Although there were only 7 patients with FGFR2 fusion in our trial, none of whom had an objective response, we note that the disease control rate in this group was 71%, which is similar to that in the overall trial population. Having said that, more information is needed to understand the clinical benefit of erdafitinib both in patients with no history of chemotherapy and in those with FGFR alterations.

Yohann Loriot, M.D.
Gustave Roussy
Villejuif, France
Andrea Necchi, M.D.
Fondazione IRCCS Istituto Nazionale dei Tumori
Milan, Italy

Since publication of their article, the authors report no further potential conflict of interest.

DOI: 10.1056/NEJMc1911187

Nintedanib for Systemic Sclerosis–Associated Interstitial Lung Disease

TO THE EDITOR: In the Safety and Efficacy of Nintedanib in Systemic Sclerosis (SENCIS) trial, Distler et al. (June 27 issue)1 report that the annual rate of decline in forced vital capacity in patients with interstitial lung disease (ILD) associated with systemic sclerosis was lower among those who received nintedanib than among those who received placebo. The answers to several important questions would better define to whom this result applies. Are the patients who have more fibrosis than ground-glass opacities on high-resolution computed tomographic (CT) scans the ones who will benefit the most from nintedanib, as shown in trials involving patients with idiopathic pulmonary fibrosis? Is the effect of nintedanib similar in patients with a predominant ground-glass pattern on high-resolution CT scans and in those with a predominant fibrotic pattern? Is the effect of nintedanib, given its antiinflammatory properties in preclinical trials,3 similar to that of mycophenolate in patients with predominantly ground-glass opacities? We hope that the authors can provide clinicians with this information to better characterize the type of patients with ILD associated with systemic sclerosis who will benefit the most from nintedanib.

Onofre Moran-Mendoza, M.D., Ph.D.
Bader Alharthi, M.D.
Marie Clements-Baker, M.D.
Queen's University
Kingston, ON, Canada
morano@queensu.ca

Dr. Moran-Mendoza reports having received honoraria from Boehringer Ingelheim and Hoffmann–La Roche for participation in advisory boards and educational activities, as well as financial support for his ILD nurse, and having collaborated in research studies for Boehringer Ingelheim and Hoffmann–La Roche. No other potential conflict of interest relevant to this letter was reported.

DOI: 10.1056/NEJMc1910735

TO THE EDITOR: Distler et al. showed that nintedanib has an antifibrotic effect in patients with ILD associated with systemic sclerosis. Apparently, nintedanib did not reduce extrapulmonary manifestations of systemic sclerosis. However, in
many cases, nintedanib caused diarrhea, nausea, vomiting, or weight loss. This prompts the question of whether the patients had any overall improvement.

Systemic sclerosis is a disease in which gastrointestinal manifestations are common, resulting in a decreased quality of life.\(^1\) Weight loss may be rapid and difficult to manage and is associated with poor survival.\(^2\) More precise information on the gastrointestinal toxicity of nintedanib would be valuable. What are the data on weight loss and gastrointestinal morbidity? Furthermore, we would have liked to learn which adverse effects led to drug withdrawal in the 46 of 288 patients who received nintedanib, such as was reported in the INPULSIS trial.\(^3\) If nintedanib attenuates the decline of the forced vital capacity in patients with systemic sclerosis at the expense of worsened gastrointestinal morbidity, then the overall benefit for such patients remains to be proven.

Kristofer Andréasson, M.D., Ph.D.
Dirk M. Wuttge, M.D., Ph.D.
Frank A. Wollheim, M.D., Ph.D.
Lund University
Lund, Sweden
kristofer.andreasson@med.lu.se

No potential conflict of interest relevant to this letter was reported.

DOI: 10.1056/NEJMc1910735

THE AUTHORS REPLY: In reply to Moran-Mendoza et al.: patients were eligible for inclusion in the SENSCIS trial if they had features consistent with ILD associated with systemic sclerosis on a high-resolution CT scan, with an extent of fibrotic interstitial lung disease of at least 10%. Among the patients with available data, 42 of 283 (14.8%) in the nintedanib group and 36 of 282 (12.8%) in the placebo group did not have ground-glass opacities on high-resolution CT. Post hoc analyses showed no heterogeneity in the treatment effect of nintedanib as compared with placebo on the rate of decline in forced vital capacity in subgroups defined according to the presence or absence of ground-glass opacities (\(P>0.05\) for treatment-by-time-by-subgroup interaction). To date, no heterogeneity has been found in the treatment effect of nintedanib in subgroups defined according to a variety of baseline characteristics, which suggests that nintedanib is effective in reducing the progression of ILD associated with systemic sclerosis across a broad population of patients. However, we caution against overinterpreting multiple subgroup analyses as a means of identifying independent predictors of treatment response.

In reply to Andréasson et al.: in the SENSCIS trial, diarrhea, nausea, and vomiting were the most frequent adverse events among the patients who received nintedanib and were the adverse events that most frequently led to treatment discontinuation. However, nintedanib was discontinued prematurely by only 20 patients (6.9%) because of diarrhea, 6 patients (2.1%) because of nausea, and 4 patients (1.4%) because of vomiting; these outcomes suggest that the guidance provided to investigators on the management of adverse events through the use of antidiarrheal treatment, hydration, and dose adjustment was effective in enabling patients to continue treatment. Weight loss was reported as an adverse event in 34 patients (11.8%) in the nintedanib group and in 12 patients (4.2%) in the placebo group and led to discontinuation of the trial drug in 1 patient in the nintedanib group. Andréasson et al. raise the question of the ratio of risk to benefit. We believe that nintedanib provides a benefit in patients with ILD associated with systemic sclerosis by reducing the rate of progression of interstitial lung disease, which is the leading cause of death in these patients.\(^2\) Our data show that the side effects of nintedanib did not result in treatment discontinuation in most patients.

Oliver Distler, M.D.
University Hospital Zurich
Zurich, Switzerland
oliver.distler@usz.ch
Martina Gahlemann, M.D.
Boehringer Ingelheim (Schweiz)
Basel, Switzerland
Toby M. Maher, M.D.
Imperial College London
London, United Kingdom
Since publication of his article, Dr. Distler reports receiving fees for project scoring from Pfizer. No further potential conflict of interest relevant to this letter was reported.

New Guidelines for Statistical Reporting

TO THE EDITOR: Harrington et al. (July 18 issue) describe new guidelines for statistical reporting in the Journal. One important change is that P values may not be reported if a method for adjustment for multiple hypothesis testing was not prespecified. Assuming there is complete reporting of all tests that were conducted, this policy appears to address a concern that investigators may select a method that yields the most favorable results (e.g., one that maximizes the number of adjusted P values <0.05 or minimizes the minimum adjusted P value). We investigated these strategies in simulation studies using six methods that control family-wise error (Bonferroni, Holm, Hommel, Hochberg, Sidak single-stage, and Sidak step-down) and three that control false discovery rates (Benjamini–Hochberg, Benjamini–Yekutieli, and two-stage Benjamini–Hochberg). Both of the post hoc adjustment strategies, which involve a high degree of selection, maintain an equivalent level of control of the family-wise error rate under a range of number of tests and correlations (Table 1). This is not the case when the adaptive Benjamini–Hochberg method is included. In conjunction with appropriate presentation of estimates and confidence intervals, the Journal might allow post hoc testing with the use of these nine methods.

Rebecca A. Betensky, Ph.D.
New York University College of Global Public Health
New York, NY
rebecca.betensky@nyu.edu

Noam G. Newberger, B.A.
New School for Social Research
New York, NY

No potential conflict of interest relevant to this letter was reported.

DOI: 10.1056/NEJMc1911817

THE AUTHOR REPLIES: Betensky and Newberger’s simulation shows that when a set of comparisons (i.e., a family of tests) is well defined in advance, the arbitrary choice of a post hoc procedure may not lead to inflated type 1 or false discovery probabilities. Their assumption requires that the comparisons shown in a manuscript be the only ones examined for possible inclusion.

Betensky and Newberger’s proposal presents some operational challenges as well. Many studies in the medical literature aim to provide evidence

<table>
<thead>
<tr>
<th>No. of Tests</th>
<th>Procedures Used</th>
<th>Procedures Used</th>
<th>Procedures Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.052</td>
<td>0.052</td>
<td>0.053</td>
</tr>
<tr>
<td>0.5</td>
<td>0.032</td>
<td>0.037</td>
<td>0.037</td>
</tr>
<tr>
<td>0.9</td>
<td>0.019</td>
<td>0.026</td>
<td>0.026</td>
</tr>
<tr>
<td>Correlation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.046</td>
<td>0.046</td>
<td>0.047</td>
</tr>
<tr>
<td>0.5</td>
<td>0.029</td>
<td>0.034</td>
<td>0.034</td>
</tr>
<tr>
<td>0.9</td>
<td>0.015</td>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>Correlation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.051</td>
<td>0.052</td>
<td>0.053</td>
</tr>
<tr>
<td>0.5</td>
<td>0.027</td>
<td>0.034</td>
<td>0.034</td>
</tr>
<tr>
<td>0.9</td>
<td>0.010</td>
<td>0.022</td>
<td>0.022</td>
</tr>
</tbody>
</table>

* For each replication, post hoc procedures were chosen that either maximized the number of adjusted P values <0.05, or equivalently, minimized the minimum adjusted P value, simulating a setting in which the data analyst chooses the most favorable approach. Each replicate simulated P values from cumulative, normal, distribution-function transformations of equicorrelated multivariate standard normal distributions. Family-wise error rate procedures include Bonferroni, Hochberg, Hommel, Sidak single-stage, and Sidak step-down. False-discovery rate procedures include Benjamini–Hochberg, Benjamini–Yekutieli, and two-stage Benjamini–Hochberg. The simulation used the mt.rawp2adjp function in a multiple-test package in Bioconductor and the p.adjust function in R (Hommel procedure only).