1 if xHI > 1.
11 Similar to a Strömgren sphere but on galactic scales.
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Figure 2. Plots 2(a), 2(b), 2(c), 2(d), 2(e), and 2(f) are brightness temperature slices for the toy models referred to as FZH, Inv FZH,
MHR, F Inv MHR, F MHR, and Inv MHR. A summary of these models is given in Table 2, Section 3.1 contains the full detail.

Model Physical motivation How is ionisation defined? Resulting type of reionisation

FZH Over-dense regions collapse to form stars, UV

radiation is therefore the driving force behind

the ionised bubbles. The size of these bubbles
dictates the neutral fraction and therefore the

brightness temperature.

Over-density increases above the criti-

cal barrier (δcrit).

Global Inside-Out

Inverted

(Inv) FZH

Over-dense regions remain neutral due to a

high recombination rate, hence reionisation be-

gins in underdense regions. These then grow
and dominate as hard radiation becomes the

dominant radiation background and the IGM

becomes ionised.

Over-density decreases below the crit-

ical barrier.

Global Outside-In

MHR Stars are formed as above, ionising the circum-

galactic gas. Ionisation then proceeds a long
underdense regions because the atoms recom-

bine faster than they are ionised in the dense
regions. Eventually the background radiation
is dense enough to dominate.

A pixel-by-pixel implementation of an

under density threshold.

Local Outside-In

Inverted

(Inv) MHR

Stars are formed as above, ionising the

circum-galactic gas. Over-dense regions be-

come ionised. It is easy to implement rather
than being physically viable since even dense

regions that do not have a line of sight to a

radiation source will become ionised.

A pixel-by-pixel implementation of an

over density threshold.

Local Inside-Out

Table 2. This table summarises the 4 main EoR models considered in this work, see Watkinson & Pritchard (2014) for more details.
It is worth noting here that filtering (F) the MHR models changes the scale of reionisation from local to global.
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Figure 3. 3(a) and 3(b) are the 21cm power spectra and EoR

histories for the toy models respectively. Blue, purple and red rep-
resent the 21cmFAST model (FZH), MHR and F MHR models

respectively. Dotted lines indicate the inversion of that model’s

ionisation criteria. These are performed at the values used to pro-
duce x̄HI ≈ 0.5 at at z = 8. Note that, given the same ζ and Tvir,

all MHR based models have the same EoR history by construction

(hence only one solid purple line). The models are summarised in
Table 2, see Section 3.1 for more detail.

Once the i ’th pixel has been identified, we can set the ion-
isation definition as a function of density to be δ < δi. In
summary the only deviation from 21cmFAST is the defini-
tion of ionisation via a new density threshold. Prescribing
the x̄HI directly is referred to as the 1-parameter (1p) MHR
model.

3.1.4 Inverted (Inv) MHR

Here we produce a local inside-out model of reionisation.
The procedure follows as above, but with the greater than
sign reversed to produce an over-density threshold: δ > δj .
The choice of the j ’th pixel using: j = Np−i, ensures (again)
that the neutral fraction remains consistent between simu-
lations.

ζ Rmfp log10[Tvir]

FZH 95.4 ± 61.9 12.3 ± 4.3 5.17 ± 0.29

Inv FZH 71.8 ± 68.5 14.9 ± 5.4 4.72 ± 0.34

F MHR 413 ± 289 9.3 ± 4.3 5.80 ± 0.31

F Inv MHR 268 ± 290 18.3 ± 4.4 5.61 ± 0.34

MHR 404 ± 293 - 5.72 ± 0.33

Inv MHR 799 ± 291 - 5.88 ± 0.33

Table 3. The MAP parameter values to 1σ (standard deviation)

for the toy models fit to all three observational prior checks (with-

out 21cm data). Note that the large errors (compared to each re-
spective parameter) hint that this data will not be constraining in

the context of distinguishing toy EoR scenario (discussed further
in Section 6.4).

3.1.5 Filtered (F) MHR

In order to test 21cmNest more thoroughly any skewing ef-
fect from extra parameters (see Section 4.2) in the Bayesian
Evidence, a third parameter is added to the basic MHR
model. This takes the form of a Gaussian k-space filter per-
formed across the density field. The integrated volume of
this Gaussian equates to that of a real space top-hat with
radius RFilter. This smoothing has a tendency to reduce the
range of values within the density field, which can have a
large effect on the number and density of ionised structures.
We expect this added flexibility to relax the local scenario,
allowing the filtered model to fit the scale of the fiducial
model. This means producing a global model when fitting
for an FZH fiducial power spectrum, but being a redundant
parameter when fitting for an MHR fiducial power spectrum
(Section 6.1.2). The F Inv MHR proves to be the most chal-
lenging toy model to test, since it shares morphology and
scale with FZH. In the F MHR model the background ion-
ising efficiency, ζ, is pushed below that of the MHR model.
With the opposite being true for the F Inv MHR. As for the
filter scale itself, this tends to the mean sizes of HII bubbles.

4 BAYESIAN INFERENCE

Bayes’ theorem can be written as

P (Θ|D,M) =
P (D|Θ,M)P (Θ|M)

P (D|M)
, (15)

where Θ are the parameters of a given model M , and D
is the data set to be fit against given an hypothesis. In this
context the hypothesis is implied via the choice of model un-
der consideration. P (Θ | D,M) is the posterior parameter
distribution, P; P (D | Θ,M) is the likelihood L; the prior
knowledge Π is P (Θ |M); and the Bayesian Evidence12, Z
is defined to be P (D | M). Bayesian inference for param-
eter estimation is centred around the likelihood, as is the
case for Cosmohammer within 21CMMC. In most MCMC

12 Alternatively known as the model likelihood or marginal like-

lihood.
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algorithms (including 21CMMC) the Evidence is omitted
because normalising the posterior is a redundant overhead
in parameter estimation and the integral in Equation 18 is
typically difficult to evaluate.

We now turn to the Bayesian Evidence, Z, as this takes
centre stage for model selection. By evaluating a Zi for the
i’th model, Mi, we can define what is called the Bayes factor
as follows:

B12 =
P (D|M1)

P (D|M2)
=
Z1

Z2
. (16)

Bayes factors can be interpreted as the odds on which
model is thought to be correct, given the data. We can ex-
pand Zi as

Zi =

∫
P (D | Θ1, ...,ΘN ,Mi)P (Θ1, ...,ΘN |Mi)d

NΘ (17)

=

∫
L(Θ)Π(Θ)dΘ (18)

=

∫ 1

0

L(X)dX. (19)

Nested sampling shortcuts this difficult calculation of
Zi by transforming the integral to one-dimension (Equa-
tion 19), the fraction of prior volume (X) which reduces per
sampling iteration. For more specific information on nested
sampling see (Skilling 2004). We discuss the interpretation
of the Bayes factor in Section 4.2. We choose this machin-
ery over simpler options, such as the Akaike Information
Criterion (Akaike 1974) or Bayesian Information Criterion
(Schwarz 1978), due to their lack of consistency - e.g. on
WMAP data (Magueijo & Sorkin 2007; Liddle 2007).

The use of Multinest over other nested sampling al-
gorithms is due to the low number of dimensions in our
selected models (6 4). As dimensionality increases the ac-
ceptance fraction geometrically approaches 0 until the ellip-
soidal rejection sampling within Multinest becomes ineffi-
cient. At higher dimension (∼ 10), the competing algorithm
Polychord (Handley et al. 2015) might be a better choice.

In this work, 2000 live points13 were found to be enough
to produce consistent results within the statistical error bars
produced by Multinest. The Multinest-obtained posterior
distributions plotted throughout this text have been checked
for convergence using NestCheck (Higson et al. 2018)14. Dy-
namic nested sampling algorithms such as Dynesty (Higson
et al. 2017) result in a maximum live point number of 1500
(to two s.f.) when run in this context. We use this as confir-
mation that nothing has been missed by our choice of 2000
live points within Multinest. The errors plotted in the Bayes
factor figures in this work are those produced by Multinest,
arisen purely from the numerical uncertainties within the al-
gorithm (e.g. using the trapezium rule) - see Skilling (2004)
for more details. It is worth emphasising that these errors do
not reflect the sensitivity to Prior choice or the observational
measurements.

13 Live points are used to calculate iso-likelihood contours within

nested sampling algorithms.
14 https://github.com/ejhigson/nestcheck see the documenta-

tion for more details.

4.1 The Savage-Dickey density ratio

One convenient approach to analysing the degeneracy of pa-
rameters is via the Savage-Dickey density ratio (Dickey 1971;
Verdinelli & Wasserman 1995). Since this can only be ap-
plied to models that are nested within each other we hold
one parameter, Θ∗, constant and calculate the Bayesian Ev-
idence. In this notation dN−1Θ refers to the differential dΘN

without the dΘ∗ term (e.g. dΘ1...dΘN = dN−1ΘdΘ∗). Com-
paring the Bayesian Evidence factor of each of these Z(Θ∗)
to Z (as in Equation 17) gives us a parameter dependent
Bayes factor

B(Θ∗) ≡
Z(Θ∗)

Z .............. (20)

=

∫
L(Θ)Π(Θ)dΘN−1

Z =

∫
P(Θ)dΘN−1, (21)

which, as shown above (and in Section 6.7.1), reflects the
shape of the 1-dimensional posterior for the parameter Θ∗
doubling as a cross check for calculating the Evidence inte-
gral.

4.2 The Jeffreys’ scale and potential pitfalls of
the Bayes factor

The largest counter argument to using Bayesian statistics
is the possibility of skewing results from a naive choice of
prior distribution15. One of the many attractive properties
Bayesian model selection has to offer is its inherent inclusion
of Occam’s Razor - more parameters should not be used than
are necessary. Because of this if any parameter prior region is
chosen naively the added hyper-volume can skew the result
via Equation 18. We therefore try to keep to observation-
ally constrained information, particularly when considering
the prior ranges. By doing so we can approach this as a
way of rewarding good parameters’ rather than penalising
redundant ones (Nesseris & Garćıa-Bellido 2013).

The Jeffreys’ scale is conventionally used as a rough
guide when treating this dilemma - since large Evidences
must be obtained before conclusions are drawn. We use the
Jeffreys’ scale throughout this work to ease interpretation,
keeping in mind that the analytic odds are the real conclu-
sions. We adopt the following version (Hobson et al. 2009)
with three levels of significance:

• Strong - B12 > 150 then model 1 has outperformed
model 2 and is objectively better at describing the data in
hand.

• Moderate - 10 < B12 < 150 then the two models are
likely to be distinguishable by this method, but care must
be taken in assuring no skew has been introduced.

• Weak - B12 < 10 then the two models are likely to be
indistinguishable by this method.
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Model ζ R Log[Tvir] α

3pFZH [5.,250.] [5.,20.] [4.0,5.3] -

4pFZH [5.,250.] [5.,20.] [4.0,5.3] [-3.,3.]

InvFZH [5.,5000.] [0.1,10.] [4.,7.] -

MHR [5.,4000.] - [4.,7.] -

Inv MHR [5.,1200.] - [4.,6.] -

F MHR [5.,1000.] [0.1,10.] [4.,6.] -

F Inv MHR [5.,1200.] [0.1,10.] [4.,6.] -

Table 4. A summary of the uniform prior ranges used for the
21cmFAST and toy models’ Evidence values. For a detailed de-

scription of these models and their parameters see Section 3.1.

5 CONSIDERATIONS OF SENSITIVITY TO
THE PARAMETER PRIORS

Throughout this work we apply only uniform (uninforma-
tive) prior distributions across all parameter ranges. Log
priors have been tested (not shown) to produce the same
values for Z (within error bars) for the 3pFZHf1, 3pFZHf2
and 3pFZH(with α = 0.4)f2 models with the same ranges
of prior. We follow similar assumptions of prior boundaries
taken from the original 21CMMC. The only differences from
the initial paper are at the higher end of the ζ parameter,
which we increase from [5., 100.] to [5., 250.] for the 21cmFast
models. The upper end of this parameter is under debate due
to the lack of observational data surrounding f? and fesc (see
Section 2). The original choice of fesc is in the range [0.05, 1]
implying that f? = 0.05. This is motivation by a theoretical
modelling performed by Dayal et al. (2014) and is confirmed
to be adequate by the observational constraints performed
in Gorce et al. (2017). The latter of these two papers sums
up the problem nicely: ‘the escape fraction is related to too
many astrophysical parameters to allow us to use a complete
and fully satisfactory model’. An updated parameterisation
of ζ has been established (Park et al. 2018). We defer use of
this to future work where we will analyse (similarly to Sec-
tion 6.4) likelihood contributions via the galaxy luminosity
function. The atomic cooling threshold mentioned in Section
2 is used as the lower boundary for Tvir. The upper limit is
set to be consistent with the observations of Lyman break
galaxies and the cooling thresholds for ionised gas. These
are limited due to feedback mechanisms as galaxies above
this threshold are too small to maintain star formation (Fi-
alkov et al. 2014). This results in the prior on Tvir[K] being
[104, 2 × 105]. When relaxing this upper bound to find the
posterior peaks of our toy models, the exponential drop off of
the halo-mass function means there are insignificant changes
to the Evidence. Rmfp is motivated from a simulation stand
point. The mean free path of photons should depend only
on the instantaneous recombination rate of hydrogen in the
IGM; hence this scale must be captured. Typically the bub-
bles in a simulation such as 21cmFast will be of the order
10 h−1 Mpc and so we would expect this to be roughly where

15 See Jaynes (2003) for a very well illustrated example in which

results exactly reflect choices of prior distribution.

this value should lie (see Figure 16(b) in Section 6.7.1 for
more discussion). To allow some flexibility in the scales in
which the physics can proceed this is set to [5., 20.] h−1 Mpc
(as in 21CMMC). We note that nothing is gained by extend-
ing the prior beyond this.

To test the impact of these choices we explore the skew-
ing of the results with widened prior ranges and with δ func-
tion priors (blue and red points respectively, Figure 15 - Sec-
tion 6.7 contains the full discussion). The widened prior val-
ues are changed as follows: ζ ∼ [0., 1000.]; Rmfp ∼ [0., 30.];
Log[Tvir] ∼ [3.5, 6.0]; and α ∼ [−3.0, 3.0].

In the context of the toy models, we have expanded the
priors in the plots to find the peaks of the likelihood distribu-
tions - this is to maximise their Evidence values for the sake
of argument. Values obtained by integrating the full likeli-
hood distributions are overwhelming compared to the penal-
ties of using these large priors (large compared to FZH).
The conclusions obtained from any Bayes factors are not
challenged by any change in prior hyper-volume that is per-
formed in this work. Any false Jeffreys’ scale conclusions can
be disputed by physical motivations. The Evidences shown
in this paper use the priors given in Table 4 - in general
as long as the width of the prior captures the peak of the
likelihood, Bayes factor conclusions are repeatable.

Finally we have included two reparameterisations of the
MHR models (1p MHR and F MHR, both detailed in Sec-
tion 3.1 with the results discussed in Section 6.1.3) as well
as nested versions of the 3pFZH model (Section 6.7.1) to
quantitatively asses the impact of Occam’s razor implicit in
calculating the Evidence.

6 RESULTS

Unless specified otherwise all results are tested against an
FZH power spectrum with one of two fiducial sets of param-
eters as the simulated data, namely: f1 [ζ = 20., Rmfp =
15. Mpc, Tvir = 30000 K]; and f2 [ζ = 15., Rmfp =
15., Tvir = 50000, α = 0.4], as is done in the original
21CMMC.

In this work, the 21cmFast models is the collective name
we use for FZH simulations, with 3p referring to those with
α = 0 (therefore implying Equation 4) and 4p to any with
α 6= 0 (Equation 6). The toy models are FZH, Inv FZH,
MHR, Inv MHR, F MHR and F Inv MHR collectively. For
example, the notation 3pFZHf1 refers to a 3 parameter FZH
model fitting for the f1 fiducial power spectrum.

The noise profile of HERA-331 with 1080 hours of ob-
servation is used throughout this work, unless specified oth-
erwise. Sections 6.2, 6.5, and 6.6 respectively summarise the
results that follow when simulating with LOFAR-48, multi-
ple HERA configurations, and the SKA-512. The error on
the f1 power spectrum for LOFAR, HERA-61, HERA-331
and the SKA at z = 9 are shown in Figure 4. The SKA has
longer baselines than HERA and is more sensitive at small
scales. Due to HERA-331 having many more small baselines
it has greater large scale sensitivity making it comparable to
the SKA at model selection via the 21cm power spectrum.
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Figure 4. Uncertainties on the f1 power spectra (defined in Sec-
tion 6.1) as produced by 21cmSense for LOFAR, HERA-61, SKA

and HERA-331. Only observations between the black lines are

used, these limits are defined by foregrounds (lower) and shot
noise (upper).

6.1 Direct comparisons of 21cmNest vs 21cmMC

We first demonstrate our ability to reproduce the results
of 21CMMC. These are done in comparison to two fiducial
power spectra across three redshifts (z = 8, 9, 10). As is
done in Greig & Mesinger (2015), we attempt to recover the
f1 and f2 fiducial parameter sets (specified in the previous
section) with the 21cmFast models. Figure 5 shows the over-
laid posterior distributions from 21CMMC and 21cmNest
for the 3pFZHf1 and 3pFZHf2 results. A full summary of
all runs shown in Table 5. The 4pFZHf1, 4pFZHf2 and
3pFZH(with α = 0.4)f2 exhibit similarly good agreement
to Figure 5(a) however these are not shown.

Multinest is a more efficient algorithm for model se-
lection purposes than Emcee is. Less likelihood evaluations
are necessary due to the weighting of points calculated by
the change in prior volume at each step of the nested sam-
pling algorithm. In comparison, correlation in the MCMC
chain must be removed for algorithms, such as MCEvidence
(Heavens et al. 2017), that approximate the Evidence using
the points in the chain - this requires an order of magnitude
more points than nested sampling algorithms do. At low
dimensionality (up to 4 is considered in this work) Multi-
nest performs as well as Emcee for parameter estimation
purposes also, as can be seen by the matching posteriors
in Figure 5. None of the EoR models we consider consist
of likelihood distributions with sharp edges that would typi-
cally cause trouble for the ellipsoidal rejection sampling used
in Multinest (GAMBIT Scanner Workgroup et al. 2017).
The MCMC chains produced by Emcee are run until the
passing of a Gelmin-Rubin (Gelman & Rubin 1992) con-
vergence test. We used these settings for 21CMMC and
Multinest: walkersRatio=16, burninIterations=250, sam-
pleIterations=3000, threadCount=20, reuseBurnin=False;
n live points=2000, max iter=0, multimodal=True, evi-
dence tolerance=0.5, sampling efficiency=0.3 respectively.
On a 20 core machine, Emcee obtained 39000 likelihood eval-
uations in 32 hours while Multinest produced 50031 samples
in 15 hours. For the problem at hand Multinest is faster, but
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Figure 5. Here we show that both the 21cmNest (red) and

21CMMC (blue) parameter posteriors for the 3 parameter 21cm-

FAST models are in agreement. 5(a) This simple model can re-
obtain the parameters from its own fiducial simulation (shown by

the pale blue lines). 5(b) The 3p model requires ζ to compensate

when recovering the f2 values which can be seen by an offset which
is quantified in Section 6.1.1. When α is fixed to this fiducial value

the 3p model can easily recover the 4p fiducial parameters (not

plotted, see Table 5). The ‘islands’ of points away from the modes
(only in blue) are a pitfall of the Emcee algorithm as walkers can

get stuck in regions of low likelihood (see the Emcee API for more
detail). Typically they contain ∼ 2% of points evaluated and are
removed from 21CMMC with a likelihood cut.

the scaling to higher dimensions needs exploring within the
EoR context.

6.1.1 Cross check: ζeff the effective ionising efficiency

Figure 5 shows agreement between the two statistical algo-
rithms well in Figure 5(a). In plot 5(b) however both exhibit
a posterior peaked at a value that is different from the fidu-
cial (shown by the pale blue lines). This is because the FZH
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ζ log10[Tvir] α ζeff

3pFZHf1 18.7 ± 2.0 4.366 ± 0.09 (0.0) 18.7

4pFZHf1 5.8 ± 27.6 4.148 ± 0.16 0.36 ± 0.52 6.6

f1 20. ± 5. 4.447 ± 1.1 (0.0) 20.

3pFZHf2 34.9 ± 3.2 4.747 ± 0.05 (0.0) 34.9

3pFZHf2 12.2 ± 4.2 4.576 ± 0.13 (0.4) 66.1

4pFZHf2 5.3 ± 27.3 4.473 ± 0.15 0.624 ± 0.40 7.8

f2 15. ± 3.8 4.699 ± 1.2 0.40 ± 0.10 39.6

Table 5. The MAP parameter values to 1σ for the 5 simula-

tions performed in Section 6.1 (two of which are shown in Figure
5, with fiducial results marked on). ζeff is the actual ionisation

efficiency that the galaxies produce, via the implementation of

the ζ parameter (via Equation 22). Note that in the 3pFZH cases
(α = 0) use the relationship of Equation 4, while for 4pFZH we

use Equation 6 (α 6= 0). For the fiducial values, f1 and f2, σζ
has been approximated by using 25% of each value as suggested
in the original 21cmFAST paper (Mesinger et al. 2011); this is

motivated by the discrepancies between semi-numerical and full

radiative transfer simulations. Deviations from recovering the ex-
act fiducial values are due to the observational priors inputted in

the likelihood.

model prescribes an effective ζeff that is calculated as

ζeff =

∫∞
Mvir

dm dn
dm
m ζ(m)∫∞

Mvir
dm dn

dm
m

(22)

(note the denominator can be rewritten fcoll ρM from Equa-
tion 10). Since the f2 set was created with α 6= 0 it is impos-
sible (by definition) for the 3p model to retrieve the exact
fiducial values that satisfy this mock data. This is evident
in 5(b). The consistency between the ζ of 3pf1 and the ζeff

of 4pf1 in Table 5 shows how the added parameter allows a
compensation between ζ and log10[Tvir]. Therefore the stan-
dard deviations of ζ (σζ) are much larger when α is allowed
to vary (the 4p models in Table 5). In particular note that
the ζeff agrees for all of the f2 simulations and all of the f1
simulations within σζ (rather than for the inputted ζ).

6.1.2 Cross check: recovering an Inv MHR fiducial power
spectrum with the toy models

To further test our methodology, a fiducial power spectrum
(mock data) has been generated by the Inv MHR model with
[ζ = 30,Log[Tvir] = 4.5]. This showed that different input
models can be recovered - proof of concept for Bayesian
model selection.

6.1.3 Cross Check: Do alternate parameterisations of
MHR skew the Bayes factor?

Testing for the Inv MHR fiducial as in the previous section,
we assess the choice of prior width with the reparameteri-
sations of MHR. We can recover the Inv MHR mock data
power spectrum using the F Inv MHR and 1p Inv MHR
models detailed in Section 2.

The 1p Inv MHR is a simplified version of Inv MHR,
and in particular has a vastly reduced prior space (the pa-
rameters’ volume has been reduced from ∼ 2000 to 1). But
this should significantly reduce the predictive power of the
Inv MHR model for two reasons: without the use of fcoll

there is no intrinsic redshift dependence via the cosmologi-
cal parameters required to calculate Equation 3; and mainly,
we expect the neutral fraction to decrease with redshift as
reionisation progresses.

On the other hand with F MHR by smoothing the den-
sity field via the addition of a third parameter RFilter, the
filtered models can adapt to the scaling of the ionised bub-
bles. When fitting for f1 this complexity makes the F MHR
and F Inv MHR harder to distinguish than their unfiltered
counterparts. In this context however (when fitting mock
data from Inv MHR), increasing the flexibility of this model
increases the prior volume without any improvement to the
fit (because the fiducial power spectrum was made without
filtering). The 1p Inv MHR and F Inv MHR models achieve
Bayes factors (odds) of 10−25 and 10−29 respectively. This
illustrates that the added parameter is penalised because it
is redundant in this context (for comparison 3pFZH obtains
10−28; Inv MHR has B = 1, by definition).

6.2 Can LOFAR-48 perform model selection?

Next we ask the question: what length of LOFAR observa-
tions is needed to perform Bayesian model selection with the
toy EoR models?

Up until now we have used 1080 hours observing time
with all the telescopes considered, as shown in Table 1. Each
observation is performed with a 1 hour tracked scan of the
f1 power spectrum with 6 hours of observing time per day,
corresponds to 6 different fields. The Bayes factors and best
fit power spectra (z = 8) are shown for each toy model in
Figure 6. Due to the large error bars on each power spectrum
weak results are obtained for all except the InvFZH model.
For the InvFZH model moderate results are obtained be-
cause of penalties from the observational priors (see Section
11(a) for further discussion). The breadth of power spec-
trum that are capable of fitting within the grey error region
of the LOFAR-48 mock signal is reflected in the width of the
posteriors in plot 7(a) - the posterior distributions for Rmfp

and Log10[Tvir] have not peaked at the fiducial values.
We now vary the observation times. LOFAR achieves16

signal to noise of 1, 2, 3, 7, and 11 with 1080, 2160, 4320,
10800, and 21600 hours of integration time respectively at
z = 8 (to the nearest integer). A total of 21600 hours of
observing time is necessary to obtain strong conclusions for
the toy models considered in this work - Figure 7(c). The
posteriors shown in Figure 7(b) now show peaks that agree
with HERA-331 in Figure 5(a). In summary model selec-
tion is unlikely to be achievable with LOFAR because of the
limited k-range in which it is sufficiently sensitive.

These calculations use 21cmSense’s moderate fore-
ground settings (Section 2.2) with LOFAR for ease of com-
parison with the other telescopes. In principle LOFAR aims

16 These are a very ambitious trajectory considering LOFAR has
observed a total of ∼ 1300 hours of the NCP field in its 7 years

of EoR activity.
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Figure 6. This Figure refers to LOFAR-48 with 1080 hours of

observing time (see Table 1 for a summary of the telescope spec-
ifications). Plot 6(a) shows best fit power spectra at z = 8 with

dotted lines representing the inverse of the model stated with

colour in the legend, the observational error is shown in grey. 6(b)
shows the Bayes factors obtained using an 1080 hour LOFAR ob-

servation - white, light and dark grey regions represent strong,

moderate, and weak respectively on the Jeffreys’ scale. Note how
much larger the power spectrum error bars are for LOFAR in

comparison to that of HERA-331 in Figure 4. This is reflected in

plot 6(b) as no models are strongly ruled out (all points are within
the grey regions). The flexibility in fitting the shape of the best

fit power spectra can compensate broadly, except for the case of
the Inv FZH model which is disfavoured moderately in 6(b).

to observe within the foreground wedge (i.e. in a k range that
extends lower than k = 0.15 Mpc−1), meaning these results
are conservative estimates. The results published in Patil
et al. (2017) are within k = [0.05, 0.13] Mpc−1. We repeated
our 1080 hour LOFAR analyses within this k range to obtain
parameter posteriors that are comparable to the 21600 hour
observations in the previous k range ([0.15, 1.] Mpc−1). In
the context of model selection, the results become moder-
ate but not strong in ruling out F Inv MHR (B = 148) and
so model selection would still be challenging for LOFAR.
Ideally LOFAR will be operational without any foreground
contamination (the optimum 21cmSense setting) in a total
possible k range of k = [0.05, 1.0] Mpc−1. If these criteria
are achievable, LOFAR can obtain B ≈ 120000 and is likely
able to perform model selection. We stick with our conser-
vative estimates to have a consistent analysis between the
telescopes.
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Figure 7. 7(a) and 7(b) are the posterior distributions for the

FZH parameters used to recover the f1 power spectrum with
LOFAR-48 for the observing times 1080 and 21600 hours respec-

tively. 7(c) shows the Bayes factors of 3pFZHf1 against F Inv
MHRf1. For comparison the red line shows the Bayes factor us-
ing the SKA-512 with 1080 observing hours. Note that in order
to obtain a strong distinction between these toy models LOFAR

must observe for 21600 hours (indicated by the marker passing
into the white disfavoured region).
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Model ζ R Log[Tvir]

FZH 18.8 ± 2.0 14.4 4.38 ± 0.09

Inv FZH 1680 ± 1080 1.05 6.16 ± 0.1

MHR 1690 ± 470 6.02 ± 0.04

Inv MHR 71. ± 15 5.12 ± 0.07

F MHR 432 ± 80 4.65 5.56 ± 0.06

F Inv MHR 203 ± 170 4.35 5.3 ± 0.1

Table 6. The MAP values (±1σ) for the toy model simulations

shown in Figures 8, 9, and 10 when observing for 1080 hours with

HERA-331.

6.3 Model selection of reionisation scenarios with
HERA

Here we attempt to distinguish the toy models against the
f1 power spectrum (mock data generated with 3pFZH). The
obtained parameter posteriors and power spectra are shown
in Figures 8 and 9 respectively. As mentioned in Section 4.2
the prior ranges on these plots have been expanded to show
the peaks of the likelihood distributions. Note that adding
the filter scale to the MHR models smooths the density field,
producing over-densities that are fewer in number but larger
on all scales. The background ionising efficiency ζ must com-
pensate by being bigger in the F Inv MHR case (plot 8(d)
has a larger ζ than 8(f)) so that these over-densities can be
ionised before recombining again. The opposite is true for
the MHR and its filtered counterpart (plot 8(e) has a smaller
ζ than 8(c)); the background ionising radiation is less effi-
cient when ionising a smoother density field. A qualitative
reflection can be interpreted from the sizes of the bubbles
(signal-less regions), the smaller and more numerous bub-
bles require lots of faint small galaxies. By construction, the
MHR models contain a degeneracy between the two main
parameters (ζ and Log10[Tvir]). This can be observed by the
length of the arc in the corresponding 2d posterior plots.

The toy models predict vastly different reionisation
morphologies and can all be distinguished strongly on the
Jeffrey’s scale, as shown by the Bayes factors in Figure 10.
The F Inv MHR proves to be the hardest to distinguish. FZH
and F Inv MHR share both morphology and scale of reioni-
sation (refer to Figure 2 for slices of the brightness tempera-
ture). In contrast, Inv MHR has the inside-out morphology,
but is local rather than global in scale - this explains why it is
rejected more heavily than its filtered counterpart in Figure
10. The filter scale added to the MHR models can clearly
increase the flexibility of our local based models, resolving
this issue. Our local inside out model proves a challenging
test only when the local constraint is relaxed by smoothing
the density field. The relative similarity of Inv FZH, MHR
and F MHR (red points) suggest that if the morphology is
different, there is little compensation achievable by the scale
of reionisation.

6.4 QSO data verses the 21cm power spectrum
with HERA

In this section we discuss the observational prior contribu-
tion towards the total Bayesian Evidence values calculated
for the HERA-331. Since the observational priors are lin-
early combined into the likelihood (Figure 1) they are easily
separable. By separating out the 21cm power spectrum con-
tribution from the QSO data it becomes very apparent how
little quantitative impact this observational data has on dif-
ferentiating between models (the lack of deviation of the
blue points from the black dashed line, Figure 11(a)). Note
that these blue points have been run separately from the
simulation with only the 21cm power spectrum and can be
fit easily by all of our toy models (Table 3). All of the toy
models posses a region in their parameter space that agrees
with the constraints of the observational priors. To break
this model degeneracy the 21cm power spectrum must be
used. An example of this can be seen from the MAP pa-
rameters of the Inv FZH model - the values obtained differ
significantly (by a few σ, see Figure 8) depending on what
contributions to the likelihood are included. The MAP pa-
rameters found by the 21cm power spectrum can be heavily
penalised by those found by the observational prior checks,
and vice versa. The discrepancies of the black (full likeli-
hood, Figure 11(a)) Evidence points compared with the red
(only the 21cm Likelihood) show that these models are un-
physical as they are penalised by these observational prior
checks. Despite this the F Inv MHR model still proves the
hardest to distinguish from FZH (with odds ∼ 107 : 1),
hence a better way of harnessing the non-21cm data is re-
quired if a cross check is to be performed. How the obser-
vational prior checks are so poorly constraining can be vi-
sualised for the McGreer and Greig neutral fraction checks
(Figure 11(b)). The plotted points at the simulated redshifts
are interpolated to see if they fit within the error bars on the
observed neutral fractions (shown in gold). Since the error
bars on these neutral fraction values are large it is difficult
for them to add any constraining power to our toy models
of the EoR. Similarly small likelihood contributions come
from the Planck prior which utilised the optical depth. This
quantitative approach agrees with the discussion in Greig
& Mesinger (2017b). When recovering f1, we indirectly ob-
serve this via σ values that are of a comparable size to that
obtained parameter value (see Table 6). This should be in-
terpreted such that other data17, as well as the 21cm power
spectrum, is necessary to break model degeneracies for EoR
inference.

A recent publication (Park et al. 2018) attempts to har-
ness more information via galaxy luminosity functions, in
which the parameterisation of ζ0 in Equation 5 is expanded
via power laws in fesc and f∗. Equation 6 is no longer used
due to its inadequacy at reproducing observed UV luminos-
ity functions. We defer a model selection analysis including
this improved framework to future work.

17 This includes more numerous and precise neutral fraction mea-

surements from quasars.
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Figure 8. Parameter posteriors for the toy EoR models, as found by 21cmNest using HERA-331 with 1080hrs of observation (averaged

over z = 8, 9, 10). The MAP values of these distributions are shown in Table 6, their power spectra are shown in Figure 9. The blue cross
hairs on the FZH plot correspond to the values of f1 data set, they are not comparable to the other models.
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Figure 9. Power spectra at redshifts 8, 9 and 10 (a, b and c respectively) for the MAP parameter values of the FZH (blue), Inv FZH

(dashed blue), MHR (magenta), Inv MHR (dashed magenta), F MHR (red), and F Inv MHR (dashed red) models (shown in Figure 8).
Only the power spectrum between k = [0.15, 1.0] Mpc (between the vertical lines) is included when calculating the likelihood. The f1

mock-observed power spectrum, created by 21cmFAST (3pFZH) with fiducial parameters, are shown in black with errors corresponding
to HERA-331 shown in grey. Note that these power spectra are very different i.e. only the fiducial FZH model is within the error bars
for each individual redshift. This is echoed in the huge disparity in Bayes factors shown in Figure 10.
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Figure 10. The Bayes factors for the toy models as seen by
HERA-331 with 1080 hours of observation. Blue and red colours

indicate an inside-out or outside-in morphology respectively. The

arrow heads (global) and crosses (local) represent EoR scales. All
of the toy models can be distinguished strongly (all non-fiducial

models are in the white region). The corresponding power spectra

and parameter posteriors are plotted in Figures 8 and 9 respec-
tively.

6.5 Varying the number of HERA dipoles

In this section we illustrate what number of dipoles are re-
quired for HERA to attain the model selection capabilities
of LOFAR or the SKA. As mentioned previously HERA is
organised in a hexagonal structure with redundant baselines
aligned for the purpose of noise reduction, for more details
on this see Dillon & Parsons (2016). HERA achieves signal
to noise of 3, 9, 18, 28, 39, and 50 with 19, 61, 127, 217,
331, and 469 dipoles respectively at z = 8 on the f1 power
spectrum.

As shown in figure 12 HERA-19 (the lowest dipole
configuration) performs similarly to LOFAR. Model selec-
tion between the models we consider becomes strong with
HERA-61. HERA-217 is comparable to SKA (see Section
6.6).

6.6 How well will the SKA-512 perform at model
selection?

The analyses of the SKA-512 are shown in this section for a
1 hour tracked scan of the f1 power spectrum with 6 hours of
observing time per day (split across 6 fields). We repeat the
analyses that have been done for LOFAR-48 in Section 6.2.
At z = 8 SKA achieves signal to noise of 4, 7, 10, 14, and 22
with 108, 216, 324, 540, and 1080 hours of integration time.

Similarly to Section 6.2, we calculate the Bayes factors
between 3pFZHf1 and the F Inv MHRf1, with decreasing
the observation times. we assume the moderate foreground
model for the wedge (and a buffer, Section 2.2) within 21cm-
Sense. The toy EoR models we consider can be separated out
with 324 hours of observing with the SKA. Figure 13 shows
the Bayes factors obtained for the toy models considered.
The F Inv MHR is used because it is the toy model that has
been hardest to distinguish from 3pFZH in Figure 10.

In comparison to HERA, SKA has less repeated base-
lines and therefore has a marginally lower signal to noise.
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Figure 11. 11(a) Due to the modular nature of the combined like-

lihood contributions (see Figure 1) we can quantify the Bayesian
Evidence for the 21cm power spectrum (by itself) compared to

that of only the observational priors separately with HERA-331.

Since the blue points lie close to zero and the red and black points
are similar in all cases, this contribution is negligible. 11(b) The

progression of neutral fraction (reionisation histories) for all the

toy models, due to the width of the error bars on the data points
the observational priors penalise no models. The observing tele-

scope has a negligible effect on the variance of neutral fractions
obtained. The 4p FZH model fits within the error bars of the blue

solid line (3pFZH) i.e. α has a small impact on the neutral frac-

tion. The yellow points at z = 5.9 and 7.1 are the McGreer and
Greig data points respectively with error bars derived from the

respective observation (inverse models are represented by dotted

lines of the colours in the legend).

This is compensated for by having a wider range of base-
lines, meaning a fuller interferometric U-V coverage. Despite
this SKA does not achieve tighter posterior contours on pa-
rameters, when considering the power spectrum - this might
not remain the case when considering higher order statistics
such as the bispectrum (Watkinson et al. 2019). For a direct
comparison of HERA-331 and SKA’s observational error on
the power spectrum see Figure 4.

In conclusion, SKA performs comparably at EoR model
selection purposes as HERA-217.
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Figure 12. This plot is similar to that for LOFAR in Figure
7(c) but with varying HERA configurations. We show the Bayes

factors for F Inv MHR verses the fiducial 3pFZH mock data power

spectrum f1. LOFAR (the blue line) and HERA-19 score weak on
the Jeffreys’ scale while all telescopes (including HERA-61) score

strong results. Above 217 dipoles HERA becomes more sensitive
than the SKA (red line).
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Figure 13. The Bayes factors obtained by SKA with 1080 hours
of integration time on the f1 power spectrum. All toy models
are strongly ruled out by margins similar to those obtained by

HERA-331. For details of the plot style please see Figures 6(b)
and 10.

6.7 Model selection on the number of parameters
in 21cmFAST

Having shown that HERA & SKA can easily determine the
most suitable reionisation scenario we now explore refining
the number of parameters. Namely testing the ability to de-
termine the use of a 3 or 4 parameter FZH model (detailed in
Section 2). We then proceed to inspect the effect of skewing
these results with a naive choice of prior.

Figure 15 shows the Bayes factors for 3p and 4p FZH
models tested with δ function, used (Table 4) and widened
priors in red, black and blue respectively. This figure there-
fore serves both aforementioned purposes.

Primarily, the black triangles show that the different pa-
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Figure 14. This figure follows the same structure as Figures 12
and 7(c) but with SKA-512 observing times. The Bayes factors

are plotted for F Inv MHR against FZH for the f1 mock data set.

Note that in order to obtain a strong distinction between these
toy models SKA must observe for ∼ 324 hours.
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Figure 15. The Bayes factors for all FZH based models relative

to 3pFZHf1 (α = 0.). The weak, moderate and strong scores on
the Jeffreys’ scale are indicated by the dark grey, light grey and

white regions respectively. Black points indicate the use of sensi-

ble prior volumes - all of 21cmFAST models considered are shown
to score weak results on the Jeffreys’ scale. The secondary aim of

this plot is to show the effect of a prior skewing Evidence results.

Red indicates the use of a δ-function across either the fiducial val-
ues (starred point - 3pf1 only) or the MAP values (red arrows).

See Section 6.7 for the discussion as to why the MAP parame-

ters are favoured above the fiducial choice. Blue points have their
priors widened to skew against the models (see text for details).

Note that it is possible for this skewing of Bayes factor to achieve

strong evidence scores - the Jeffreys’ scale is intended as a guide
only.

rameterisations of 21cmFast considered score weakly on the
Jeffrey’s scale with HERA-331. In other words the power
spectrum from this 1080 hour observation is not sensitive
to changes of the fiducial parameters - nor the change of a
constant ζ to a power law in halo mass (Equations 4 and
6). Even when increasing the SKA’s observation times (not
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shown) we score weak results recovering the f1 and f2 power
spectra with the 3p and 4p FZH models. Applying larger val-
ues of α makes these models more distinguishable however
this is because the observational priors become dominant in
the Evidence. Increasing α increases the ionising efficiency of
the galaxies (Equation 5) and therefore the EoR will finish
too early if α is largely positive.

Secondly, Figure 15 contains the information obtained
when attempting to skew our own results with prior choice
(see Section 5 for the full discussion) - this is the only way
one can be sure the results are prior independent. Namely
the blue triangles have uniform priors expanded to reduce
the posterior density (and therefore the Evidence). The red
shapes have the prior volume reduced to a δ function for
the opposite effect. These blue results use unphysical prior
ranges and still fall short of the strong Bayes factor score;
we consider this a success of the machinery. In other words
if one chose wide uniform prior distributions out of naivety
(a sensible approach for a first attempt), the result could be
moderate. The user should look closer at the physics at hand
and try to reduce the wide priors (chosen for the blue points)
to those resembling Table 4 - which were chosen via physical
reasoning and familiarisation with the problem (used for the
black points). It is worth noting that the interpolated shape
of the black points is translated down for the blue points -
in the uniform case the parameter prior volume is factored
out of the Evidence integral as a constant (Equation 17).

For the red shapes (using δ function priors), the max-
imum possible Evidence is obtained by choosing the MAP
parameters, Z = L(θMAP), and is observed by the alignment
of the red triangles in Figure 15. The starred red point (only
above 3pf1) is calculated with the fiducial parameters. It is
worse than this maximum because no consideration of the
observational priors was made when choosing these values.
Therefore there is a disagreement between the parameters
that produce the fiducial power spectrum and those satis-
fying the observational priors. This was also observed when
cross checking the methodology against the Inv MHR fidu-
cial data set in Section 6.1.2 (and is discussed in Section
6.4). It is worth noting here that if a prior is chosen to be
too narrow, the posterior plots will show close to uniform
distributions and suspicion should be applied - either the
parameters dynamic range is not expressed by the chosen
prior (the case here), or the parameter is redundant (Sec-
tion 6.7.1).

6.7.1 The Savage-Dickey density ratio: how useful are a
model’s parameters?

Here we explore redundancy of parameters within models
via the Bayesian Evidence (see Section 4.1 for the method-
ology). We consider each parameter of the 3pf1 simulation
in turn (Rmfp and ζ are shown in Figure 16). Since the Rmfp

parameter is actually the maximum smoothing scale (a top-
hat in k-space via the excursion-set formalism to be precise,
see Section 2) it is an easy target for this evaluation. Above a
certain (model dependent) threshold the maximum smooth-
ing scale will capture all of the structural detail within the
model. Below this scale we expect the model to perform
poorly in model selection (against a larger Rmfp) due to a
loss of large-scale structure. As is shown (Figure 16(a), the
power spectrum at different Rmfp) by the descending left

hand side of the blue power spectra while the right hand
side remains fixed. This corresponds to the Bayes factor re-
sults B(Rmfp) from Equation 20 is plotted in Figure 16(b).
All values of Rmfp > 10 agree with the fiducial results in
green - showing negligible inference is provided by varying
Rmfp in this range. For a comparison ζ produces no degener-
ate power spectra and is therefore a useful parameter (Fig-
ure 16(c), the power spectrum at different ζ). In the Bayes
factor results, B(ζ) from Equation 20 is plotted in Figure
16(d), this leads to the sharp peaked value that agrees with
the fiducial result shown in green. When ζ is small, the
power spectra show that the simulation attempts to com-
pensate by increasing the number of small structures (the
blue power spectrum is the largest at the small scale end
of Figure 16(c)). On the other hand if galaxies have a high
ionising efficiency the simulation responds by decreasing the
size of structures on all scales. This can be identified from
the shape of each black power spectrum being maintained as
the amplitude decreases. Within all of ζ’s prior range, there
are dynamic changes to the simulation that are observable
with the power spectrum.

The lines in Plots 16(b) and 16(d) rise above the green
fiducial result due to the reduction in prior volume of the
parameter being nested. In 16(d) the evidence rises above
the moderate Jeffreys’ scale threshold - an even wider choice
of uniform prior distribution for this parameter could have
provided strong evidence however this should not be taken
seriously. This draws light on the implicit nature of Occam’s
razor within the Bayesian Evidence, as mentioned in Section
4.2. Similarly with Rmfp, we are able to see the increase in
Bayes factor as the number of parameters (and therefore
prior volume) is reduced. Here we obtain an weak scoring
on the Jeffrey’s scale due to a smaller prior distribution
([5, 20]Mpc compared with ζ’s [5, 100]). If in doubt, comfort
is found in the variability of the power spectra per parame-
ter as this quantitatively reveals the dynamic range of that
parameter - 16(a) and 16(c). Figures 16(b) and 16(d) reflect
the posterior distributions of each parameter, as derived in
Section 4.1.

7 CONCLUSIONS

Initially we show that Multinest can produce matching pos-
terior distributions to those produced by Cosmohammer in
21CMMC (Section 6.1).

The literature warns of two potential heffalump traps
within Bayesian model selection: these are the prior de-
pendency of results and the overcompensation of redun-
dant parameters via Occam’s Razor. We address carefully
these issues in Sections 4.2 and 5 to show the validity of the
Bayesian model selection we apply. For a rough interpreta-
tion of our results we adopt the Jeffreys scale to distinguish
weak, moderate and strong conclusions.

This work considers toy EoR models as well as those in
the original 21CMMC model. Namely: an inverted version
of the original 3 parameter FZH (global inside-out) model
used in 21cmFAST (within which the excursion set formal-
ism solves for reionised bubbles); a simpler model MHR (lo-
cal outside-in), in which ionisation is defined via a density
criteria; both of these models have had their ionisation crite-
rion mathematical inverted (Inv FZH, global outside-in; and
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Figure 16. Using the Savage-Dickey Density ratio - The impact of varying one fixed parameter as a set of models nested from 3pf1 on

the Bayes factor. Plots 16(a) and 16(b) both have Rmfp fixed, while 16(c) and 16(d) fix ζ. The colour coding is consistent across all plots
in this figure: the green indicates the fiducial simulation. Plots 16(b) and 16(d) are the Bayes Factor plots, with strong, moderate and

weak scores indicated by the white, light and dark grey regions respectively. 16(a) and 16(c) show how the power spectra vary for z = 8

given the different nested model (The plots for z = 9 and 10 are similar). Notice that for Rmfp > 10Mpc, the Bayes factor provided weak
inference, but ζ shows strong results against all but the fiducial values.

Inv MHR, local inside-out); and finally a 3rd parameter is
added to both the MHR and Inv MHR models in the form
of a Gaussian density field filter - F MHR, global outside-in;
and F Inv MHR (global inside-out). By using the specifica-
tions of HERA-331 (see Table 1) for 1080 hour observations
we can distinguish these toy models strongly on the Jeffreys’
scale (Section 3.1).

By calculating Evidences for the separate likelihood
contributions of 21CMMC - we quantitatively show that
more QSO data is required for effective non-21cm observa-
tional checks than only that of neutral fractions (surroung-
ing high z quasars) and the optical depth (Section 6.4). In
future work, we will quantitatively evaluate the inference ca-
pabilities of including luminosity function data - following
the methodology of Park et al. (2018).

On a subtler level the considered version of 21CMMC
contains the addition of a 4th parameter, enabling a mass
dependent ionising efficiency, in other words relaxing the as-
sumption of a constant mass to light ratio for the simulated
galaxies. We show in Section 6.7 that these cannot be dis-
tinguished with 1080 hour observations as they score weak

results on the Jeffreys’ scale, as does changing the fiducial
parameters within these models.

Using the Savage-Dickey density ratio we proceeded
to show the redundancy of the Rmfp > 10h−1 Mpc in
21CMMC (Section 6.7.1) - hence justifying its omission
from the newest parameterisations of 21CMMC and 21cm-
FAST in favour of inhomogeneous recombinations (Sobacchi
& Mesinger 2014).

The most difficult to distinguish of the toy models is
F Inv MHR because it shares scale and morphology with
FZH. We therefore use it as a bench mark for our primary
questions on feasibility:18

• LOFAR-48 would struggle to perform model selection.
We require 21600 hours of observation to strongly disfavour
the toy models (with odds ∼ 400 : 1).
• Using 1080 observing hours, HERA would require con-

figurations of at least 61 dipoles in order to rule out any of

18 Assuming the ‘moderate’ foreground wedge model within

21cmSense in all cases (Section 2.2).
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the toy models with strong evidence on the Jeffreys’ scale
(scoring odds of ∼ 600 : 1).
• Finally, with the SKA-512: The strong rejection of the

considered EoR toy models can be achieved quickly with 324
observing hours at ∼ 500 : 1.

At observing the 21cm EoR power spectrum HERA-217
becomes comparable to the SKA. As can be seen in Figure
4, SKA is better at observing small scales while HERA dom-
inates the sensitivity at large scale. Assuming the moderate
noise settings within 21cmSense can be acheived, the redun-
dant baseline instrumental method is very promising at per-
forming model selection with the 21cm EoR power spectrum
(Byrne et al. 2018; Dillon et al. 2019).

We have now set the scene for ruling out toy models
of the EoR with Bayesian Model Selection. This work shows
that modest 21cm experiments, such as HERA-61, are likely
to observationally pin down the correct morphology and
scale of reionisation. In future work we intend to look more
closely at the level of precision that can be obtained from
more involved models of the EoR using the newer versions
of 21CMMC. An updated version of 21cmNest19 will be re-
leased soon.

Once the desired reionisation scenario can be quantita-
tively chosen, parameter inference will be performed rigor-
ously to infer the involved astrophysics.
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