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Systems
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Abstract— The improvement in resilience of water supply
systems by increasing their redundancy, either in energy
or in connectivity, is a common priority when doing reha-
bilitation and expansion. This however can come at the
cost of other aspects of network performance, such as
leakage management. In this work, we consider the design-
for-control problem of adding new connections (from a pre-
defined set of candidate pipes) to water supply systems to
improve their resilience to failure events while minimizing
the impact on leakage management under normal operating
conditions. We present a mixed-integer non-linear program-
ming formulation of the problem of optimal link addition
for the minimization of average zone pressure, a surrogate
measure of pressure dependent leakage. We implement a
method based on spatial branch-and-bound to solve the
problem on a case study network from the literature and
an operational network part of an urban water system in
the UK. Finally, we validate the improvement in network
resilience resulting from the addition of new connections
by performing an a posteriori critical link analysis, using
the hydraulic resilience measure of reserve capacity.

Index Terms— mixed-integer non-linear programming
(MINLP), branch-and-bound (B&B) algorithm, resilience,
water supply systems, Design-for-Control (DfC)

I. INTRODUCTION

Water supply systems (WSS) represent a critical infras-
tructure. In their design and operation, there is significant
interest in minimizing the impact on performance of failure
events. Network resilience is an important factor in WSS
design (and sectorization design) [1]–[9], but also in the
rehabilitation and expansion of existing systems, which are
the focus of this work. Resilience refers to the ability of a
WSS to maintain minimum pressure levels and meet customer
demand during failure events and is traditionally built in the
network in the form of topological and/or energy redundancy.
Energy redundancy (i.e. pressure surplus) can be provided by
introducing pumps or more adaptive forms of pressure control.
Improving the topological redundancy of existing WSSs, on
the other hand, consists either in maintenance procedures or
rehabilitation (or expansion) approaches based on link, or pipe,
addition (including duplication) [7], [10]–[13].
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There is no universally accepted definition or measure
of resilience for WSSs, and explicitly considering resilience
based on failure scenario simulations in the optimal design or
rehabilitation of WSSs is complicated. Furthermore, the cost
of installing new pipes aside, link addition may not always
be desirable or possible in real-world systems such as WSSs:
this can produce a non-feasible network model or degrade the
performance of the system, in terms of pressure management
for instance. Pressure management is a major challenge in the
operation and management of WSSs, as it affects leakage [14]
and pipe failure [15]. We present a design-for-control (DfC)
approach to the problem of link addition (from a predefined
set of potential candidates) to increase the resilience of WSSs
while minimizing pressure throughout the network. DfC is a
concurrent design process, which integrates the problem of
simultaneously optimising the choice of the links to be added,
and the settings of existing pressure control valves (PCV).
We formulate an optimization problem, where the objective
is to minimize average zone pressure (AZP) under normal
operating conditions, subject to mass and energy conservation
constraints, for a given number of candidate links to add.

We model water supply systems as directed graphs. Flows
across links and hydraulic heads at nodes are represented by
continuous variables. Binary variables are used to represent
the selected (open) or un-selected (closed) state of candidate
links for addition. Flow or mass conservation holds at all
nodes and energy conservation constraints (also referred to
as head loss or potential-flow coupling constraints [16]) are
enforced along all links. Frictional head losses within pipes
are described by either the Hazen-Williams or Darcy-Weisbach
equations. Given the complexity of the problem of optimal
WSS design and rehabilitation, most literature implements
heuristic methods based on genetic algorithms (GAs) [7], [10]–
[13]. However, such approaches scale badly with the size of
the considered network and fail to guarantee the optimality
of the computed solutions. In addition, these methods do
not deal with optimal pressure control. Alternative solution
approaches for DfC problems in interconnected systems rely
on mathematical optimization methods. Examples include the
DfC problems of optimal splitting (islanding) or expansion
of power systems [17], [18], which result in the formulation
of mixed-integer linear programs (MILPs). Because of the
non-convexity of the potential-flow coupling constraint in
WSSs, the formulation of the DfC problem of optimal link
addition and pressure control results in a mixed-integer non-
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linear program (MINLP), which we solve using mathematical
optimization methods, as they provide a certificate of global
optimality.

Previous attempts to solve MINLPs to global optimality for
the design and/or control of water distribution networks use
branch-and-bound methods [19]–[22]. For an introduction to
mixed-integer non-linear problems and a review of methods
for solving convex and non-convex MINLPs (in particular
branch-and-bound), see Belotti et al. [23]. We propose to solve
the problem of optimal link addition and pressure control
implementing a spatial branch-and-bound (sBB) method based
on the work of [22], which was shown to outperform state-of-
the-art global optimization solvers for the problem of optimal
valve placement in water networks. In this work, we modify
the method, which generates a sequence of lower and upper
bounds to the optimal value of the original problem, to
include additional optimality-based bound tightening (OBBT).
This further reduces the domain of the problem variables
and improves the computed lower bounds compared to the
algorithm presented in [22].

We solve the design-for-control (DfC) problem of optimal
link addition and PCV control for two sectorised WSSs, a
case-study network (Net25) and a large operational network
(BWPnet), where links have been closed off with boundary
valves (BV) to create isolated supply areas, called district
metered areas (DMA). Permanent sectorisation is a commonly
adopted practice which facilitates pressure management and
leakage monitoring in WSSs but also reduces the number of
independent alternative supply paths and, as a result, network
tolerance to failure [24]. In sectorised WSSs, improvements
in resilience can be achieved at minimal cost by reopening
BVs between DMAs, as this increases the number of inlets
into otherwise isolated areas. In order to preserve the benefits
of network sectorisation, dynamic operation of the BVs could
also be implemented, where DMAs are periodically aggregated
(for improved network resilience) and segregated (for leakage
monitoring) [14]. In this paper, we formulate the problem of
dynamic DMA reconfiguration as an optimal link addition
problem, where the set of candidate links (for addition) is
defined as the set of closed BVs. We compare the implemented
sBB procedure to a state-of-the-art global solver (SCIP) and
show that the tailored procedure produces better feasible
solutions, as well as guarantees of optimality, in all instances.
We also investigate how the size of the problem affects the
quality of the solution, and particularly of the final optimality
gap. Finally, the improvement in network resilience resulting
from the optimal addition of links in Net25 and BWPnet is
validated a posteriori by carrying out a critical link analysis
(CLA) on the network pipes using the measure of reserve
capacity.

II. PROBLEM FORMULATION

A. General problem formulation

In this paper, we consider a water supply network with
nn demand nodes or junctions, n0 water sources (reservoirs)
and np links (pipes or valves), among which nPCV pressure
control valves (PCVs) and nCP candidate pipes (CPs) for

addition. In the initial configuration, the CPs are all closed.
In our problem formulation, the locations of the PCVs are
fixed and we assume known the set of candidate pipes to be
added to the network. The aim is to optimize simultaneously
network design (the set of CPs to be added) and control
(PCV operational settings). The length and diameter of CPs
are assumed known too: if several diameters are under con-
sideration for a given candidate location, as many candidate
pipes (with different diameters) can be considered (the CPs
can be mutually exclusive or not, see (9)). We model the
network as a directed graph with nn + n0 vertices and np
links. The direction of a link does not constrain the direction
of flow but only defines a positive flow as directed from
start to end node. Pumps are not considered in the present
work and are not included in the model. We refer to V as
the set of network vertices, E as the set of network links
and Epipes ⊂ E, EPCV ⊂ E and ECP ⊂ E the subsets of
network pipes, PCVs and CPs, respectively. The vector of
fixed elevations of the demand nodes is given by ζ ∈ Rnn

and we consider nt different time steps. For each time step
k = 1, . . . , nt, the vector of nodal demands is given by
dk ∈ R

nn , the (known) hydraulic heads at water sources
by hk0 ∈ Rn0 . At time step k, we consider the continuous
decision variables hk ∈ Rnn and qk ∈ Rnp , representing the
hydraulic heads at the network demand nodes and the vector
of flow rates, respectively. Moreover, we use vector ηk ∈ Rnp

to model additional head losses introduced by the action of
control valves or head differences across un-selected (closed)
candidate pipes. Discrete decision variables z ∈ {0; 1}nCP

represent the selected, or open (1), and un-selected, or closed
(0), status of CPs. Finally, we adopt the notation i1

j−→ i2 to
represent a link j that positively connects node i1 (start node)
to i2 (end node).

This paper aims to investigate optimal link addition and
PCV control, with the objective of improving network re-
silience and minimizing average zone pressure (AZP), a
surrogate measure of pressure dependent leakage [14]. The
objective function (AZP) is defined as a weighted sum of nodal
pressures at all time steps:

1

ntW

nt∑
k=1

wT (hk − ζ) (1)

where w ∈ Rnn and W ∈ R are the vector of AZP weights
and the AZP normalization factor, respectively. For i ∈ V ,
we define Ii, the set of all links incident to node i. Then
wi =

∑
j∈Ii

Lj

2 and W =
∑nn

i=1 wi, where L ∈ Rnp is the
vector of link lengths.

Hydraulic heads hk, flows qk, and additional head loss
across links ηk at each time step are subject to energy and
mass conservation constraints:

A12h
k +A10h

k
0 + φ(qk) + ηk = 0, k = 1, . . . , nt (2a)

AT12q
k − dk = 0, k = 1, . . . , nt (2b)

where A12 ∈∈ R
np×nn and A12 ∈∈ R

np×n0 are the link
node incidence matrices for the demand nodes and sources,
and φ(q) is the function of friction head losses within pipes
for vector of flows q.



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 3

Friction head losses are most commonly described either
by the Darcy-Weisbach (D-W) or Hazen-Williams (H-W)
equations. Neither formula being smooth, it is convenient
to derive quadratic approximations for the D-W or H-W
relationship over the operational range of flows to formulate a
smooth optimization problem. Here, we compute a quadratic
approximation of the H-W and D-W friction losses within
each link, following the methodology presented by Eck and
Mavissen [25] and based on the implementation proposed by
Pecci et al. [26] for the H-W head loss model. This produces a
pair of coefficients (aj , bj) for each link j in the network. The
head loss across network link j is then given, for flow qkj , by
φj(q

k
j ) = qkj (aj

∣∣qkj ∣∣+ bj) and the vector of head loss across
all network links is given by φ(qk) = [φ1(qk1 ) . . . φnp

(qknp
)]T .

The resulting constraints (2a) are non-convex. To isolate the
non-convex friction head loss term, we introduce the auxiliary
variable θk ∈ Rnp and constraints (2) become:

A12h
k +A10h

k
0 + θk + ηk = 0, k = 1, . . . , nt (3a)

AT12q
k − dk = 0, k = 1, . . . , nt (3b)

θk = φ(qk), k = 1, . . . , nt (3c)

where constraints (3) are all linear, except for the non-convex
friction loss equality constraint (3c). To enforce the upper and
lower bound constraints on variables q, η and θ as well as
big-M constraints associated with the addition of candidate
pipes, we introduce the following (constant) vectors: hkmin

and hkmax ∈ R
nn are respectively the vectors of minimum

and maximum allowed hydraulic heads at network nodes,
vmax ∈ R

np is the vector of maximum allowed velocities
across the network links, S ∈ R

np is the vector of link
cross sections defined as S = [πD2

1/4 . . . πD
2
np
/4]T where

Dj is the diameter of link j , and qmax = diag(S)vmax is
the corresponding vector of maximum flows across network
links. Constant vectors qkU , qkL, θkU , θkL, ηkU and ηkL of upper
and lower bounds on variables q, θ and η are also defined in
the following way.

Both positive and negative flows (and consequently friction
head losses) are allowed across network links j ∈ Epipes. Flows
and friction losses are only limited in absolute value by the
maximum allowed velocities. We assume only friction head
loss occurs across network pipes, so ηkj = 0, ∀j ∈ Epipes, k =
1, . . . , nt. This is reflected in the upper and lower bounds on
the values of q, θ and η associated with the network pipes.
For all k = 1, . . . , nt:

∀j ∈ Epipes, (qkU )j = qmax
j

(qkL)j = −qmax
j

(θkU )j = φj(q
k
U )j

(θkL)j = φj(q
k
L)j

(ηkU )j = 0

(ηkL)j = 0

(4)

Unlike pipes, pressure control valves can only support
positive flows (directed from start to end node). This constraint
is also reflected by the upper and lower bounds of the friction
loss and additional head loss across the valves. For all k =
1, . . . , nt:

∀j ∈ EPCV, i1
j−→ i2, (qkU )j = qmax

j

(qkL)j = 0

(θkU )j = φ(qkU )j

(θkL)j = 0

(ηkU )j = (hkmax)i1 − (hkmin)i2

(ηkL)j = 0

(5)

CPs are modeled by binary variables z ∈ {0, 1}nCP . For j =
1 . . . nCP, we refer to lj ∈ ECP as the index of the candidate
pipe modeled by the binary decision variable zj . Then, either
zj = 1 and the candidate pipe lj is selected and modeled
as open link, or zj = 0 and CP lj is unselected (closed).
Flow across a closed candidate pipe is forced to zero and the
hydraulic heads at the start and end nodes of that link are
decoupled. To enforce this, we define matrices QkU , QkL, Θk

U ,
Θk
L, Nk

U and Nk
L ∈ Rnp×nBV , for all k = 1, . . . , nt:

(QkU )ij =

{
qmax
i , if i = lj

0, otherwise

QkL = −QkU

(6a)

(Θk
U )ij =

{
φi(q

max
i ), if i = lj

0, otherwise

Θk
L = −Θk

U

(6b)

(Nk
U )ij =

{
(hkmax)i1 − (hkmin)i2 , if i = lj , i1

i−→ i2

0, otherwise

(Nk
L)ij =

{
(hkmin)i1 − (hkmax)i2 , if i = lj , i1

i−→ i2

0, otherwise

(6c)

The values of individual elements of constant vectors qkU , qkL,
θkU , θkL, ηkU and ηkL for all k = 1, . . . , nt are as follows:

∀j ∈ ECP, i1
j−→ i2, (qkU )j = 0

(qkL)j = 0

(θkU )j = 0

(θkL)j = 0

(ηkU )j = (hkmax)i1 − (hkmin)i2

(ηkL)j = (hkmin)i1 − (hkmax)i2

(7)

Lower and upper bound constraints and big-M constraints
on variables qk, θk and ηk, for all k = 1, . . . , nt, are given
by:

qk −QkUz ≤ qkU
−qk −QkLz ≤ qkL

(8a)

θk −Θk
Uz ≤ θkU

−θk −Θk
Lz ≤ θkL

(8b)

ηk +Nk
Uz ≤ ηkU

−ηk +Nk
Lz ≤ ηkL

(8c)
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where the values of individual elements of constant vectors
qkU , qkL, θkU , θkL, ηkU and ηkL are defined for links, PCVs and
CPs by (4), (5) and (7) respectively, and matrices QkU , QkL,
Θk
U , Θk

L, Nk
U and Nk

L ∈ Rnp×nBV are defined by (6).
Further constraints on the sets of candidate pipes to be added

can be enforced with linear inequalities on binary variables z:

Az ≤ e (9)

where A ∈ RnA×nCP is a constant matrix of binary inequalities
representing constraints on the feasible sets of candidate pipes
and e ∈ RnA is a nA by 1 vector with fixed entries. The
constraint can be used to prevent specific combinations of
candidate pipes from being selected (e.g. duplicate pipes).

Finally, we note that, a network topology with fewer can-
didate pipe additions could result in lower AZP values. As a
result, minimizing AZP could produce not necessarily resilient
network structures, with the addition of few candidate pipes.
To ensure that the solution of the problem minimizes AZP
while adding new connections, the number of pipes to add is
fixed to nb:

1nCPz = nb (10)

The problem of minimizing (1), subject to (3a)-(3c), (8a)-
(8c), (9) and (10) results in a non-convex mixed-integer non-
linear program (MINLP):

minimize
z,q,h,η,θ

1

ntW

nt∑
k=1

wT (hk − ζ) (AZP)

subject to A12h
k +A10h

k
0 + θk + ηk = 0,

AT12q
k − dk = 0,

θk = φ(qk),

qk −QkUz ≤ qkU ,
− qk −QkLz ≤ qkL,
θk −Θk

Uz ≤ θkU ,
− θk −Θk

Lz ≤ θkL,
ηk +Nk

Uz ≤ ηkU ,
− ηk +Nk

Lz ≤ ηkL,
1nCPz = nb,

Az ≤ e,

z ∈ {0; 1}nCP ,

qk ∈ Rnp , hk ∈ Rnn , ηk ∈ Rnp , θk ∈ Rnp ,

∀k ∈ {1, ..., nt},
(11)

where q = (qk)k=1,...,nt
, h = (hk)k=1,...,nt

, η =
(ηk)k=1,...,nt

and θ = (θk)k=1,...,nt
.

B. Sectorised WSS
In the case of sectorised WSSs, where boundary valves

(BVs) have been installed to shut off connections and create
isolated supply sectors (DMAs), new links can be added to the
network by reopening closed BVs. Since the cost of opening
BVs is minimal compared to installing new pipes, as a first
step in the enhancement of resilience of sectorised WSS, we

restrict the set of candidate pipes for addition ECP to the set
EBV ⊂ E of closed BVs between DMAs and investigate
DMA aggregation solutions to improve network resilience.
However, following the necessity to preserve the sectorised
structure of the network for leakage management purposes,
DMA aggregation is restricted to pairing: each DMA can only
be paired with at most one other DMA, so the pairing of two
DMAs excludes pairing opportunities with other DMAs. The
pairing constraint is enforced with (9), where A ∈ RnA×nBV is
the constant matrix of binary inequalities representing DMA
coupling constraints and e = 1nA

, the nA by 1 vector with
all entries 1. For the details of the computation of matrix A,
see Appendix I.

III. SOLUTION METHOD

Problem (11) is a non-convex MINLP, combining integer
decision variables, non-linear and non-convex functions into
a computationally intensive NP-hard problem. One approach
to tackle non-convexity is to use (linear) convex hull re-
laxations or piecewise linear approximations, which can be
reformulated into linear constraints and handled by MILP
solvers. Ultimately, this method does not solve the original
MINLP but an approximation of the problem, and does not
necessarily produce a feasible solution. A common approach
for directly solving non-convex MINLPs is spatial branch-and-
bound (sBB) [23], [27]: the original problem is recursively
divided into subproblems with increasingly smaller feasible
sets and lower bounds on the solution of the subproblems
are computed using convex relaxations of the non-convex
functions to produce a certificate of optimality.

The sBB methods adopted in this paper (presented in Figure
1) to solve the problem of optimal link addition and pressure
control are based on the work of Pecci et al. [22], who
attempt to solve the problem of optimal valve placement
and control in water supply networks. In Section III-A we
provide a brief overview of the different stages involved in
the procedure implemented by [22], that we refer to as BB0.
To improve the performance of their algorithm, Pecci et al.
implement a preliminary domain reduction (bound tightening)
step, described in Section III-B. Domain reduction allows to
produce tighter MILP relaxations and, as a result, better lower
bounds to the optimal value of the MINLP [28]. Here, we
expand the algorithm from [22] and implement a modified
method, referred to as BBBT+, where the domain of the
variables of the subproblems are reduced at each branch-and-
bound iteration. This results, as we show in the analysis of
the networks Net25 and BWPnet (see Section IV-A and IV-
B, Figures 3 and 6), in better solutions and tighter optimality
gaps than those obtained by solving MINLP (11) with BB0.
The procedures of the implemented branch and bound methods
are summarised in Figure 1.

Finally, Section III-C describes an a posteriori critical link
analysis (CLA) based on the measure of reserve capacity
that is applied in this work to validate the improvement in
resilience of the optimal system configurations produced by
solving MINLP (11).
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Fig. 1. BB0 procedure, based on Pecci et al. [22]. BBBT+ is obtained by
including the dashed outline box (tighten bounds).

A. Branch-and bound procedure

1) Bounding strategy: We compute a polyhedral envelope
of the potential-flow coupling constraint (3c) implementing a
method developed by Liberti and Pantalides [29] for monomi-
als of odd degree, and since all other constraints (and objective
function) in MINLP (11) are linear, MINLP (11) is relaxed
to a MILP. The relaxed MILP is then solved using standard
(integer) branch-and-bound methods (i.e. integer search tree).
In practice, the solution of the relaxed problem is rarely
feasible, but its optimal value provides a lower bound on
the optimal value of the original MINLP. We then fix the
binary variables in MINLP (11) to the values obtained from the
solution of the MILP relaxation. If feasible, the resulting (non-
convex) nonlinear program (NLP) is solved using a gradient-
based NLP solver to produce a local optimum, providing an
upper bound to the optimal value of the original problem.

2) Branching strategy: Spatial branching is carried out in
the branch-and-bound procedure by partitioning selected prob-
lems into descendant subproblems. For MINLP (11), tighter
relaxations of the head loss constraints are produced, at each
iteration, by branching on the flow variables of the problem:
the feasible set is split into two, creating two subproblems with
tighter variable bounds. This allows to compute increasingly
better lower bounds. Details of the implemented bounding and
branching strategies can be found in [22].

B. Bound tightening

Bound tightening consists in reducing the domain of the
variables of a problem, taking into account bounds on other
variables and the problem constraints. In particular, for MINLP
(11), an Optimality-Based Bound Tightening (OBBT) method
based on [22] is implemented to tighten the bounds on flow
and frictional head loss variables and, as a result, the relax-
ations of the head loss constraints in the MILP. Tighter bounds
are computed by maximizing and minimizing in turn the flow

variables qi subject to a linear relaxation of the constraints of
MINLP (11). In particular, integrality constraints on the binary
variables z are relaxed and, as for the computation of the lower
bound, potential-flow coupling constraints (3c) are linearized
using a polyhedral relaxation. A linear relaxation of the
constraints produces weaker bounds than a non-linear convex
relaxation but can be solved more efficiently. OBBT methods
are still, in general, computationally intensive (especially for
large problems) and are often limited to the pre-processing
stage [22] and/or early branch-and-bound iterations [28].

OBBT however allows to reduce the feasible sets of the
subproblems in the branch and bound search tree much more
efficiently than branching alone and previous studies have
shown that, in some cases, there is a benefit to applying tight-
ening methods throughout the search [30]. For this reason, we
suggest implementing additional OBBT steps throughout the
sBB procedure (see Figure 1). The resulting branch-and-bound
procedure (including the iterative bound tightening steps) is
referred to as BBBT+. The computational overhead associated
with the additional bound tightening steps is expected to affect
the performance of BBBT+. In Section IV, we apply BBBT+
to the solution of optimal DMA pairing in BWPnet, and we
discuss a practical method based on network reduction to apply
BBBT+ to optimization problems formulated for large scale
water systems. In Section IV, we apply both BB0 and BBBT+
to solve MINLP (11) for systems Net25 and BWPnet. We
compare the results of the two algorithms and comment on
the impact of additional bound tightening on the performance
of BBBT+.

C. Resilience analysis

In order to evaluate the impact of link additions on system
resilience, we perform an a posteriori analysis of the config-
uration solutions of MINLP (11) using a critical link analysis
(CLA) and reserve capacity as a measure of individual link
criticality.

Common approaches for the analysis of water system
resilience use either surrogate indices, such as Todini’s re-
silience index [31] or the statistical network entropy [32], or
simulation-based criticality analyses - for an exhaustive review
of resilience indices for WSSs, see [33] and [8]. Surrogate
indices, which measure the topological and/or energy redun-
dancy of WSS, are either based on the hydraulic properties
under normal operation, which might not hold under failure
conditions, or do not account for the hydraulic properties of
the system at all. In comparison, a critical link analysis (CLA)
allows to assess the criticality of each link individually, based
on hydraulic simulations under failure scenarios. This provides
more insight into local resilience issues that can arise due to
the WSS topology. For the CLA, the PCV settings are not
fixed so as to minimize AZP, as we do not consider normal
system operating conditions. In this work, we carry out a
CLA: individual link failures are simulated one by one and
the reserve capacity (rc) of the resulting WSS configurations
is computed as a measure of criticality of the failed link.

Reserve capacity is a well established measure of trans-
portation network resilience and was adapted to water supply
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systems in [34] and in [35] under the name of residual
capacity. The reserve capacity of a WSS is defined as the maxi-
mum feasible demand multiplier, i.e. the maximum multiplier
that can be applied to system demands without resulting in
violations of the minimum pressure service levels. It assesses
the hydraulic resilience of a WSS (i.e. tolerance to increase in
demands) under mechanical failure conditions (i.e. failure of
system components) [36], [37]. A unique demand multiplier
is considered for all demand nodes, which means that if an
individual pipe failure leads to the isolation of one or more
customer nodes, the reserve capacity of the system drops to
0. A reserve capacity value of less than 1 means the system is
able to meet only a fraction of the demand associated with at
least one node, whereas a reserve capacity value greater than
or equal to 1 means the system is able to meet the demands
at all nodes. For more details about reserve capacity, as well
as the methodology for computing the measure and carrying
out the CLA, see [34].

IV. RESULTS AND DISCUSSION

In this work, we solve the problem of optimal link addition
and PCV control for two sectorised WSSs. We define the set
of candidate links for addition as the set of closed BVs at
the boundary between the WSSs DMAs. For operational (i.e.
leakage management) purposes, we constrain the addition of
new pipes (opening of BVs) to limit DMA aggregation to
pairing, as described in Section II-B.

The spatial branch-and-bound (sBB) procedures BB0 and
BBBT+ presented in Section III are implemented in Matlab
2018b-64 bit for Windows. Relaxed MILPs within the sBB
algorithms as well as the 2np LPs of the OBBT step are solved
using gurobi (v8.1) [38]. NLPs are solved by IPOPT (v3.12.9)
[39] using the Matlab interface [40]. To take advantage of
the sparse structure of the NLPs, the pre-computed sparse
gradients and Jacobians are directly provided to the solver.

MINLP (11) is also solved directly by calling the state-of-
the-art global MINLP solver SCIP, to assess the performance
and validate the results of the tailored branch-and-bound
procedures BB0 and BBBT+. The SCIP Optimization Suite
(v6.0) [41] was implemented in Matlab, via the OPTI toolbox
interface. SCIP also implements a spatial branch-and-bound
approach. Similarly to BBBT+, SCIP performs additional bound
tightening on selected subproblems within the branch-and-
bound procedure [27]. Unlike the sBB procedures BB0 and
BBBT+ however, SCIP produces lower bounds on the solution
of the original problem by solving a convex continuous re-
laxation of the MINLP subproblems in the branch-and-bound
tree: non-convex constraints are relaxed using a convex or
polyhedral envelope and integrality constraints are ignored.

Finally, we analyse the optimal system topologies obtained
by solving MINLP (11) and validate the achieved improvement
in resilience with a CLA using reserve capacity.

A. Case study 1: Net25
To demonstrate the implemented branch-and-bound meth-

ods, we modify a case study network from the literature,
Net25, to include BVs and PCVs. For the purpose of this

PRVs

TCVs

Fig. 2. Example network model Net25: Pressure control valves are
represented in blue and boundary valves in red.

t (s) nb Iterations LB (m) UB (m) gap (%)
14,400 1 2088 14.2 18.3 29
14,400 2 3809 14.0 18.3 31
14,400 3 4757 14.0 19.8 41
14,400 4 8574 18.3 19.9 9

TABLE I
SOLUTIONS OF MINLP (11) OBTAINED WITH BB0 , WITH

nb = 1, 2, 3, 4 FOR NET25 (RUNNING TIME IS 4 HOURS). THE

RELATIVE OPTIMALITY GAP IS DEFINED AS UB−LB
LB .

problem, we also assume all nodes with positive demand to be
DMAs. The edited Net25 (see Figure 2) is a WSS comprising
3 reservoirs, 16 nodes (among which 8 DMA nodes with
positive demand), and 26 links (15 pipes, 3 PCVs and closed 8
BVs). Friction head losses across network links are modelled
using the H-W equation, and 24 time steps are considered.
This results in a MINLP with 1656 continuous variables, 8
binary variables, 2934 linear constraints and 624 non-linear
constraints.

Based on hydraulic simulations of the original network,
the maximum allowed velocity is fixed to 2m/s for all net-
work pipes and a (smooth) quadratic approximation φ(·) of
the Hazen-Williams formula is adopted to model head loss
across the pipes, as proposed in [22] and [26]. The pressure
requirement at customer nodes (i.e. network nodes with strictly
positive demand) is fixed to 15m. We solve MINLP (11)
in Net25 with BB0, BBBT+ and SCIP for different values
of nb ranging between 1 and 4 (which is the maximum
number of boundary valves that can be simultaneously opened
without violating the DMA pairing constraint). The maximum
running time is set to 14,400s (4h). The results are summarised
by Figure 3, Tables I, II and III. Below, we comment on
the results, as well as the performance of the individual
components of the implemented sBB algorithm.

1) Solution of the MINLP: The (feasible) solutions produced
by BB0 and BBBT+ have better objective value than the
solutions produced by SCIP, for all values of nb (Tables I, II,
III). The objective values of the solutions produced by BB0 and
BBBT+ differ by less than 1% (Tables I and II). Furthermore,
both BB0 and BBBT+ find a good feasible solution after only
a few steps of the branch-and-bound procedure. This confirms
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t (s) nb Iterations LB (m) UB (m) gap (%)
14,400 1 1,022 16.9 18.2 8
14,400 2 983 16.6 18.2 10
14,400 3 999 17.2 19.8 15
14,400 4 1,006 19.2 19.9 4

TABLE II
SOLUTIONS OF MINLP (11) OBTAINED WITH BBBT+ , WITH

nb = 1, 2, 3, 4 FOR NET25 (RUNNING TIME IS 4 HOURS). THE

RELATIVE OPTIMALITY GAP IS DEFINED AS UB−LB
LB .

t (s) nb Iterations LB (m) UB (m) gap (%)
14,400 1 - 10.8 18.5 71
14,400 2 - 7.6 20.0 163
14,400 3 - 7.0 20.0 186
14,400 4 - 11.1 20.6 86

TABLE III
SOLUTIONS OF MINLP (11) OBTAINED WITH SCIP, WITH

nb = 1, 2, 3, 4 FOR NET25 (RUNNING TIME IS 4 HOURS). THE

RELATIVE OPTIMALITY GAP IS DEFINED AS UB−LB
LB .

1 2 3 4
5

10

15

20

Fig. 3. Results (upper, lower bounds and optimality gaps) of MINLP
(11) obtained for Net25 with BB0, BTBT+ and SCIP, for nb = 1, 2, 3, 4.
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Fig. 4. Results of BBBT+ in Net25 for nb = 1. ρ represents the
reduction in the diameter of the intervals of the flow variables (defined
as diam = max

k,j
((qkU )j − (qkL)j)) achieved with OBBT.

the observations made in [22]: good progress on the upper
bound is made in the early stages of the execution of the
branch-and-bound algorithm, i.e. a good quality feasible (if
not optimal) solution is found fast. Subsequent steps mainly
consist in improving the lower bound on the optimal value of
MINLP (11).

The final optimality gaps returned by BBBT+ range between
3.6% and 13% (Table II), i.e. about half to a third of the
gaps returned by BB0 (see Table I) and a tenth of the gaps
returned by SCIP (see Table III). This is likely to be due
to faster progress on the lower bound, resulting from the
solution of tighter linear relaxations in BBBT+. The wider the
bounds on flow variable q, the wider the range of head loss
values around φ(q) is allowed by the relaxations of constraints
(3c). The iterative refining of the relaxations in BB0 (past
the initial iteration) follows from branching alone, whereas,
in BBBT+, additional OBBT steps allow to further refine the
bounds of the flow variables q and the relaxations of the
head loss constraints: Figure 4 shows that ρ, which measures
the reduction in the range of flow variables achieved with
OBBT, is still close to 0.1 (i.e. 10% reduction on the interval
range) after 50 iterations. These results demonstrate the benefit
of implementing iterative bound tightening within the sBB
procedure. Furthermore, Figure 4 shows that the slow down in
the progress on the lower bounds coincides with the decline
of ρ, suggesting that the limit of OBBT has been reached.
Like BBBT+, SCIP also implements iterative bound tightening
steps. The relaxed problems solved by SCIP to produce the
lower bounds on the optimal value of MINLP (11) however
drop the integrality constraints on variables z: the obtained LP
relaxations are not as tight as the MILP relaxations in BBBT+,
resulting in larger optimality gaps (Tables II and III).

In conclusion, the tailored sBB methods find better feasible
solutions of MINLP (11) than SCIP in Net25 for all values of
nb = 1, . . . , 4. Better guarantees of optimality on the optimal
solutions are produced with BBBT+ compared to BB0, despite
an average 79% decrease in the total number of branch-and-
bound iterations resulting from the computational overhead of
OBBT. The quality of the final optimality gap depends on the
tightness of the relaxed problems solved to produce the lower
bounds, not the total number of branch-and-bound iterations.

2) Network AZP: Figure 3 shows that, overall, the optimal
AZP of Net25 increases with nb, from 18.2 m when nb = 1,
to 19.9 m when nb = 4, when the maximum number of
new links is reached. In comparison, the optimal average
AZP value achieved in the sectorised configuration is 18.2
m. These results suggest that, for the considered case study,
AZP minimization and resilience (measured by the surrogate
measure nb in the optimization problem) maximization are
conflicting objectives of MINLP (11).

3) Network resilience and link criticality: In this section, we
further analyse the resilience of the solutions of MINLP
(11) obtained for nb = 1, . . . , 4 using reserve capacity and
comment on the trade-off between AZP and network resilience
in Net25. A summary of the results of the CLAs is provided
in Figure 5, which represents the box-plot of reserve capacity
values associated with the failure of individual links in Net25
for optimal DMA pairing configurations found by solving
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Fig. 5. Box-plot of reserve capacity (rc) associated with the failure of
individual links in Net25 configurations obtained fornb = 1, . . . , 4. The
circle markers represent outliers.

MINLP (11) for nb = 1, . . . , 4. We also represent on Figure 5
the results of the CLA performed on the original configuration
of Net25 (all BVs closed).

Originally, the reserve capacity of 87% of Net25 pipes is
less than or equal to 0.13, and it is equal to 0 for over half the
pipes in Net25. Single pipe failure events affect the ability of
Net25 to meet even a fraction of nominal customer demand
in the sectorised configuration. This is due to the tree-like
configuration of Net25: as the original configuration of Net25
features no loops, most pipes are on exclusive supply paths.
The number of sources provides some redundancy, but the
network is able to supply only a fraction of the nominal
demand when it has to rely on 2 reservoirs instead of 3.

We observe on Figure 5 that the reserve capacity of pipes
in Net25 increases with the number of open BVs (nb) in
the network configuration: the interquartile range of reserve
capacity values ranges from 0 to 0.45 for nb = 1, 0 to
1.15 for nb = 2, 0.1 to 1.5 for nb = 3, and finally 0.86
to 1.6 for nb = 4, when the maximum number of boundary
valves are opened. In Net25, the addition of new links between
DMAs (i.e. the opening of boundary valves), even under
pairing constraints, leads to a significant increase in the reserve
capacity of the network for a minor increase in network AZP:
for nb = 4, two thirds of all Net25 pipes are associated with
a reserve capacity value greater than or equal to 1 (i.e. their
individual failure does not impact the ability of the network
to supply customer nodes under normal demand conditions),
compared to only one pipe in the sectorised configuration,
for less than a 7% increase in AZP. This can help mitigate
the effect of individual pipe failure events and increases the
resilience of the network.

4) 24-hour optimization vs. peak demand: Finally, we solve
MINLP (11) in Net25 for a single time step, at peak demand,
for all values of nb = 1, . . . , 4. This results in a problem
with 69 continuous variables, 8 binary variables, 151 linear
constraints and 26 non-linear constraints. The running time is
set to 180s (3min). The results of the optimization problem
are reported in Table IV, for all values of nb = 1, . . . , 4. We
refer to the binary solutions of MINLP (11) at peak demand
(time step 10) for different values of nb = 1, . . . , 4 as z10nb

.

t (s) nb LB10 (m) UB10 (m) AZP24 (m)
180 1 17.2 17.2 18.2
180 2 17.2 17.2 18.2
180 3 18.6 18.6 19.6
180 4 19.4 19.4 19.9

TABLE IV
SOLUTION OF MINLP (11) COMPUTED WITH BBBT+ FOR NET25 OVER

A SINGLE TIME STEP (PEAK DEMAND) AND OPTIMAL AZP (M) VALUES

OBTAINED FOR CONFIGURATIONS z10nb
, WITH nb = 1, 2, 3, 4, OVER

ALL TIME STEPS

For all values of nb = 1, . . . , 4, we then fix the binary
variables z in MINLP (11) to z10nb

and we solve the resulting
(continuous) non-convex program (with IPOPT) to compute
AZP24, the minimal average AZP values over all time steps
corresponding to configurations z10nb

. The obtained local min-
ima are recorded, for nb = 1, . . . , 4, under AZP24 in Table IV.
We compare the results to the values in Table II, the objective
values of the solutions to problem (11) solved for all time
steps on Net25.

Table IV shows that AZP values AZP24 are, for all values
of nb = 1, . . . , 4, less than or equal to the optimal AZP
values found by solving MINLP (11) for Net25 over all times
steps. For Net25, solving MINLP (11) at peak demand, and
not over all time steps, does not result in suboptimal pairing
configurations but instead produces at least as good solutions
than solving MINLP (11) for Net25 over all time steps.

We observe that the number of unknowns and constraints
in MINLP (11) grows rapidly with the number of time steps,
and the number of pipes and nodes included in the considered
water network. Therefore, when large operational networks
and multiple time steps are considered, the computational
cost required to solve the resulting mixed inter nonlinear
program could be impractical. Results reported in Table IV
suggest that MINLP (11) can be solved over a single time step
(peak demand), without affecting the quality of the computed
solutions.

B. Case study 2: BWPnet
The problem formulation is also applied to the optimization

of the design and control of BWPnet, an operational network
which is part of an urban water system in the UK. For BWPnet,
the Darcy-Weisbach (DW) model of friction head loss across
the network pipes is adopted and a maximum allowed velocity
of 3 m/s is fixed for all pipes. The network counts 10099 nodes
and 4 sources for 10597 links, among which 21 are PCVs and
57 are BVs. A 15-minute resolution daily demand pattern is
available for BWPnet, which represents 96 time steps in total
over 24h. The resulting MINLP has over 3 million continuous
variables, 57 binary variables, over 5 million linear constraints
and 1 million non-linear constraints.

1) Model reduction: The complexity of the optimization
problem grows with the size of the network. In particular, the
more links in the network, the more non-convex constraints
in MINLP (13) and the more branching steps we expect the
branch-and-bound algorithm will require to converge. The
results of the analysis of Net25 show that loose bounds on flow
and head loss variables q and θ in the MILP result in slower
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progress on the lower bound and larger final optimality gap
(see Section IV-A). Furthermore, OBBT is too computationally
intensive to be applied within the branch-and-bound algorithm
for large networks (BWPnet is over two orders of magnitude
larger than Net25). To address these limitations and solve
MINLP (13) for BWPnet, we extract a reduced model of
the network. We implement the skeletonization procedure
described in [42], based on the removal of branching pipes,
and substitution of pipes in series and parallel pipes with pseu-
dolinks. Nodal demands and minimum pressure requirements
are adjusted to account for the properties of the removed sys-
tem parts, together with pseudolink characteristics. However,
the reduced model is not equivalent to the original network.

We apply the model reduction procedure to BWPnet, ex-
cluding PCVs and BVs from the set of links to be removed.
We also limit the optimization problem to a single time step.
We consider the demand conditions of the network at peak
demand, as this provides good (if not optimal) solutions for
Net25 (see Tables II and IV). In conclusion the formulation
of MINLP (13) results in a problem with 4136 continuous
variables, 57 binary variables, 9787 linear constraints and 1511
non-linear constraints.

2) nb: We solve the problem of optimal DMA pairing
in BWPnet for different numbers of BVs nb to open, to
investigate the trade-off between resilience and AZP. To find
the maximum (feasible) value of nb, we solve the following
MILP, which maximizes the number of open BVs subject only
to the pairing constraints in BWPnet:

maximize
z

1nBVz

subject to Az ≤ 1nA

z ∈ {0; 1}nBV

(12)

where the binary variables z represent the open or closed state
of the BVs in the network. Based on the solution of MILP
(12), we find that feasible values of nb for BWPnet range
from 0 (i.e. the original sectorised network configuration)
to 25. Due to the large range of values (and size of the
optimization problem), we do not consider all values between
0 and 25 but instead we solve the following MINLP for
nb = 5, 10, 15, 20, 25:

minimize
z,q,h,η,θ

1

ntW

nt∑
k=1

wT (hk − ζ) (AZP)

subject to 1nBVz ≥ nb,
Az ≤ 1A,
z ∈ {0; 1}nBV ,

(qk, hk, ηk, θk) ∈ Fkz ,
∀k ∈ {1, ..., nt}

(13)

where Fkz ⊂ R
np × Rnn × Rnp × Rnp is the set defined

by (3a)-(3c) and (8a)-(8c), ∀k ∈ {1, ..., nt}. The equality
constraint on the number of open BVs in MINLP (11) is
replaced by an inequality: instead of solving MINLP (11) for
all values of nb ∈ [1; 25], we define a lower bound on the
number of BVs to open in MINLP (13) and allow for 1nBVz
to take all values in the integer intervals [nb; 25].

t (s) nb Iterations LB (m) UB (m) gap (%)
86,400 5 581 25.1 31.9 27
86,400 10 536 25.1 31.4 25
86,400 15 680 25.1 31.3 25
86,400 20 1078 25.5 31.8 25
86,400 25 2054 30.3 36.1 17

TABLE V
SOLUTION OF MINLP (13) ON THE REDUCED MODEL OF BWPNET

WITH BB0 , FOR nb = 5, 10, 15, 20, 25, AT PEAK DEMAND. THE

RELATIVE OPTIMALITY GAP IS DEFINED AS UB−LB
LB .

t (s) nb Iterations LB (m) UB (m) gap (%)
86,400 5 37 27.4 30.7 12
86,400 10 36 27.4 31.1 13
86,400 15 29 27.5 31.3 14
86,400 20 33 28.3 31.8 12
86,400 25 24 33.6 36.1 7

TABLE VI
SOLUTION OF MINLP (13) ON THE REDUCED MODEL OF BWPNET

WITH BBBT+ , FOR nb = 5, 10, 15, 20, 25, AT PEAK DEMAND. THE

RELATIVE OPTIMALITY GAP IS DEFINED AS UB−LB
LB .

3) Solution of the MINLP: As for Net25, we solve MINLP
(13) for the reduced model of BWPnet with BB0, BBBT+ and
SCIP. Given the size of the problem, the running time is set
to 86400 s (1 day). SCIP is not able to produce a solution in
one day of computation for any value of nb. We comment on
the solutions of MINLP (13) obtained with BB0 and BBBT+
for nb = 5, 10, 15, 20, 25, summarised in Tables V and VI
and Figure 6, and analyse the impact of the individual steps
of BB and BBBT+ on the overall performance of the tailored
procedures.

5 10 15 20 25
24

26

28

30

32

34

36

38

Fig. 6. Results (upper, lower bounds and optimality gaps) of BB0
and BBBT+ in BWPnet for different values of nb (minimum number of
boundary valves opened) ranging from 5 to 25, in steps of 5. SCIP was
not able to produce a feasible solution within the time limit (1 day).

The optimal values found for nb = 5, 10, 15, 20, 25 with
BB0 and BBBT+ are similar, if not identical (e.g. for nb =
15, 20, 25) - see Tables V and VI. Furthermore, good (if not
optimal) solutions are found early in the branch-and-bound
procedure. Subsequent steps mostly consist in tightening the
optimality gap by improving the lower bound. This seems to
confirm the conclusions drawn from the analysis of Net25:
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the upper bounding strategy is able to provide a good in-
cumbent solution after a small number of branch-and-bound
iterations and its performance does not seem to depend on the
implementation of additional bound tightening steps. As for
Net25 however, BBBT+ (Table VI) produces better optimality
gaps for BWPnet than BB0 (Table V): the optimality gaps
obtained for the solution of MINLP (13) with BB0 are about
twice as wide, on average, than the optimality gaps obtained
with BBBT+. Once again, the tighter relaxations produced
by OBBT seem to outweigh the computational overhead of
implementing the method at each branch-and-bound iteration.
The final relative optimality gaps obtained with BBBT+ remain
large (12% on average), due to an early slow-down in the
progress of the lower bound. The absolute optimality gaps
(3.4 m on average), although larger than the optimality gaps
obtained for Net25 (Table II), are still of the same order of
magnitude as the uncertainty that is likely to affect pressure
control in operational networks of this size (as a result of
the stochasticity of customer demand and discrepancies in the
hydraulic model) [14], [22].

In conclusion, for BWPnet, as for Net25, the tailored
sBB procedure BBBT+ performs the best: for all values of
nb = 5, 10, 15, 20, 25, it produces equivalent or better feasible
solutions and optimality gaps than BB0. In both case studies,
and for all values of nb considered, the tighter relaxations
produced by OBBT seem to outweigh the computational
overhead of implementing the method at each branch-and-
bound iteration. Finally, we were not able to compare the
performance of BB and BBBT+ to SCIP on the operational
network model BWPnet, as the state-of-the-art solver could
not produce a feasible solution within the time limit of one
day.

4) Network AZP: The optimal AZP of the reduced BWPnet
network increases with nb, from 30.7 m when nb = 5 to 36.1
m when nb = 25, i.e. when the maximum number of BVs
are open (see Figure 6). Figure 6 however shows that there
is a jump in AZP values between nb = 20 and nb = 25.
When going from nb = 5 to nb = 20, which results in a
difference in configurations of 15 additional links, optimal
network AZP varies by little more than 1 m, reaching a
maximum of 31.8 m for nb = 20, which represents a 2.6
m increase in AZP compared to the original sectorised con-
figuration. This suggests that, although AZP minimization and
link addition are conflicting objectives for the considered case
study, improvement in network resilience could be achieved
for a reasonable increase in AZP.

5) Network resilience and link criticality: We assess the im-
provement in resilience achieved in BWPnet resulting from the
addition of new links. A summary of the results is provided
in Figure 7, which represents a histogram of the number
of links with reserve capacity greater than 1 in the optimal
DMA configurations found by solving MINLP (13) for nb =
5, 10, 15, 20, 25. We compare the results against a CLA of
the baseline sectorised configuration. We use the rc value
threshold of 1, as a reserve capacity greater than 1 means
the system is able to meet customer demands in the presence
of pipe failure. Alternatively, other rc thresholds can be used
for the analysis (e.g. if partial customer supply is tolerated

under failure conditions).
In the original (sectorised) network configuration, 5450

pipes have a reserve capacity value greater than 1. This number
increases with nb, to 6113 (representing a 12% increase in
the number of pipes associated with a reserve capacity value
greater than 1) for nb = 25 (see Figure 7): the opening of
nb = 25 BVs allows to meet nominal customer demand under
663 more individual pipe failure scenarios. As for Net25, the
addition of links to BWPnet also results in a general increase
in the reserve capacity of BWPnet pipes: the median and
average reserve capacity values increase from 4.48 and 3.62
for nb = 5 to 5.47 and 4.95 respectively for nb = 25. For
nb = 5, 10, 15, 20, 25, most BWPnet pipes have similar reserve
capacity values (rc), resulting in very narrow interquartile
ranges centered around the increasing median rc value.

Solving MINLP (13) for nb = 5, 10, 15, 20, 25 results in
the creation of respectively 2, 3, 3, 4 and 5 DMA pairs in
BWPnet. The addition of links between DMAs under the
constraint of pairing allows to increase the network reserve
capacity associated with individual link failures and, as a
result, reduces the risk of interruption of supply, by providing
alternative DMA inlets and supply routes to customer nodes.
More resilient structures could be achieved by removing the
pairing constraints and adding more links (i.e. opening more
BVs). However, this would not necessarily produce a feasible
network configuration: opening all 57 BVs in BWPnet, for
instance, results in a hydraulically infeasible network model.
Furthermore, this would result in the loss of the sectorized
network structure and, consequently, an increase in pressure
management implementation complexity.
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Fig. 7. Histogram representing the number of links with reserve
capacity greater than 1 for all BVs closed, nb = 5, 10, 15, 20, 25.

V. CONCLUSIONS AND FUTURE WORK

This paper investigates the design-for-control (DfC) prob-
lem of optimal link addition and pressure control to improve
the resilience of existing WSSs while minimizing the im-
pact on network performance. We propose a mathematical
programming formulation resulting in a MINLP, which can
be applied for the solution of general WSS rehabilitation
or expansion problems, given a set of candidate links for
addition. In this regard, future work could investigate strategies
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to identify sets of candidate links based, for instance, on the
well-connectedness of demand nodes or supply areas [43].
Our numerical experiments focus on the particular case of
sectorised WSSs, where the set of candidate links for addition
is limited to existing closed BVs.

In contrast to previous rehabilitation design studies in
WSSs, we apply mathematical optimization methods and adapt
a spatial branch-and-bound procedure from the literature (BB0)
to attempt to solve globally the design-for-control problem of
optimal link addition and pressure management. We modify
BB0 to include iterative optimality-based bound tightening
(OBBT) throughout the branch-and-bound procedure and im-
plement a model reduction step to address size limitations
posed by operational networks. The tailored algorithm (BBBT+)
was shown to perform better than the state-of-the-art MINLP
solver SCIP and BB0 for both network models considered.
Despite a significant reduction in the total number of com-
pleted branch-and-bound iterations compared to BB0, BBBT+
provided at least as good feasible solutions with twice to
three times smaller optimality gaps, suggesting that, for the
considered problem, the quality of the solution does not
depend as much on the total number of branch-and-bound
iterations as it does on the tightness of the MILP relaxations
solved to produce the lower bounds.

Finally, we perform an a posteriori validation of the increase
in resilience resulting from the addition of new connections
with a critical link analysis (CLA), using reserve capacity.
The analysis of the solutions found for Net25 and BWPnet
shows that opening BVs between DMAs increases the number
of DMA inlets and independent supply paths, mitigating the
impact of the failure of links on exclusive supply paths.
Moreover, the computed solution provides a low cost strategy
to improve the resilience of sectorised WSSs, as the cost
of opening existing BVs is negligible compared to installing
new pipes. The numerical experiments however show that, for
the considered case studies, improving resilience (by adding
new links) and minimizing AZP are conflicting objectives.
Future work could investigate the implementation of dynamic
aggregation solutions, to improve network resilience while
preserving the benefits of network sectorization (i.e. pressure
management and leakage monitoring).

APPENDIX I
MATRIX OF BINARY CONSTRAINTS FOR SECTORISED

WSSS

For the particular case of sectorised WSSs, the matrix of
constraints A in (9) is defined as below, by incrementally
adding lines corresponding to the constraints on the vector of
binary variables z representing the opening of the boundary
valves between DMAs. We define C, the set of network
DMAs. Given DMA ci ∈ C, we consider the set Ci of all
neighbouring DMAs connected to ci by a closed boundary
valve. ∀ cj , ck ∈ Ci, Vij , Vik ⊂ ECP are the sets of closed
boundary valves connecting DMA ci to DMAs cj and ck
respectively. The condition to limit aggregation of DMAs to

pairing results in the following constraints on z:

∀l ∈ Vij , 0 ≤
∑
m∈Vik

zm ≤ 1− zl

or, equivalently, ∀l ∈ Vij , 0 ≤
∑
m∈Vik

zm + zl ≤ 1

This constraint is expressed for all l in Vij , all ck in Ci and
all ci in C, each new inequality producing the coefficients of
a new line of matrix A.
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