Testing Bronchodilator Responsiveness – authors response

<table>
<thead>
<tr>
<th>Journal:</th>
<th>European Respiratory Journal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>ERJ-02104-2019</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Correspondence</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>28-Oct-2019</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Janson, Christer; Uppsala University, Dep of Respiratory Medicine Malinovschi, Andrei; Uppsala University, Medical Sciences Amaral, Andre; Imperial College London, NHLI Accordini, Simone; University of Verona, Unit of Epidemiology and Medical Statistics Bousquet, Jean Buist, Sonia; Oregon Health Science University, Mail Code UHN 67 Garcia Aymerich, Judith; Institut de Salut Global Barcelona, Campus Mar; Universitat Pompeu Fabra, Gnatiuc, Louisa; Imperial College London, Respiratory Epidemiology and Public Health Tan, Wan; University of British Columbia, UBC James Hogg Research Laboratories, Providence Heart+Lung Institute Toren, Kjell; Sahlgrenska Univ. Hospital, Inst internal Medicine, Dept of Occupational Medicine & Section of Allergology Zuberbier, Torsten; Charite Universitätsmedizin Berlin, klinik für Dermatologie, Venerologie und Allergologie; Burney, Peter</td>
</tr>
<tr>
<td>Key Words:</td>
<td>airway responsiveness, chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>Abstract:</td>
<td></td>
</tr>
</tbody>
</table>

SCHOLARONE™ Manuscripts
Testing Bronchodilator Responsiveness – authors response

Dear Editor

We thank Professor Miller for his comments on our paper regarding bronchodilator reversibility in asthma and COPD [1]. We agree that it is important to look at different ways of defining bronchodilator reversibility. In our analysis, we investigated both flow-related bronchodilator reversibility, defined by the change in FEV1, and volume-related bronchodilator reversibility, defined by the change in FVC. We also looked at both the change in lung function parameters expressed as % of the baseline value and the change in FEV1 standardised by the subject’s predicted value. The latter was evaluated to control for the sex, age- and height-dependency of lung function. The results when reversibility was expressed as % of the predicted value (supplemental tables E3 and E4) [1] were the same as when reversibility was expressed as % of the baseline value. Our interpretation was therefore that, in the present study, neither flow-related nor volume-related bronchodilator reversibility were independently associated with the symptom burden, health status or dyspnoea in the COPD population.

It should be noted that our study was population-based and thus it may better reflect real life conditions as that encountered by a GP. However, we agree that cohort studies on patients, which include a higher number of subjects with a severe COPD, could yield different results that may be more applicable to decision making in specialist practice. Furthermore, as our analysis was cross-sectional, we could not assess a possible association between bronchodilator responsiveness and prognosis over time. We therefore agree with Prof Miller that further studies are needed before the respiratory community can dismiss testing of bronchodilator responsiveness in COPD.

Christer Janson¹,², Andrei Malinovschi³, Andre F.S. Amaral², Simone Accordini⁴, Jean Bousquet⁵,⁶,⁷, A Sonia Buist⁸, Judith Garcia-Aymerich⁹,¹⁰,¹¹, Louisa Gnatiuc¹², Wan Tan¹³, Kjell Torén¹⁴, Torsten Zuberbier⁷, Peter Burney² on behalf of all the authors.

1 Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Sweden
2 Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College London, United Kingdom
3 Department of Medical Sciences: Clinical Physiology, Uppsala University, Sweden
4 Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy

Conflict of interest: C. Janson has nothing to disclose.

Conflict of interest: A. Malinovschi has nothing to disclose.

Conflict of interest: A.F.S. Amaral has nothing to disclose.

Conflict of interest: S. Accordini has nothing to disclose.

Conflict of interest: J. Bousquet reports personal fees and other funding from Chiesi, Cipla, Hikma, Menarini, Mundipharma, Mylan, Novartis, Sanofi-Aventis, Takeda, Teva and Uriach, and other funding from Kyomed, outside the submitted work.

Conflict of interest: S.A. Buist has nothing to disclose.

Conflict of interest: J. Garcia Aymerich has nothing to disclose.

Conflict of interest: L. Gnatiuc has nothing to disclose.

Conflict of interest: W. Tan has nothing to disclose.
Conflict of interest: K. Torén has nothing to disclose.

Conflict of interest: T. Zuberbier has received consultancy fees from Bayer Health Care, FAES, Novartis and Henkel; has received grants/has grants pending form Novartis and Henkel, and has received lecture fees from AstraZeneca, AbbVie, ALK, Almirall, Astellas, Bayer HealthCare, Bencradm Berlin Chemie, FAES, HAL, Leti, Meda, Menarini, Merck, MSD, Novartis, Pfizer, Sanofi, Stallergenes, Takeda, TEVA, UCB, Henkel, Kryolan and L'Oreal, outside the submitted work.

Conflict of interest: P. Burney has nothing to disclose.