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Abstract

The ever-increasing demands for both content and computation over wireless net-

works require moving some of the core processing capabilities close to the network edge.

This dissertation considers coded caching and delivery which makes content delivery

more efficient by moving content to the edge, as well as distributed learning at the

network edge that can bring network intelligence close to edge devices and speed up

large-scale data collection and learning problems.

First proactive content caching is studied, where a server with a library of files

transmit contents to the users simultaneously. Each user requests a single file from the

library and stores content in its cache with limited size proactively, before revealing

the demands. The performance is first analysed in terms of the minimum number of

bits transmitted by the server to satisfy the users’ demands over an error-free shared

link. Then, by considering various models for the shared link, physical layer aspect

of fulfilling users’ demands is studied. The highest achievable rate of each file in the

library is characterized, upper and lower bounds on the transmit power are derived,

and finally a caching system with delivering files to the users at different rates is

investigated, and the rate tuples at which the requested contents can be delivered to

the users is characterized.

Next machine learning (ML) at the wireless edge is studied. First, by considering

scheduling of computation tasks across multiple computational nodes to compute an

arbitrary function, upper and lower bounds on the minimum average completion time

are developed. Then collaborative ML at the wireless edge is studied, where power

and bandwidth-limited wireless devices with local datasets carry out a learning task

with the help of a remote parameter server (PS). Digital and analog approaches are

introduced for transmission from the users to the PS over a shared wireless medium.
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Notation

Throughout this dissertation we will use the following notation. We denote sets

of real and integer values by R and Z, respectively. Notations bxc and dxe repre-

sent the floor and ceiling functions, respectively. For i, j ∈ Z, [i : j] denotes the set

{i, i + 1, ..., j}, and, for x ∈ R, we let [x] , {1, 2, ..., dxe}, and (x)+ , max {x, 0}.

We denote the sequence Xi, Xi+1, . . . , Xj−1, Xj shortly by X[i:j].
(
j
i

)
represents the

binomial coefficient, and A(i, j) returns (i, j)-th entry of matrix A. For two sets Q

and P, Q\P is the set of elements in Q that do not belong to P, and for q /∈ Q, we

define {Q, q} , Q
⋃
{q}. We let N

(
0, σ2

)
represent a zero-mean normal distribution

with variance σ2, U (a, b) denote a uniform distributed over [a, b]. Notation |·| returns

cardinality of a set, or the length of a file. Also, ⊕ refers to bitwise XOR operation,

while ⊕̄ represents bitwise XOR operation where the arguments are first zero-padded

to have the same length as the longest argument. Finally, ‖x‖2 returns l2 norm of

vector x.

17



Chapter 1

Introduction

Emerging technologies along with ever-increasing wireless devices with their demands

have brought new challenges on the network core. The backhaul network experiences

a significantly high network load at the times of heavy demand. Also, efficiently pro-

cessing the massive amount of data, growing explosively, imposes a huge burden on

the network core. To alleviate the load on the network, it is vital to move some of

the core processing capabilities to the network edge in order to deal with the growing

demand for content, as well as computation over wireless networks.

In this dissertation, we focus on developing tools to exploit “edge processing” capa-

bilities in wireless networks. We study distributed frameworks and develop techniques

to facilitate communication and computation, which are the two main core components

of many emerging technologies. In particular, we develop tools to convert distributed

cache memories into valuable bandwidth through coded delivery. Similarly, we utilize

computational capabilities distributed across multiple devices in a network to speed

up computation tasks involving massive datasets, particularly for machine learning

applications. In both parts of the thesis, we exploit ideas from communication and

coding theory to utilize distributed network resources in the most efficient manner.

In the following sections we will briefly overview the problems considered in these

two components of the thesis, provide a brief summary of the most relevant literature,

and the objectives dealt with.

1.1 Wireless Coded Caching

The ever-increasing mobile data traffic is imposing a great challenge on the current

network architectures. The growing demand has been typically addressed by increasing

18



Chapter 1. Introduction 19

the achievable data rates; however, there has been a recent revival of interest in content

caching, particularly focusing on wireless networks. This interest stems from a very

practical problem: exponential growth in mobile traffic cannot be matched by the

increase in the spectral efficiency of wireless networks. This, in turn, leads to congestion

in the radio access as well as the backhaul links, and increased delay and outages

for users, particularly during peak traffic periods, whereas the resources are often

underutilized during off-peak periods. Proactively caching popular contents at the

network edge during off-peak hours has been recently proposed as a potential remedy

for this problem (see [1–5], and references therein). Proactive caching shifts traffic

from peak to off-peak hours, reduces latency for users, and potentially provides energy

savings.

Caching in this model consists of two distinct phases: In the first phase, which

takes place during off-peak periods, i.e., when the network is not congested, caches at

user terminals are filled by the server. This first phase is called the placement phase.

The only constraint on the data transmitted and stored in a user cache in this phase

is the cache size. However, due to the “proactive” nature of the cache placement,

it is carried out without the knowledge of the particular user requests. A shared

communication channel is considered to be available from the server to all the users

during the peak traffic period. Once the user demands are revealed in this period, the

server broadcasts additional information over the common error-free channel in order

to satisfy all the user requests simultaneously. This constitutes the delivery phase.

Since the delivery phase takes place during peak traffic period, the goal is to minimize

the rate of transmission over the shared link, called the delivery rate, by exploiting the

contents that are available at the caches.

1.1.1 Literature Review

Here we present the most fundamental and relevant papers studying content caching

and delivery, which is by no means an exhaustive literature survey.

Over the past decade, research on caching has mainly focused on the placement

phase; the goal has been to decide which contents to cache, typically at a server that
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serves many users, by anticipating future demands based on the history (see [6–9],

and references therein). This is an uncoded caching approach, where parts of popular

contents are stored in the local cache memories in an uncoded manner, and once the

user requests are revealed, remaining parts are delivered by the server over the shared

link. The corresponding gain relative to not having a cache is called local caching gain,

and depends on the local cache size. On the other hand, it has been shown in [3] that

coded caching provides a global caching gain, where users benefit not only from their

own local cache, but also from the available cache memory across the network. Coded

caching provides a novel method to mitigate network congestion during peak traffic

hours by creating and exploiting coded multicasting opportunities across users.

In a centralized coded caching scheme, it is assumed that during the placement phase

the central server knows both the number and the identity of users participating in

the delivery phase, and carefully places contents in the user caches during off-peak

hours. A novel centralized coded caching scheme for a network of K users requesting

N popular files of the same size is proposed in [3]. For a caching factor r ∈ [0 : K],

with the scheme in [3], each file is split into
(
K
r

)
equal-length subfiles, and each set

of r users store a distinct subfile of each file, resulting in a normalized cache size

M = N
(
K−1
r−1

)
/
(
K
r

)
= rN/K at each user. After the user demands are revealed,

for any demand combination, a coded packet is delivered to each set of r + 1 users,

from which each user in that set can obtain its missing subfile thanks to its cached

content. In total, for any demand combination,
(
K
r+1

)
coded packets are delivered,

each of normalized size 1/
(
K
r

)
. Thus, this scheme delivers the same number of coded

packets in the delivery phase regardless of any specific demand combination. However,

in practice files have different popularities, and a fraction of the files might be highly

popular and requested by more than a user. The scheme proposed in [3], which has

been shown to be optimal for the worst case user demands when K ≤ N and the cache

placement phase is uncoded [10], has been improved by taking into account the repeated

demands across the users [11–20]. Authors in [11] consider an alternative coded caching

scheme, which was originally proposed in [3] for two users, and show that it is optimal

when the number of users, K, is not less than the number of files in the library,

i.e., N ≤ K, and the normalized cache size M at each user satisfies M ≤ 1/K, i.e., a
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relatively small cache size. For N ≤ K, the delivery rate is further improved for various

special settings including N = 2 files [12, 13], cache capacities M = (N − 1)/K [14],

M = N/K [15] and 1/K ≤ M ≤ N/K [16], and other special cases investigated

in [17, 18]. Also, [19] proposes a coded caching scheme over a finite field of order 22

approaching the performance of that of introduced in [17]. An achievable scheme along

with a lower bound proving its optimality for uncoded cache placement for whole range

of N , K and M is proposed in [20].

Theoretical lower bounds on the delivery rate have been derived to characterize

the optimal performance of a caching system [3, 21–25]. In general, the minimum

delivery rate for coded caching remains an open problem even in the symmetric setting

considered in the aforementioned previous works.

The scheme of [3] has been extended to a decentralized caching scenario [26], in which

neither identity nor the number of the users requesting files during the delivery phase

are not known in advance to perform the placement in coordination across caches.

The decentralized coded caching scheme proposed in [26] introduces a random cache

placement phase, where a randomly selected portion of each file is cached by each user,

followed by a coded delivery sending common packets to any subset of users. Similarly

to the centralized caching scheme introduced in [3], the decentralized caching scheme

in [26] has been improved for various different cases in [12,15,27].

The information-theoretic coded caching schemes introduced in [3,26] have received

significant attention, and have been extended to a variety of scenarios considering a one-

to-many communications, where placement and delivery phases are jointly designed to

improve the performance. A multi-layer caching scheme is proposed in [28–30], pro-

viding coded multicasting opportunities within each layer, as well as across multiple

layers. Coded caching has also been employed when files have distinct sizes [31]. The

authors in [32–34] utilize multicasting opportunities in caching systems with noniden-

tical cache capacities across users. Coded caching gain has also been exploited for

scenarios when the files in the library have different popularities across users [5,35–37],

and when the files in the library are correlated, and users require different levels of

reconstruction distortion [38–42]. An online caching approach is introduced in [43,44],

where the set of popular files are updated. As opposed to the caching model introduced
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in [3,26], authors in [45–49] have designed coded caching techniques when the files are

with finite size. Also, correlation-aware coded caching schemes have been introduced

in [50–54] when the files in the library are correlated.

Coded caching technique has also been deployed in various applications. Device-to-

device caching [4,55] studies the case when users communicate with other to collectively

satisfy the demands along with the cached contents. Also, femtocaching [56, 57] con-

siders caching popular files in intermediate nodes between the server and the users,

referred to as helpers. The requested files not available at the helpers are transmitted

by the server at a higher cost, while the helpers serve the users with their cached con-

tents. Coded caching gain has further been exploited in combination networks, where

the server communicates with users, each equipped with a separate cache, through

intermediate relay nodes [58–63]. In addition, coded caching technique has been in-

vestigated in cellular networks with multiple transmitters [64–70]. Recently, coded

caching has been generalized to the scenario when the users are grouped, and each

group of users share the same cache [71].

In contrast to the setting introduced in [3], the channel from the server to the

users in the delivery phase is modelled as a noisy broadcast channel in [72–95]. The

works in [72–85] study multi-antenna caching designing beamforming to maximize the

throughput, interplay between caching gain and the amount of feedback on channel

state, and coded caching over noisy broadcast channels (BCs) in high power regime.

Also, coded caching techniques have been designed for various interference channels,

considering the availability of caches at the transmitters, receivers, or both sides [86–

89]. In [91], a centralized caching is considered while the delivery phase takes place

over a packet-erasure BC. The capacity-memory trade-off is investigated in this setting

assuming that only the weak users have caches, which requires knowledge about the

channel qualities in the delivery phase in advance. A degraded BC is considered in [92],

where the placement phase is designed in a centralized manner with the full knowledge

of the channel during the delivery phase in order to maximize the common rate of each

file in the library.
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1.1.2 Objectives

In this dissertation, we first aim to improve the delivery rate of the conventional

centralized caching setting studied in [3] as well as the decentralized one considered in

[26] for some special settings. We then relax the assumption of identical cache capacities

across users, since in practice users access content through diverse devices, typically

with very different storage capacities. We study decentralized caching for users with

distinct cache capacities, and develop upper and lower bounds on the delivery rate.

We then aim to investigate the benefits of caching by considering the physical layer

aspect of fulfilling users’ demands. To this end, we study various noisy models for the

shared link from the server to the users. We consider a memoryless packet erasure

BC to model the channel from the server to the users in the delivery phase. This

models a packetized communication system, where each packet is separately channel

coded against errors at the physical layer, so that a packet either arrives at the receiver

correctly, or is lost. Communication over the Internet is usually modeled as a packet

erasure channel. Assuming equal-rate files in the library, our goal is to maximize the

achievable rate of the files as a function of the cache size. Next, we study a Gaussian BC

from the server to the users in the delivery phase. We study the benefits of proactive

caching in reducing the transmit power, assuming that the noiseless cache placement

phase is carried out without the knowledge of channel conditions during the delivery

phase. We also consider a Gaussian BC model for the transmission in the delivery

phase, and allow each user to request the files at a different quality, and equivalently,

at a different rate. Our goal is to characterize the rate tuples at which the requested

contents can be delivered to the users.

1.2 Distributed Machine Learning

Many emerging technologies involve massive amounts of data collection, and collab-

orative intelligence that can process and make sense of this data. Internet of things

(IoT), autonomous driving, or extended reality (XR) technologies are prime examples,

where data from sensors must be continuously collected, communicated, and processed
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to make inferences about the state of a system, or predictions about its future states.

Many specialized machine learning (ML) algorithms are being developed tailored for

various types of sensor data; however, the current trend focuses on training a powerful

learning algorithm, often a neural network, on a massive dataset. It is essential to

distribute the task of training across multiple devices, as exploiting a single device for

large-scale ML problems is prohibitively slow. Distributed ML techniques typically

assume the availability of the data at a server, which distributes the data across dif-

ferent devices, and each device processes its local data and returns the result to the

server. While this inherently assumes the availability of data at a central processor, in

the case of wireless edge devices, transmitting the collected data to a central processor

in a reliable manner may be too costly in terms of energy and bandwidth, and un-

desirable due to privacy concerns. Communication is typically more costly compared

to processing; therefore, a much more desirable and practically viable alternative is to

develop distributed ML techniques that can exploit the local processing capabilities of

edge devices, requiring limited communications (see [96] for a survey of applications of

edge intelligence and existing approaches to enable it). Here we consider a distributed

ML network, where distributed processors with local data samples and connected to a

central parameter server (PS), jointly train a learning model.

1.2.1 Literature Review

Extensive efforts have been made in recent years to speed up large-scale distributed

learning. Research in this direction can be categorized into two: those reducing the

computation time at each worker, and those reducing the communication load between

the workers and the PS.

The techniques aiming to reduce the computation time can be further categorized

as coded and uncoded computation techniques, which are designed to mitigate the

overall performance degradation caused by slow workers, referred to as stragglers. For

this purpose, coded computation techniques, inspired by erasure codes against packet

losses, have been proposed recently [97–102]. With coded computation, computations
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from only a subset of non-straggling workers are sufficient to complete the computa-

tion task, thanks to redundant computations performed by the faster workers. In [97]

the authors employ a maximum-distance separable (MDS) code-inspired distributed

computation scheme in a distributed matrix-vector multiplication problem. A more

general distributed gradient descent (DGD) problem is considered in [98], where labeled

dataset is distributed across workers, each evaluating the gradient on its own parti-

tion. Various coding schemes have been introduced in [98–102], that assign redundant

computations to workers to attain tolerance against stragglers. Coded distributed com-

putation has also been studied for matrix-matrix multiplication, where the labeled data

is coded before being delivered to workers [103–105], and for distributed computing

of a polynomial function [106]. Also, for a linear regression problem, a polynomially

coded approach is proposed in [107], where the data is encoded and distributed across

the workers to compute the gradient of the loss function.

Most existing coded computation techniques are designed to tolerate persistent strag-

glers, and discard computations performed by stragglers. However, in practice we often

encounter non-persistent stragglers, which, despite being slower, complete a significant

portion of the assigned tasks by the time faster workers complete all their tasks [108].

Recently, there have been efforts to exploit the computations carried out by non-

persistent stragglers at the expense of increasing the communication load from the

workers to the PS [108–112]. Techniques studied in [108–111] are based on coding with

associated encoding and decoding complexities, which require the availability and pro-

cessing of all the data points at the PS. In [111] a linear regression problem is studied,

and the scheme in [107] is extended by allowing each worker to communicate mul-

tiple computations sequentially, where the computations are carried out using coded

data. The authors in [108] propose to split the computation tasks into multiple levels,

and code each level using MDS coding. However, the coding scheme depends on the

statistical behavior of the stragglers, which may not be possible to predict accurately

in practice. Distributed matrix-vector multiplication is studied in [109]. It is shown

that, by performing random coding across the dataset, the results can be obtained

from a subset of all the tasks assigned to the workers with high probability, where

each completes the assigned tasks sequentially. To execute the tasks which are linear
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functions of their arguments, e.g., matrix-vector multiplication, rateless codes are used

in [110], requiring a large number of data points assigned to each worker to guarantee

decodability of the target function at the PS.

While significant research efforts have been invested in designing coded computa-

tion [98–107] techniques, uncoded computing and communication are also shown to be

effective in tackling stragglers and reducing the average computation time [112, 113].

Unlike coded computation, uncoded computing approach does not introduce any en-

coding and decoding delays and complexities; hence, can be particularly efficient for

edge learning where the data is inherently distributed [114]. It also allows partial

decoding, which can be exploited to reduce the communication load for distributed

learning [114–116]. An uncoded computation approach is considered in [112], where

the dataset is split into a limited number of mini-batches, and each worker is randomly

assigned a mini-batch of data. This approach requires a large number of workers com-

pared to the number of mini-batches to ensure that the master can recover all the

data from the workers with high probability. The authors in [113] study dynamic com-

putation allocation across the workers with feedback providing information about the

workers’ speeds. The proposed uncoded computation approach in this paper does not

impose any constraint on the number of workers, and is designed without any prior

knowledge or feedback on the computation and communication delays at the workers.

In many practical implementations, however, bandwidth of the communication chan-

nel from the workers to the PS turns out to be the main bottleneck for speeding up

distributed learning [117, 118]. Therefore, reducing the communication requirements

of distributed stochastic gradient descent (DSGD) is as important as reducing the av-

erage computation time. To reduce the communication load, three main approaches,

namely quantization, sparsification, and local updates, and their various combinations

have been considered in the literature. Quantization methods implement lossy com-

pression of the gradient vectors by quantizing each of their entries to a finite-bit low

precision value [115, 117, 119–125]. Sparsification reduces the communication time by

transmitting only some values of the gradient vectors [118,126–132]. Sparsification can

be considered as another way of lossy compression, but it is assumed that the chosen

entries of the gradient vectors are transmitted reliably, e.g., at a very high resolution.
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Another approach is to reduce the frequency of communication from the workers by al-

lowing local parameter updates [114,118,133–136]. The above works ignore the physical

aspects of the underlying communication channel, and focus on reducing the amount

of data sent by each worker to the PS. On the other hand, the authors in [137–139]

consider ML at the wireless network edge by assuming a wireless shared medium from

the workers to the PS. Distributed learning in this scenario is attractive also due to

privacy and personalization [140]. The authors in [137] study a distributed federated

learning problem over a fading multiple access channel (MAC), where each entry of a

gradient vector is scheduled for transmission depending on its corresponding channel

condition. A wireless MAC with beamforming at the PS, which is equipped with mul-

tiple antennas, is considered in [138] for distributed federated learning, where the goal

is to maximize the number of workers scheduled for transmission with an acceptable

quality for the retrieved signal.

1.2.2 Objectives

While significant research efforts have been invested in designing coded computa-

tion [98–107] techniques, we consider computation of an arbitrary function over a

dataset, and introduce a centralized scheduling strategy for uncoded distributed com-

putation, where the tasks are assigned to the workers by the master. Each worker can

compute a limited number of tasks, referred to as the computation load. Computations

are carried out sequentially, and the result of each computation is sent to the master

right after it is completed. Communication delay from the workers to the master is also

taken into account. We assume that both the computation and communication delays

are independent across the workers since they have different computation capabilities

with various dynamic behaviours of processing speed, and they communicate with the

PS over different links experiencing distinct mediums, but the delays be correlated

for different tasks carried out at the same worker. We highlight here that the reason

behind assuming the independence of the computation delay across the worker The

computation is assumed to be completed when the master receives sufficient number

of distinct computations, referred to as the computation target. Assuming that the
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computation and communication delays are random variables, our goal is to character-

ize the minimum average completion time as a function of the computation load and

computation target.

In the scenario above while we take into account the amount of communication

between the PS and the workers, the communication channel in between is assumed

error-free1. This is the standard assumption in the distributed computing literature,

which mainly focuses on the reduction of the communication load, and ignores the

communication channel. In this dissertation, we consider DSGD over-the-air; that is,

we consider a wireless shared medium from the workers to the PS, and treat each iter-

ation of the DSGD algorithm as a distributed over-the-air computation problem. This

can model machine learning at the wireless network edge, where the workers corre-

spond to IoT devices or sensor nodes that collect their local data samples. Distributed

learning in this scenario is attractive also due to privacy and personalization [140].

We will provide two distinct approaches for this wireless DSGD problem, based on

digital and analog computation approaches, respectively. We will show that analog

“over-the-air” computation can significantly speed up wireless DSGD, particularly in

bandwidth-limited and low-power settings, typically experienced by wireless edge de-

vices.

1.3 Outline and Contributions

The first four technical chapters of this dissertation, Chapters 2-5, present results on

coded caching and delivery for various scenarios with different communication channel

models to address the physical layer aspects of the transmission over the delivery

phase, while Chapters 6 and 7 focus on distributed computing and machine learning,

respectively. In the following, we outline the content and results of each chapter, as

well as the corresponding publications.

1Noisy communication link in this framework can be considered by introducing additional delay
leading to a reliable communication.
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Chapter 2

In Chapter 2 we consider a caching system, in which the users are served in the delivery

phase through an error-free shared link. We highlight the fundamental limits of a

caching system for a simple error-free shared link from the server to the users in this

chapter, and consider more sophisticated channel models in the following chapters.

Assuming the same cache size at each user, we present a centralized coded caching

technique providing an improved delivery rate for cache size M = (N − 1)/K. We

then extend the improvement of the proposed scheme to the cache size M = N/K, and

employ the proposed caching scheme in the decentralized scenario, and after deriving

the delivery rate, we show that it reduces the state-of-the-art decentralized delivery

rate. We finally study a decentralized caching for users with distinct cache capacities.

We provide upper and lower bounds on the optimum delivery rate. The results in this

chapter have been published in:

• M. Mohammadi Amiri, Q. Yang, and D. Gündüz, “Coded caching for a large

number of users,” in Proc. IEEE Inform. Theory Workshop (ITW), Cambridge,

UK, pp. 171-175, Sep. 2016,

• M. Mohammadi Amiri and D. Gündüz, “Improved delivery rate-cache size trade-

off for centralized coded caching,” in Proc. IEEE Int’l Symp. on Inform. Theory

and Its Applications (ISITA), Monterey, CA, USA, pp. 26-30, Oct.-Nov. 2016.

• M. Mohammadi Amiri, Q. Yang, and D. Gündüz, “Decentralized coded caching

with distinct cache capacities,” in Proc. Asilomar Conf. on Signals, Systems

and Computers, Pacific Grove, CA, pp. 734-738, Nov. 2016.

• M. Mohammadi Amiri and D. Gündüz, “Fundamental limits of coded caching:

Improved delivery rate-cache size trade-off,” IEEE Trans. Commun., vol. 65,

no. 2, pp. 806-815, Feb. 2017.

• M. Mohammadi Amiri, Q. Yang, and D. Gündüz, “Decentralized caching and

coded delivery with distinct cache capacities,” IEEE Trans. Commun., vol. 65,

no. 11, pp. 4657-4669, Nov. 2017.
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Chapter 3

In Chapter 3 we study coded caching, where the delivery phase takes place over a

memoryless packet erasure BC rather than an error-free shared link. The receivers in

the system are grouped into two disjoint sets of weak and strong receivers. All the weak

receivers are assumed to have statistically worse channels than the strong receivers,

while the users in each set can have arbitrary erasure probabilities. To compensate for

their worse channel quality, each weak receiver is equipped with a cache memory of

equal size. Assuming equal-rate files in the library, we derive a trade-off between the

size of the caches provided to the weak receivers and the rate of the files, for which any

demand combination can be reliably satisfied over the erasure BC. We show that, when

specified to the homogeneous scenario considered in [91], in which all the receivers in

the same set (i.e., weak and strong receivers) have the same erasure probability, the

proposed scheme outperforms the one in [91]. The results in this chapter have been

published in:

• M. Mohammadi Amiri and D. Gündüz, “Cache-aided data delivery over erasure

broadcast channels,” in Proc. IEEE Int’l Conf. on Commun. (ICC), Paris,

France, pp. 1-6, May 2017.

• M. Mohammadi Amiri and D. Gündüz, “Cache-aided content delivery over era-

sure broadcast channels,” IEEE Trans. Commun., vol. 66, no. 1, pp. 370-381,

Jan. 2018.

Chapter 4

With the aim of considering a more realistic channel model, in Chapter 4 we study

caching with delivery phase over a Gaussian BC, which is typically adopted as the

channel model for wireless communication. Assuming uniform popularity across the

files, we first study the minimum required average power to serve all the users, aver-

aged over all the user demand combinations. We allow the transmitter to change its

power depending on the demand combination in order to minimize the average power

consumption. We then consider the transmit power required to satisfy the worst-case

demand combination, called the peak power. We provide upper bounds on the mini-

mum average and peak power values as a function of the rate of the files in the library
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and the capacity of the user caches, for centralized cache placement. We then extend

the proposed scheme by considering decentralized cache placement. The proposed de-

livery strategy employs superposition coding and power allocation, and the achievable

transmit power for any demand combination is derived thanks to the degradedness of

a Gaussian BC. We further derive lower bounds on the performance assuming uncoded

cache placement. The results in this chapter have been partially published in:

• M. Mohammadi Amiri and D. Gündüz, “Decentralized caching and coded deliv-

ery over Gaussian broadcast channels,” in Proc. IEEE Int’l Symp. on Inform.

Theory (ISIT), Aachen, Germany, pp. 2785-2789, Jun. 2017.

• M. Mohammadi Amiri and D. Gündüz, “Caching and coded delivery over Gaus-

sian broadcast channels for energy efficiency,” IEEE J. Sel. Areas in Commun.,

vol. 36, no. 8, pp. 1706-1720, Aug. 2018.

Chapter 5

In Chapter 5 we study a caching system by considering a Gaussian BC in the delivery

phase. We allow the users to request the files at different rates. Each file in the

library is coded into K layers, K being the number of users, ordered in increasing

channel qualities, where user k receives layers 1 to k of its request, k = 1, . . . ,K. We

consider a centralized placement phase, and assume that the channel qualities of the

users in the delivery phase are known in advance. By allowing users to have different

cache capacities, we consider a total cache size in the network as a constraint, and

optimize cache allocation across the users and different layers of the files. We aim

at characterizing the rate tuples at which the requested contents can be delivered to

the users as a function of the total cache size. The results in this chapter have been

published/submitted for publication in:

• M. Mohammadi Amiri and D. Gündüz, “On the capacity region of a cache-aided

Gaussian broadcast channel with multi-layer messages,” in Proc. IEEE Int’l

Symp. on Inform. Theory (ISIT), Vail, CO, USA, pp. 1909-1913, Jun. 2018.
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• M. Mohammadi Amiri and D. Gündüz, “On the capacity region of a cache-

aided Gaussian broadcast channel with multi-layer messages,” arXiv:1806.09894

[cs.IT], Jun. 2018.

Chapter 6

In Chapter 6 we study a distributed computation problem, where an arbitrary func-

tion is to be computed over a dataset through K users. We introduce a centralized

scheduling strategy for uncoded distributed computation, where the tasks are assigned

to the users by the PS. The computation of the function over the dataset is announced

to be completed, if the PS receives a sufficient number of distinct computations from

the users. The goal is to characterize the minimum value of the average completion

time as a function of the size of local dataset at each user, as well as the required

number of distinct computations at the PS for completion, where the randomness is

due to the random computation and communication delays at the users. We develop

upper and lower bounds on the optimum average completion time. The results in this

chapter have been published/submitted for publication in:

• M. Mohammadi Amiri and D. Gündüz, “Computation scheduling for distributed

machine learning with straggling workers,” in Proc. IEEE Int’l Conf. on Acous-

tics, Speech, and Signal Processing (ICASSP), Brighton, UK, pp. 8177-8181,

May 2019.

• M. Mohammadi Amiri and D. Gündüz, “Computation scheduling for distributed

machine learning with straggling workers,” arXiv:1810.09992 [cs.DC], Oct. 2018.

Chapter 7

In Chapter 7 we study distributed ML at the wireless edge, where power and bandwidth-

limited wireless devices with limited local datasets carry out DSGD with the help of

a remote PS. We model the communication channel from the edge users to the PS by

a wireless MAC with limited number of channel uses. We will provide two different

approaches for this wireless DSGD problem, based on digital and analog computation

approaches, respectively. We will show that analog “over-the-air” computation can sig-

nificantly speed up wireless DSGD, particularly in bandwidth-limited and low-power
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settings, typically experienced by wireless edge devices. The results in this chapter

have been published/submitted for publication in:

• M. Mohammadi Amiri and D. Gündüz, “Machine learning at the wireless edge:

Distributed stochastic gradient descent over-the-air,” in Proc. IEEE Int’l Symp.

on Inform. Theory (ISIT), Paris, France, Jul. 2019.

• M. Mohammadi Amiri and D. Gündüz, “Over-the-air machine learning at the

wireless edge,” in Proc. IEEE Int’l Workshop on Signal Processing Advances in

Wireless Communications (SPAWC), Cannes, France, Jul. 2019.

• M. Mohammadi Amiri and D. Gündüz, “Machine learning at the wireless edge:

Distributed stochastic gradient descent over-the-air,” arXiv:1901.00844 [cs.DC],

Jan. 2019.

Chapter 8

Finally, in Chapter 8 we provide the conclusions of the research presented in this

dissertation, and discuss potential research directions that can be considered in the

future, as well as open questions and challenges that need to be addressed.

Other Publications

The following papers have also been published/submitted for publication as results

of the works carried out during the Ph.D. studies, but their contents have not been

included in this dissertation:

• M. Mohammadi Amiri and D. Gündüz, “Federated learning over wireless fading

channels,” arXiv:1907.09769 [cs.IT], Jul. 2019.

• Q. Yang, M. Mohammadi Amiri, and D. Gündüz, “Audience-retention-rate-aware

caching and coded video delivery with asynchronous demands,” IEEE Transac-

tions on Communications, to appear.

• M. Mohammadi Amiri, T. M. Duman, and D. Gündüz, “Collaborative machine

learning at the wireless edge with blind transmitters,” in Proc. IEEE Global
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Conference on Signal and Information Processing (GlobalSIP), Ottawa, Canada,

Nov. 2019.

• J. Zhao, M. Mohammadi Amiri, and D. Gündüz, “A low-complexity cache-aided

multi-antenna content delivery scheme,” in Proc. IEEE Int’l Workshop on Signal

Processing Advances in Wireless Communications (SPAWC), Cannes, France,

Jul. 2019.

• Q. Yang, M. Mohammadi Amiri, and D. Gündüz, “Audience retention rate aware

coded video caching,” in Proc. IEEE Int’l Conf. on Commun. (ICC), Paris,

France, pp. 1189-1194, May 2017.



Chapter 2

Fundamental Limits of Coded

Caching

2.1 Overview

In this chapter, we first consider a centralized coded caching system, where a server,

hosting popular contents, fulfills users’ demands, each equipped with a cache memory,

through an error-free shared link. The goal is to minimize the number of bits delivered

by the server over the shared link, known as the delivery rate, over all user demand

combinations. We first consider a homogeneous scenario, where each user is equipped

with a cache of the same size. A novel coded caching scheme for relatively small

cache sizes is proposed. It is shown that the proposed scheme achieves a smaller

delivery rate than the state-of-the-art schemes when the number of users in the system

is not less than the number of files, which may arise after releasing new episodes of

popular TV series, breaking news videos, or broadcasting different software updates to

clients. Furthermore, we prove that the delivery rate of the proposed scheme is within

a constant multiplicative factor of 2 of the optimal delivery rate for relatively small

cache sizes. We then extend the scheme to a decentralized coded caching system, as

well as the case when each user has access to a cache of distinct size and show that

the proposed scheme outperforms the state-of-the-art results.

2.2 Introduction

In this chapter, we focus on the coded caching model proposed in [3], which considers

a single server with a database of N popular contents of equal size (F bits), serving K

35
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users, where user i has local storage space, sufficient to store Mi files, that can be used

to proactively cache content during off-peak hours, for i ∈ [K]. In this proactive caching

model, the placement phase takes place during off-peak traffic hours when the resources

are abundant, without the knowledge of particular user demands. When the user

demands are revealed, the delivery phase is performed, in which a multicasting common

message is transmitted from the server to all the users over the shared communication

channel. Each user decodes its requested file by combining the bits received in the

delivery phase with the contents stored in its local cache.

We first consider Mi = M , ∀i ∈ [K], and propose a novel centralized coded caching

scheme, when the normalized cache size of the users is given by M = (N − 1)/K. This

new caching scheme utilizes coded content placement, in which contents are partitioned

into smaller chunks, and pairwise XOR-ed contents are placed in the user caches.

The delivery phase utilizes both coded and uncoded transmission. We show that the

proposed caching scheme requires a smaller delivery rate (evaluated for the worst-case

user demands) compared to the state-of-the-art scheme for the same cache size, when

N < K. We highlight here that this scenario is valid for contents that become highly

popular over the Internet, and are demanded by a huge number of users, each equipped

with a cache memory of comparatively small size, in a relatively short time interval,

for example, viral videos distributed over social networks, new episodes of popular TV

series, breaking news videos, or for broadcasting different software updates to millions

of clients. We also show that the delivery rate achieved by the proposed caching scheme

is within a constant multiplicative factor of 2 of the optimal delivery rate for cache

capacities satisfying 1/K ≤ M ≤ (N − 1)/K, when K > N ≥ 3. We then extend the

scheme and propose a novel group-based centralized (GBC) coded caching scheme for

a cache size of M = N/K at the users. It is shown that the GBC scheme achieves

a lower delivery rate compared to the state-of-the-art results when K > N ≥ 3. We

further employ the idea behind the GBC scheme in the decentralized caching setting,

and introduce the group-based decentralized (GBD) caching scheme, which is shown to

achieve a smaller delivery rate compared to the state-of-the-art schemes. We finally

extend the GBD scheme to the decentralized caching scenario where users have caches

of distinct sizes.
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Figure 2.1: Illustration of a caching system consisting of a server with a database of
N files, each with size F bits, serving K users. User i has access to a cache of capacity
MiF bits, and requests a single file from the database, i ∈ [K]. These requests are
served simultaneously through an error-free shared link.

The remainder of this chapter is organized as follows. In Section 2.3 we present the

system model. We describe and analyze the centralized coded caching and decentral-

ized coded caching schemes in Section 2.4 and Section 2.5, respectively. We present the

numerical results in Section 2.6. Conclusions are drawn in Section 2.7. The detailed

proofs are provided in Appendix A.

2.3 System Model

A server with a content library of N independent files W , (W1, ...,WN ) is con-

sidered. All the files in the library are assumed to be of length F bits, and each of

them is chosen uniformly randomly over the set
[
2F
]
. As depicted in Fig. 2.1, there

are K users, where user i is equipped with a cache memory of size MiF bits, with

the normalized cache size Mi < N , ∀i ∈ [K], and each user requests a single file from

the library. The files have uniform popularity across the users, and users request their

desired files almost simultaneously. Data delivery is divided into two phases. User

caches are filled during the placement phase. Let Bi denote the contents of user i’s

cache at the end of the placement phase, which is a function of the database W given
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by Bi = φ
(F )
i (W), for a caching function

φ
(F )
i :

[
2F
]N → [

2bFMic
]
, for i ∈ [K]. (2.1)

For centralized caching systems, the placement phase is designed by knowing the iden-

tities of the users that will participate in the delivery phase. On the other hand, for

decentralized caching, cache contents of each user are independent of the number and

identities of other users in the system. User requests are revealed after the placement

phase, where di ∈ [N ] denotes the demand of user i, for i ∈ [K]. These requests are

served simultaneously through an error-free shared link in the delivery phase.1 The

DF -bit message sent over the shared link by the server in response to the demand

vector d , (d1, ..., dK) is denoted by X(F ), where X(F ) ∈ [2DF ], and it is generated by

the encoding function

ψ(F ) :
[
2F
]N × [N ]K →

[
2bFDc

]
, (2.2)

i.e., X(F ) = ψ(F ) (W,d). User i reconstructs its requested file Wdi after receiving the

common message X(F ) in the delivery phase along with its cache contents Bi. The

reconstruction at user i for the demand combination d is given by Ŵi = µ
(F )
i (Bi, X,d),

∀i ∈ [K], where

µ
(F )
i :

[
2bFMic

]
×
[
2bFDc

]
× [N ]K →

[
2F
]

(2.3)

is the decoding function at user i. For a given content delivery network, the tuple(
φ

(F )
[K] , ψ

(F ), µ
(F )
[K]

)
constitute a caching and delivery code with delivery rate2 D. We

are interested in the worst-case delivery rate, that is the delivery rate that is sufficient

to satisfy all demand combinations. Accordingly, the error probability is defined over

all demand combinations as follows.

1We first consider an error-free communication channel to study the fundamental limits of caching
in a simple setting. More complicated channel models for the delivery phase will be considered in the
following chapters.

2Delivery rate is a unitless metric specifying the normalized number of bits transmitted by the
server during the delivery phase, normalized by F .
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Definition: The error probability of a
(
φ

(F )
[K] , ψ

(F ), µ
(F )
[K]

)
caching and delivery code

described above is given by

Pe , maxd∈[N ]K Pr

{⋃K

i=1

{
Ŵi 6= Wdi

}}
. (2.4)

where the family of demand combinations maximizing Pe are referred to as the worst-

case user demands.

Definition: For a content delivery network with N files and K users, we say that a

cache size-delivery rate tuple
(
M[K], D

)
is achievable if, for every ε > 0, there exists a

caching and delivery code
(
φ

(F )
[K] , ψ

(F ), µ
(F )
[K]

)
with error probability Pe < ε, for F large

enough.

We highlight that any specific achievable scheme has a distinct worst-case user de-

mands maximizing the error probability. Please refer to Remarks 2.4.1 and 2.4.2 for

the worst-case user demands analysis for a specific achievable scheme studied in Section

2.4.1.

There is a trade-off between the achievable delivery rate D and the cache capacities

M1, . . . ,MK , defined as

D∗
(
M[K]

)
, min

{
D :

(
M[K], D

)
is achievable

}
. (2.5)

The main goal of this chapter is to characterize D∗
(
M[K]

)
.

We would like to remark that in the system model considered above the library of

the files is assumed to remain the same from the placement phase to the delivery phase,

and the delivery phase takes place at once with a single-shot delivery. On the other

hand, online coded caching introduces techniques to benefit from the caches across the

network when the files are updated [43,44].
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2.4 Centralized Coded Caching

We consider Mi = M , ∀i ∈ [K], and denote the optimum delivery rate-cache size

trade-off defined in (2.5) by D∗(M). We first propose an achievable scheme, referred

to as the pair-wise coded caching (PCC) scheme for a normalized cache size M =

(N −1)/K. We then propose the group-based centralized coded caching (GBC) scheme

for M = N/K.

2.4.1 Pair-wise Coded Caching (PCC) Scheme

Here we introduce the placement and delivery phases of the PCC scheme for a

normalized cache size of M = (N − 1)/K. We first present the PCC scheme through

a simple example highlighting its main ingredients.

Example 1. Consider a caching system with a database of N = 3 files, W1, W2 and

W3. There are K = 5 users in the system, each of which is equipped with a cache

of capacity M = (N − 1)/K = 2/5. To perform the placement phase, each file Wi,

∀i ∈ [3], is first divided into K = 5 non-overlapping subfiles Wi,j , each of the same

length F/5 bits, for j ∈ [5]. The following contents are then cached by user i, i ∈ [5],

in the placement phase:

Bi = (W1,i ⊕W2,i,W2,i ⊕W3,i) . (2.6)

Since each subfile Wi,j has a length of F/5 bits, the cache placement phase satisfies

the memory constraint. With the coded cache placement given above, three subfiles

are placed in the cache of each user in the form of two coded packets, coded in the

XOR-ed from. We note that by receiving any of the subfiles Wj,i, user i can recover

the other two cached subfiles.

We argue that for the proposed caching scheme with N < K, the worst-case user

demands happens when each file is requested by at least one user. This fact will later

be clarified in Remark 2.4.1. By re-labeling the files and re-ordering the users, without

loss of generality, the user demand combination is assumed to be d = (1, 1, 1, 2, 3).
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In the delivery phase, each subfile Wi,j , ∀i, j, is further divided into N − 1 = 2

distinct pieces W
(l)
i,j , for l = 1, 2, each of size F/10 bits, i.e., Wi,j =

(
W

(1)
i,j ,W

(2)
i,j

)
, ∀i, j.

Accordingly, cache contents (2.6) can be rewritten as

Bi =
⋃2

l=1

(
W

(l)
1,i ⊕W

(l)
2,i ,W

(l)
2,i ⊕W

(l)
3,i

)
. (2.7)

The contents are then delivered by the server in three different parts. The following

contents are sent in each part of the delivery phase:

• Part 1: W
(1)
2,1 , W

(2)
3,1 , W

(1)
2,2 , W

(2)
3,2 , W

(1)
2,3 , W

(2)
3,3 , W

(1)
1,4 , W

(2)
3,4 , W

(1)
1,5 , W

(2)
2,5 ,

• Part 2: W1,1 ⊕W1,2, W1,2 ⊕W1,3,

• Part 3: W
(2)
2,1 ⊕ W

(2)
2,2 , W

(2)
2,2 ⊕ W

(2)
2,3 , W

(2)
1,4 ⊕ W

(2)
2,3 , W

(1)
3,1 ⊕ W

(1)
3,2 , W

(1)
3,2 ⊕ W

(1)
3,3 ,

W
(2)
1,5 ⊕W

(1)
3,3 , W

(1)
2,5 ⊕W

(1)
3,4 .

Having received the contents delivered in part 1, each user can retrieve all the subfiles

placed in its own cache in XOR-ed form. For example, user 1 can decode all the subfiles

Wi,1, for i ∈ [3], after receiving the pair
(
W

(1)
2,1 ,W

(2)
3,1

)
.

With the second part, each user can obtain the subfiles of its desired file that have

been cached by another user with the same demand. For example, the contents W1,1⊕

W1,2 and W1,2 ⊕W1,3 help users 1, 2 and 3 to obtain the subfiles of their request, W1,

which have been cached by each other.

Finally, the last part of the delivery phase enables each user to decode the missing

pieces of its requested file having been cached by another user with a different demand.

For example, the delivered contents W
(2)
2,1 ⊕W

(2)
2,2 , W

(2)
2,2 ⊕W

(2)
2,3 , and W

(2)
1,4 ⊕W

(2)
2,3 help

users 1, 2, and 3 to obtain the piece W
(2)
1,4 , and user 4 can also decode the pieces W

(2)
2,1 ,

W
(2)
2,2 , and W

(2)
2,3 . It can be verified that having received all the bits sent in three parts

in the delivery phase, each user can obtain its desired file with a total delivery rate

of 2.1. On the other hand, the state-of-the-art achievable scheme, described in details

in [141, Section II], achieves a delivery rate of 2.12 for the setting under consideration.

We highlight that the gain of the proposed scheme is due to taking into account the

users with the same demand, and designing the delivery phase to reduce the delivery
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rate when there are repeated demands. Also, caching contents in a coded manner and

exploiting the cache memories efficiently is beneficial.

In the sequel, we present the cache placement and delivery phases of the proposed

PCC scheme in the general setting, and analyze its delivery rate.

Placement phase: We first generate K non-overlapping subfiles, each of size F/K

bits, for each file Wi, ∀i ∈ [N ], denoted by Wi,1, . . . ,Wi,K . Similar to [11] we use

coded placement; that is, contents are cached in XOR-ed form in the placement phase.

However, unlike in [11], instead of XORing subfiles of all the files in the database, we

XOR subfiles in pairs. In particular, the following contents are cached by user j, for

j ∈ [K], in the placement phase:

Bj =
⋃N−1

i=1
(Wi,j ⊕Wi+1,j). (2.8)

Since each subfile has a size of F/K bits, the limited memory of each cache is filled

completely by the proposed placement scheme. In this way, each subfile of all the files

is cached by exactly one user in the XOR-ed form. Hence, the whole of each file can

be found in the caches of the users across the network (in coded form). All the cached

subfiles at each user can be recovered by receiving any one of them.

Delivery phase: Note that, in the proposed caching scheme all the database is stored

across the caches of the users. Therefore, in the delivery phase, the server first transmits

the appropriate subfiles so that each user can recover all the subfiles stored in its cache

in XOR-ed form. Then, the server transmits XOR of contents that are available at two

different users, where each content is requested by the other user. This, equivalently,

enables the two users to exchange their contents. By appropriately pairing subfiles,

the server guarantees that each user receives the subfiles of its requested file that have

been cached by every other user in the system.

Without loss of generality, by re-ordering the users, it is assumed that the first K1

users, referred to as the group G1, request file W1, the next K2 users, which form the
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group G2, demand W2, and so on so forth. For notational convenience, we define

Si ,
∑i

l=1
Kl, (2.9)

where we set S0 , 0. Thus, the general-case user demands can be expressed as follows:

dk = i, Si−1 + 1 ≤ k ≤ Si, for i = 1, ..., N. (2.10)

It is illustrated in [141, Appendix A] that the delivery rate of the proposed coded

caching scheme does not depend on Ki, ∀i, i.e., the proposed scheme is not affected by

the popularity of the files, as long as Ki > 0. Therefore, when N < K, the worst-case

user demands for the proposed scheme happens when each file is requested by at least

one user, i.e., Ki ≥ 1, for i ∈ [K].

The proposed delivery phase is divided into three distinct parts, and the contents de-

livered in part i is denoted by X
(F )
i , for i = 1, 2, 3. Hence, X(F ) =

(
X

(F )
1 , X

(F )
2 , X

(F )
3

)
is transmitted over the shared link in the delivery phase. The delivery phase algorithm

is presented for the worst-case user demands when N < K, i.e., when there is at least

one user requesting each file. The proposed delivery phase algorithm is then extended

to all values of N and K for a generic user demand combination assumption by intro-

ducing a new variable Nd as the number of distinct files requested by the users for a

demand vector d.

To symmetrize the contents transmitted in the delivery phase, this phase is per-

formed by further partitioning each subfile; that is, each subfile Wi,j , ∀i, j, is divided

into (N −1) distinct pieces W
(1)
i,j , . . . ,W

(N−1)
i,j , each of length F/(K(N −1)) bits. Con-

sidering these smaller pieces, the content placed in the cache of user j, for j ∈ [K], can

be re-written as follows:

Bj =
⋃N−1

l=1

⋃N−1

i=1

(
W

(l)
i,j ⊕W

(l)
i+1,j

)
. (2.11)

The first part of the delivery phase is stated in Algorithm 1. The main purpose of this

part is to enable each user j, ∀j ∈ [K], to retrieve all the subfiles Wi,j , ∀i ∈ [N ], that

have been cached in the cache of user j in XOR-ed form. We remark that according to
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Algorithm 1 Part 1 of the delivery phase of PCC

1: procedure Per-user coding
2: for i = 1, . . . , N do
3: for l = Si−1 + 1, . . . , Si do
4: for j = 1, . . . , N and j 6= i do

5: mj,l =

{
j, j < i

j − 1, j > i

6: X
(F )
1 ←

(
X

(F )
1 ,W

(mj,l)
j,l

)
7: end for
8: end for
9: end for

10: end procedure

the cache placement in (2.11), for each l ∈ [N − 1], by delivering only one of the pieces

W
(l)
1,j , ...,W

(l)
N,j , user j can recover all the pieces W

(l)
1,j , ...,W

(l)
N,j , ∀j. Hence, each user

requires a total of (N−1) distinct pieces to recover all the subfiles placed in its cache in

XOR-ed form. To perform an efficient and symmetric delivery phase, (N − 1) distinct

pieces, which are in the cache of user j in XOR-ed form, corresponding to (N − 1)

different subfiles of the files that are not requested by user j are delivered to that

user. For example, for user 1 requesting file W1, the pieces
(
W

(1)
2,1 ,W

(2)
3,1 , ...,W

(N−1)
N,1

)
are delivered by Algorithm 1. Accordingly, for user j that has requested file Wi, the

pieces
(
W

(1)
1,j , ...,W

(i−1)
i−1,j ,W

(i)
i+1,j , ...,W

(N−1)
N,j

)
are delivered over the shared link. Thus,

each user j can recover all subfiles Wi,j , ∀i ∈ [N ], stored in its cache in XOR-ed

form. Note also that, Algorithm 1 delivers at most one piece of each subfile over

the shared link. In Algorithm 1, we denote the index of the piece of subfile Wi,j ,

that is delivered in part 1 of the delivery phase by mi,j . We will later refer to these

indexes in explaining the other parts of the delivery phase. Note that, the pieces(
W

(1)
1,j , ...,W

(i−1)
i−1,j ,W

(i)
i+1,j , ...,W

(N−1)
N,j

)
are targeted for user j in group Gi demanding

file Wi, for i ∈ [N ], and j = Si−1 + 1, ..., Si. Accordingly, for j ∈ [N ] \ {i}, we have

mj,l =


j, j < i,

j − 1, j > i,

(2.12)

which results in mj,l ≤ N − 1.
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Algorithm 2 Part 2 of the delivery phase of PCC

1: procedure Inter-group coding
2: for i = 1, . . . , N do

3: X
(F )
2 ←

(
X

(F )
2 ,

⋃Si−1
j=Si−1+1 (Wi,j ⊕Wi,j+1)

)
4: end for
5: end procedure

For example, in Example 1 given above, we have (m1,4,m1,5) = (1, 1), (m2,1,m2,2,

m2,3,m2,5) = (1, 1, 1, 2), and (m3,1,m3,2,m3,3,m3,4) = (2, 2, 2, 2).

Algorithm 2 presents the second part of the proposed delivery phase, which allows

each user to obtain its missing subfiles that have been cached by the other users in

the same group. Note that, having received part 1 of the delivery phase, user j in

group Gi, for i ∈ [N ], and j ∈ [Si−1 + 1 : Si], can recover subfile Wi,j . Algorithm

2 delivers
⋃Si−1
j=Si−1+1 (Wi,j ⊕ Wi,j+1), with which user j can recover all the subfiles

Wi,Si−1+1, . . . ,Wi,Si , i.e., the subfiles of file Wi placed in the caches of users in group

Gi.

The last part of the proposed delivery phase is presented in Algorithm 3, with which

each user can receive the missing pieces of its desired file that have been placed in the

cache of users in other groups. We deliver these pieces by exchanging data between the

users in different groups. Observe that, for each user in group Gi, for i ∈ [N ], one piece

of the subfile of its requested file Wi which is available to the users in Gj , for j ∈ [N ],

j 6= i, was delivered in the first part of the delivery phase. Therefore, there are (N −2)

missing pieces of a file requested by a user, which have been placed in the cache of a user

in a different group. For example, by delivering the pieces
(
W

(1)
2,1 ,W

(2)
3,1 , ...,W

(N−1)
N,1

)
to user 1 demanding file W1 in part 1 of the delivery phase, each user in group Gj

with demand Wj can obtain the piece W
(j−1)
j,1 , for j ∈ [2 : N ]. Therefore, there are

(N − 2) missing pieces of the files requested by the users in groups G2, ...,GN , that

are available in the cache of user 1. Consider exchanging data between each user p in

group Gi (demanding file Wi) and each user q in group Gj (demanding file Wj), for

i ∈ [N − 1] and j ∈ [i + 1 : N ], where p ∈ [Si−1 + 1 : Si] and q ∈ [Sj−1 + 1 : Sj ].

The subfile cached by user p (q) requested by user q (p) is Wj,p (Wi,q). According to

(2.12), the index of the piece of subfile Wj,p (Wi,q) delivered in the first part of the
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Algorithm 3 Part 3 of the delivery phase of PCC

1: procedure Intra-group coding
2: for i = 1, . . . , N − 1 do
3: for j = i+ 1, . . . , N do
4: for l = 1, . . . , N − 2 do
5: m1 = πi,j1 (l)

6: m2 = πi,j2 (l)

7: X
(F )
3 ←

(
X

(F )
3 ,

⋃Sj−1
n=Sj−1+1

(
W

(m1)
i,n ⊕W (m1)

i,n+1

)
,⋃Si−1

n=Si−1+1

(
W

(m2)
j,n ⊕W (m2)

j,n+1

)
,W

(m1)
i,Sj

⊕W (m2)
j,Si

)
8: end for
9: end for

10: end for
11: end procedure

delivery phase is equal to mj,Si (mi,Sj ), ∀p ∈ [Si−1 + 1 : Si] and ∀q ∈ [Sj−1 + 1 : Sj ].

Hence, the indexes of the missing pieces of each user in group Gi (Gj) available in the

cache of a user in group Gj (Gi) are [N − 1] \
{
mi,Sj

}
([N − 1] \ {mj,Si}). Let πi,j1 (·)

and πi,j2 (·) be arbitrary permutations on sets [N − 1] \
{
mi,Sj

}
and [N − 1] \ {mj,Si},

respectively, for i ∈ [N − 1] and j ∈ [i + 1 : N ]. For m1 = πi,j1 (l) and m2 = πi,j2 (l),

∀l ∈ [N − 2], after receiving the corresponding contents delivered by Algorithm 3, all

the users in Gi can recover the pieces W
(m1)
i,Sj−1+1, . . . ,W

(m1)
i,Sj

, and all the users in Gj can

recover the pieces W
(m2)
j,Si−1+1, . . . ,W

(m2)
j,Si

.

Having received all three parts of the delivery phase, each user j, ∀j ∈ [K], can

recover all the pieces of its desired file Wdj that have been placed in any of the caches

in the system. Together with the proposed placement phase, which guarantees that

all the subfiles of each file is available in one of the caches across the network, we can

conclude that the demand of each user is satisfied by the proposed caching algorithm.

It is to be noted that when N = 2, the proposed scheme is equivalent to the one

proposed in [11].

We highlight that the delivery phase of the PCC scheme takes into account the

repeated demands and reduces the number of delivered packets when the demands are

not distinct.

Delivery rate analysis: The delivery rate of the proposed coded caching scheme is

provided in the following theorem, whose detailed proof can be found in Appendix A.1.
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Theorem 2.1. In centralized caching with N files, each of length F bits, and K users,

each equipped with a cache of capacity MF bits, if N < K and M = (N − 1)/K, the

following worst-case delivery rate is achievable:

DPCC

(
N − 1

K

)
= N

(
1− N

2K

)
. (2.13)

It is proved in [141, Appendix B] that for K > N ≥ 3 the PCC scheme achieves a

smaller delivery rate than the state-of-the-art scheme for M = (N − 1)/K.

Remark 2.4.1. To perform the proposed delivery phase for the general case, without

loss of generality, the user demand combination is assumed as in (2.10), such that

Ki ≥ 1, for i ≤ d; and Ki = 0, otherwise, for some Nd ≤ N , that is a total of Nd

files are requested by the users in the system. In this case, each subfile is divided into

(Nd − 1) distinct equal-length pieces, and in the delivery phase algorithm, the value

N is substituted by Nd. Hence, according to the delivery rate analysis provided in

Appendix A.1, all the users’ demands can be satisfied by delivering a total number

of Dc = Nd (1−Nd/ (2K)) file(s). Since Dc is an increasing function of Nd, we can

conclude that, for N < K, the worst-case user demands happens when all the N files

in the database are requested by at least one user, i.e., Ki ≥ 1, for i ∈ [N ].

Remark 2.4.2. Based on Remark 2.4.1, when N ≥ K, the worst-case user demands

corresponds to the case when Nd = K, i.e., all the users request distinct files in the

database. Hence, the proposed scheme achieves a delivery rate of K/2 when M =

(N − 1)/K, which is equal to the delivery rate of the state-of-the-art for the same

cache size when N = K and N = K+ 1. However, the scheme proposed in [3] achieves

a delivery rate smaller than K/2 for M = (N − 1)/K, when N ≥ K + 2.

In the following, we present an achievable delivery rate-cache size trade-off through

memory sharing between the scheme in [11] for M = 1/K and the PCC scheme for

M = (N − 1)/K, when K ≥ N .

Corollary 2.1. The delivery rate-cache size trade-off

DPCC(M) = −N
(
M

2
+

1

2K
− 1

)
,

1

K
≤M ≤ N − 1

K
, (2.14)
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is achievable in a centralized caching system with a database of N files, and K ≥ N .

Theorem 2.2. For a caching system with N files, and K users, satisfying K > N ≥ 3,

and a normalized cache size of M ∈ [1/K, (N − 1)/K], we have

DPCC (M)

D∗ (M)
≤ 2. (2.15)

Proof. The proof can be found in [141, Appendix C].

2.4.2 Group-Based Centralized Coded Caching (GBC) Scheme

Here we introduce the placement and delivery phases of the GBC scheme along with

its delivery rate analysis. We first illustrate the GBC scheme on an example.

Example 2. In this example, we consider K = 10 users, N = 3 files, and a normalized

cache size of M = 3/10. Each file Wi is first divided into 10 non-overlapping subfiles

Wi,j , for j ∈ [10], and i ∈ [3], each of length F/10 bits. Then one subfile from each file

is placed into each user’s cache; that is, we have Bj = (W1,j ,W2,j ,W3,j), for j ∈ [10].

The worst-case of user demands is when the requested files are as distinct as possible.

Without loss of generality, by re-ordering the users, we consider the following user

demands:

dj =


1, 1 ≤ j ≤ 4,

2, 5 ≤ j ≤ 7,

3, 8 ≤ j ≤ 10.

(2.16)

In the delivery phase, the users are grouped according to their demands. Users that

request file Wi from the server constitute group Gi, for i ∈ [3]. The delivery phase is

divided into two distinct parts that are designed based on the group structure.

• Part 1: The first part of the delivery phase is designed to enable each user to

retrieve all the subfiles of its demand that have been placed in the caches of users

in the same group. As an example, all users 1, ..., 4, i.e., members of group G1,

should be able to decode all the subfiles W1,1, W1,2, W1,3, W1,4, i.e., the subfiles

stored in the cache of users in G1, after receiving the message transmitted in
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part 1. Accordingly, in our example, in part 1 of the delivery phase the server

sends the following coded subfiles over the shared link. W1,1⊕W1,2, W1,2⊕W1,3,

W1,3 ⊕W1,4, W2,5 ⊕W2,6, W2,6 ⊕W2,7, W3,8 ⊕W3,9, W3,9 ⊕W3,10.

• Part 2: The purpose of part 2 is to make sure that each user can retrieve all the

subfiles of its desired file, which have been placed in the cache of users in other

groups. Hence, the server transmits the following coded subfiles in the second

part of the delivery phase. W1,5 ⊕W1,6, W1,6 ⊕W1,7, W2,1 ⊕W2,2, W2,2 ⊕W2,3,

W2,3 ⊕W2,4, W1,7 ⊕W2,4, W1,8 ⊕W1,9, W1,9 ⊕W1,10, W3,1 ⊕W3,2, W3,2 ⊕W3,3,

W3,3 ⊕W3,4, W1,10 ⊕W3,4, W2,8 ⊕W2,9, W2,9 ⊕W2,10, W3,5 ⊕W3,6, W3,6 ⊕W3,7,

W3,7 ⊕W2,10.

It can be easily verified that, together with the contents placed locally, user j can

decode its requested file Wdj , ∀j ∈ [10], from the message transmitted in the delivery

phase. As a result, by delivering a total of 12F/5 bits, which corresponds to a delivery

rate of 2.4, all user demands are satisfied. The delivery rate of the state-of-the-art

achievable scheme for normalized cache size of M = 3/10, presented in [15], is given

by 2.43. We highlight that, similarly to the PCC scheme, the benefit of the GBC

scheme is that it delivers less number of bits when there is repetition in the demand

combination.

Here we introduce the GBC scheme for any N and K values. We consider a normal-

ized cache size of M = N/K, i.e., the aggregate size of the cache memories distributed

across the network is equivalent to the total size of the database.

Placement phase: We employ the same placement phase proposed in [3] for M =

N/K, in which each file Wi is divided into K non-overlapping subfiles Wi,j , for i ∈ [N ]

and j ∈ [K], each with the same size F/K bits, and the cache contents of user j is

given by Bj = (W1,j ,W2,j , . . . ,WN,j), ∀j ∈ [K]. It is easy to see that the cache size

constraint is satisfied.

Delivery phase: After demand combination (d1, . . . , dK) is revealed, the delivery

phase is performed. Without loss of generality, by re-ordering the users, it is assumed

that the first K1 users, referred to as group G1, have the same request W1, the next K2
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Algorithm 4 Delivery Phase of the GBC Scheme

1: Part 1: Exchanging contents between users in the same group
2: for i = 1, . . . , N do

3: X
(F )
1 =

(⋃Si−1
j=Si−1+1 (Wi,j ⊕Wi,j+1)

)
4: end for

5: Part 2: Exchanging contents between users in different groups
6: for i = 1, . . . , N − 1 do
7: for j = i+ 1, . . . , N do

8: X
(F )
2 =

(⋃Sj−1
l=Sj−1+1 (Wi,l ⊕Wi,l+1) ,

⋃Si−1
l=Si−1+1 (Wj,l ⊕Wj,l+1) ,Wi,Sj ⊕Wj,Si

)
9: end for

10: end for

users, i.e., group G2, request the same file W2, and so on so forth. The coded delivery

phase of the GBC scheme is carried out in two parts, and the content delivered in part

i is denoted by X
(F )
i , i ∈ [2]. Algorithm 4 presents the delivery phase of the GBC

scheme.

Having received the contents delivered in the first part of Algorithm 4, each user

can obtain the missing subfiles of its requested file, which are in the cache of users

in the same group; that is, each user j in group Gi requesting file Wi has access to

subfile Wi,j , and can decode all subfiles Wi,l, ∀l ∈ [Si−1 + 1 : Si], after receiving the

contents delivered in line 3 of Algorithm 4, for i ∈ [N ] and j ∈ [Si−1 +1 : Si]. With the

contents delivered in the second part, each user can decode the subfiles of its requested

file which are in the cache of users in other groups. Note that, all users in group Gi

demanding file Wi have decoded subfile Wj,Si , and they can obtain all subfiles Wi,l,

∀l ∈ [Sj−1 + 1 : Sj ], i.e., subfiles of file Wi having been cached by users in group Gj ,

after receiving
⋃Sj−1
l=Sj−1+1 (Wi,l ⊕Wi,l+1) and Wi,Sj ⊕Wj,Si , for i ∈ [N − 1] and j ∈

[i+ 1 : N ]. Similarly, all users in group Gj can decode all subfiles of their requested file

Wj , which are in the cache of users in group Gi by receiving
⋃Si−1
l=Si−1+1 (Wj,l ⊕Wj,l+1)

and Wi,Sj ⊕Wj,Si , for i ∈ [N − 1] and j ∈ [i + 1 : N ]. In this way, at the end of the

proposed delivery phase, the users can recover all the bits of their requested files.

Delivery rate analysis: We argue that when K ≥ N , the worst-case user demands

for the GBC scheme is when there is at least one user requesting each file, i.e., Ki > 0,

∀i ∈ [N ]. On the other hand, when K < N , without loss of generality, by re-ordering
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the users, the worst-case user demands is assumed to happen when Ki = 1, if i ∈ [K];

and Ki = 0, otherwise.

When K < N , considering the worst-case user demands, the server transmits the

contents
(⋃K−1

i=1

⋃K
j=i+1

(
Wi,Sj ⊕Wj,Si

))
using Algorithm 4, which are similar to the

contents delivered using the delivery phase proposed in [3, Algorithm 1] for a normal-

ized cache size of M = N/K. Thus, when N > K, the GBC scheme achieves a delivery

rate DGBC(N/K) = (K − 1)/2 for M = N/K.

For K ≥ N , the delivery rate of the GBC scheme is stated in the next theorem,

whose proof can be found in Appendix A.2.

Theorem 2.3. In a centralized coded caching system with N files, each of size F

bits, K users, each equipped with a cache of capacity MF bits, where M = N/K, the

following delivery rate is achievable by the proposed GBC scheme, if K ≥ N :

DGBC

(
N

K

)
= N − N (N + 1)

2K
. (2.17)

The superiority of the GBC scheme over the state-of-the-art is proved in [142, Ap-

pendix B] for K > N ≥ 3 and M = N/K. We also highlight here that the GBC

scheme is optimal for 0 ≤M ≤ N/K constrained to uncoded cache placement [20].

2.5 Decentralized Coded Caching

In practice, the number or identities of active users that will participate in the de-

livery phase might not be known in advance during the placement phase to design a

centralized cache placement. In such a scenario, called decentralized caching, coordi-

nation across users is not possible during the placement phase. In this section, we first

consider Mi = M , ∀i ∈ [K], and we propose group-based decentralized coded caching

(GBD) scheme by extending the GBC scheme to the decentralized caching scenario.

We then study the scenario of non-equal cache sizes, and propose an achievable scheme

and develop a lower bound on the delivery rate.
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2.5.1 Group-Based Decentralized Coded Caching (GBD) Scheme

Here we consider a decentralized caching system, in which neither the number nor

the identities of the users that participate in the delivery phase are known during the

placement phase. We apply the techniques with the GBC scheme we have developed

for the centralized scenario to decentralized caching.

To simplify the notation, for i ∈ [K], we define Wdi,S as the bits of file Wdi , the file

requested by user i, which have been placed exclusively in the caches of the users in

set S, where S ⊂ [K].

Placement phase: In the placement phase, each user caches a random subset of

MF/N bits of each file independently. Since there are N files, each of length F bits,

this placement phase satisfies the memory constraint.

Delivery phase: Similarly to the delivery phase of GBC, we re-order the users and

re-label the files such that the first K1 users, referred to as group G1, have the same

request W1, the next K2 users, group G2, request W2, and so on so forth.

There are two different procedures for the delivery phase, called DELIVERY-CODED

and DELIVERY-RANDOM, presented in Algorithm 5. The server follows either of the

two, whichever achieves a smaller delivery rate.

Let us start with the DELIVERY-CODED procedure of Algorithm 5, in which the

contents are delivered in three distinct parts, where X
(F )
i denotes the contents delivered

with part i, i ∈ [3], and X
(F )
2 = (X

(F )
2,1 , X

(F )
2,2 ). The main idea behind the coded delivery

phase is to deliver each user the missing bits of its requested file, that have been cached

by i user(s), ∀i ∈ [0 : K − 1].

In the first part, the bits of each requested file that are not in the cache of any user

are directly delivered by the server. Each transmitted content is destined for all the

users in a separate group, which have the same request.

In the second part, the bits of each requested file that have been cached by only one

user are served to the users requesting the file by utilizing the GBC scheme developed

for the centralized scenario.
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Algorithm 5 Coded Delivery Phase of the GBD Scheme

1: procedure Delivery-Coded
2: Part 1: Delivering bits that are not in the cache of any user
3: for i = 1, 2, . . . , N do

4: X
(F )
1 = WdSi−1+1,{∅}

5: end for

6: Part 2: Delivering bits that are in the cache of only one user

7: X
(F )
2,1 =

⋃N
i=1

⋃Si−1
n=Si−1+1

(
Wi,{n} ⊕Wi,{n+1}

)
8: X

(F )
2,2 =

⋃N−1
i=1

⋃N
j=i+1

(⋃Sj−1
n=Sj−1+1

(
Wi,{n} ⊕Wi,{n+1}

)
,⋃Si−1

n=Si−1+1

(
Wj,{n} ⊕Wj,{n+1}

)
,Wi,{Sj} ⊕Wj,{Si}

)
9: Part 3: Delivering bits that are in the cache of more than one user

10: for i = 3, 4, . . . ,K do
11: for S ⊂ [1 : K] , |S| = i do

12: X
(F )
3 =

⊕
s∈SWds,S\{s}

13: end for
14: end for
15: end procedure

16: procedure Delivery-Random
17: for i = 1, 2, . . . , N do
18: server delivers enough random linear combination of the bits of the file Wi

to the users requesting it in order to decode it
19: end for
20: end procedure

Each user j in group Gi requests Wi and has already cached Wi,{j} for i ∈ [N ]

and j ∈ [Si−1 + 1 : Si]. Having received the bits delivered in line 7 of Algorithm

5, user j can decode all bits Wi,{l}, ∀l ∈ [Si−1 + 1 : Si]. The users also receive the

missing bits of their requested files having been cached by a user in a different group;

that is, by receiving
⋃Si−1
n=Si−1+1

(
Wj,{n} ⊕Wj,{n+1}

)
,
⋃Sj−1
n=Sj−1+1

(
Wi,{n} ⊕Wi,{n+1}

)
,

and Wi,{Sj} ⊕Wj,{Si}, each user in groups Gi and Gj can decode the bits of its request

which have been placed in the cache of users in the other group, for i ∈ [N − 1] and

j ∈ [i+ 1 : N ].

In the last part, the same procedure as the one proposed in [26] is performed for the

missing bits of each file that have been cached by more than one user. Hence, following

the DELIVERY-CODED procedure presented in Algorithm 5, each user recovers all

the bits of its desired file.
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The novelty of the DELIVERY-CODED procedure in the GBD scheme is about

delivering the contents that are not cached by any user or cached by only one user,

where the delivery phase is performed by taking into account the user demands, and

it improves upon the scheme proposed in [26] when the demands are not distinct.

The second delivery procedure, DELIVERY-RANDOM, is as presented in In the last

part, the same procedure as the one proposed in [26], and the server delivers enough

random linear combinations of the bits of each requested file targeted for the users in

the same group requesting that file to decode it.

Delivery rate analysis: In the following, we derive an expression for the delivery

rate-cache size trade-off of the proposed GBD scheme, denoted by DGBD(M). All

discussions in this section are stated assuming that M ≤ N , and F is large enough.

For each randomly chosen bit of each file, the probability of having been cached by

each user is M/N . Since the contents are cached independently by each user in the

placement phase, a random bit of each file is cached exclusively by the users in set

S ⊂ [K] (and no user outside this set) with probability (M/N)|S| (1−M/N)K−|S|.

Similar to the arguments presented for GBC, when N ≤ K, the worst-case user

demands correspond to the scenario in which each file is requested by at least one user,

i.e., Ki > 0, ∀i ∈ [N ]. On the other hand, when N > K, without loss of generality,

the worst-case user demands can be assumed as di = i, ∀i ∈ [K].

When N ≥ K, for the worst-case user demands described above, similar conditions

as the GBC scheme hold, and the GBD scheme achieves the same delivery rate as the

decentralized caching scheme proposed in [26], called the decentralized MAN scheme.

Next we consider the more interesting N < K case. We start with the first procedure

of Algorithm 5. In part 1, the server deliversN groups of bits, each group corresponding

to a different file, which have not been cached by any user. The delivery rate-cache

size trade-off for this part of Algorithm 5, DGBD1(M), can be evaluated as

DGBD1 (M) = N

(
1− M

N

)K
. (2.18)

For the second part, we first need to find the total number of XOR-ed contents delivered
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by the server, each of which has length (M/N) (1−M/N)K−1 F bits (the length of

each XOR-ed content is equivalent to the number of bits of a file that have been cached

by only one user). Since the delivery phase of the GBC scheme is applied for this part,

based on (2.17), it can be easily evaluated that (NK −N(N + 1)/2) XOR-ed contents

are served3. Thus, the delivery rate-cache size trade-off corresponding to the second

part of the first procedure of Algorithm 5 is given by

DGBD2 (M) =

(
NK − N (N + 1)

2

)(
M

N

)(
1− M

N

)K−1

. (2.19)

The last part of the proposed delivery phase is equivalent to the first delivery phase

procedure proposed in [26, Algorithm 1], with which each user can decode the bits of

its requested file, which have been cached by more than one user. Following the same

technique as [26], the delivery rate corresponding to this part is derived as follows:

DGBD3 (M) =
∑K−2

i=1

∑K−i

j=2

(
K − i
j

)(
M

N

)j(
1− M

N

)K−j
=− (K − 2)

(
1− M

N

)K
− 1

2
(K − 2) (K + 1)

(
M

N

)(
1− M

N

)K−1

+
N

M

(
1−

(
1− M

N

)K−1
)
− 1. (2.20)

The overall delivery rate-cache size trade-off for the first procedure of Algorithm 5,

D1
GBD(M), is the sum of the delivery rates of all three parts in (2.18), (2.19), and

(2.20), and is evaluated as

D1
GBD (M) = DGBD1 (M) +DGBD2 (M) +DGBD3 (M)

=
N

M
− 1−

[
(K −N − 2)

(
1 +

1

2
(K −N − 1)

M

N

)
+
N

M

](
1− M

N

)K−1

. (2.21)

For the worst-case user demands, it is shown in [26, Appendix A] that the second

delivery procedure achieves the same delivery rate-cache size trade-off as the uncoded

3Note that, in the delivery phase of the GBC scheme for M = N/K, a total of (NK −N(N + 1)/2)
XOR-ed contents, each of size F/K bits, are delivered, which results in DGBC(N/K) = N − N(N +
1)/2K.
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scheme, given by

D2
GBD (M) = K

(
1− M

N

)
min

{
1,
N

K

}
. (2.22)

The delivery rate of the proposed GBD scheme is evidently the minimum value of

D1
GBD(M) and D2

GBD(M), which is presented in the following theorem.

Theorem 2.4. In a decentralized caching system with K users requesting contents from

a server with N files in its database, when N < K, the following delivery rate-cache

size trade-off is achievable by the GBD scheme:

DGBD (M) =

(
1− M

N

)
×min

{
N

M
−
[
(K −N − 2)

(
1 +

1

2
(K −N − 1)

M

N

)
+
N

M

](
1− M

N

)K−2

, N

}
.

(2.23)

The analytical proof of the superiority of the GBD scheme over the state-of-the-art

decentralized caching scheme is provided in [142, Section C].

Remark 2.5.1. We note that the complexity of the decentralized caching scheme GBD

is higher than that of its corresponding centralized caching scheme GBC. The GBD

scheme requires a higher number of subpacketization and more overhead for processing

the subfiles cached by different users. This is the penalty to be paid due to the lack

of knowledge about the identities of the users participating in the delivery phase in

advance.

2.5.2 Distinct Cache Capacities

Here we extend the proposed GBD scheme to the scenario with distinct cache ca-

pacities. A new lower bound on the delivery rate D∗(M[K]) is also provided.

Placement phase: In the placement phase, user i caches a random subset of MiF/N

bits of each file independently, for i ∈ [K]. Since there are N files in the database, a

total of MiF bits are cached by user i satisfying the cache size constraint with equality.
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Since each user fills its cache independently, a bit of each file is cached exclusively by

the users in set S ⊂ [K] with probability
∏
i∈S (Mi/N)

∏
j∈[K]\S (1−Mj/N).

Delivery phase: We apply the same re-labeling of users into groups based on their

requests as with the GBD scheme. We remind that the user demands are as follows:

dj = i, for i ∈ [N ], j ∈ [Si−1 + 1 : Si]. (2.24)

We further order the users within a group according to their cache capacities, and

assume, without loss of generality, that MSi−1+1 ≤MSi−1+2 ≤ · · · ≤MSi , for i ∈ [N ].

The delivery phase of the proposed GBD scheme for distinct cache capacities is

presented in Algorithm 6. Similar to GBD, it has two distinct delivery procedures,

CODED DELIVERY and RANDOM DELIVERY; and the server chooses the one

with the smaller delivery rate.

The CODED DELIVERY procedure in Algorithm 6 follows the similar steps as

the CODED DELIVERY procedure in Algorithm 5, except that ⊕ is replaced with

⊕̄, due to the asymmetry across the users’ cache capacities, and consequently, the

size of the cached subfiles by different users. We remark that the correctness of the

CODED DELIVERY in Algorithm 6 follows similarly to the correctness of the CODED

DELIVERY procedure in Algorithm 5.

Delivery rate analysis: Consider first the case N ≥ K. It can be argued in this

case that the worst-case user demands happens if each file is requested by at most

one user. Hence, by re-ordering the users, for the worst-case user demands, we have

Ki = 1, for 1 ≤ i ≤ K, and Ki = 0, otherwise. In this case, it can be shown that

the CODED DELIVERY procedure requires a lower delivery rate than the RANDOM

DELIVERY procedure; hence, the server uses the former. In this case, it is possi-

ble to simplify the CODED DELIVERY procedure such that, only coded message

X
(F )
2 =

⋃N−1
i=1

⋃N
j=i+1Wi,{Sj−1+1}⊕̄Wj,{Si−1+1} is transmitted in Part 2. The corre-

sponding common message X(F ) =
(
X

(F )
1 , X

(F )
2 , X

(F )
3

)
transmitted over the CODED

DELIVERY procedure reduces to the delivery phase of [32, Algorithm 2]. Thus, the

GBD scheme achieves the same delivery rate as [32, Algorithm 2] when N ≥ K.
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Algorithm 6 Coded Delivery Phase for Distinct Cache Capacities Scenario

1: procedure Coded Delivery
2: Part 1: Delivering bits that are not in the cache of any user
3: for i = 1, 2, . . . , N do

4: X
(F )
1 = WdSi−1+1,∅

5: end for

6: Part 2: Delivering bits that are in the cache of only one user

7: X
(F )
2,1 =

⋃N
i=1

⋃Si−1
n=Si−1+1

(
Wi,{n}⊕̄Wi,{n+1}

)
8: X

(F )
2,2 =

⋃N−1
i=1

⋃N
j=i+1

(⋃Sj−1
n=Sj−1+1

(
Wi,{n}⊕̄Wi,{n+1}

)
,⋃Si−1

n=Si−1+1

(
Wj,{n}⊕̄Wj,{n+1}

)
,Wi,{Sj−1+1}⊕̄Wj,{Si−1+1}

)
9: Part 3: Delivering bits that are in the cache of more than one user

10: for i = 3, 4, . . . ,K do
11: for S ⊂ [1 : K] , |S| = i do

12: X
(F )
3 =

⊕
s∈SWds,S\{s}

13: end for
14: end for
15: end procedure

16: procedure Random Delivery
17: for i = 1, 2, . . . , N do
18: send enough random linear combinations of the bits of Wi to enable the

users demanding it to decode it
19: end for
20: end procedure

Next, consider the case N < K. It is illustrated in Appendix A.3 that the worst-

case user demands happens when N users with the smallest cache capacities all request

different files, i.e., they end up in different groups. The corresponding delivery rate is

presented in the following theorem, the proof of which can also be found in Appendix

A.3.

Theorem 2.5. In a decentralized content delivery network with N files in the database,

each of size F bits, and K users with cache capacities M1, . . . ,MK satisfying M1 ≤

M2 ≤ · · · ≤ MK , the following delivery rate-cache size trade-off is achievable when

N < K:

DGBD

(
M[K]

)
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= min


K∑
i=1

i∏
j=1

(
1− Mj

N

)
−∆D1

(
M[K]

)
−∆D2

(
M[K]

)
,

N∑
i=1

(
1− Mi

N

) , (2.25)

where

∆D1

(
M[K]

)
, (K −N)

K∏
i=1

(
1− Mi

N

)
, (2.26a)

∆D2

(
M[K]

)
,

[
K−N∑
i=1

(i− 1)
Mi+N

N −Mi+N

]
K∏
j=1

(
1− Mj

N

)
. (2.26b)

It is proved in [143] that the proposed coded delivery scheme outperforms the one

introduced in [32] for N < K.

Lower bound: In the next theorem, we generalize the information theoretic lower

bound proposed in [21] to the content delivery network with distinct cache capacities.

Theorem 2.6. In a content delivery network with N files in the database, serving K

users with distinct cache capacities, M1, . . . ,MK assorted in an ascending order, the

optimal delivery rate satisfies

D∗
(
M[K]

)
≥ DLB1

(
M[K]

)
= max

m∈[K],
l∈[dN/me]

1

l

{
N − m

m+ γ

∑m+γ

i=1
Mi −

γ(N − ls)+

m+ γ
− (N −Kl)+

}
, (2.27)

where γ , min
{

(bN/lc −m)+,K −m
}

, ∀m, l.

Proof. The proof of the theorem can be found in [143, Appendix C].

Also, assuming that M1 ≤ M2 ≤ · · · ≤ MK , the cut-set based lower bound derived

in [32] is given by

DLB2

(
M[K]

)
= max

l∈[1:min{N,K}]

{
l −

∑l
i=1Mi

bN/lc

}
. (2.28)
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Figure 2.2: Delivery rate-cache size trade-off for centralized caching with N = 10
files and K = 20 users when 1/K ≤M ≤ 2N/K.

2.6 Numerical Results

Here the delivery rates of the proposed schemes for both centralized and decentralized

caching approaches are compared numerically with the state-of-the-art results.

2.6.1 Centralized Caching

In Fig. 2.2, we compare the delivery rate-cache size trade-off achieved by the pro-

posed schemes PCC and GBC with the trade-off achieved by memory-sharing between

the schemes proposed in [26] and [11], referred to as the MNC scheme here. We

consider N = 10 files, K = 20 users in the system, and a normalized cache size

1/K ≤ M ≤ 2N/K at each user. Observe that the PCC and GBC schemes achieve

smaller delivery rate compared to the MNC scheme for all cache size values satisfying

1/K < M < 2N/K. GBC slightly outperforms PCC, which is due to the improvement

for M = N/K extended to a range of cache capacities through memory-sharing. We

also include in the figure the two lower bounds on the delivery rate derived in [21, The-

orem 1] and [3, Theorem 2], referred to as the STC and cut-set lower bounds, respec-

tively. We observe that, despite the improvement, there is still a gap between the
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GBC scheme and the lower bounds, which is mainly due to the looseness of the lower

bounds. It has been shown in [20] that, considering only uncoded cache placement

phase, the performance of the GBC scheme is optimal for 0 ≤M ≤ N/K.

2.6.2 Decentralized Caching

In Fig. 2.3, we compare the achievable delivery rate of the proposed GBD scheme

with the decentralized caching schemes proposed in [26] and [12], referred to as MAN

and WTP, respectively, when M1 = · · · = MK = M . We consider N = 30 files,

K = 50 users, and relatively small cache capacities M ∈ [0, 4]. We observe that

the GBD scheme outperforms the existing schemes in the literature. In Fig. 2.3,

we also include the state-of-the-art centralized caching scheme in this setting. Note

that, this is not a lower bound on the optimal decentralized delivery rate in general

since it is not the optimal centralized delivery rate. However, the difference between the

decentralized curves and the centralized curve indicates the loss due to decentralization

for these specific coded caching schemes under consideration. The improvement of the

GBD scheme over the state-of-the-art is more pronounced for the relatively smaller

cache capacities, for which the performance of GBD approaches the best achievable

centralized caching performance in a decentralized manner.

Here we evaluate the performance of the proposed GBD scheme for distinct cache

capacities numerically. To highlight the gains from the proposed scheme, we also

evaluate the performance of uncoded caching, in which user i, i ∈ [K], caches the

first Mi/N bits of each file during the placement phase; and in the delivery phase the

remaining 1−Mi/N bits of file Wdi is delivered to user i. By a simple analysis, it can

be verified that the worst-case delivery rate is given by

Duc

(
M[K]

)
=
∑min{N,K}

i=1

(
1− Mi

N

)
, (2.29)

which is equal to the delivery rate of the RANDOM DELIVERY procedure in Algo-

rithm 6.

For the numerical results, we consider an exponential cache size distribution among
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Figure 2.3: Delivery rate-cache size trade-off for decentralized caching with N = 30
files, K = 50 users, and M ∈ [0, 4].

users, such that the cache size of user i is given by Mi = υK−iMmax, where 0 ≤ υ ≤ 1,

for i ∈ [K], and Mmax denotes the maximum cache size in the system. Thus, we have

M1 ≤M2 ≤ · · · ≤MK , and the total cache size across the network is given by

∑K

i=1
Mi = Mmaxυ

i 1− υ
1− υK+1

. (2.30)

In Fig. 2.4, the delivery rate of the GBD scheme for distinct cache capacities scenario

is compared with that of studied in [32], referred to as the WLTL scheme, and the

uncoded scheme, when N = 50, K = 70, and υ = 0.97. We clearly observe that the

proposed GBD scheme outperforms both achievable schemes at all values of Mmax. The

improvement is particularly significant for lower values of Mmax, and it diminishes as

Mmax increases. The lower bound given in Theorem 2.6 and the cut-set lower bound

are also included in the figure. Although the delivery rate of the proposed scheme

meets the lower bounds when Mmax = 0, the gap in between quickly expands with

Mmax.



Chapter 2. Fundamental Limits of Coded Caching 63

Mmax

0 2 4 6 8 10

D
el
iv
er
y
ra
te
,
D

10

20

30

40

50

60

70

Uncoded scheme

WLTL scheme

GBD scheme

Lower bound in Theorem 2.6

Cut-set lower bound

Figure 2.4: Delivery rate versus Mmax, where the cache size of user i is Mi =
δK−iMmax, i ∈ [K], with δ = 0.97, N = 50, and K = 70.

2.7 Conclusions

We have considered a caching system with K users and N files of the same size, where

user i is equipped with a cache sufficient to store Mi, for i ∈ [K]. The system considered

here models wireless networks, in which the caches are filled over off-peak periods

without any cost constraint or rate limitation (apart from the limited cache capacities),

but without knowing the user demands; and all the user demands arrive (almost)

simultaneously, and they are served simultaneously through an error-free shared link.

We first considered a homogeneous case, in which Mi = M , ∀i ∈ [K]. We have

proposed a novel centralized coded caching scheme for a cache size M = (N − 1)/K,

called the PCC scheme, with a delivery rate lower than the state-of-the-art scheme for

the same cache size. The PCC scheme performs a coded placement phase, and achieves

an order-optimal delivery rate, which is shown to be within a constant multiplicative

factor of 2 of the theoretically optimal delivery rate for cache capacities satisfying

1/K ≤ M ≤ (N − 1)/K, when K > N ≥ 3. We have then extended the idea behind

the delivery phase of the PCC scheme, and proposed GBC scheme for a cache size

of M = N/K. We have shown that the GBC scheme outperforms the centralized

caching schemes in the literature in terms of the delivery rate. We have next employed
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the GBC scheme in the decentralized setting, where the users cache bits of contents

randomly, and referred to the scheme as GBD. We have shown that the GBD scheme

also achieves a smaller delivery rate than other decentralized caching schemes in the

literature. The improvement is achieved by creating more multicasting opportunities

for the delivery of bits that have not been cached by any of the users, or cached by

only a single user. We have then applied the GBD scheme in the asymmetric scenario

of distinct cache capacities at the users, and shown that the proposed scheme improves

upon the state-of-the-art scheme.



Chapter 3

Caching over Erasure Broadcast

Channels

3.1 Overview

In this chapter we study a cache-aided broadcast network, in which a server delivers

contents to a group of receivers over a packet erasure BC. The receivers are divided into

two sets with regards to their channel qualities: the weak and strong receivers, where

all the weak receivers have statistically worse channel qualities than all the strong

receivers. The weak receivers, in order to compensate for the high erasure probability

they encounter over the channel, are equipped with cache memories of equal size, while

the receivers in the strong set have no caches. Data can be pre-delivered reliably to

weak receivers’ caches over the off-peak traffic period before the receivers reveal their

demands. We propose a joint caching and channel coding scheme, which divides each

file into several subfiles, and applies a different caching and delivery scheme for each

subfile. It is shown that all the receivers, even those without any cache memories,

benefit from the presence of caches across the network. An information theoretic

trade-off between the cache size and the achievable rate is formulated. It is shown that

the proposed scheme improves upon the state-of-the-art in terms of the achievable

trade-off.

3.2 Introduction

In contrast to the setting introduced in [3], we consider a noisy channel for the

delivery phase [76, 77, 85, 86, 89, 91]. Here, we follow the model considered in [91], and

65
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assume that the delivery phase takes place over a memoryless packet erasure BC, which

models a packetized communication system, where each packet is separately channel

coded against errors at the physical layer, so that a packet either arrives at the receiver

correctly, or is lost. Communication over the Internet is usually modeled as a packet

erasure channel. The receivers in the system are grouped into two disjoint sets of

weak and strong receivers. All the weak receivers are assumed to have statistically

worse channels than the strong receivers, while the users in each set can have arbitrary

erasure probabilities. To compensate for their worse channel quality, each weak receiver

is equipped with a cache memory of equal size.

Assuming equal-rate files in the library, we derive a trade-off between the size of the

caches provided to the weak receivers and the rate of the files, for which any demand

combination can be reliably satisfied over the erasure BC. The proposed scheme exploits

file subpacketization, and performs a different caching and delivery scheme for different

subpackets. Moreover, the delivery of the contents to the weak and strong receivers

are coupled through the use of a joint encoding scheme to maximally benefit from the

available cache memories. We show that, when specified to the homogeneous scenario

considered in [91], in which all the receivers in the same set (i.e., weak and strong

receivers) have the same erasure probability, the proposed scheme outperforms the one

in [91].

The remainder of this chapter is organized as follows. We introduce the system

model in Section 3.3. The proposed scheme is elaborated and analyzed in Section 3.4.

We present the numerical results in Section 3.5. We conclude this chapter in Section

3.6. The proofs are provided in Appendix B.

3.3 System Model

We consider a server with a library of N files W. Each file is distributed uniformly

over the set
[⌈

2nR
⌉]

, where R denotes the rate of a file, and n is the number of

channel uses during the delivery phase. Receiver i’s demand is represented by di,

where di ∈ [N ], ∀i ∈ [K]. All the receivers are served simultaneously over a BC.
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Figure 3.1: Cache-aided packet erasure BC. The first Kw receivers have statically
worse channels than the last Ks receivers, but each of them is equipped with a cache
of normalized size M .

Following [91], the channel between the server and the receivers is modeled as a

memoryless packet erasure BC. At each channel use, the server transmits an E-bit

codeword from the alphabet X , {0, 1}E , and the output alphabet at each receiver is

Y , X ∪{∆}, where the erasure symbol ∆ corresponds to a packet that is not received

at the receiver. Receiver i, i ∈ [K], receives the transmitted codeword correctly with

probability 1 − δi, and the erasure symbol ∆ with probability δi. Thus, given the

transmitted codeword x ∈ X , receiver i ∈ [K] observes the output yi ∈ Y with the

conditional probability

Pr (Yi = yi |X = x) =


1− δi, if yi = x,

δi, if yi = ∆.

(3.1)

Two disjoint sets of receivers, weak and strong receivers, are considered, grouped

according to the erasure probabilities of their channels. These groups may model

users located in areas with relatively bad and good network coverage, respectively. We

assume that the channel condition of each strong receiver is statistically better than

that of each weak receiver; that is, the erasure probability of a strong receiver is lower

than any weak receiver. Without loss of generality, we enumerate the receivers in the

order of improving channel quality, that is, we have δ1 ≥ δ2 ≥ · · · ≥ δK . We denote

the set of erasure probabilities by δ , {δ1, δ2, ..., δK}. We denote the first Kw receivers
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as the weak receivers, and the next Ks = K − Kw receivers as the strong receivers,

and we call this case, in which each receiver in each set of weak or strong receivers

can have a different erasure probability, as the heterogeneous scenario. To compensate

for their worse channel quality, each weak receiver is equipped with a cache memory

of size nM bits, as depicted in Fig. 3.1. The special case in which all the receivers

in the same set have the same erasure probability; that is, all the weak receivers have

erasure probability δw, and all the strong receivers have erasure probability δs, with

δs ≤ δw, is called the homogeneous scenario. The set of erasure probabilities for the

homogeneous scenario is represented by δws.

In the placement phase, the caches of the weak receivers are filled without the knowl-

edge of their future demands, and the contents of the cache of receiver i, for i ∈ [Kw],

at the end of this phase is denoted by Bi. The caching function for receiver i ∈ [Kw]

is given by

φ
(nR)
δ,i :

[⌈
2nR

⌉]N → [⌊
2nM

⌋]
, (3.2)

which maps the entire library to the cache content Bi, i.e., Bi = φ
(nR)
δ,i (W). Since

the placement phase is performed over a low-congestion period, it is assumed that no

erasure occurs during this phase1. Also, due to the abundance of the resources during

the placement phase, we do not take into consideration the transmission cost for this

phase.

The delivery phase follows once the demands of the receivers are revealed to the

server, which transmits a length-n codeword Xn over the erasure BC. For a demand

vector d, a coded delivery function

ψ
(nR)
δ :

[⌈
2nR

⌉]N × [N ]K → X n (3.3)

generates a common channel input Xn as a function of the entire library and the re-

ceiver demands, i.e., Xn = ψ
(nR)
δ (W,d). Each receiver i ∈ [K] observes Y n

i according

to (3.1). Weak receiver i ∈ [Kw] tries to decode Wdi from its channel output Y n
i along

with the cache content available locally and the demand vector d, with the decoding

1To guarantee a reliable communication during the placement phase, we can assume that an auto-
matic repeat request protocol is utilized for transmission.
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function

µ
(nR)
δ,i : Yn ×

[⌊
2nM

⌋]
× [N ]K →

[⌈
2nR

⌉]
, (3.4)

i.e., the reconstructed file by each weak receiver i ∈ [Kw] is

Ŵi = µ
(nR)
δ,i (Y n

i , Bi,d) . (3.5)

On the other hand, each strong receiver i ∈ [Kw + 1 : K] reconstructs its demand Wdi

solely from its channel output Y n
i through the decoding function

µ
(nR)
δ,i : Yn × [N ]K →

[⌈
2nR

⌉]
, (3.6)

which generates the reconstructed file

Ŵi = µ
(nR)
δ,i (Y n

i ,d) . (3.7)

An error occurs if Ŵi 6= Wdi for any i ∈ [K], and the probability of error Pe is

defined as in (2.4).

Definition: A memory-rate pair (M,R) is said to be achievable, if for every ε > 0,

there exists a large enough n, and corresponding caching function (3.2), coded delivery

function (3.3), and decoding functions (3.4) and (3.6) at weak and strong receivers,

respectively, such that Pe < ε.

Definition: For a given cache size M at the weak receivers, the capacity of the network

is defined as

R∗ (M) , sup {R : (M,R) is achievable} . (3.8)

We note that the capacity of the above caching network remains an open problem

even when the delivery channel is an error-free shared bit pipe except for uncoded

cache placement phase [20]. Here, our goal is to identify achievable memory-rate pairs

that improve upon the state-of-the-art.

Remark 3.3.1. It is reasonable to assume that cache memories are placed at receivers

with relatively weaker coverage. Indeed, it is shown in [91] that placing cache memories
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at the strong receivers, which already have good coverage, results in a lower capacity.

This is mainly due to the definition of the capacity in this framework. Note that, the

capacity here characterizes the highest rate of equal-size messages delivered to all the

receivers in the network for any demand combination. Since any receiver can request

any of the files, and the files in the library all have the same rate, the system per-

formance is determined by bad receivers. Therefore, in order to increase the capacity

the goal of the placement phase should be to improve the performance of the weak re-

ceivers. We remark, however, that, equipping weak receivers with cache memories and

exploiting the coding scheme proposed in this paper also benefits the strong receivers.

The following results will be instrumental in deriving our results later in the paper.

Proposition 3.3.1. [144] The capacity region of a packet erasure BC withK receivers,

where file Wi with rate Ri is targeted for receiver i with erasure probability δi, for

i ∈ [K], is the closure of the set of non-negative rate tuples (R1, ..., RK) that satisfy

∑K

i=1

Ri
(1− δi)F

≤ 1, (3.9)

where the size of the binary channel input per channel use is F bits.

Next, we consider the packet erasure BC with side information, and provide an

achievable rate pair based on the joint encoding scheme of [145]. Here we briefly

overview the coding scheme and the proof of achievability, and refer the reader to [145]

for details. Consider two receivers with erasure probabilities δ1 ≥ δ2. Let W1 and

W2, distributed uniformly over2
[
2nR1

]
and

[
2nR2

]
, denote the messages targeted for

receivers 1 and 2, respectively. We assume that message W2 is available as side informa-

tion at receiver 1, the weak receiver. We present a coding scheme and the corresponding

achievable rate region based on the joint encoding scheme of [145]. For a fixed distri-

bution Pr (X), we generate 2n(R1+R2) codewords of length n, xn (w1, w2), w1 ∈
[
2nR1

]
,

w2 ∈
[
2nR2

]
, where each entry of each codeword is generated independently according

to Pr (X). The codebook is revealed to the transmitter and the receivers. To transmit

particular messages W1 = w1 and W2 = w2, the codeword xn (w1, w2) is transmitted

over the BC. In the proposed coding scheme, the good receiver, i.e., receiver 2, decodes

2We assume that, for any real number R > 0, 2nR is an integer for large enough n.
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both messages; and therefore, it tries to find a unique pair (ŵ1, ŵ2) ∈
[
2nR1

]
×
[
2nR2

]
,

such that (Xn (ŵ1, ŵ2) , yn2 ) belongs to the jointly typical set defined in [146]. The

probability of decoding error tends to 0 as n goes to infinity, if

R1 +R2 ≤ I (X;Y2) , (3.10)

where I(·; ·) represents the mutual information of the arguments. The first receiver

already knows W2 as side information; therefore, it only needs to decode W1; thus,

it looks for a unique index ŵ1 ∈
[
2nR1

]
such that (Xn (ŵ1,W2) , yn1 ) belongs to the

typical set [146]. The probability of error tends to 0 as n goes to infinity, if

R1 ≤ I (X;Y1) . (3.11)

For the packet erasure BC, both mutual information terms are maximized with a

uniform input, and the following conditions are obtained:

R1 ≤ (1− δ1)F, (3.12)

R1 +R2 ≤ (1− δ2)F, (3.13)

We can easily generalize this coding scheme to multiple receivers and obtain the achiev-

able rate region stated in the following proposition (also provided in [91]).

Proposition 3.3.2. Consider a packet erasure BC with two disjoint sets of receivers S1

and S2, where the channels of the receivers in set Si have erasure probability δi, for i =

1, 2. A common message Wi at rate Ri is to be transmitted to the receivers in set Si, for

i = 1, 2, while message W2 is known to the receivers in set S1 as side information. With

the joint encoding scheme outlined above, rate pairs (R1, R2) satisfying the following

conditions can be achieved

R1 ≤ (1− δ1)F, (3.14)

R1 +R2 ≤ (1− δ2)F, (3.15)
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which is equivalent to

max

{
R1

(1− δ1)F
,
R1 +R2

(1− δ2)F

}
≤ 1. (3.16)

For notational convenience, in the rest of the paper we use

JE
(
(W1)S1 , (W2)S2

)
(3.17)

to represent the transmission of message W1 to the receivers in set S1, and message W2

to the receivers in set S2 using the outlined joint encoding scheme, where S1 ∩S2 = ∅,

and W2 is available at all the receivers in S1 as side information.

3.4 Successive Cache-Channel Coding (SCC) Scheme

A coding scheme as well as an information theoretic upper bound on the capacity

of the above caching and delivery network are proposed in [91] for the homogeneous

scenario. Here, we present a new coding scheme, called the successive cache-channel

coding (SCC) scheme, for delivery over any packet erasure BC, and show that it im-

proves upon [91] in the homogeneous scenario.

Before presenting the SCC scheme for the general heterogeneous scenario, in which

we allow the weak and strong receivers to have distinct erasure probabilities, the main

ideas behind this scheme are illustrated on an example in the simplified homogeneous

scenario.

For notational convenience, the i-element subsets of set [Kw] are enumerated by

Si[Kw],1,S
i
[Kw],2, ...,S

i
[Kw],(Kwi )

, i.e.,

Si[Kw],j ⊂ [Kw] and
∣∣∣Si[Kw],j

∣∣∣ = i, for i ∈ [0 : Kw], and j ∈
[(
Kw
i

)]
. (3.18)
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3.4.1 Example

Consider the cache-aided packet erasure homogeneous BC with Kw = 3 weak and

Ks = 2 strong receivers. Here, we investigate the achievable memory-rate pair (M,R)

given as follows:

R =
F
∑2

i=0 γ (0, δws, i)

1
1−δw

∑2
i=0

(
3−i
i+1γ (0, δws, i)

)
+ 2

1−δs

, (3.19a)

M =
N
∑2

i=0 iγ (0, δws, i)

3
∑2

i=0 γ (0, δws, i)
R, (3.19b)

where γ (p, δws, i), for p ∈ [0 : Kw] and q ∈ [p : Kw], is defined as follows:

γ (p, δws, i) =

(
Kw
i

)(
Kw
p

)
Ks

i−p

(
1− δs
1− δw

− 1

)i−p
, for i ∈ [p : q]. (3.19c)

Each file Wl, l ∈ [N ], is divided into three subfiles W
(0)
l , W

(1)
l and W

(2)
l , where

subfile W
(i)
l has a rate of

R(i) ,
γ (0, δws, i)∑2
j=0 γ (0, δws, j)

R, for i ∈ [0 : 2], (3.20)

where γ (0, δws, i) is defined in (3.19c). We have
∑2

i=0R
(i) = R.

Placement phase: In the placement phase, subfiles W
(i)
1 , ...,W

(i)
N are placed in the

caches of Kw = 3 weak receivers using the procedure in [3, Algorithm 1], specified for

a cache size of iN/Kw, for i ∈ [0 : 2]. In this cache placement procedure, each subfile

W
(i)
l is first divided into

(
3
i

)
non-overlapping pieces, each at a rate of R(i)/

(
3
i

)
.

W
(i)
l =

(
W

(i)

l,Si
[3],1

,W
(i)

l,Si
[3],2

, ...,W
(i)

l,Si
[3],(3i)

)
, ∀l ∈ [N ] , ∀i ∈ [0 : 2] , (3.21)

For the example under consideration, we have, ∀l ∈ [N ],

W
(0)
l =

(
W

(0)
l,∅

)
, (3.22a)

W
(1)
l =

(
W

(1)
l,{1},W

(1)
l,{2},W

(1)
l,{3}

)
, (3.22b)
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Table 3.1: Contents sent with messages 1 to 4 in the delivery phase.

Message 1 W
(2)
d1,{2,3} ⊕W

(2)
d2,{1,3} ⊕W

(2)
d3,{1,2} to receivers 1, 2, 3

Message 2

Sub-message 1 JE

((
W

(1)
d1,{2} ⊕W

(1)
d2,{1}

)
{1,2}

,
(
W

(2)
d4,{1,2},W

(2)
d5,{1,2}

)
{4,5}

)
Sub-message 2 JE

((
W

(1)
d1,{3} ⊕W

(1)
d3,{1}

)
{1,3}

,
(
W

(2)
d4,{1,3},W

(2)
d5,{1,3}

)
{4,5}

)
Sub-message 3 JE

((
W

(1)
d2,{3} ⊕W

(1)
d3,{2}

)
{2,3}

,
(
W

(2)
d4,{2,3},W

(2)
d5,{2,3}

)
{4,5}

)

Message 3

Sub-message 1 JE

((
W

(0)
d1,∅

)
{1}
,
(
W

(1)
d4,{1},W

(1)
d5,{1}

)
{4,5}

)
Sub-message 2 JE

((
W

(0)
d2,∅

)
{2}
,
(
W

(1)
d4,{2},W

(1)
d5,{2}

)
{4,5}

)
Sub-message 3 JE

((
W

(0)
d3,∅

)
{3}
,
(
W

(1)
d4,{3},W

(1)
d5,{3}

)
{4,5}

)
Message 4 W

(0)
d4,∅ to receiver 4, and W

(0)
d5,∅ to receiver 5

W
(2)
l =

(
W

(2)
l,{1,2},W

(2)
l,{1,3},W

(2)
l,{2,3}

)
. (3.22c)

The piece W
(i)

l,Si
[3],j

is placed in the cache of each receiver k ∈ Si[3],j , for j ∈
[(

3
i

)]
.

Therefore, the cache contents of the weak receivers after the placement phase are as

follows:

B1 =
⋃

l∈[N ]

(
W

(1)
l,{1},W

(2)
l,{1,2},W

(2)
l,{1,3}

)
, (3.23a)

B2 =
⋃

l∈[N ]

(
W

(1)
l,{2},W

(2)
l,{1,2},W

(2)
l,{2,3}

)
, (3.23b)

B3 =
⋃

l∈[N ]

(
W

(1)
l,{3},W

(2)
l,{1,3},W

(2)
l,{2,3}

)
, (3.23c)

where the required cache size for each weak receiver is:

M =

(
R(1)

3
+

2R(2)

3

)
N =

γ (0, δws, 1) + 2γ (0, δws, 2)

3
∑2

j=0 γ (0, δws, j)
NR. (3.24)

Delivery phase: The server tries to satisfy all the demands in the delivery phase by

sending four distinct messages in an orthogonal fashion, i.e., by time division multi-

plexing, where the codewords corresponding to the i-th message, i = 1, ..., 4, are of

length βin channel uses, such that
∑4

i=1 βi = 1. The contents delivered with each

message are shown in Table 3.1.
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The first message is targeted only for the weak receivers, and its goal is to deliver

the missing subfiles of file W
(2)
di

to receiver i, i ∈ [3], that is, having received this

message, each weak receiver should be able to decode the third subfile of its desired

file. Exploiting the delivery phase of [3, Algorithm 1] for cache size 2N/Kw, the coded

content with message 1 in Table 3.1 is delivered to the weak receivers {1, 2, 3}. Having

received message 1 given in Table 3.1, receiver i can recover its missing piece W
(2)
di,[3]\{i}

of subfile W
(2)
di

using its cache contents Bi. Thus, together with its cache content,

receiver i can recover subfile W
(2)
di

, for i ∈ [3].

Through the second message of the delivery phase, the server simultaneously delivers

subfile W
(2)
di

to strong receiver i, i = 4, 5, and the missing bits of subfile W
(1)
dj

to weak

receiver j, j = 1, 2, 3. The content targeted to the weak receivers is delivered by using

the delivery phase of [3, Algorithm 1] for the cache size of N/Kw; that is, the contents

{
W

(1)
d1,{2} ⊕W

(1)
d2,{1},W

(1)
d1,{3} ⊕W

(1)
d3,{1},W

(1)
d2,{3} ⊕W

(1)
d3,{2}

}
(3.25)

are transmitted to the weak receivers. Therefore, the goal is to deliver W
(2)
di

to strong

receiver i, i = 4, 5, while delivering the contents in (3.25) to the weak receivers in

parallel. The transmission is performed by sending three sub-messages, transmitted

over orthogonal time periods. With the first sub-message of message 2 given in Table

3.1, receivers 1 and 2 receive W
(1)
d1,{2} ⊕ W

(1)
d2,{1} since they both have W

(2)
d4,{1,2} and

W
(2)
d5,{1,2} in their caches as side information. Accordingly, receiver 1 and receiver 2 can

recover W
(1)
d1,{2} and W

(1)
d2,{1}, respectively. On the other hand, with the joint encoding

scheme, W
(2)
d4,{1,2} and W

(2)
d5,{1,2} are directly delivered to receiver 4 and receiver 5,

respectively. With the second sub-message of message 2 in Table 3.1, W
(2)
d4,{1,3} and

W
(2)
d5,{1,3}, which are available in the caches of receivers 1 and 3 as side information,

are delivered to receivers 4 and 5, while W
(1)
d1,{3} ⊕W

(1)
d3,{1} is delivered to receivers 1

and 3. By receiving sub-message 2, receiver 1 and receiver 3 can obtain W
(1)
d1,{3} and

W
(1)
d3,{1}, respectively. Finally, sub-message 3 of message 2 aims to deliver W

(2)
d4,{2,3} and

W
(2)
d5,{2,3}, which are in the cache of receivers 2 and 3, to receivers 4 and 5, respectively,

and W
(1)
d2,{3} ⊕ W

(1)
d3,{2} to receivers 2 and 3 by the joint encoding scheme. Having

received coded content W
(1)
d2,{3}⊕W

(1)
d3,{2}, receiver 2 and receiver 3 can recover W

(1)
d2,{3}

and W
(1)
d3,{2}, respectively. Thus, having received message 2, each weak receiver i,
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i = 1, 2, 3, can recover all the missing bits of subfile W
(1)
di

of its request, while each

strong receiver j, j = 4, 5, can obtain subfile W
(2)
dj

of its request.

The third message of the delivery phase is designed to deliver W
(1)
dj

to strong receiver

j, j = 4, 5, and W
(0)
di

is delivered to weak receiver i, i = 1, 2, 3. Third message is also

divided into three sub-messages, transmitted over orthogonal time periods. With sub-

message i, given in Table 3.1, W
(1)
d4,{i} and W

(1)
d5,{i}, both of which are available locally at

receiver i as side information, i = 1, 2, 3, are delivered to receivers 4 and 5, respectively,

while W
(0)
di,∅ is delivered to receiver i. Therefore, with the third message in Table 3.1,

each weak receiver i, i = 1, 2, 3, can obtain W
(0)
di,∅, while each strong receiver j, j = 4, 5,

can recover W
(1)
dj

. Thus, after receiving message 3 in Table 3.1, the demands of the

weak receivers are fully satisfied.

The last and fourth message of the delivery phase is generated only for the strong re-

ceivers with the goal of delivering them the missing bits of their demands, in particular,

subfile W
(0)
dj ,∅ is delivered to each strong receiver j, j = 4, 5.

Observe that message 1 in Table 3.1 has a rate of R(2)/3. The capacity region of the

standard packet erasure BC presented in Proposition 3.3.1 suggests that all the weak

receivers can decode message 1, for n large enough, if

R(2)

3 (1− δw)F
≤ β1. (3.26)

From Table 3.1, with each sub-message of the second message, messages of rate

2R(2)/3, available at the weak receivers as side information, are delivered to the strong

receivers; while, simultaneously, a common message at rate R(1)/3 is transmitted to

the weak receivers. Overall,
(
W

(2)
d4
,W

(2)
d5

)
and the contents in (3.25) with a total

rate of 2R(2) and R(1) are delivered to the strong and weak receivers, respectively,

through three different sub-messages by using the joint encoding scheme of [145] that

exploits the side information at the weak receivers. Using the achievable rate region of

the joint encoding scheme for the packet erasure channels stated in Proposition 3.3.2,(
W

(2)
d4
,W

(2)
d5

)
and the contents in (3.25) can be simultaneously decoded by the strong
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and weak receivers, respectively, for n large enough, if

max

{
R(1)

(1− δw)F
,
R(1) + 2R(2)

(1− δs)F

}
≤ β2. (3.27)

From the expressions for R(1) and R(2) in (3.20), it can be verified that the two terms

in the maximization in (3.27) are equal for the setting under consideration. Thus, the

condition in (3.27) can be simplified as

R(1)

(1− δw)F
≤ β2. (3.28)

According to Table 3.1, with each sub-message of message 3, a message at rate R(0)

is targeted for the weak receivers, while message at rate 2R(1)/3, available locally at the

weak receivers, is aimed for the strong receivers. Therefore, through joint encoding

scheme over three periods, messages with a total rate of 3R(0) are delivered to the

weak receivers, while the strong receivers receive a total rate of 2R(1). According to

Proposition 3.3.2, all the weak and strong receivers can decode their messages, for n

large enough, if

max

{
3R(0)

(1− δw)F
,
3R(0) + 2R(1)

(1− δs)F

}
≤ β3. (3.29)

Again, from the expressions of R(0) and R(1) in (3.20), it can be verified that, when

Kw = 3 and Ks = 2, (3.29) can be simplified as

3R(0)

(1− δw)F
≤ β3. (3.30)

From the capacity region of the standard erasure BC in Proposition 3.3.1, each

receiver j, j = 4, 5, can decode W
(0)
dj ,∅, delivered with message 4, successfully for n

sufficiently large, if
2R(0)

(1− δs)F
≤ β4. (3.31)

Combining (3.26), (3.28), (3.30), (3.31), and the fact that
∑4

i=1 βi = 1, we have the

condition
R(2)

3 (1− δw)F
+

R(1)

(1− δw)F
+

3R(0)

(1− δw)F
+

2R(0)

(1− δs)F
≤ 1. (3.32)
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By replacing R(i) with the expressions from (3.20), for i = 0, 1, 2, and using the fact

that γ (0, δws, 0) = 1, (3.32) is reduced to

R ≤
∑2

j=0 γ (0, δws, j)F
1

1−δw
(
3 + γ (0, δws, 1) + 1

3γ (0, δws, 2)
)

+ 2
1−δs

. (3.33)

Observe that, the term on the right hand side of inequality (3.33) is the same as rate R

given in (3.19a). The cache size of each weak receiver exploited by our coding scheme

is given by (3.24), which is the same as (3.19b). Thus, the memory-rate pair (M,R)

given in (3.19) is achievable for the setting under consideration.

The subpacketization with the proposed SCC scheme provides flexibility to perform

a different caching and delivery scheme for different subpackets. This is beneficial

in delivering the contents, each in a separate time slot, and jointly useful for both

groups of weak and strong receivers. The SCC scheme provides more multicasting

opportunities, and enables all the users to exploit the cache memories of the weak

users.

In the sequel, we present the placement and delivery phases of the SCC scheme for

a general heterogeneous scenario.

3.4.2 Placement Phase

For a given (p, q) pair, where p ∈ [0 : Kw] and q ∈ [p : Kw], each file Wl, l ∈ [N ], is

divided into (q − p+ 1) non-overlapping subfiles, represented by

Wl =
(
W

(p)
l , ...,W

(q)
l

)
, (3.34)

where subfile W
(i)
l , for i ∈ [p : q], has a rate of

R(i) ,
γ (p, δ, i)∑q
j=p γ (p, δ, j)

R, (3.35)
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where γ(p, δ, i) is defined as follows:

γ(p, δ, i) ,

(
Kw
i

)(
Kw
p

)
Ks

i−p

i−1∏
j=p

(
Ks

(1− δKw−j)
∑K

l=Kw+1
1

1−δl

− 1

)
, for i ∈ [p : q]. (3.36)

We note that
∑q

i=pR
(i) = R. In the placement phase, for each set of subfilesW

(i)
1 , ...,W

(i)
N

a cache placement procedure, corresponding to the one proposed in [3, Algorithm 1] for

a cache size of iN/Kw, is performed, ∀i ∈ [p : q]; that is, each subfile W
(i)
l is partitioned

into
(
Kw
i

)
independent equal-rate pieces,

W
(i)
l =

(
W

(i)

l,Si
[Kw ],1

,W
(i)

l,Si
[Kw ],2

, ...,W
(i)

l,Si
[Kw ],(Kwi )

)
, ∀l ∈ [N ] ,∀i ∈ [p : q] . (3.37)

The piece W
(i)

l,Si
[Kw ],l

of rate R(i)/
(
Kw
i

)
is cached by receivers in set Si[Kw],j , for j ∈[(

Kw
i

)]
. Thus, the content placed in the cache of each weak receiver k ∈ [Kw] is given

by

Bk =
⋃
l∈[N ]

⋃
i∈[p:q]

⋃
j∈[(Kwi )]:k∈Si[Kw ],j

W
(i)

l,Si
[Kw ],j

. (3.38)

Accordingly,
(
Kw−1
i−1

)
pieces, each of rate R(i)/

(
Kw
i

)
, corresponding to each subfile W

(i)
d

are cached by each weak receiver, which requires a total cache size of

M = N

q∑
i=p

(
Kw − 1

i− 1

)
R(i)(
Kw
i

) =
N

Kw

q∑
i=p

iR(i) =
N
∑q

i=p iγ (p, δ, i)

Kw
∑q

i=p γ (p, δ, i)
R. (3.39)

3.4.3 Delivery Phase

In the delivery phase, the goal is to satisfy all the demands for an arbitrary demand

combination (d1, ..., dK). The delivery phase consists of (q− p+ 2) different messages,

transmitted over orthogonal time periods, where the codewords of the i-th message are

of length βin channel uses, for i ∈ [q − p+ 2], such that
∑q−p+2

i=1 βi = 1.

The first message of the delivery phase is only targeted for the weak receivers, and

the goal is to deliver the missing bits of subfile W
(q)
di

to receiver i, ∀i ∈ [Kw]. It is to be

noted that, for q = Kw, based on the cache contents in (3.38), all the weak receivers
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Table 3.2: Contents sent with messages 1 to q − p + 2 in the delivery phase of the
SCC scheme for the heterogeneous scenario.

Message
index

Sub-
message

index

Delivered content

1

1 W
(q)

Sq+1
[Kw ],1

to receivers in Sq+1
[Kw],1

...
...(

Kw
q+1

) W
(q)

Sq+1

[Kw ],(Kwq+1)
to receivers in Sq+1

[Kw],(Kwq+1)

t = 2, ...,
q − p+ 1

1
JE

(W (q−t+1)

Sq−t+2
[Kw ],1

,m

)
Sq−t+2
[Kw ],1

,

(
W

(q−t+2)

dKw+m,Sq−t+2
[Kw ],1

)
{Kw+m}


in m-th time period, for m = 1, ...,Ks

...
...

(
Kw

q−t+2

) JE


W (q−t+1)

Sq−t+2

[Kw ],( Kw
q−t+2)

,m


Sq−t+2

[Kw ],( Kw
q−t+2)

,

W (q−t+2)

dKw+m,Sq−t+2

[Kw ],( Kw
q−t+2)


{Kw+m}


in m-th time period, for m = 1, ...,Ks

q − p+ 2 W
(p)
di

to receiver i ∈ [Kw + 1 : K]

have all the subfiles W
(q)
l , ∀l ∈ [N ]; therefore, no message needs to be delivered. In the

sequel, we consider q < Kw. The first message of the delivery phase is transmitted over(
Kw
q+1

)
orthogonal time slots, where in each slot, a sub-message is delivered to a group

of q+ 1 weak receivers. Sub-message j is a codeword of length β1,jn channel uses, and

is targeted to the receivers in set Sq+1
[Kw],j , for j ∈

[(
Kw
q+1

)]
, such that

∑(Kwq+1)
j=1 β1,j = β1.

Following the procedure in [3, Algorithm 1], the content delivered by sub-message j is

given by

W
(q)

Sq+1
[Kw ],j

,
⊕

i∈Sq+1
[Kw ],j

W
(q)

di,Sq+1
[Kw ],j

\{i}
, for j ∈

[(
Kw
q+1

)]
. (3.40)

After receiving W
(q)

Sq+1
[Kw ],j

, each receiver i ∈ Sq+1
[Kw],j can obtain W

(q)

di,Sq+1
[Kw ],j

\{i}
, for j ∈[(

Kw
q+1

)]
, i.e., the missing bits of subfile W

(q)
di

of its desired file, having access to Zi

given in (3.38). Thus, together with its cache content, receiver i ∈ [Kw] can recover

W
(q)
di

.

The delivery technique performed to transmit messages 2, 3, ..., q− p+ 1 follows the

same procedure. With the message q− i+ 1 of length βq−i+1n channel uses, the server
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delivers the missing bits of subfile W
(i)
dk

to each weak receiver k, k ∈ [Kw], and W
(i+1)
dl

to each strong receiver l, l ∈ [Kw+1 : K], for i = q−1, q−2, ..., p.3 Message (q−i+1) is

delivered through
(
Kw
i+1

)
sub-messages, transmitted over orthogonal time periods, where

sub-message j is of length βq−i+1,jn channel uses, such that
∑(Kwi+1)

j=1 βq−i+1,j = βq−i+1.

With the j-th sub-message, using the coded delivery procedure in [3, Algorithm 1], the

coded content

W
(i)

Si+1
[Kw ],j

=
⊕

k∈Si+1
[Kw ],j

W
(i)

dk,Si+1
[Kw ],j

\{k}
, (3.41)

is delivered to the weak receivers in set Si+1
[Kw],j , while

{
W

(i+1)

dKw+1,Si+1
[Kw ],j

, ...,W
(i+1)

dK ,Si+1
[Kw ],j

}
, (3.42)

is delivered to the strong receivers, for i = q − 1, ..., p, and j = 1, ...,
(
Kw
i+1

)
. Ob-

serve that, after receiving sub-message W
(i)

Si+1
[Kw ],j

, each receiver k ∈ Si+1
[Kw],j can obtain

W
(i)

dk,Si+1
[Kw ],j

\{k}
, for j = 1, ...,

(
Kw
i+1

)
, i.e., the missing bits of subfile W

(i)
dk

of its desired

file, for i = q − 1, ..., p. Note that, the content in (3.42), which is targeted to the

strong receivers, is known by each weak receiver in set Si+1
[Kw],j . Therefore, the j-th sub-

message of message q−i+1 can be transmitted using joint encoding, for i = q−1, ..., p,

j ∈
[(
Kw
i+1

)]
:

JE

(W (i)

Si+1
[Kw ],j

)
Si+1
[Kw ],j

,

(
W

(i+1)

dKw+1,Si+1
[Kw ],j

, ...,W
(i+1)

dK ,Si+1
[Kw ],j

)
[Kw+1:K]

 . (3.43)

However, to increase the efficiency of the delivery phase, the j-th sub-message is de-

livered via Ks orthogonal time periods, such that in the m-th period a codeword of

length βq−i+1,j,mn channel uses is transmitted, where
∑Ks

m=1 βq−i+1,j,m = βq−i+1,j .

Coded content W
(i)

Si+1
[Kw ],j

, targeted for receivers in set Si+1
[Kw],j , is divided into Ks non-

overlapping equal-rate pieces

W
(i)

Si+1
[Kw ],j

=

(
W

(i)

Si+1
[Kw ],j

,1
, ...,W

(i)

Si+1
[Kw ],j

,Ks

)
, (3.44)

3For example, with the second message, subfile W
(q)
dl

is delivered to each strong receiver l ∈ [Kw+1 :

K], and subfile W
(q−1)
dk

to each weak receiver k ∈ [Kw]. With the third message, subfile W
(q−1)
dl

is

delivered to each strong receiver l ∈ [Kw + 1 : K], and subfile W
(q−2)
dk

to each weak receiver k ∈ [Kw],
and so on so forth.
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and the delivery over the m-th time period is performed by joint encoding:

JE

(W (i)

Si+1
[Kw ],j

,m

)
Si+1
[Kw ],j

,

(
W

(i+1)

dKw+m,Si+1
[Kw ],j

)
{Kw+m}

 , for m = 1, ...,Ks. (3.45)

We note that, after receiving messages 2 to q− p+ 1, each weak receiver k ∈ [Kw] can

obtain subfiles
(
W

(q−1)
dk

,W
(q−2)
dk

, ...,W
(p)
dk

)
, while each strong receiver l ∈ [Kw + 1 : K]

can decode subfiles
(
W

(q)
dl
,W

(q−1)
dl

, ...,W
(p+1)
dl

)
; therefore, together with message 1, the

demand of weak receivers are fully satisfied. However, strong receiver l ∈ [Kw + 1 : K]

only requires to receive subfile W
(p)
dl

.

The last message delivers subfile W
(p)
dl

to the strong receiver l ∈ [Kw + 1 : K] using

the channel coding scheme for standard packet erasure BCs.

The contents delivered with each message in the delivery phase for the heterogeneous

case are summarized in Table 3.2.

3.4.4 Achievable Memory-Rate Pair Analysis

In the following theorem, whose proof can be found in Appendix B.1, we provide

the memory-rate pair achieved by the SCC scheme.

Theorem 3.1. Consider cache-aided delivery of N files over a packet erasure BC with

Kw weak and Ks strong receivers, where each weak receiver is equipped with a cache

of normalized capacity M . Memory-rate pairs
(
M(p,q), R(p,q)

)
are achievable for any

p ∈ [0 : Kw] and q ∈ [p : Kw], where

R(p,q) ,
F
∑q

i=p γ (p, δ, i)∑q
i=p

(
γ(p,δ,i)

(Kwi )

∑Kw−i
j=1

(Kw−ji )
1−δj

)
+
∑K

j=Kw+1
1

1−δj

, (3.46a)

M(p,q) ,
N
∑q

i=p iγ (p, δ, i)

Kw
∑q

i=p γ (p, δ, i)
R(p,q), (3.46b)

with γ(p, δ, i) defined as in (3.36). The upper convex hull of these (Kw + 1) (Kw + 2) /2

memory-rate pairs can also be achieved through memory-sharing.
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Corollary 3.1. For the homogeneous scenario, the achievable memory-rate pairs
(
M(p,q) ,

R(p,q)

)
, for any p ∈ [0 : Kw] and q ∈ [p : Kw], are simplified as follows:

R(p,q) =
F
∑q

i=p γ (p, δws, i)

1
1−δw

∑q
i=p

(
Kw−i
i+1 γ (p, δws, i)

)
+ Ks

1−δs

, (3.47a)

M(p,q) =
N
∑q

i=p iγ (p, δws, i)

Kw
∑q

i=p γ (p, δws, i)
R(p,q), (3.47b)

where γ (p, δws, i) is given in (3.19c).

3.5 Numerical Results

Here we compare the achievable rate of the SCC scheme for the homogeneous scenario

with the scheme of [91], which we will refer to as the STW scheme. In Fig. 3.2, we

plot the achievable rates for both schemes in the homogeneous scenario with Kw = 7,

Ks = 10, N = 50, F = 20, δs = 0.2, and δw = 0.9. Observe that, for relatively

small cache sizes, where the best memory-rate trade-off is achieved by time-sharing

between
(
M(0,0), R(0,0)

)
and

(
M(0,1), R(0,1)

)
, and for relatively large cache sizes, where

the best memory-rate trade-off is achieved by time-sharing between
(
M(6,7), R(6,7)

)
and

(
M(7,7), R(7,7)

)
, both schemes achieve the same rate; however, the proposed SCC

scheme achieves a higher rate than STW for all other intermediate cache sizes, and

reduces the gap to the upper bound on the capacity derived in [91, Theorem 7]. For

a cache size of M = 30, SCC provides approximately 15% increase in the achievable

rate compared to STW.

In Fig. 3.3, the achievable rates of the SCC and STW schemes in the homogeneous

scenario are compared for different values of δw for Kw = 20, Ks = 10, N = 100, F =

50, δs = 0.2, and δw ∈ {0.7, 0.8, 0.9}. Observe that, unlike STW, the performance of

SCC does not deteriorate notably for intermediate and relatively high cache capacities

when δw increases, i.e., having worse channel qualities for the weak receivers. This is

because SCC successfully exploits the available cache capacities, and there is little to

lose from increasing δw when M is sufficiantly large. Moreover, the superiority of SCC
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Figure 3.2: Lower and upper bounds on the capacity for the homogeneous scenario
with Kw = 7, Ks = 10, N = 50, F = 20, δs = 0.2, and δw = 0.9.

over STW is more pronounced for higher values of δw, in which case, exploiting the

caches of the weak receivers more effectively by SCC becomes more important.

For the heterogeneous scenario, the capacity of the network under consideration is

upper bounded by [91]

min
S⊂[K]

{
F

(∑
i∈S

1

1− δi

)−1

+
M

N
|S ∩ [Kw]|

}
. (3.48)

In Fig. 3.4, the effect of Kw is considered for the heterogeneous scenario for K = 15,

N = 100, F = 10, δi = 0.9 − 0.01i, for i ∈ [5], and δj = 0.2 − 0.01j, for j ∈ [6 : 15].

Achievable rates are plotted with respect to the total cache size of KwM for four dif-

ferent values for the number of weak receivers in the system, Kw ∈ {4, 5, 10, 15}. Note

that the erasure probabilities are set such that the first 5 receivers have significantly

worse channels than the remaining 10 receivers. Note also that the parameter Kw

determines which receivers are provided with cache memories. As it can be seen, the

setting with Kw = 5 achieves significantly higher rates over a wide range of total cache

capacities compared to the other settings under consideration. If receiver 5, which

has a relatively bad channel quality, is not provided with any cache memory, and only
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Figure 3.3: Lower bounds on the capacity for the homogeneous scenario with Kw =
20, Ks = 10, N = 100, F = 50, δs = 0.2, and different values for δw given by
δw ∈ {0.7, 0.8, 0.9}.

the first 4 receivers are equipped with cache memories, i.e., Kw = 4, the performance

degrades significantly except for very small values of total cache size. This is because

the first five receivers have much worse channel qualities, and the performance depends

critically on the caches provided to all these five weak receivers. On the other hand,

equipping receivers with relatively good channel qualities with cache memories deteri-

orates the performance of the system in terms of the achievable rate. Note that this is

because the total available cache size is allocated across a larger number of receivers.

This result confirms that it is more beneficial to allocate cache memories to the re-

ceivers with relatively worse channel qualities. The upper bound on the achievable rate

for the setting with Kw = 5 and Ks = 10 is also included in this figure. We observe

that the gap between the upper bound and the achievable rate for the same setting is

relatively small for a wide range of cache sizes.
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Figure 3.4: Lower and upper bounds on the capacity for the heterogeneous scenario
with K = 15, N = 100, F = 10, δi = 0.9− 0.0ik, for i ∈ [5], and δj = 0.2− 0.01j, for
j ∈ [6 : 15] with variable Kw ∈ {4, 5, 10, 15} and Ks ∈ {0, 5, 10, 11}.

3.6 Conclusions

In this chapter We have studied cache-enabled content delivery over a packet erasure

BC with arbitrary erasure probabilities. The capacity of this network is defined as the

maximum common rate of files in the library, which allows reliable delivery to all

the receivers, independent of their demands. We have derived a lower bound on the

capacity by proposing a novel caching and delivery scheme, which enables each receiver,

even the strong receivers without a cache memory, to benefit from the cache memories

available at the weak receivers. The proposed scheme utilizes a finer subpacketization

of the files in the library, and provides a better exploitation of the available cache

memories with a higher achievable rate than the state-of-the-art. This model and

the presented results illustrate that even limited storage can be converted into spectral

efficiency in noisy communication networks, benefiting the whole network, if it is placed

strategically across the network, and exploited intelligently.



Chapter 4

Caching over Gaussian Broadcast

Channels

4.1 Overview

In this chapter we consider a cache-aided K-user Gaussian BC, where the transmitter

has a library of N equal-rate files, from which each user demands one. The impact of

the equal-capacity receiver cache memories on the minimum required transmit power

to satisfy all user demands is studied. Considering uniformly random demands across

the library, both the minimum average power (averaged over all demand combinations)

and the minimum peak power (minimum power required to satisfy all demand combi-

nations) are studied. Upper bounds are presented on the minimum required average

and peak transmit power as a function of the cache size considering both centralized

and decentralized caching. The lower bounds on the minimum required average and

peak power values are also derived assuming uncoded cache placement. The bounds

for both the peak and average power values are shown to be tight in the centralized

scenario through numerical simulations. The results show that proactive caching and

coded delivery can provide significant energy savings in wireless networks, even when

the caches have a relatively small size.

4.2 Introduction

In this chapter we study the benefits of proactive caching in reducing the transmit

power, assuming that the noiseless cache placement phase is carried out without the

87
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knowledge of channel conditions during the delivery phase. Assuming uniform pop-

ularity across the files, we first study the minimum required average power to serve

all the users, averaged over all the user demand combinations. Note that we allow

the transmitter to change its power depending on the demand combination in order

to minimize the average power consumption. We then consider the transmit power

required to satisfy the worst-case demand combination, called the peak power. We first

provide upper bounds on the minimum average and peak power values as a function

of the rate of the files in the library and the capacity of the user caches, for centralized

cache placement. We then extend the proposed scheme by considering decentralized

cache placement. The proposed delivery strategy employs superposition coding and

power allocation, and the achievable transmit power for any demand combination is

derived thanks to the degradedness of a Gaussian BC. We further derive lower bounds

on the performance assuming uncoded cache placement.

The main novelty of the proposed proactive caching and coded delivery scheme

is the way the coded packets designed for each user are generated for any demand

combination, particularly when a file may be requested by more than one user, and

the way these coded packets are delivered over a Gaussian BC in order to minimize the

transmit power. We show that the proposed achievable scheme reduces the transmit

power significantly, even with the availability of only a small cache size at each receiver,

in both the centralized and decentralized scenarios. It is also shown that the power loss

between the centralized and the more practical decentralized scenario is quite small.

Furthermore, numerical results show that the gaps between the peak and average

transmit powers of the proposed achievable scheme for the centralized scenario and the

corresponding lower bounds are negligible. In particular, we have observed numerically

that the multiplicative gap between the two bounds for the centralized caching is below

2 for the examples considered. Numerical results also illustrate that adjusting the

transmit power based on the demand vector can significantly reduce the average power

consumption compared to the worst-case demand combination.

The remainder of this chapter is organized as follows. In Section 4.3 system model

and preliminaries are introduced. The proposed caching and coded delivery scheme

is presented for the centralized and decentralized settings in Section 4.4 and Section
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4.5, respectively. We derive a lower bound on the performance metric in Section 4.6.

Numerical results are presented in Section 4.7. Conclusions are drawn in Section 4.8.

4.3 System Model

We study cache-aided content delivery over a K-user Gaussian BC. The server has

a library of N files, W, with uniform popularity across the users, and each distributed

uniformly over the set
[⌈

2nR
⌉]

. Each user has a cache of size nMR bits. We define

the normalized global cache size as r ,MK/N .

Data delivery from the server to the users takes place in two phases. Caches of the

users are filled during the initial placement phase, which takes place over a period of

low traffic and high energy efficiency; and therefore, data delivery in the placement

phase is assumed to be error-free and at a negligible energy cost1; however, without

either the knowledge of the user demands, or the users’ future channel gains when they

place their requests. The caching function for user i ∈ [K] is

φ
(nR)
i :

[⌈
2nR

⌉]N → [⌊
2nMR

⌋]
, (4.1)

which maps the library to the cache contents Bi of user i, i.e., Bi = φ
(nR)
i (W).

We assume that the user demands are independent and uniformly distributed over

the file library; that is Pr {dk = i} = 1/N , ∀i ∈ [N ],∀k ∈ [K]. The requests must be

satisfied simultaneously during the delivery phase. As opposed to the placement phase,

the delivery phase takes place over a noisy BC, characterized by

Yk,i (W,d) = hkXi (W,d) + Zk,i, for i ∈ [n], k ∈ [K], (4.2)

where Xi (W,d) denotes the transmitted signal from the server at time i, hk is a real

channel gain between the server and user k, Zk,i is the zero-mean unit-variance real

Gaussian noise at user k at time i, i.e., Zk,i ∼ N (0, 1), and Yk,i (W,d) is the signal

1We assume that the placement phase takes place over a significantly longer period of time and
over orthogonal high-quality links; which, in theory, allows the server to achieve the minimum energy
per bit required to send the cache contents to the users.
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received at user k.2 The noise components are assumed independent and identically

distributed (i.i.d.) across time and users. Without loss of generality, we assume that

h2
1 ≤ h2

2 ≤ · · · ≤ h2
K . With the knowledge of the channel vector h , (h1, ..., hK) at the

server, the channel input vector Xn (W,d) is generated by

ψ(nR) :
[⌈

2nR
⌉]N × RK × [N ]K → Rn, (4.3)

and its average power is given by P (W,d) , 1
n

∑n
i=1X

2
i (W,d). We define the average

power of this encoding function for demand vector d as

P (d) , max
W1,...,WN

P (W,d) , (4.4)

where the maximization is over all possible realizations of the file library.

User k ∈ [K] reconstructs Ŵk using its channel output Y n
k (W,d), local cache con-

tents Bk, channel vector h, and demand vector d through the function

µ
(nR)
k : Rn ×

[⌊
2nMR

⌋]
× RK × [N ]K →

[⌈
2nR

⌉]
. (4.5)

An (n,R,M) code consists of K caching functions φ
(nR)
1 , . . . , φ

(nR)
K , channel en-

coding function ψ(nR), and K decoding functions µ
(nR)
1 , . . . , µ

(nR)
K . We say that an(

R,M, P̄ , P̂
)

tuple is achievable if for every ε > 0, there exists an (n,R,M) code with

sufficiently large n, which satisfies Pe < ε, Ed [P (d)] ≤ P̄ , and P (d) ≤ P̂ , ∀d with Pe

defined in (2.4). For given rate R and normalized cache size M , the average and peak

power-memory trade-offs are defined, respectively, as

P̄ ∗ (R,M) , inf
{
P̄ :

(
R,M, P̄ ,∞

)
is achievable

}
, (4.6a)

P̂ ∗ (R,M) , inf
{
P̂ :

(
R,M, P̂ , P̂

)
is achievable

}
. (4.6b)

Remark 4.3.1. In the above definition, P̄ ∗ is evaluated by allowing a different trans-

mission power for each demand combination, and minimizing the average power across

demands; while P̂ ∗ characterizes the worst-case transmit power, which can also be

2For simplicity, we consider a real Gaussian channel here, and the extension of the results to the
complex channel case is straightforward.
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considered as the minimum transmit power required to satisfy all possible demands if

the transmitter is not allowed to adapt its transmit power according to user demands.

We will consider both centralized and decentralized caching, and assume, in both

scenarios that the placement phase is performed without any information about the

channel gains during the delivery phase.

Proposition 4.3.1. [147] Consider a K-user Gaussian BC presented above with

M = 0, where a distinct message of rate Rk is targeted for user k, k ∈ [K]. The

minimum total power P that is required to deliver all K messages reliably can be

achieved by superposition coding with Gaussian codewords of power αkP allocated for

user k, ∀k ∈ [K], where3

αkP =

(
22Rk − 1

h2
k

)(
1 + h2

k

∑K

i=k+1

(
22Ri − 1

h2
i

)∏i−1

j=k+1
22Rj

)
, (4.7)

and the total transmitted power is

P =
∑K

k=1

(
22Rk − 1

h2
k

)∏k−1

i=1
22Ri . (4.8)

For a demand vector d in the delivery phase, we denote the number of distinct

demands by Nd, where Nd ≤ min {N,K}. Let Ud denote the set of users with distinct

requests, which have the worst channel qualities; that is, Ud consists of Nd indices

corresponding to users with distinct requests, where a user is included in set Ud if and

onlt if it has the worst channel quality among all the users with the same demand,

i.e., if k ∈ Ud and dk = dm for some m ∈ [K], then h2
k ≤ h2

m, or equivalently, k ≤ m.

Note that, for any demand vector d, 1 ∈ Ud. For given d and user k, k ∈ [K], let Ud,k
denote the set of users in Ud which have better channels than user k:

Ud,k , {i ∈ Ud : i > k} , k ∈ [K]. (4.9)

We denote the cardinality of Ud,k by Nd,k, i.e., Nd,k , |Ud,k|.
3For two integers i and j, if i > j, we assume that

∑j
n=i an = 0, and

∏j
n=i an = 1, where an is an

arbitrary sequence.
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4.4 Centralized Caching and Delivery

Here we present our centralized caching and coded delivery scheme. We follow the

placement phase in [20] since the users’ channel gains are not known in advance. In

the delivery phase, our goal is to identify the coded packets targeted to each user in

order to minimize the transmit power. We will use superposition coding in sending

multiple coded packets, and benefit heavily from the degradedness of the underlying

Gaussian BC.

Theorem 4.1. In centralized caching followed by delivery over a Gaussian BC, we

have

P̄ ∗(R,M) ≤ P̄C
UB(R,M) ,

1

NK

∑
d∈[N ]K

 K∑
i=1

(
22RC

d,i − 1

h2
i

)
i−1∏
j=1

22RC
d,j

, (4.10a)

where

RC
d,k ,


(K−kbrc )

( Kbrc)
(brc+ 1− r)R+

(K−kbrc+1)

( K
brc+1)

(r − brc)R, if k ∈ Ud,

(K−kbrc )−(K−k−Nd,k
brc )

( Kbrc)
(brc+ 1− r)R+

(K−kbrc+1)−(K−k−Nd,k
brc+1

)

( K
brc+1)

(r − brc)R, otherwise,

(4.10b)

and

P̂ ∗(R,M) ≤ P̂C
UB(R,M) ,

K∑
i=1

(
22R̂C

d,i − 1

h2
i

)
i−1∏
j=1

22R̂C
d,j , (4.11a)

where

R̂C
d,k ,


(K−kbrc )

( Kbrc)
(brc+ 1− r)R+

(K−kbrc+1)

( K
brc+1)

(r − brc)R, if k ∈ [min{N,K}],

0, otherwise.

(4.11b)

Proof. For simplicity, we assume that both nR and nMR are integers. The proposed

scheme is first presented for integer normalized global cache capacities, that is r ∈ [0 :

K]. The scheme is then extended to any r ∈ [0,K].
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4.4.1 Integer r Values

Here, we assume that r ∈ [0 : K]. We remind that we denote the r-element subsets

of K users by Sr[K],1,S
r
[K],2, . . . ,S

r
[K],(Kr )

.

Placement phase: A centralized cache placement phase is performed without the

knowledge of the future user demands or the channel gains in the delivery phase. Each

file Wi, i ∈ [N ], is split into
(
K
r

)
equal-length subfiles Wi,Sr

[K],1
,Wi,Sr

[K],2
, . . . ,Wi,Sr

[K],(Kr )
,

each of rate R/
(
K
r

)
. User k, k ∈ [K], caches subfile Wi,Sr

[K],l
, if k ∈ Sr[K],l, for i ∈ [N ]

and l ∈
[(
K
r

)]
. Hence, the cache contents of user k is given by

Bk =
⋃

i∈[N ]

⋃
l∈[(Kr )]:k∈Sr[K],l

Wi,Sr
[K],l

, for k ∈ [K], (4.12)

where the cache size constraint is satisfied with equality.

Delivery phase: For an arbitrary d, we will deliver the following coded message to

the users in Sr+1
[K],l, ∀l ∈

[(
K
r+1

)]
:

WSr+1
[K],l

,
⊕

k∈Sr+1
[K],l

Wdk,Sr+1
[K],l
\{k}, (4.13)

Then, each user i ∈ Sr+1
[K],l can recover subfile Wdi,Sr+1

[K],l
\{i}, since it has cached all the

other subfiles Wdj ,Sr+1
[K],l
\{j}, ∀j ∈ S

r+1
[K],l\{i}. Note that each coded message WSr+1

[K],l
,

l ∈
[(

K
r+1

)]
, is of rate R/

(
K
r

)
. Note also that, for k ∈ [K], sending

⋃
l:k∈Sr+1

[K],l
WSr+1

[K],l
to

user k enables that user to obtain all the subfiles Wdk,Sr[K],l
, ∀l ∈

[(
K
r

)]
and k /∈ Sr[K],l.

Thus, together with its cache contents, the demand of user k, k ∈ [K] would be fully

satisfied after receiving
⋃
l:k∈SK,r+1

l
WSr+1

[K],l
. As observed in [20], for a demand vector

d with Nd distinct requests, if K − Nd ≥ r + 1, not all the coded messages WSr+1
[K],l

,

∀l ∈
[(
K
r

)]
, need to be delivered.

Following [20, Lemma 1], for a demand vector d with Nd distinct requests, let

Ud ⊂ V ⊂ [K]. We define GV as the set consisting of all the subsets of V with

cardinality Nd, such that all Nd users in each subset request distinct files. For any V,

we have
⊕
G∈GVWV\G = 0, where 0 denotes the zero vector.
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Remark 4.4.1. Given a demand vector d with Nd < K, and any set S ⊂ [K]\Ud of

users, by setting V = S ∪ Ud, we have

⊕
G∈GV

WV\G =

(⊕
G∈GV\Ud

WV\G

)
⊕WV\Ud =

(⊕
G∈GV\Ud

WV\G

)
⊕WS = 0,

(4.14)

which leads to

WS =
⊕
G∈GV\Ud

WV\G . (4.15)

Thus, having received all the coded messages WV\G , ∀G ∈ GV\Ud, WS can be recovered

through (4.15). Note that, for any G ∈ GV\Ud, we have

|V\G| = |S| , (4.16a)

(V\G) ∩ Ud 6= ∅, (4.16b)

that is, each coded message on the right hand side (RHS) of (4.15) is targeted for a

set of |S| users, at least one of which is in set Ud. Furthermore, for each k ∈ S, there

is a user k′ ∈ Ud with h2
k′ ≤ h2

k, such that dk′ = dk. Note that, since no two users with

the same demand are in any of the sets G ∈ GV , for any set G ∈ GV\Ud, we have either

k ∈ V\G or k′ ∈ V\G.

Given a demand vector d, the delivery phase is designed such that only the coded

messages WSr+1
[K],l

, ∀l ∈
[(

K
r+1

)]
such that Sr+1

[K],l ∩ Ud 6= ∅, are delivered, i.e., the coded

messages that are targeted for at least one user in Ud are delivered, and the remaining

coded messages can be recovered through (4.15). To achieve this, for any such set

Sr+1
[K],l with Sr+1

[K],l ∩ Ud 6= ∅, the transmission power is adjusted such that the worst

user in Sr+1
[K],l can decode WSr+1

[K],l
; and so can all the other users in Sr+1

[K],l due to the

degradedness of the Gaussian BC. As a result, the demand of every user in Ud will be

satisfied.

We aim to find the coded packets targeted for each user that will minimize the

transmitted power, while guaranteeing that all the user demands are satisfied. In

delivering the coded messages, we start from the worst user, i.e., user 1, and first

transmit all the coded messages targeted for user 1. We then target the second worst
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user, and transmit the coded messages targeted for it that have not been already

delivered, keeping in mind that only the coded messages WSr+1
[K],l

for which Sr+1
[K],l∩Ud 6= ∅

are delivered. We continue similarly until we deliver the messages targeted for the best

user in Ud.

We denote the contents targeted for user k by W̃k, and their total rate by Rd,r,k,

k ∈ [K]. For a demand vector d, contents

W̃1 =
⋃

l:1∈Sr+1
[K],l

WSr+1
[K],l

(4.17)

are targeted for user 1. Note that there are
(
K−1
r

)
different (r + 1)-element subsets

Sr+1
[K],l, in which user 1 is included. Thus, the total rate of the messages targeted for

user 1 is

Rd,r,1 =

(
K−1
r

)(
K
r

) R =
K − r
K

R. (4.18)

For k ∈ [2 : K], the coded contents targeted for user k that have not been sent through

the transmissions to the previous k − 1 users and are targeted for at least one user in

Ud are delivered. Thus, for k ∈ [2 : K], we deliver

W̃k =
⋃

l:Sr+1
[K],l
∩Ud 6=∅,Sr+1

[K],l
∩[k−1]=∅,k∈Sr+1

[K],l

WSr+1
[K],l

, (4.19)

which is equivalent to

W̃k =

(⋃
l:Sr+1

[K],l
∩[k−1]=∅,k∈Sr+1

[K],l

WSr+1
[K],l

)
−(⋃

l:Sr+1
[K],l
∩Ud=∅,Sr+1

[K],l
∩[k−1]=∅,k∈Sr+1

[K],l

VSr+1
[K],l

)
. (4.20)

For each user k ∈ [2 : K], there are
(
K−k
r

)
different (r+ 1)-element subsets Sr+1

[K],l, such

that Sr+1
[K],l ∩ [k − 1] = ∅ and k ∈ Sr+1

[K],l, for l = 1, . . . ,
(
K
r+1

)
. On the other hand, for

each user k ∈ [2 : K]\Ud, since there are Nd,k users among the set of users [k : K] that

belong to set Ud, there are
(
K−k−Nd,k

r

)
different (r + 1)-element subsets Sr+1

[K],l, such

that Sr+1
[K],l∩ (Ud ∪ [k − 1]) = ∅ and k ∈ Sr+1

[K],l, for l = 1, . . . ,
(
K
r+1

)
. Note that, if k ∈ Ud,

the second term on the RHS of (4.20) includes no content. Thus, if k ∈ [2 : K] ∩ Ud,



Chapter 4. Caching over Gaussian Broadcast Channels 96

Algorithm 7 Centralized Caching and Coded Packet Generation

1: procedure Placement Phase

2: Wi =
⋃(Kr )
l=1 Wi,Sr

[K],l
, for i = 1, ..., N

3: Uk =
⋃
i∈[N ]

⋃
l∈[(Kr )]:k∈Sr[K],l

Wi,Sr
[K],l

, for k = 1, . . . ,K

4: end procedure

5: procedure Coded Packet Generation
6: WSr+1

[K],l
=
⊕

k∈Sr+1
[K],l

Wdk,Sr+1
[K],l
\{k}, for l = 1, ...,

(
K
r+1

)
7: W̃k =

⋃
l:Sr+1

[K],l
∩Ud 6=∅,Sr+1

[K],l
∩[k−1]=∅,k∈Sr+1

[K],l
WSr+1

[K],l
, for k = 1, . . . ,K

8: end procedure

total rate targeted for user k is

Rd,r,k =

(
K−k
r

)(
K
r

) R =

(∏k−1

i=0

K − r − i
K − i

)
R, (4.21)

while the total rate targeted for user k, k ∈ [2 : K]\Ud, is

Rd,r,k =

(
K−k
r

)
−
(K−k−Nd,k

r+1

)(
K
r

) R. (4.22)

In summary, the proposed achievable scheme intends to deliver contents of total rate

Rd,r,k to user k, for k ∈ [K], where

Rd,r,k ,


(K−kr )
(Kr )

R, if k ∈ Ud,

(K−kr )−(K−k−Nd,k
r )

(Kr )
R, otherwise.

(4.23)

The centralized caching and coded packet generation explained above is summarized

in Algorithm 7.

Once the coded packets targeted to each user are determined, the next step is

to design the physical layer coding scheme to deliver these packets over the Gaus-

sian BC. Given d, we generate K codebooks, where the codebook k ∈ [K] is de-

signed to deliver the contents W̃k to user k. The k-th codebook consists of 2nRd,r,k

i.i.d. Gaussian codewords xnk (W,d), generated according to the normal distribution

N
(
0, αkP

C
UB (R,M,d)

)
, where αk ≥ 0 and

∑K
i=1 αi = 1. The transmission is performed
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through superposition coding; that is, the channel input is given by
∑K

k=1 x
n
k (W,d, q̃k),

where q̃k ∈
[
2nR

C
d,r,k

]
. User k decodes codewords xn1 (W,d) , ..., xnk (W,d) by successive

decoding, considering all the codewords in higher levels as noise. If all the k codewords

are decoded successfully, user k ∈ [K] can recover contents W̃1, ..., W̃k. Accordingly,

any user k ∈ [K] will receive all the coded contents targeted for it except those that

are not intended for at least one user in Ud (which have not been delivered); that is,

user k receives all the coded contents

⋃
l:Sr+1

[K],l
∩Ud 6=∅,k∈Sr+1

[K],l

WSr+1
[K],l

. (4.24)

Thanks to the degradedness of the underlying Gaussian BC, it can also obtain all the

coded contents targeted for users in [k − 1], which are also intended for at least one

user in Ud, i.e., all the coded contents in

⋃
l:Sr+1

[K],l
∩Ud 6=∅,[k−1]∩Sr+1

[K],l
6=∅
WSr+1

[K],l
. (4.25)

Note that, if k ∈ Ud, (4.24) reduces to
⋃
l:k∈Sr+1

[K],l
WSr+1

[K],l
, which shows that the demand

of user k ∈ Ud is satisfied. Next, we illustrate that the users in [K]\Ud can obtain their

requests without being delivered any extra messages. Given any set of users Sr+1
[K],l such

that Sr+1
[K],l ∩Ud = ∅, we need to show that every user in Sr+1

[K],l can decode all the coded

messages WV\G , ∀G ∈ GV\Ud, where V = Sr+1
[K],l ∪Ud. In this case, they can also decode

WSr+1
[K],l

through (4.15).

Assume that there exists a set of users Sr+1
[K],l such that Sr+1

[K],l ∩ Ud = ∅; set V =

Sr+1
[K],l ∪ Ud. According to (4.16b), there is at least one user in Ud in any set of users

V\G, ∀G ∈ GV\Ud. Thus, all the coded messages WV\G have been delivered by the

proposed delivery scheme. Remember that, for each user k ∈ Sr+1
[K],l and ∀G ∈ GV\Ud,

either k ∈ V\G or ∃k′ ∈ V\G, where dk′ = dk and k′ ∈ Ud, i.e., h2
k′ ≤ h2

k. If k ∈ V\G,

since V\G ∩ Ud 6= ∅, according to (4.24), user k can obtain WV\G . If ∃k′ ∈ V\G with

dk′ = dk and k′ ∈ Ud, then user k′ can decode WV\G , and since h2
k′ ≤ h2

k, user k can

also decode WV\G . Thus, each user k ∈ Sr+1
[K],l can decode WSr+1

[K],l
successfully, for any

set of users Sr+1
[K],l that satisfies Sr+1

[K],l ∩Ud = ∅. This fact confirms that the demands of

all the users in [K]\Ud are satisfied.
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We remark here that, with the proposed coded delivery scheme, the coded packets

targeted to user k are delivered only to users in [k], and not to the any of the users in

[k + 1 : K], for k ∈ [K]. Next, we provide an example to illustrate the proposed joint

cache and channel coding scheme.

Example: Consider K = 5 users, each equipped with a cache of normalized size

M = N/5, i.e., r = 1. File Wi is partitioned into 5 equal-length subfiles Wi,{1}, . . .,

Wi,{5}, each of which is of rate R/5, for i ∈ [N ]. Cache contents of user j after the

placement phase is given by

Bj =
⋃

i∈[N ]
Wi,{j}, j ∈ [5]. (4.26)

Assuming that N ≥ 3, let the user demands be d = (1, 2, 1, 1, 3), where we have

Nd = 3, and Ud = {1, 2, 5}. We generate the following coded packets:

W{1,2} = W1,{2} ⊕W2,{1}, (4.27a)

W{1,3} = W1,{3} ⊕W1,{1}, (4.27b)

W{1,4} = W1,{4} ⊕W1,{1}, (4.27c)

W{1,5} = W1,{5} ⊕W3,{1}, (4.27d)

W{2,3} = W2,{3} ⊕W1,{2}, (4.27e)

W{2,4} = W2,{4} ⊕W1,{2}, (4.27f)

W{2,5} = W2,{5} ⊕W3,{2}, (4.27g)

W{3,5} = W1,{5} ⊕W3,{3}, (4.27h)

W{4,5} = W1,{5} ⊕W3,{4}. (4.27i)

The coded contents W̃k targeted to user k, k ∈ [5], are:

W̃1 = W{1,2},W{1,3},W{1,4},W{1,5}, (4.28a)

W̃2 = W{2,3},W{2,4},W{2,5}, (4.28b)

W̃3 = W{3,5}, (4.28c)

W̃4 = W{4,5}, (4.28d)

W̃5 = 0. (4.28e)
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We perform superposition coding to deliver these contents, and send
∑4

k=1 x
n
k (W,d, q̃k),

where q̃1 ∈
[
24nR/5

]
, q̃2 ∈

[
23nR/5

]
, q̃3 ∈

[
2nR/5

]
, and q̃4 ∈

[
2nR/5

]
. User k, k ∈ [5], de-

codes the codewords xn1 (W,d) , ..., xnk (W,d) by successive decoding, considering the

higher level codewords as noise. If successful, user k can recover W̃1, . . . , W̃k, k ∈ [5].

Now, note that user 1 can recover W1 from W̃1 together with its cache contents; user

2 can decode W2 having received the coded packets W{1,2}, W{2,3}, W{2,4}, and W{2,5}

along with its cache contents; coded packets W{1,5}, W{2,5}, W{3,5}, and W{4,5}, and

its cache contents B5 enable user 5 to decode W3; user 3 can directly obtain W{1,3},

W{2,3}, and W{3,5}, and it can generate W{3,4} as follows:

W{3,4} = W{1,3} ⊕W{1,4}, (4.29)

so it can decode W1 together with its cache contents. Note that both W{1,3} and W{1,4}

are delivered within W̃1, which is decoded by user 3. Similarly, user 4 will be delivered

W{1,4}, W{2,4}, and W{4,5}, and it can also recover W{3,4} through (4.29), and together

with its cache contents it can recover W1.

4.4.2 Non-integer r Values

Here we extend the proposed scheme to non-integer r values. We divide the whole

database as well as the cache memory of the users into two, such that the corresponding

r parameters for both parts are integer. This way we can employ the placement and

delivery schemes introduced in Section 4.4.1 for each part separately.

Placement phase: Each fileWi, for i = 1, ..., N , is divided into two non-overlapping

subfiles, W 1
i of rate R1 and W 2

i of rate R2. We set

R1 = (brc+ 1− r)R, (4.30a)

R2 = (r − brc)R, (4.30b)

such that R1 +R2 = R. For subfiles
{
W 1

1 , . . . ,W
1
N

}
, we perform the placement phase

proposed in Section 4.4.1 corresponding to the normalized global cache size brc, which

requires a cache size of n (brcN/K)R1 bits. While, for subfiles
{
W 2

1 , . . . ,W
2
N

}
, we
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perform the placement phase proposed in Section 4.4.1 corresponding to the normalized

global cache size brc+ 1, which requires a cache size of n ((brc+ 1)N/K)R2 bits. By

summing up, the total cache size is found to be nMR bits, which shows that the cache

size constraint is satisfied.

Delivery phase: For any demand vector d, we perform the proposed coded delivery

phase in Section 4.4.1 corresponding to the normalized global cache size brc to deliver

the missing bits of subfiles
{
W 1

1 , . . . ,W
1
N

}
to the intended users. Moreover, the missing

bits of subfiles
{
W 2

1 , . . . ,W
2
N

}
are delivered to the intended users by performing the

coded delivery scheme proposed in Section 4.4.1 corresponding to the normalized global

cache size brc+ 1.

For an arbitrary demand vector d = (d1, . . . , dK), we define

W i

Sri+1

[K],l

,
⊕

k∈Sri+1

[K],l

W i

dk,S
ri+1

[K],l
\{k}

, for i = 1, 2, (4.31)

where r1 , brc and r2 , brc+1. According to Algorithm 7, by performing the central-

ized caching and coded delivery scheme proposed in Section 4.4.1 for the normalized

global cache size brc to serve the subfiles
{
W 1

1 , . . . ,W
1
N

}
, each of rate R1, user k ∈ [K]

should receive

W̃ 1
k =

⋃
l:Sbrc+1

[K],l
∩Ud 6=∅,S

brc+1
[K],l

∩[k−1]=∅,k∈Sbrc+1
[K],l

W 1

Sbrc+1
[K],l

, (4.32)

of the following total rate obtained according to (4.23)

Rd,brc,k =


(K−kbrc )

( Kbrc)
R1, if k ∈ Ud,

(K−kbrc )−(K−k−Nd,k
brc )

( Kbrc)
R1, otherwise.

(4.33)

Similarly, to serve the subfiles
{
W 2

1 , . . . ,W
2
N

}
, each of rate R2, user k ∈ [K] should

receive

W̃ 2
k =

⋃
l:Sbrc+2

[K],l
∩Ud 6=∅,S

brc+2
[K],l

∩[k−1]=∅,k∈Sbrc+2
[K],l

W 2

Sbrc+2
[K],l

, (4.34)
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of total rate

Rd,brc+1,k =


(K−kbrc+1)

( K
brc+1)

R2, if k ∈ Ud,

(K−kbrc+1)−(K−k−Nd,k
brc+1

)

( K
brc+1)

R2, otherwise.

(4.35)

Thus, W̃k ,
(
W̃ 1
k , W̃

2
k

)
, at a total rate of RS

d,k , Rd,brc,k +Rd,brc+1,k given by

RS
d,k =


(K−kbrc )

( Kbrc)
(brc+ 1− r)R+

(K−kbrc+1)

( K
brc+1)

(r − brc)R, if k ∈ Ud,

(K−kbrc )−(K−k−Nd,k
brc )

( Kbrc)
(brc+ 1− r)R+

(K−kbrc+1)−(K−k−Nd,k
brc+1

)

( K
brc+1)

(r − brc)R, otherwise

(4.36)

is delivered to user k, for k = 1, ...,K.

4.4.3 Transmit Power Analysis

In the proposed delivery scheme, user k ∈ [K] decodes codewords xn1 (W,d) , . . . ,

xnk (W,d) successively considering all the other codewords in higher levels as noise.

User k can decode its intended message successfully if, for k ∈ [K],

RC
d,k ≤

1

2
log2

(
1 +

αkh
2
kP

C
UB (R,M,d)

h2
k

∑K
i=k+1 αiP

C
UB (R,M,d) + 1

)
. (4.37)

From Proposition 4.3.1, the corresponding minimum required power is given by

PC
UB (R,M,d) ,

∑K

i=1

(
22RC

d,i − 1

h2
i

)∏i−1

j=1
22RC

d,j . (4.38)

Thus, the average and peak power-memory trade-offs of the proposed achievable scheme

are given by Ed

[
PC

UB (R,M,d)
]

= P̄C
UB(R,M) and P̂C

UB (R,M) = max
d

{
PC

UB (R,M,d)
}

as stated in Theorem 4.1, respectively, where the demands are distributed uniformly.

Observe that for demand vectors with the same Ud set the required power PC
UB (R,M,d)

is the same. Let DUd denote the set of all demand vectors with the same Ud set. We

define PC
UB (R,M,DUd) as the required power PC

UB (R,M,d) for any demand vector
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d ∈ DUd . Thus, we have

P̂C
UB (R,M) = max

Ud

{
PC

UB (R,M,DUd)
}
. (4.39)

It is shown in [94, Appendix B] that the worst-case demand combination for the pro-

posed centralized caching scheme happens when the first min{N,K} users; that is, the

users with the worst channel gains, request distinct files, i.e., when Ud = [min{N,K}],

and P̂C
UB (R,M) is given by (4.11).

4.5 Decentralized Caching and Delivery

Here we extend our centralized caching scheme to the decentralized caching. The

corresponding average and peak power-memory trade-offs are given in the following

theorem.

Theorem 4.2. For decentralized caching followed by delivery over a Gaussian BC, we

have

P̄ ∗(R,M) ≤ P̄D
UB(R,M) ,

1

NK

∑
d∈[N ]K

 K∑
i=1

(
22RD

d,i − 1

h2
i

)
i−1∏
j=1

22RD
d,j

 , (4.40a)

where, for k = 1, ...,K,

RD
d,k ,


(
1− M

N

)k
R, if k ∈ Ud,(

1− M
N

)k (
1−

(
1− M

N

)Nd,k
)
R, otherwise,

(4.40b)

and

P̂ ∗(R,M) ≤ P̂D
UB(R,M) ,

min{N,K}∑
i=1

22R(1−M
N )

i

− 1

h2
i

 2
2R( NM−1)

(
1−(1−M

N )
i−1
)
.

(4.41)

Proof. The decentralized caching scheme to achieve the average and peak power-

memory trade-offs outlined in Theorem 4.2 is described in the following.
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4.5.1 Placement Phase

We perform decentralized uncoded cache placement [26], where each user caches

nMR/N random bits of each file of length nR bits independently. Since there are a

total of N files, the cache size constraint is satisfied. The part of file i cached exclusively

by the users in set S ⊂ [K] is denoted by Wi,S , for i ∈ [N ]. For n large enough, the

rate of Wi,S can be approximated by
(
M
N

)|S|(
1− M

N

)K−|S|
R. The cache contents at

user j is given by

Bj =
⋃

i∈[N ]

⋃
S⊂[K]:j∈S

Wi,S . (4.42)

4.5.2 Delivery phase

Consider any non-empty set of users S ⊂ [K]. For a demand vector d, by delivering

the coded message WS =
⊕

k∈SWdk,S\{k} of rate (M/N)|S|−1(1−M/N)K−|S|+1R to

users in S, each user i ∈ S can recover subfile Wdi,S\{i} since it has cached all the

subfiles Wdj ,S\{j}, ∀j ∈ S\{i}. For each k ∈ [K], delivering
⋃
S⊂[K]:k∈SWS enables

user k to recover all the subfiles Wdk,S\{k}, ∀S ⊂ [K] and k ∈ S. The demand of user k,

k ∈ [K], is fully satisfied after receiving
⋃
S⊂[K]:k∈SWS along with its cache contents.

Similar to the proposed scheme for the centralized caching scenario, given a demand

vector d, the delivery phase is designed such that only the coded messages WS , ∀S ⊂

[K] that satisfy S ∩ Ud 6= ∅, are delivered, and the remaining coded messages can be

recovered through (4.15). To achieve this, for any such set S with S ∩ Ud 6= ∅, the

transmission power is adjusted such that the worst user in S can decode it; and so can

all the other users in S due to the degradedness of the Gaussian BC. Therefore, the

demand of every user in Ud is satisfied.

Note that in the centralized scenario described in Section 4.4.1, each coded packet

WSK,r+1
l

is targeted for a (r + 1)-element subset of users, where r ∈ [0 : K], for

l ∈
[(

K
r+1

)]
. While, in the decentralized scenario, coded packets are targeted for any

subset of users, i.e., for (r + 1)-element subset of users, ∀r ∈ [0 : K]. By applying a

similar technique as the delivery phase outlined in Algorithm 7, given a demand vector
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d, the following contents are targeted for user k, k ∈ [K]:

W̃k =
⋃
S⊂[k:K]:S∩Ud 6=∅,k∈S

WS , (4.43)

which are equivalent to

W̃k =
⋃
S⊂[k:K]:k∈S

WS −
⋃
S⊂[k:K]\Ud,k,k∈S

WS . (4.44)

For each user k, k ∈ [K], there are
(
K−k
i

)
different (i + 1)-element subsets of [k : K],

which include k, for i ∈ [0 : K−k]. Thus, if k ∈ Ud, from (4.44), the total rate targeted

for user k is

RD
d,k =

K−k∑
i=0

(
K − k
i

)(
M

N

)i(
1− M

N

)K−i
R =

(
1− M

N

)k
R. (4.45)

On the other hand, for each user k, k ∈ [K], there are
(K−k−Nd,k

i

)
different (i + 1)-

element subsets of [k : K]\Ud,k, which include k, for i ∈ [0 : K − k]. Thus, if k /∈ Ud,

from (4.44), the total rate targeted for user k ∈ [K] is given by

RD
d,k =

∑K−k

i=0

(
K − k
i

)(
M

N

)i(
1− M

N

)K−i
R

−
∑K−k−Nd,k

i=0

(
K − k −Nd,k

i

)(
M

N

)i(
1− M

N

)K−i
R

=

(
1− M

N

)k(
1−

(
1− M

N

)Nd,k
)
R. (4.46)

In total, the rate of contents targeted for user k, k ∈ [K], is given by

RD
d,k =


(
1− M

N

)k
R, if k ∈ Ud,(

1− M
N

)k (
1−

(
1− M

N

)Nd,k
)
R, otherwise.

(4.47)

Given a demand vector d, the transmitted codeword xn (W,d) is generated as the

linear superposition of K codewords xn1 (W,d) , ..., xnK (W,d), each chosen from an

independent codebook. Codebook k consists of 2nR
D
d,k i.i.d. codewords xnk (W,d)

generated according to the normal distribution N
(
0, αkP

D
UB (R,M,d)

)
, where αk ≥ 0

and
∑K

i=1 αi = 1, which satisfy the power constraint, for k ∈ [K].



Chapter 4. Caching over Gaussian Broadcast Channels 105

User k, k ∈ [K], decodes codewords xn1 (W,d) , ..., xnk (W,d) through successive de-

coding, while considering all the codewords xnk+1 (W,d) , ..., xnK (W,d) as noise. Thus,

if user k ∈ [K] can successfully decode all the k channel codewords intended for it,

it can then recover the contents W̃1, ..., W̃k, from which it can obtain all the coded

contents
⋃
S∩Ud 6=∅,[k]∩S6=∅WS . Accordingly, each user k ∈ [K] can obtain all the coded

contents targeted for it except those that are not intended for at least one user in Ud
(which have not been delivered), i.e., all the coded contents

⋃
S∩Ud 6=∅,k∈S

WS . (4.48)

It can further obtain all the coded contents targeted for users [k − 1], which are also

intended for at least one user in Ud, i.e., all the coded contents
⋃
S∩Ud 6=∅,[k−1]∩S6=∅WS .

Note that, if k ∈ Ud, (4.48) reduces to
⋃
k∈SWS , which shows that the demand of each

user k ∈ Ud is satisfied through the proposed delivery scheme. Next, we illustrate that

the users in [K]\Ud can obtain their requested files without being delivered any extra

messages. Similarly to the centralized scenario, given any set of users S such that

S ∩Ud = ∅, by setting V = S ∪Ud, from the fact that, for each user k ∈ S, k ∈ V\G or

k′ ∈ V\G, where k′ < k, it can be illustrated that every user in S can decode all coded

contents WV\G , ∀G ∈ GV\Ud. In this case, they all can also decode WS through (4.15).

4.5.3 Transmit Power Analysis

For a demand vector d, user k can decode the channel codewords up to level k

successfully, considering all the other codewords in higher levels as noise, if

RD
d,k ≤

1

2
log2

(
1 +

αkh
2
kP

D
UB (R,M,d)

h2
k

∑K
i=k+1 αiP

D
UB (R,M,d) + 1

)
, for k ∈ [K]. (4.49)

From Proposition 4.3.1, the minimum required power is given by

PD
UB (R,M,d) ,

∑K

i=1

(
22RD

d,i − 1

h2
i

)∏i−1

j=1
22RD

d,j . (4.50)

Thus, the average power-memory trade-off for the proposed decentralized caching

scheme is given by Ed

[
PD

UB (R,M,d)
]

= P̄D
UB(R,M) stated in Theorem 4.2.
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With the proposed decentralized caching scheme, the peak power P̂D (R,M) =

max
d

{
PD

UB (R,M,d)
}

can be achieved. Observe that, for demand vectors with the

same set of users Ud, the required power PD
UB (R,M,d) is the same. We define

PD
UB (R,M,DUd) as the required power PD

UB (R,M,d) for any demand vector d ∈ DUd .

Thus, we have

P̂D (R,M) = max
Ud

{
PD

UB (R,M,DUd)
}
. (4.51)

It is shown in [94, Appendix C] that the worst-case demand combination happens when

Ud = [min{N,K}], and P̂D
UB (R,M) is found as in (4.41).

4.6 Lower Bound

In the following theorem we lower bound P̄ ∗ (R,M) and P̂ ∗ (R,M) by constraining

the placement phase to uncoded caching. The main challenge in deriving a lower bound

for the cache-aided BC studied here is the lack of degradedness due to the presence of

the caches. To derive a lower bound, we assume that the files requested by users in

[k − 1] and their cache contents are provided to the other users. We then exploit the

degradedness of the resultant system to lower bound the performance of the original

model.

Theorem 4.3. In cache-aided content delivery over a Gaussian BC with uncoded cache

placement, the minimum average power is lower bounded by P̄LB(R,M) defined as

P̄LB(R,M) ,EUd

[∑Nd

i=1

(
22R(1−min{iM/N,1}) − 1

h2
πUd (i)

)∏i−1

j=1
22R(1−min{jM/N,1})

]
,

(4.52)

where EUd [·] takes the expectation over all possible sets Ud, and πS is a permutation

over any subset of users S ⊂ [K], such that h2
πS(1) ≤ h2

πS(2) ≤ · · · ≤ h2
πS(|S|). The

minimal required peak transmit power for the same system is lower bounded

P̂LB(R,M) , max
S⊂[min{N,K}]


|S|∑
i=1

(
22R(1−min{iM/N,1}) − 1

h2
πS(i)

)∏i−1

j=1
22R(1−min{jM/N,1})

 .

(4.53)
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Figure 4.1: Power-memory trade-off for a Gaussian BC with K = 5 users, and
N = 8 files.

Proof. The detailed proof is provided in [94, Section V].

Remark 4.6.1. Considering all possible demand vectors, we have a total of 2K−1

different Ud sets. This follows from the fact that Nd ≤ K and 1 ∈ Ud, ∀d. For a given

demand vector d, let Ud = {u1, u2, ..., uNd
}, where 1 = u1 ≤ u2 ≤ · · · ≤ uNd

. The

number of demand vectors with the same Ud is given by

NUd ,

(
N

Nd

)
Nd!

(∏Nd

j=2
juj+1−uj−1

)
, (4.54)

where we define uNd+1 , K + 1. Thus, the lower bound in (4.52) reduces to

P̄LB(R,M) =
1

NK

∑
Ud⊂[K],1∈Ud

NUd

Nd∑
i=1

(
22R(1−min{iM/N,1}) − 1

h2
πUd (i)

)
i−1∏
j=1

22R(1−min{jM/N,1}).

(4.55)

4.7 Numerical Results

For the numerical results, we assume that the rate of the files in the library is fixed

to R = 1, and the channel gains are 1/h2
i = 2− 0.2(i− 1), i ∈ [K].
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Figure 4.2: Power-memory trade-off for a Gaussian BC with K = 5 users, and
various number of files N ∈ {10, 20, 40, 100} in the library.

The bounds on the average power-memory trade-off P̄ ∗(R,M) and peak power-

memory trade-off P̂ ∗(R,M) are shown in Fig. 4.1a and Fig. 4.1b, respectively, for

K = 5 users, and N = 8 files in the library. The gap between the proposed centralized

and decentralized caching schemes, which measures the power required to compensate

for the decentralization of the cache placement phase, is relatively small, particularly

for small and large values of the cache size. This shows that the proposed achievable

scheme is robust against the decentralization. We observe that the minimum aver-

age and peak powers drop very quickly even with a small cache size available at the

users. The lower bound is generally tight for both average and peak power values with

respect to the upper bound for the centralized scenario for the whole range of cache

capacities4. The peak power values exhibit similar behaviour to the average power,

with significantly higher values. This shows that adapting the transmit power to the

demand combination can reduce the average energy consumption significantly, while

the transmitter spends much higher energy for some demand combinations.

Fig. 4.2 illustrates the effect of the number of files N on the upper bound. In Fig.

4.2a and Fig. 4.2b the average power values and the peak power values are considered,

respectively, for K = 5 users, and different number of files N ∈ {10, 20, 40, 100}. The

gap between the centralized and decentralized caching scenarios increases with N .

4Note that the figure does not include the cache size range 4 ≤ M ≤ 8, in which case the three
curves coincide in both figures.
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Figure 4.3: Power-memory trade-off for a Gaussian BC with various number of
users K ∈ {3, 4, 5}, and N = 10 in the library.

Another observation to be noted is the increase in the average power with N , even

though the number of files requested by the users remains the same. This stems from

two reasons: first, the effect of the local caches diminishes as the library size increases;

and second, the users are less likely to request the same files from a larger library (and

hence the increase in the average power values for low M values). We also observe

that the peak power increases with N , but only for non-zero M values. This is because

the increase in the peak power is only due to the diminished utility of the cache size,

whereas the peak power depends only on the worst-case demand combination; and

thus, does not depend on the likelihood of common requests. We note that, for a fixed

number of users K, the gap between the average power and the peak power reduces

by increasing N , and for N � K, the gap diminishes, since, with high probability, the

users demand distinct files.

The effect of the number of users K on the average and peak power values for both

the centralized and decentralized scenarios is shown in Fig. 4.3. Fig. 4.3a and Fig.

4.3b demonstrate the average and peak power values as a function of M , respectively,

for N = 10 and K ∈ {3, 4, 5} users. The gap between centralized and decentralized

caching increases with K in both figures. The average and peak power values also

increase with K, as expected. For a fixed N value, the increase in the peak power is

higher than the one in the average power. This is due to the fact that the likelihood
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of common demands increases with K, and so does the gap between the average and

peak power values.

4.8 Conclusions

In this chapter we have considered cache-aided content delivery over a Gaussian BC.

Considering same rate contents in the library, we have studied both the minimum peak

transmission power, which is the minimum transmit power that can satisfy all user

demand combinations, and the minimum average transmit power, averaged across all

demand combinations, assuming uniform demand distributions. We have proposed a

centralized caching and coded delivery scheme assuming that the channel conditions

in the delivery phase are not known beforehand. Coded contents are transmitted in

the delivery phase to their intended receivers using superposition coding and power

allocation. We have then extended the achievable scheme to the decentralized caching

scenario. We have also provided a lower bound on the required peak and average

transmission power values assuming uncoded cache placement. Our results indicate

that even a small cache size at the receivers can provide a significant reduction in the

required transmission power level highlighting the benefits of caching in improving the

energy efficiency of wireless networks.



Chapter 5

Caching of Multi-Layer Messages

5.1 Overview

In this chapter we study a cache-aided K-user Gaussian BC. The users are equipped

with caches of different sizes, which are filled without the knowledge of the user requests

in a centralized manner. It is assumed that each file can be delivered to different users

at different rates, which may correspond to different quality representations of the

underlying content, e.g., scalable coded video segments. Accordingly, instead of a

single achievable rate, the system performance is characterized by a rate tuple, which

corresponds to the vector of rates users’ requests can be delivered at. The goal is to

characterize the set of all achievable rate tuples for a given total cache size by designing

joint cache and channel coding schemes together with cache allocation across users.

Assuming that the users are ordered in increasing channel quality, each file is coded

into K layers, and only the first i layers of the requested file are delivered to user i,

i ∈ [K]. Three different coding schemes are proposed, which differ in the way they

deliver the coded contents over the BC; in particular, time-division, superposition, and

dirty paper coding schemes are studied. Corresponding achievable rate regions are

characterized, and compared with a novel outer bound.

5.2 Introduction

In most of the existing literature on coded caching, the key assumption is that

the files in the library are coded at a single common rate, and each user requests

one file from the library in its entirety. In this chapter, similar to [40], we allow the

users to request the files at different rates; however, different from [40], considering a

111
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Gaussian BC in the delivery phase, we aim at characterizing the rate tuples at which

the requested contents can be delivered to the users [95].

We argue that this formulation allows us to better exploit the asymmetric resources

available to users for content delivery over a noisy BC. To see the difference between

the scalar capacity definition used in [92] and the capacity region formulation proposed

here, consider a Gaussian BC without any caches, i.e., M = 0. In this case, the capacity

as defined in [92] is limited by the rate that can be delivered to the worst user, whereas

with our formulation any rate tuple within the capacity region of the underlying BC is

achievable, providing a much richer characterization of the performance for cache-aided

delivery over a noisy BC.

The motivation here is to deliver the contents at higher rates to users with better

channels, rather than being limited by the weak users. As proposed in [40], the multiple

rates of the same file may correspond to the video files in the library encoded into

multiple quality layers using scalable coding, so the user with a higher delivery rate

receives a better quality description of the same file. Accordingly, each file in the

library is coded into K layers, K being the number of users, ordered in increasing

channel qualities, where user i receives layers 1 to i of its request, for i ∈ [K]. We

consider a centralized placement phase, and assume that the channel qualities of the

users in the delivery phase are known in advance. By allowing users to have different

cache capacities (similarly to [143] considering an error-free shared link during the

delivery phase), we consider a total cache size in the network as a constraint, and

optimize cache allocation across the users and different layers of the files. Contents

cached during the placement phase provide multicasting opportunities to the server

to deliver the missing parts in the same layer of the files to different users. When

delivering these coded contents to users over the underlying BC, we consider three

different techniques. Corresponding coding schemes are called joint cache and time-

division coding (CTDC), joint cache and superposition coding (CSC), and joint cache

and dirty paper coding (CDPC). We also present an outer bound on the rate region

when the placement phase is constrained to uncoded caching, and compare it with the

achievable rate tuples obtained though the proposed coding schemes.

The remainder of this chapter is organized as follows. In Section 5.3 we present the
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system model. We present different inner bounds on the capacity region in Section 5.4,

while in Sections 5.5 and 5.6 we elaborate the achievable schemes providing the inner

bounds and analyze their achievable rate regions. We also establish an outer bound

on the capacity region in Section 5.7. Numerical results are presented in Section 5.8,

and conclusions are drawn in Section 5.9.

5.3 System Model

We consider cache-aided content delivery over a K-user Gaussian BC. The transmit-

ter has a library of N files, W. File Wi is coded into K layers W
(1)
i , . . . ,W

(K)
i , such

that layer W
(l)
i is distributed uniformly over the set

[⌈
2nR

(l)
⌉]

, where R(l) represents

the rate of the l-th layer and n denotes the blocklength, for i ∈ [N ], l ∈ [K]. We denote

the l-th layers of all the files by W(l) ,
(
W

(l)
1 , ...,W

(l)
N

)
, for l ∈ [K].

Assume that user k, k ∈ [K], has a cache of capacity nMk bits. For a demand vector

d, the users are served by a common message Xn(W) , (X1(W), . . . , Xn(W)) satisfy-

ing the average power constraint. User k, receives Y n
k (W) , (Yk,1(W), . . . , Yk,n(W))

through a Gaussian channel1

Y n
k (W) = Xn(W) + Znσk , for k ∈ [K], (5.1)

where Znσk , (Zσk,1, . . . , Zσk,n), and Zσk,i is an independent noise at user k at the i-th

channel use distributed according to N
(
0, σ2

k

)
. Without loss of generality we order

the users in increasing channel quality, i.e., we assume that σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
K . We

define σ , (σ1, . . . , σK).

Placement phase is performed in a centralized manner assuming σ is known by the

server. An
(
n,R(1), . . . , R(K),M1, . . . ,MK

)
code consists of the following:

• K caching functions φ
(K)
k , ∀k ∈ [K], where

φ
(K)
k :

{[⌈
2nR

(1)
⌉]
× · · · ×

[⌈
2nR

(K)
⌉]}N

× R+K →
[⌊

2nMk
⌋]

(5.2)

1For ease of presentation, we consider a simple channel model, and we do not consider fading in
this chapter; however, the results here can be easily extended to the Gaussian fading channel model.
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maps W and σ to the cache content Bk of user k, i.e., Bk = φ
(K)
k (W,σ).

• An encoding function with the knowledge of the noise variances σ

ψ(K) :
{[⌈

2nR
(1)
⌉]
× · · · ×

[⌈
2nR

(K)
⌉]}N

× R+K × [N ]K → Rn, (5.3)

which generates the channel input as Xn(W) = ψ(K) (W,σ,d), for demand

vector d, satisfying the average power constraint 1
n

∑n
i=1X

2
i (W) ≤ P .

• K decoding functions µ
(K)
k , ∀k ∈ [K], where, for a demand vector d,

µ
(K)
k : Rn ×

[⌊
2nMk

⌋]
× R+K × [N ]K →

[⌈
2nR

(1)
⌉]
× · · · ×

[⌈
2nR

(k)
⌉]

(5.4)

reconstructs the layers Ŵ
(1)
k , . . . , Ŵ

(k)
k from the channel output Y n

k (W), cache

content Bk, and noise variances σ.

The probability of error is defined as P
(K)
e , Pr

{⋃
d∈[N ]K

⋃K
k=1

⋃k
l=1

{
Ŵ

(l)
k 6= W

(l)
dk

}}
.

Note that the generated code implicitly assumes that user k is interested only in

the first k layers of its demand, i.e., W
(1)
dk
, . . . ,W

(k)
dk

, for k ∈ [K]. In a more general

formulation, we could instead consider an arbitrary ordering of the rates among the

users, but here the goal is to deliver a higher rate to a user with a better channel.

For a given total cache sizeMtot, we say that the rate tuple (R1, . . . , RK) is achievable

if for every ε > 0, there exists an
(
n,R(1), . . . , R(K),M1, . . . ,MK

)
code, which satisfies

P
(K)
e < ε, Rk ≤

∑k
l=1R

(l), and
∑K

k=1Mk ≤Mtot. For average power constraint P and

a total cache size Mtot, the capacity region C(P,Mtot) of the caching system described

above is defined as the closure of the all achievable rate tuples. Our goal is to find

inner and outer bounds on C(P,Mtot).

Next, we present some definitions that will simplify our ensuing presentation. For a

fixed value of r, r ∈ [K − 1], we define gl ,
∑l

j=1

(
K−j
r

)
, ∀l ∈ [K − r], and let g0 = 0.

We note that gK−r =
(
K
r+1

)
. We denote the set of users [l : K] by Kl, for l ∈ [K].

We label (r + 1)-element subsets of users in K1, so that the subsets with the smallest
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element l are labelled as

Sr+1
K1,1+gl−1

, . . . ,Sr+1
K1,gl

, for l = 1, ...,K − r. (5.5)

Thus, we have, for l ∈ [K − r],

{
Sr+1
K1,1+gl−1

\{l}, . . . ,Sr+1
K1,gl
\{l}

}
=

{
SrKl+1,1

, . . . ,SrKl+1,(K−lr )

}
, (5.6)

i.e., the family of all (r + 1)-element subsets of K1 excluding l, which is their smallest

element, is the same as the family of all r-element subsets of Kl+1. We note that the

number of subsets of users in both sets in (5.6) is
(
K−l
r

)
, l ∈ [K − r]. Without loss of

generality, we label the subsets of users so that, for l ∈ [K − r],

Sr+1
K1,i+gl−1

\{l} = SrKl+1,i
, for i ∈

[(
K−l
r

)]
. (5.7)

5.4 Achievability Results

Here we present the results of three achievable schemes, namely joint cache and

time-division coding (CTDC), joint cache and superposition coding (CSC), and joint

cache and dirty paper coding (CDPC), providing inner bounds on C(P,M).

5.4.1 CTDC Scheme

In the following, we present an achievable rate region achieved by the CTDC scheme.

With CTDC, the missing bits corresponding to the layers in W(l) are delivered in a

coded manner exploiting the cached contents as in the standard coded caching frame-

work. The coded contents are transmitted over the BC using time-division among

layers. We elaborate the placement and delivery phases of the CTDC scheme in Sec-

tion 5.5.

Proposition 5.4.1. For the system described in Section 5.3 with average power P and

total cache size Mtot, the rate tuple (R1, ..., RK) is achievable by the CTDC scheme,

if there exist r1, . . . , rK , where rl ∈ [0 : K − l], ∀l ∈ [K], non-negative R(1), . . . , R(K),
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and non-negative λ(1), . . . , λ(K), such that Rk =
∑k

l=1R
(l),
∑K

l=1 λ
(l) = 1, ∀k ∈ [K],

and

R(l) ≤ λ(l)

∑(K−l+1
tl

)
i=1

∏
k∈Kl\S

tl
Kl,i

CP
σ2
k∑(K−l+1

tl+1 )
i=1

∏
k∈Kl\S

tl+1

Kl,i
CP
σ2
k

, for l ∈ [K], (5.8a)

Mtot = N
∑K

l=1
rlR

(l), (5.8b)

where, for a, b ∈ R+, we define Cab , 1
2 log2 (1 + a/b).

Corollary 5.1. The following rate region for a total cache size Mtot and average power

P can be achieved by the CTDC scheme:

Cb(P,Mtot)

=
⋃

λ(1),...,λ(K):
∑K
l=1 λ

(l)=1

({R1, . . . , RK} : (R1, . . . , RK) and Mtot satisfy (5.8)) . (5.9)

Remark 5.4.1. Let (R̂1, . . . , R̂K) ∈ Cb(P,Mtot) and (R̃1, . . . , R̃K) ∈ Cb(P,Mtot).

Then, for any λ ∈ [0, 1], (λR̂1 + λ̄R̃1, . . . , λR̂K + λ̄R̃K) ∈ Cb(P,Mtot), where λ̄ , 1−λ.

This can be shown by joint time and memory-sharing. The whole library is divided

into two parts according to λ, and the delivery of the two parts are carried out over two

orthogonal time intervals of length λn and λ̄n using the codes for the two achievable

tuples. Thus, for a fixed total cache size Mtot, the rate pairs in the convex-hull of

Cb(P,Mtot) are achievable.

From convexity of rate region Cb(P,Mtot), a rate vector R∗ , (R∗1, . . . , R
∗
K) is on

the boundary surface of Cb(P,Mtot), if there exist non-negative coefficients ω1, . . . , ωK ,∑K
i=1 ωi = 1, for which R∗ is a solution to the following optimization problem:

max
λ(1),...,λ(K),R1,...,RK

K∑
i=1

ωiRi,

subject to {R1, ..., RK} ∈ Cb(P,Mtot). (5.10)
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In the other words, for given weights ω1, . . . , ωK , and total cache size Mtot, R∗ solves

the problem in (5.10), if R(1), . . . , R(K) is a solution of the following problem:

max
λ(1),...,λ(K),R(1),...,R(K)

∑K

i=1
ωi
∑i

l=1
R(l),

subject to (5.8a) and (5.8b),∑K

l=1
λ(l) = 1, (5.11)

and

R∗k =
∑k

l=1
R(l), for k = 1, . . . ,K. (5.12)

Remark 5.4.2. For given weights ω1, . . . , ωK , it is easy to verify that the problem in

(5.11) is a linear optimization problem; thus it is a convex optimization problem.

5.4.2 CSC and CDPC Schemes

Here we present the achievable rate regions for the CSC and CDPC schemes. We

introduce s1 and s2 to distinguish between the two, where we set s1 = 0 and s2 = 1

for CSC, while s1 = 1 and s2 = 0 for CDPC. We briefly highlight here that with

the CSC scheme, the coded packets of different layers are delivered over the Gaussian

BC through superposition coding, while the CDPC scheme uses dirty paper coding to

deliver the coded packets of different layers. The CSC scheme along with an example

highlighting the main techniques and the CDPC scheme are elaborated in Section 5.6.

Theorem 5.1. For the system described in Section 5.3 with average power P and total

cache size Mtot, the rate tuple (R1, ..., RK) is achievable, if there exist r ∈ [K−1], and

non-negative R(1), . . . , R(K), such that Rk =
∑k

l=1R
(l), for k ∈ [K], and

R(l) =



∑(Kr )
i=1 R

(1)
SrK1,i

, if l = 1,∑(K−l+1
r−1 )

i=1 R
(l)

Sr−1
Kl,i

, if l = 2, ...,K − r + 1,

0, otherwise,

(5.13a)
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and, for i ∈ [1 + gl−1 : gl] and l ∈ [K − r],

R
(1)

Sr+1
K1,i
\{k1}

≤ λiCρiPρ̄iPs2+σ2
k1

, ∀k1 ∈ Sr+1
K1,i

, (5.13b)

R
(l+1)
SrKl+1,i−gl−1

\{k2} ≤ λiC
ρ̄iP
ρiPs1+σ2

k2

, ∀k2 ∈ SrKl+1,i−gl−1
, (5.13c)

where ρ̄i , 1− ρi, and

Mtot = N

(
rR(1) + (r − 1)

∑K−r+1

l=2
R(l)

)
, (5.13d)

for some

0 ≤ ρi ≤ 1, for i = 1, ...,
(
K
r+1

)
, (5.13e)

0 ≤ λi ≤ 1, for i = 1, ...,
(
K
r+1

)
, (5.13f)∑( K

r+1)

i=1
λi = 1. (5.13g)

Corollary 5.2. The following rate region for a total cache size Mtot and average power

constraint P can be achieved:

Cc(P,Mtot)

=
⋃

ρ,λ:
∑( K

t+1)
i=1 λi=1

({R1, . . . , RK} : (R1, . . . , RK) and Mtot satisfy (5.13)) , (5.14)

where ρ ,
{
ρ1, . . . , ρ( K

t+1)

}
, and λ ,

{
λ1, . . . , λ( K

t+1)

}
.

For a fixed total cache size Mtot, the convexity of region Cc(P,Mtot) is followed

through the same argument as Remark 5.4.1, for both the CSC and CDPC schemes.

As a result, for a given total cache size Mtot, and for given non-negative coefficients

ω1, . . . , ωK , such that
∑K

i=1 ωi = 1, a rate vector R∗ is on the boundary surface of

the achievable rate region Cc(P,Mtot), if R(1), . . . , R(K) is a solution of the following

problem:

max
ρ,λ,R(1),...,R(K−t+1)

∑K

i=1
ωi
∑i

l=1
R(l),

subject to R(1), . . . , R(K−t+1) satisfy (5.13a),
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R(1) satisfy (5.13b),

R(2), . . . ,R(K−t+1) satisfy (5.13c),

Mtot satisfies (5.13d),

ρ and λ satisfy (5.13e)-(5.13g), (5.15a)

where

R(1) , R
(1)

StK1,1
, . . . , R

(1)

St
K1,(Kt )

, (5.15b)

R(l) , R
(l)

StKl,1
, . . . , R

(l)

St
Kl,(K−l+1

t−1 )
, for l ∈ [2 : K − t+ 1], (5.15c)

and

R∗k =
∑k

l=1
R(l), for k = 1, . . . ,K. (5.16)

Remark 5.4.3. Let R̃ , (R̃1, . . . , R̃K) and R̂ , (R̂1, . . . , R̂K) be two achievable rate

tuples for total cache capacities M̃tot and M̂tot, respectively. Then, λR̃ + λ̄R̂ can be

achieved through joint time and memory-sharing for a total cache size λM̃tot + λ̄M̂tot,

for some λ ∈ [0, 1]. For Mtot = 0, the system under consideration is equivalent to

the Gaussian BC without user caches, where user k requests a file of rate
∑k

l=1R
(l),

k ∈ [K], and rate tuple Rz , (Rz1 , ..., RzK ) is achievable by superposition coding,

where

Rzk = CγkP∑K
i=k+1 γiP+σ2

k

, for k ∈ [K], (5.17)

for some non-negative coefficients γ1, . . . , γK , such that
∑K

i=1 γi = 1. Hence, rate

tuples λRz + λ̄R̃ and λRz + λ̄R̂ are also achievable for total cache capacities λ̄M̃tot

and λ̄M̂tot, respectively, through time sharing.

5.5 CTDC Scheme (Proof of Proposition 5.4.1)

With the DTM scheme, the layers with W(l), for l ∈ [K], are cached and delivered

via a distinct time slot (TS). We elaborate the placement and delivery phases of the

CTDC scheme in the following.
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Placement phase: The layers with W(l) are cached partially by the users in Kl
constrained by their cache capacities, for l ∈ [K]. For caching factors r1, . . . , rK ,

where rl ∈ [0 : K − l], layer W
(l)
j is divided into

(
K−l+1
rl

)
disjoint subfiles W

(l)

j,SrlKl,1
,

. . . , W
(l)

j,Srl
Kl,(K−l+1

rl
)
, where subfile W

(l)

j,SrlKl,i
is of rate R

(l)

SrlKl,i
, for i ∈

[(
K−l+1
rl

)]
, l ∈ [K],

j ∈ [N ].2 We note that

R(l) =
∑(K−l+1

rl
)

i=1
R

(l)

SrlKl,i
, for l ∈ [K]. (5.18)

User k’s cache content, for k ∈ [K], is given by

Bk =
⋃N

j=1

⋃k

l=1

⋃
i∈
[
(K−l+1

rl
)
]
:k∈SrlKl,i

W
(l)

j,SrlKl,i
, (5.19)

which leads to a total cache size of

Mtot =
∑K

k=1
Mk = N

∑K

l=1
rlR

(l). (5.20)

Delivery phase: For a demand vector d, the server aims to deliver the coded packet

W
(l)

Srl+1

Kl,i
=
⊕

k∈Srl+1

Kl,i
W

(l)

dk,S
rl+1

Kl,i
\{k}

(5.21)

of rate

R
(l)

XOR,Srl+1

Kl,i
, max

k∈Srl+1

Kl,i

{
R

(l)

Srl+1

Kl,i
\{k}

}
(5.22)

to the users in Srl+1
Kl,i , for i ∈

[(
K−l+1
rl+1

)]
and l ∈ [K]. Each user k ∈ Kl can obtain all

missing bits of its request W
(l)
dk

after receiving

⋃
i∈
[
(K−l+1
rl+1 )

]
:k∈Srl+1

Kl,i
W

(l)

Srl+1

Kl,i
(5.23)

along with its cache content, for l ∈ [K]. We allocate a distinct λ(l)n channel uses

to deliver the coded packets W
(l)

Srl+1

Kl,1
,. . . ,W

(l)

Srl+1

Kl,(K−l+1
rl+1 )

to the intended users in Kl, for

some λ(l) ∈ [0, 1], l ∈ [K], where each coded packet among them is delivered via a

2We assume throughout the paper that, for any real number a ≥ 0, 2na is an integer for n large
enough.
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different TS, and we have
∑K

l=1 λ
(l) = 1. The coded packet W

(l)

Srl+1

Kl,i
of the files in

the l-th layer is delivered to the users Srl+1
Kl,i through a distinct time interval of length

λ
(l)
i n, for i ∈

[(
K−l+1
rl+1

)]
and l ∈ [K], where

∑(K−l+1
rl+1 )

i=1 λ
(l)
i = λ(l). In order to recover

the coded packet W
(l)

Srl+1

Kl,i
, user k1 ∈ Srl+1

Kl,i first generates

⊕
k∈Srl+1

Kl,i
\{k1}

W
(l)

dk,S
rl+1

Kl,i
\{k}

(5.24)

from its cache; it then only needs to decode W
(l)

dk1 ,S
rl+1

Kl,i
\{k1}

of rate R
(l)

Srl+1

Kl,i
\{k1}

, which

the decoding is successful for n large enough, if

R
(l)

Srl+1

Kl,i
\{k1}

≤ λ(l)
i C

P
σ2
k1

, for i ∈
[(
K−l+1
rl+1

)]
and l ∈ [K]. (5.25)

By choosing

λ
(l)
i =

∏
k∈Kl\S

rl+1

Kl,i
CP
σ2
k∑(K−l+1

rl+1 )
i=1

∏
k∈Kl\S

rl+1

Kl,i
CP
σ2
k

λ(l), for i ∈
[(
K−l+1
rl+1

)]
and l ∈ [K], (5.26)

which satisfies
∑(K−l+1

rl+1 )
i=1 λ

(l)
i = λ(l) and leads to

R
(l)

SrlKl,i
≤ λ(l)

∏
k∈Kl\S

rl
Kl,i

CP
σ2
k∑(K−l+1

rl+1 )
i=1

∏
k∈Kl\S

rl+1

Kl,i
CP
σ2
k

, (5.27)

it can be checked that all the conditions in (5.25) are satisfied. Therefore, the coded

packets W
(l)

Srl+1

Kl,1
,. . . ,W

(l)

Srl+1

Kl,(K−l+1
rl+1 )

, each delivered with an average power P via a distinct

TS, can be decoded by their intended users successfully, if, for n large enough,

R(l) ≤ λ(l)

∑(K−l+1
rl

)
i=1

∏
k∈Kl\S

rl
Kl,i

CP
σ2
k∑(K−l+1

rl+1 )
i=1

∏
k∈Kl\S

rl+1

Kl,i
CP
σ2
k

, for l ∈ [K], (5.28)

which together with the total cache size given in (5.20) complete the proof of Propo-

sition 5.4.1.

We remark here that the CTDC scheme applies the scheme in [92], proposed when
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the messages are of the same rate, to the scenario of multiple-layer messages through

joint time and memory-sharing.

5.6 CSC and CDPC Schemes (Proof of Theorem 5.1)

Here we present the CSC and CDPC schemes, which achieve the rate tuple presented

in Theorem 5.1 for s1 = 0, s2 = 1, and s1 = 1, s2 = 0, respectively, and r ∈ [K − 1].

Placement phase: As described in Section 5.3, user k receives layers 1 to k of its

request, i.e., W
(1)
dk
, . . . ,W

(k)
dk

, for k ∈ [K]. Thus, the l-th layer of the files, i.e., W(l), are

cached partially by the users in Kl constrained by their cache capacities, for l ∈ [K].

For r ∈ [K − 1], we set

rl =


r, if l = 1,

r − 1, if 2 ≤ l ≤ K − r + 1,

0 otherwise,

(5.29)

and

R(l) = 0, for l ∈ [K − r + 2 : K]. (5.30)

The l-th layer of each file, i.e., each layer with W(l), which are targeted for users in

Kl, is split into
(
K−l+1
rl

)
disjoint subfiles, for l ∈ [K − r + 1], represented by

W
(l)
j =

⋃(K−l+1
rl

)

i=1
W

(l)

j,SrlKl,i
, for j ∈ [N ], (5.31)

where subfile W
(l)

j,SrlKl,i
is of rate R

(l)

SrlKl,i
, i ∈

[(
K−l+1
rl

)]
. We note that

∑(K−l+1
rl

)
i=1 R

(l)

SrlKl,i
=

R(l), l ∈ [K − r + 1]. User k’s cache content, k ∈ [K], is given by

Bk =
⋃N

j=1

⋃k

l=1

⋃
i∈
[
(K−l+1

rl
)
]
:k∈SrlKl,i

W
(l)

j,SrlKl,i
, (5.32)
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leading to the cache size

Mk = N
∑k

l=1

∑
i∈
[
(K−l+1

rl
)
]
:k∈SrlKl,i

R
(l)

SrlKl,i
. (5.33)

We can obtain the total cache size in the system as

Mtot =
K∑
k=1

Mk = N
K−r+1∑
l=1

rlR
(l) = N

(
rR(1) + (r − 1)

∑K−r+1

l=2
R(l)

)
, (5.34)

which is equal to the one in (5.13d). We note that the rate of the l-th layer of each

file, i.e., R(l), for l ∈ [K], corresponds to (5.13a).

Delivery phase: For a demand vector d, the server delivers the coded packet

W
(l)

Srl+1

Kl,i
=
⊕

k∈Srl+1

Kl,i
W

(l)

dk,S
rl+1

Kl,i
\{k}

, for i ∈
[(
K−l+1
rl+1

)]
, (5.35)

of rate

R
(l)

XOR,Srl+1

Kl,i
= max

k∈Srl+1

Kl,i

{
R

(l)

Srl+1

Kl,i
\{k}

}
(5.36)

to the users in SrlKl,i, for l ∈ [K − r + 1]. Thus, after receiving W
(l)

Srl+1

Kl,i
, each user

k ∈ Srl+1
Kl,i can recover the missing subfile W

(l)

dk,S
rl+1

Kl,i
\{k}

of the l-th layer of its request,

for i ∈
[(
K−l+1
rl+1

)]
and l ∈ [K − r + 1]. We note that, user k, for k ∈ [K], only exists

in the sets K1, . . . ,Kk, and also the rate of each layer with W(K−r+2), . . . ,W(K) is

set to zero. Thus, user k, for k ∈ [K − r + 1], can recover all missing subfiles of

layers W
(1)
dk
, . . . ,W

(k)
dk

after receiving all the coded packets W
(l)

Srl+1

Kl,i
, ∀i ∈

[(
K−l+1
rl+1

)]
and

∀l ∈ [k], such that k ∈ Srl+1
Kl,i . On the other hand, user k, for k ∈ [K − r + 2 : K], can

recover the missing bits of all the layers W
(1)
dk
, . . . ,W

(K−r+1)
dk

after receiving W
(l)

Srl+1

Kl,i
,

∀i ∈
[(
K−l+1
rl+1

)]
and ∀l ∈ [K − r + 1], such that k ∈ Srl+1

Kl,i . We remind here that rl is

given in (5.29).

The main technique to deliver the coded packets is to send the packet targeted to

the users in SrKl+1,i
along with the packet targeted to the users in Sr+1

K1,i+gl−1
through

different channel coding techniques, where, from (5.7), SrKl+1,i
= Sr+1

K1,i+gl−1
\{l}, for

i ∈
[(
K−l
r

)]
and l ∈ [K − r]. For this purpose, the transmission is performed via

(
K
r+1

)
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orthogonal TSs, where the i-th TS is of length λin channel uses, for i ∈
[(

K
r+1

)]
, so

that
∑( K

r+1)
i=1 λi = 1.

5.6.1 CSC Scheme

With TS i, for i ∈ [1 + gl−1 : gl] and l ∈ [K − r], we generate two subcodebooks

A1 ,

{
xλin1 (w1) : w1 ∈

[
2
nR

(1)

XOR,Sr+1
K1,i

]}
, (5.37a)

A2 ,

{
xλin2 (w2) : w2 ∈

[
2
nR

(l+1)

XOR,SrKl+1,i−gl−1

]}
, (5.37b)

where all the entries in A1 and A2 are drawn i.i.d. according to N (0, ρiP ) and

N (0, ρ̄iP ), respectively, for some ρi ∈ [0, 1]. The server then transmits the codeword

xλin1

(
W

(1)

Sr+1
K1,i

)
+ xλin2

(
W

(l+1)
SrKl+1,i−gl−1

)
, (5.38)

sent through linear superposition of the codewords from subcodebooks A1 and A2,

over the Gaussian BC with TS i, for i ∈ [1 + gl−1 : gl], l ∈ [K − r]. We note that

gK−r =
∑K−r

j=1

(
K−j
r

)
=
(
K
r+1

)
. We also note that, if all the coded packets W

(l+1)
SrKl+1,i−gl−1

are received by their targeted users successfully via all TSs i, ∀i ∈ [1 + gl−1 : gl], then

the users in Kl+1 can obtain the missing subfiles of the (l+1)-th layer of their demands,

for l ∈ [K − r]. On the other hand, the users in K1 need to receive all coded packets

W
(1)

Sr+1
K1,i

targeted for them via all
(
K
r+1

)
TSs to obtain the first layer of their requests.

The users in Sr+1
K1,i

first decode the message with xλin1 , while considering xλin2 as noise.

To decode the message with xλin1 , each user k1 ∈ Sr+1
K1,i

first recovers

⊕
k∈Sr+1

K1,i
\{k1}

W
(1)

dk,Sr+1
K1,i
\{k} (5.39)

from its cache, and it only needs to decode W
(1)

dk1 ,S
r+1
K1,i
\{k1}

of rate R
(1)

Sr+1
K1,i
\{k1}

, which,

using an optimal decoding, the decoding is successful for n large enough, if

R
(1)

Sr+1
K1,i
\{k1}

≤ λiCρiPρ̄iP+σ2
k1

, for i ∈ [1 + gl−1 : gl] and l ∈ [K − r]. (5.40)
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Table 5.1: Codewords sent via 4 TSs in the delivery phase.

TS number Transmitted codeword

1 xλ1n1

(
W

(1)
{1,2,3}

)
+ xλ1n2

(
W

(2)
{2,3}

)
2 xλ2n1

(
W

(1)
{1,2,4}

)
+ xλ2n2

(
W

(2)
{2,4}

)
3 xλ3n1

(
W

(1)
{1,3,4}

)
+ xλ3n2

(
W

(2)
{3,4}

)
4 xλ4n1

(
W

(1)
{2,3,4}

)
+ xλ4n2

(
W

(3)
{3,4}

)
We note, from (5.7), that

SrKl+1,i−gl−1
= Sr+1

K1,i
\{l}, for i ∈ [1 + gl−1 : gl]; (5.41)

thus, each user in SrKl+1,i−gl−1
, for which the message with codeword xλin2 is targeted

to, can decode xλin1 having (5.40) satisfied, for l ∈ [K − r]. Similarly, to decode the

message with xλin2 , each user k2 ∈ SrKl+1,i−gl−1
first recovers

⊕
k∈SrKl+1,i−gl−1

\{k2}
W

(l+1)
dk,SrKl+1,i−gl−1

\{k} (5.42)

from its cache, and it only needs to decodeW
(l+1)
dk2 ,S

r
Kl+1,i−gl−1

\{k2} of rateR
(l+1)
SrKl+1,i−gl−1

\{k2},

which, using an optimal decoding, the decoding is successful for n large enough, if

R
(l+1)
SrKl+1,i−gl−1

\{k2} ≤ λiC
ρ̄iP
σ2
k2

, for i ∈ [1 + gl−1 : gl] and l ∈ [K − r]. (5.43)

Observe that the conditions in (5.40) and (5.43) prove the achievability of the rate

tuple outlined in Theorem 5.1 for the total cache size Mtot given in (5.34), which is

the same as the one in (5.13d), when s1 = 0 and s2 = 1.

We highlight that, at each TS of the CSC scheme two coded packets from different

layers of messages are superposed for transmission. The first coded packet is always

intended for the first layer of the messages and the second one is for a higher layer.

The second coded packet is targeted for a subset of the users receiving the first coded

packet.

In the following, we present an example of the CSC scheme for more clarification.



Chapter 5. Caching of Multi-Layer Messages 126

Table 5.2: Decoding the message with xλin
1 at TS i, for i = 1, ..., 4

TS number Sufficient conditions

1

R
(1)
{2,3} ≤ λ1C

ρ1P
ρ̄1P+σ2

1

R
(1)
{1,3} ≤ λ1C

ρ1P
ρ̄1P+σ2

2

R
(1)
{1,2} ≤ λ1C

ρ1P
ρ̄1P+σ2

3

2

R
(1)
{2,4} ≤ λ2C

ρ2P
ρ̄2P+σ2

1

R
(1)
{1,4} ≤ λ2C

ρ2P
ρ̄2P+σ2

2

R
(1)
{1,2} ≤ λ2C

ρ2P
ρ̄2P+σ2

4

3

R
(1)
{3,4} ≤ λ3C

ρ3P
ρ̄3P+σ2

1

R
(1)
{1,4} ≤ λ3C

ρ3P
ρ̄3P+σ2

3

R
(1)
{1,3} ≤ λ3C

ρ3P
ρ̄3P+σ2

4

4

R
(1)
{3,4} ≤ λ4C

ρ4P
ρ̄4P+σ2

2

R
(1)
{2,4} ≤ λ4C

ρ4P
ρ̄4P+σ2

3

R
(1)
{2,3} ≤ λ4C

ρ4P
ρ̄4P+σ2

4

5.6.2 Example

Consider a cache-aided network as described in Section 5.3 with K = 4 users in the

system. Here we exemplify the achievability of the rate region stated in Theorem 5.1

for the CSC scheme for r = 2. We set R(4) = 0, and split the messages in the l-th

layer, for l ∈ [3], as follows:

W
(1)
j =

(
W

(1)
j,{1,2},W

(1)
j,{1,3},W

(1)
j,{1,4},W

(1)
j,{2,3},W

(1)
j,{2,4},W

(1)
j,{3,4}

)
, (5.44a)

W
(2)
j =

(
W

(2)
j,{2},W

(2)
j,{3},W

(2)
j,{4}

)
, (5.44b)

W
(3)
j =

(
W

(3)
j,{3},W

(3)
j,{4}

)
, (5.44c)

where subfile W
(l)

j,SrlKl,i
is of rate R

(l)

SrlKl,i
, for i ∈

[(
5−l
rl

)]
, ∀j ∈ [N ], and r1 = 2, r2 = r3 = 1,

and r4 = 0.

The cache content of each user is given by

B1 =
⋃

j∈[N ]

(
W

(1)
j,{1,2},W

(1)
j,{1,3},W

(1)
j,{1,4}

)
, (5.45a)

B2 =
⋃

j∈[N ]

(
W

(1)
j,{1,2},W

(1)
j,{2,3},W

(1)
j,{2,4},W

(2)
j,{2}

)
, (5.45b)
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Table 5.3: Decoding the message with xλin
2 at TS i, for i = 1, ..., 4

TS number Sufficient conditions

1
R

(2)
{3} ≤ λ1C

ρ̄1P
σ2
2

R
(2)
{2} ≤ λ1C

ρ̄1P
σ2
3

2
R

(2)
{4} ≤ λ2C

ρ̄2P
σ2
2

R
(2)
{2} ≤ λ2C

ρ̄2P
σ2
4

3
R

(2)
{4} ≤ λ3C

ρ̄3P
σ2
3

R
(2)
{3} ≤ λ3C

ρ̄3P
σ2
4

4
R

(3)
{4} ≤ λ4C

ρ̄4P
σ2
3

R
(3)
{3} ≤ λ4C

ρ̄4P
σ2
4

B3 =
⋃

j∈[N ]

(
W

(1)
j,{1,3},W

(1)
j,{2,3},W

(1)
j,{3,4},W

(2)
j,{3},W

(3)
j,{3}

)
, (5.45c)

B4 =
⋃

j∈[N ]

(
W

(1)
j,{1,4},W

(1)
j,{2,4},W

(1)
j,{3,4},W

(2)
j,{4},W

(3)
j,{4}

)
, (5.45d)

where the total cache size in the system is

Mtot = N
(

2R(1) +R(2) +R(3)
)
. (5.46)

For a demand vector d in the delivery phase, we generate coded packet W
(l)

Srl+1

Kl,i
,

for i ∈
[(

5−l
rl+1

)]
and l ∈ [3], as given in (5.35). The transmission is performed via

4 orthogonal TSs, where the i-th TS is of length λin channel uses, for i ∈ [4], such

that
∑4

i=1 λi = 1. After generating codebooks A1 and A2 in the i-th TS as defined

in (5.37), for i ∈ [4], the codeword outlined in Table 5.1 is sent over the channel via

each TS. In TS i, the users, which the message with xλin1 is targeted to, decode the

message with xλin1 while considering xλin2 as noise, for i ∈ [4]. The sufficient conditions,

for which the message with xλin1 can be decoded successfully by each targeted user,

for n large enough, at TS i are summarized in Table 5.2, for i ∈ [4], thanks to the

side information available at users’ caches. We note that each user, for which the

message with codeword xλin2 is targeted to, can decode the message with xλin1 having

the conditions in Table 5.2 satisfied, for i ∈ [4]. Bearing this in mind, the sufficient

conditions such that the message with xλin2 is decoded successfully by the intended

users are outlined in Table 5.3, for i ∈ [4]. We note that the conditions in Table 5.2
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and Table 5.3 guarantee the achievability of the rate tuple presented in Theorem 5.1 for

the corresponding total cache size Mtot given in (5.46), which is equivalent to the one

in (5.13d) for the CSC scheme with r = 2, for some ρ and λ satisfying (5.13e)-(5.13g).

We highlight that, as it can be seen in Table 5.1, in the CSC scheme coded packets are

transmitted in different TSs, while at each TS two coded packets are superposed for

the transmission, one of which is targeted for a subset of the users receiving the other

coded packet.

5.6.3 CDPC Scheme

In the following, we investigate the delivery via TS i, for i ∈ [1 + gl−1 : gl] and l ∈

[K−t]. The codebook of the transmission with the CDPC scheme is also generated from

the linear superposition of two subcodebooks. The subcodebookA2, given in (5.37b), is

generated from i.i.d. codewords xλin2 , each according to distribution X2 ∼ N (0, ρ̄iP ),

used to send the coded packet W
(l+1)
SrKl+1,i−gl−1

of rate R
(l+1)
XOR,SrKl+1,i−gl−1

. By treating

xλin2 as interference for user l, knowing Xλi
2 non-causally at the server, subcodebook

A1 is generated using dirty paper coding [148]. The auxiliary random variable with

the dirty paper coding is set as Q = X1 + τX2, where τ = ρiP/
(
ρiP + σ2

l

)
, and

X1 ∼ N (0, ρiP ) is independent of X2. We extend the codebook generation, encoding,

and decoding techniques of the Gelfand-Pinkser scheme for point-to-point transmission

presented in the proof of [146, Theorem 7.3] to the transmission in the i-th TS of

the setting under consideration, for i ∈ [1 + gl−1 : gl] and l ∈ [K − r]. We define

a message tuple wSr+1
K1,i

,

(
w

(1)

dk1 ,S
r+1
K1,i
\{k1}

, for k1 ∈ Sr+1
K1,i

)
, which concatenates r + 1

messages w
(1)

dk1 ,S
r+1
K1,i
\{k1}

, ∀k1 ∈ Sr+1
K1,i

, where w
(1)

dk1 ,S
r+1
K1,i
\{k1}

is uniformly distributed

over

[
2
nR

(1)

Sr+1
K1,i

\{k1}

]
and represents the message used to send subfile W

(1)

dk1 ,S
r+1
K1,i
\{k1}

, for

k1 ∈ Sr+1
K1,i

. For each realization of wSr+1
K1,i

, we generate a subcodebook A1

(
wSr+1
K1,i

)

of 2

λinR̃−n
∑

k1∈S
r+1
K1,i

R
(1)

Sr+1
K1,i

\{k1}

sequences qλin(m), for m ∈

2

λinR̃−n
∑

k1∈S
r+1
K1,i

R
(1)

Sr+1
K1,i

\{k1}

.

Given xλin2 , in order to send r+ 1 messages with message tuple wSr+1
K1,i

jointly, we find

a sequence qλin(m) ∈ A1

(
wSr+1
K1,i

)
that is jointly typical with xλin2 and represent the
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corresponding codeword, which is to be sent over the channel, by

xλin1

(
wSr+1
K1,i

, xλin2

)
. (5.47)

The server then sends the following linearly superposed codeword over the Gaussian

BC:

xλin1

((
W

(1)

dk1 ,S
r+1
K1,i
\{k1}

, for k1 ∈ Sr+1
K1,i

)
, xλin2

)
+ xλin2

(
W

(l+1)
SrKl+1,i−gl−1

)
. (5.48)

User k2 ∈ SrKl+1,i−gl−1
first decodes the message with codeword xλin2 , while consider-

ing xλin1 as noise, which by the same analysis as the CSC scheme, one can obtain the

necessary condition for a successful decoding as follows:

R
(l+1)
SrKl+1,i−gl−1

\{k2} ≤ λiC
ρ̄iP
ρiP+σ2

k2

, for i ∈ [1 + gl−1 : gl] and l ∈ [K − r]. (5.49)

On the other hand, to decode r+1 messages with xλin1 , upon receiving yλink1
, user k1, for

k1 ∈ Sr+1
K1,i

, declares that r + 1 messages ŵ
(1)

dk̃1
,Sr+1
K1,i
\{k̃1}

∈

[
2
nR

(1)

Sr+1
K1,i

\{k̃1}

]
, ∀k̃1 ∈ Sr+1

K1,i
,

are sent if ŵSr+1
K1,i

,

(
ŵ

(1)

dk̃1
,Sr+1
K1,i
\{k̃1}

, for k̃1 ∈ Sr+1
K1,i

)
is the unique message tuple such

that qλin(m) and yλink1
are jointly typical, for some m ∈ A1

(
ŵSr+1
K1,i

)
, where message

w
(1)

dk̃1
,Sr+1
K1,i
\{k̃1}

is decoded as ŵ
(1)

dk̃1
,Sr+1
K1,i
\{k̃1}

, for k̃1 ∈ Sr+1
K1,i

.3 Here we note again that,

for l ∈ [K − r],

Sr+1
K1,i

=
{
SrKl+1,i−gl−1

, l
}
, for i ∈ [1 + gl−1 : gl]. (5.50)

We assume without loss of generality that the message tuple wSr+1
K1,i

= (1, . . . , 1) is sent

with xλin1 . The decoder at user l ∈ Sr+1
K1,i

makes an error, if one or both of the following

events occur:

E1
l =

{
Qλin(m) and Xλin

2 are not jointly typical, ∀Qλin(m) ∈ A1(1, . . . , 1)
}
, (5.51a)

E2
l =

{
Qλin(m) and Y λin

l are jointly typical, for some Qλin(m) /∈ A1(1, . . . , 1)
}
.

(5.51b)

3For ease of notation, we drop the dependency of channel outputs Y n
1 (W), . . . , Y n

K(W) on W.
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According to [146, Lemma 3.3], Pr
{
E1
l

}
tends to zero, if, for n large enough,

λiR̃−
∑

k1∈Sr+1
K1,i

R
(1)

Sr+1
K1,i
\{k1}

≥ λiI (Q;X2) . (5.52)

Furthermore, since user l ∈ Sr+1
K1,i

has access to all r messages W
(1)

dk,Sr+1
K1,i
\{k}, ∀k ∈

Sr+1
K1,i
\{l}, in its cache, it knows that w

(1)

dk,Sr+1
K1,i
\{k} = 1, ∀k ∈ Sr+1

K1,i
\{l}, and Pr

{
E2
l

}
tends to zero, if, for n large enough,

λiR̃−
∑

k1∈Sr+1
K1,i
\{l}

R
(1)

Sr+1
K1,i
\{l} ≤ λiI (Q;Yl) , (5.53)

where Yk = X1 +X2 + Zk, where Zk ∼ N
(
0, σ2

k

)
, for k ∈ [K]. Combining (5.52) and

(5.53), we obtain that user l ∈ Sr+1
K1,i

decodes the message with xλin1 successfully, if

R
(1)

Sr+1
K1,i
\{l} ≤ λi (I (Q;Yl)− I (Q;X2)) , (5.54)

which is equivalent to

R
(1)

Sr+1
K1,i
\{l} ≤ λiC

ρiP
σ2
l
. (5.55)

Now we investigate the sufficient conditions for which users in Sr+1
K1,i
\{l} = SrKl+1,i−gl−1

can decode the message with xλin1 . We note that having the conditions in (5.49)

satisfied, each user in SrKl+1,i−gl−1
can decode the message with xλin2 . The decoder at

user k, for k ∈ SrKl+1,i−gl−1
, makes an error, if one or both of the following events occur:

E1
k =

{
Qλin(m) and Xλin

2 are not jointly typical, ∀Qλin(m) ∈ A1(1, . . . , 1)
}
, (5.56a)

E2
k =

{
Qλin(m) and

(
Y λin
k , Xλin

2

)
are jointly typical, for Qλin(m) /∈ A1(1, . . . , 1)

}
.

(5.56b)

Pr
{
E1
k

}
tends to zero, if, for n large enough,

λiR̃−
∑

k1∈Sr+1
K1,i

R
(1)

Sr+1
K1,i
\{k1}

≥ λiI (Q;X2) , for k ∈ SrKl+1,i−gl−1
. (5.57)
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Furthermore, since user k, for k ∈ SrKl+1,i−gl−1
has access to all r messagesW

(1)

dk1 ,S
r+1
K1,i
\{k1}

,

∀k1 ∈ Sr+1
K1,i
\{k}, in its cache, it knows that w

(1)

dk1 ,S
r+1
K1,i
\{k1}

= 1, ∀k1 ∈ Sr+1
K1,i
\{k}, and

Pr
{
E2
k

}
tends to zero, if, for n large enough,

λiR̃−
∑

k1∈Sr+1
K1,i
\{k}

R
(1)

Sr+1
K1,i
\{k1}

≤ λiI (Q;Yl, X2) . (5.58)

Combining (5.57) and (5.58), we obtain that user k, for k ∈ SrKl+1,i−gl−1
decodes the

message with xλin1 successfully, if

R
(1)

Sr+1
K1,i
\{k} ≤ λi (I (Q;Yk, X2)− I (Q;X2)) = λiI (Q;Yk |X2 ) , (5.59)

which leads to

R
(1)

Sr+1
K1,i
\{k} ≤ λiC

ρiP
σ2
k
. (5.60)

By combining the conditions in (5.55) and (5.60), we conclude that, at TS i, user k1,

for k1 ∈ Sr+1
K1,i

, can decode the message with xλin1 successfully, if

R
(1)

Sr+1
K1,i
\{k1}

≤ λiCρiPσ2
k1

, for i ∈ [1 + gl−1 : gl] and l ∈ [K − r]. (5.61)

Having the conditions in (5.49) and (5.61) satisfied, the achievability of the rate

tuple for the corresponding total cache size M presented in Theorem 5.1 for the CDPC

scheme is proved.

5.7 Outer Bound

In the following, we develop an outer bound on the capacity region C(P,Mtot) con-

strained to uncoded caching in the placement phase.

Theorem 5.2. Consider the system described in Section 5.3 with average power P ,

where user k has a cache size of Mk, k ∈ [K]. If the placement phase is constrained to
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Figure 5.1: Achievable rate pair
(
R(1), R(2)

)
for a caching system with K = N = 4,

and Mtot = 2.5, where R(3) = 0, r = 2 and r1 = 2, r2 = r3 = 1, and r4 = 0. The
noise variance at user i is σ2

i = 5− i, for k ∈ [4], and we set P = 2.

uncoded caching, for any non-empty subset G ⊂ [K], we have, for k = 1, . . . , |G|,

RπG(k) ≤ C
ηπG(k)P∑|G|
i=k+1 ηπG(i)P+σ2

πG(k)
+

1

N

k∑
i=1

MπG(i), (5.62)

for some non-negative coefficients ηπG(1), . . . , ηπG(|G|), such that
∑|G|

i=1 ηπG(i) = 1, where

πG is a permutation of the elements of G, such that σ2
πG(1) ≥ σ

2
πG(2) ≥ · · · ≥ σ

2
πG(|G|).

Proof. The proof is presented in Appendix D.1.

5.8 Numerical Results

In this section, we compare the achievable rate regions of the CTDC, CSC, and

CDPC schemes for a caching system with K = N = 4. We set the average power

constraint to P = 2, and the noise variance at user i is assumed to be σ2
i = 5− k, for

i ∈ [4]. We assume a total cache size of Mtot = 2.5.
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Figure 5.2: Achievable rate pair
(
R(1), R(3)

)
for a caching system with K = N = 4,

and Mtot = 2.5, where R(2) = 0, and r = 2 and r1 = 2, r2 = r3 = 1, and r4 = 0. The
noise variance at user k is σ2

i = 5− i, for i ∈ [4], and we set P = 2.

We evaluate the performance in terms of the rate of different layers of the files, i.e.,

R(1), . . . , R(K), where Ri =
∑i

l=1R
(l), for i ∈ [K]. We examine the performance of the

CSC and CDPC schemes for r = 2. Thus, the achievable rate tuple (R1, R2, R3, R4)

presented in Theorem 5.1 can be achieved by the CSC and CDPC schemes, for s1 = 0,

s2 = 1, and s1 = 1, s2 = 0, respectively, where R4 = R3 since R(4) = 0. The boundary

surface of the rate region achieved by the CSC and CDPC schemes are computed

through the optimization problem given in (5.15). For fairness of comparison, we

consider caching factors r1 = 2, r2 = r3 = 1, and r4 = 0. The boundary of the rate

region achievable by CTDC can be calculated by the optimization problem in (5.11),

where, in order to have a fair comparison, we set λ(4) = 0 leading to R(4) = 0 and

R4 = R3.

We investigate the convex hull of the achievable rate tuples calculated by the op-

timization problem corresponding to each of the CTDC, CSC, and CDPC schemes.

Since the presentation of the three-dimensional rate region together with the outer

bound does not provide a clear picture, here we fix one of the rates R(1), R(2) and

R(3) and present the rate region on the two-dimensional planes corresponding to the
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Figure 5.3: Achievable rate pair
(
R(2), R(3)

)
for a caching system with K = N = 4,

and Mtot = 2.5, where R(1) = 0, and r = 2 and r1 = 2, r2 = r3 = 1, and r4 = 0. The
noise variance at user i is σ2

i = 5− i, for i ∈ [4], and we set P = 2.

other two rates. Two-dimensional plane of
(
R(1), R(2)

)
,
(
R(1), R(3)

)
and

(
R(2), R(3)

)
for R(3) = 0, R(2) = 0 and R(1) = 0 are illustrated in Figures 5.1, 5.2 and 5.3, respec-

tively, together with the outer bound presented in Theorem 5.2. As it can be seen from

the figures, for relatively small values of R(1), the CSC and CTDC schemes achieve

higher values of R(2), while the CSC scheme outperforms the latter. For higher values

of R(1), the improvement of the CSC scheme over CTDC and CDPC is negligible.

For a fixed R(1) value, CDPC achieves higher values of R(3) compared to the other

two achievable schemes, and CSC outperforms CTDC. On the other hand, given a

relatively small value of R(2), CDPC improves upon the CSC and CTDC in terms of

the achievable rate R(3), and CSC achieves higher values of R(3) than CTDC. Observe

that the outer bound is not tight in general; however, for any achievable rate tuple

(R1, . . . , R4), which is achieved with a specific cache allocation M1, . . . ,M4, the outer

bound specialized to this cache allocation would be tighter.

We would like to point out that the reason of the relatively small gap between

the CTDC scheme with time-division transmission, and CSC and CDPC introducing

superposition and dirty paper coding, respectively, is due to the time-division nature of
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the CSC and CDPC schemes. With CSC (CDPC) scheme, coded packets are delivered

in different TSs, where within each TS, two coded packets are superposed (dirty paper

coded).

5.9 Conclusions

In this chapter we have studied cache-aided content delivery over a Gaussian BC,

where each user is allowed to demand a file at a distinct rate. To model this asym-

metry, we have assumed that the files are encoded into K layers corresponding to K

users in the system, such that the k-th worst user is delivered only the k layers of

its demand, k ∈ [K]. We have considered a centralized placement phase, where the

server knows the channel qualities of the links in the delivery phase in addition to

the identity of the users. By allowing the users to have different cache capacities, we

have defined the capacity region for a total cache size. We designed a placement phase

through cache allocation across the users and the files’ layers to maximize the rates

allocated to different layers. We have proposed three achievable schemes, which de-

liver coded multicast packets, generated thanks to the contents carefully cached during

the placement phase, through different channel coding techniques over the Gaussian

BC. Although the coded multicast packets are intended for a set of users with distinct

link capacities, channel coding techniques can be employed to deliver requested files

such that the users with better channels achieve higher rates. We have also developed

an outer bound on the capacity region assuming uncoded caching. We are currently

working to reduce the gap between the inner and outer bounds.



Chapter 6

Distributed Computing

6.1 Overview

In this chapter we study collaborative ML where K computing servers, called work-

ers, carry out a learning problem distributively with the help of a remote PS. We

study computation of an arbitrary function over a dataset through K workers, where

the tasks are assigned to the workers by the PS. We investigate scheduling of computa-

tion tasks across these K workers considering sequential computation of tasks assigned

to a worker, where the result of each computation is sent to the master right after its

completion. Each computation round, which can model an iteration of the stochastic

gradient descent (SGD) algorithm, is completed once the master receives k distinct

computations, referred to as the computation target. Our goal is to characterize the

average completion time as a function of the computation load, which denotes the por-

tion of the dataset available at each worker, and the computation target. We propose

two computation scheduling schemes that specify the tasks assigned to each worker,

as well as their computation schedule, i.e., the order of execution. Assuming a general

statistical model for computation and communication delays, we derive the average

completion time of the proposed schemes. We also establish a lower bound on the

minimum average completion time by assuming prior knowledge of the random delays.

Experimental results carried out on Amazon EC2 cluster show a significant reduction

in the average completion time over existing coded and uncoded computing schemes.

136
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6.2 Introduction

In this chapter we study distributed computation of an arbitrary function, and in-

troduce a centralized scheduling strategy, where computation tasks are assigned to the

workers by the PS. While significant research efforts have been invested in designing

coded computation [98–107] techniques, we argue in this chapter that uncoded comput-

ing and communication can be even more effective in tackling stragglers and reducing

the average computation time. Each worker can compute a limited number of tasks,

referred to as the computation load. Computations are carried out sequentially, and the

result of each computation is sent to the master right after it is completed. Communi-

cation delay from the workers to the master is also taken into account. We assume that

both the computation and communication delays are independent across the workers

since they have different computation capabilities with various dynamic behaviours of

processing speed, and they communicate with the PS over different links experiencing

distinct mediums, but may be correlated for different tasks carried out at the same

worker. This sequential computation and communication framework allows the master

to exploit partial computations by slow workers. The main computation is assumed

to be completed when the master receives sufficient number of distinct computations

from the workers, referred to as the computation target. In other words, computation

target specifies the number of distinct computations the master is required to receive

from the workers to complete the main computation task. Unlike coded computation,

uncoded computing approach does not introduce any encoding and decoding delays

and complexities. It also allows partial decoding, which can be exploited to reduce the

communication load for distributed learning [114–116]. Assuming that the computa-

tion and communication delays are random variables, our goal is to characterize the

minimum average completion time as a function of the computation load and compu-

tation target. We first provide a generic expression for the average completion time as

a function of the computation schedule, which specifies both the tasks assigned to each

worker and their computation order. We propose two different computation schedul-

ing schemes, and obtain closed-form expressions for their average completion times for

a general statistical model of the random delays, which upper bound the minimum

average completion time. We also establish a lower bound on the minimum average



Chapter 6. Distributed Computing 138

completion time. The experiments on Amazon EC2 cluster illustrate a substantial re-

duction in the average completion time with the proposed uncoded computing schemes

with task scheduling compared to coded computation schemes and uncoded computa-

tion without scheduling of the tasks at the workers [112].

The remainder of this chapter is organized as follows. In Section 6.3 we present the

system model. In Section 6.4 we provide a generic characterization of the minimum

average completion time. We then provide upper and lower bounds on the minimum

average completion time In Sections 6.5 and 6.6, respectively. In Section 6.7. We

finally conclude this chapter in Section 6.8.

6.3 System Model

We consider distributed computation of a function h over a dataset {Λ1, ...,ΛK}

across K workers. Function h : V→ U is an arbitrary function, where V and U are two

vector spaces over the same field F, and sub-data Λi is an element of V, i ∈ [K]. The

dataset {Λ1, ...,ΛK} is distributed across the workers by the master, and a maximum

number of L ≤ K sub-data are assigned to each worker, referred to as the computation

load. We denote by Ei the indices of the sub-data assigned to worker i, i ∈ [K], where

Ei ⊂ [K], |Ei| ≤ L.

The computations of the tasks assigned to each worker are carried out sequentially.

We define the task ordering (TO) matrix C as an K×L matrix of integers, C ∈ [K]K×L,

specifying the assignment of the tasks to the workers E , {Ei}Ki=1, as well as the

order these tasks are carried out by each worker O , {Oi}Ki=1, where Oi denotes the

computing order of the tasks assigned to worker i, i ∈ [K]. Each row of matrix C

corresponds to a different worker, and its elements from left to right represent the

order of computations. That is, the (i, j)-th entry of C, C(i, j) ∈ Ei, denotes the index

of the element of the dataset that is computed by worker i as its j-th computation,

i.e., worker i first computes h(ΛC(i,1)), then computes h(ΛC(i,2)), and so on so forth

until either it computes h(ΛC(i,r)), or it receives the acknowledgement message from

the master, and stops computations, i ∈ [K], j ∈ [L]. Note that the task assignment E

and the order of computations O are specified by a unique TO matrix C. While any
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C matrix is a valid TO matrix, it is easy to see that the optimal TO matrix will have

L distinct entries in each of its rows.

The computations start at time t = 0 at all the workers, and each worker sends

the result of each assigned task to the master right after its computation. We denote

the time worker i spends to compute h (Λj) by T
(1)
i,j , and the communication delay for

sending h (Λj) to the master by T
(2)
i,j , j ∈ Ei, i ∈ [K]. Thus, the total delay of receiving

h (Λj) from worker i is T
(1)
i,j + T

(2)
i,j , j ∈ Ei, i ∈ [K]. If j /∈ Ei, we set T

(l)
i,j =∞, ∀l ∈ [2],

i ∈ [K]. We assume that the computation and communication delays, T
(1)
i,j and T

(2)
i,j ,

∀i, j ∈ [K], are independent. We further assume that computation (communication)

delays at different workers are independent. On the other hand, the computation

(communication) delays associated with the tasks at the same worker can be dependent,

and we denote the joint cumulative distribution function (CDF) of T
(l)
i,1 , . . . , T

(l)
i,K by

F
(l)
i,[K], and the joint probability density function (PDF) by f

(l)
i,[K], i ∈ [K], l ∈ [2]. We

note that the statistical model of the computation (communication) delays at each

worker do not depend on any specific order of computing (communicating) tasks, since

we assume that the size and complexity of computing (communicating) each sub-data

(computation) is the same.

Let ti,j denote the time the master receives h(Λj) from worker i, for i, j ∈ [K],

where we set ti,m = ∞ if m /∈ Ei. Then, the total computation delay of comput-

ing h(ΛC(i,1)), h(ΛC(i,2)), . . . , h(ΛC(i,j)) sequentially plus the communication delay for

receiving h(ΛC(i,j)) is

ti,C(i,j) =
∑j

m=1
T

(1)
i,C(i,m) + T

(2)
i,C(i,j), i, j ∈ [K], (6.1)

As a result, the master receives computation h(Λj) at time

tj , mini∈[K] {ti,j} , j ∈ [K] (6.2)

where the minimization is over the workers.
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For any TO matrix, the computation is considered completed once the master re-

covers K̃ distinct tasks, referred to as the computation target. We allow partial com-

putations, i.e., K̃ can be smaller than K. Once the computation target is met, the

master sends an acknowledgement message to all the workers to stop computations.

Given the TO matrix C, we denote the completion time; that is, the time it takes the

master to receive K̃ distinct computations, by tC(L, K̃), which is a random variable.

We define the average completion time as

tC(L, K̃) , E
[
tC(L, K̃)

]
, (6.3)

where the randomness is due to the delays. We define the minimum average completion

time

t
∗
(L, K̃) , minC

{
tC(L, K̃)

}
, (6.4)

where the minimization is taken over all possible TO matrices C. The goal is to

characterize t
∗
(L, K̃).

Remark 6.3.1. We have defined each Λi ∈ V as a single sub-data, and assumed that

the result of h(Λi) at a worker is transmitted immediately to the master. It is possible

to generalize this model by considering N sub-data instead, with N � K, and grouping

them into K mini-batches, such that each Λi in our model corresponds to a mini-batch

of dN/Ke sub-data. A worker sends the average of the gradients for all the sub-data

in a mini-batch after computing all of them. For a mini-batch size of c sub-data, this

corresponds to communicating once every c computations.

Remark 6.3.2. Most coded computation schemes in the literature, mainly targeting

DGD, require the master to recover the gradients (or, their average) for the whole

dataset at each iteration. However, convergence of SGD is guaranteed even if the

gradient is computed for a random portion of the dataset at each iteration [114,116–118,

127,129,149,150]. This is indeed the case for the random straggling model considered

here with k < n, where the straggling workers; hence, the uncomputed gradients, vary

at each iteration.
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Remark 6.3.3. The problem under consideration is similar to the well-known job

scheduling problem [151], in which a set of tasks are to be executed by multiple work-

ers given a partial ordering of task execution and the delay associated with each task.

The goal is to find a schedule minimizing the total delay, which is shown to be NP-

complete [152]. This problem has been studied under different constraints for different

applications, such as cloud computing [153–155], edge computing [156, 157], and dis-

persed computing [158,159]. Our problem differs from the job scheduling one, since no

ordering of task execution is imposed, and each task can be executed by an arbitrary

number of workers. Also, in our model, the scheduling is designed without having any

prior knowledge about the computation and communication delays of the tasks.

6.4 Average Completion Time Analysis

Here we analyze the average completion time tC(L, K̃) for a given TO matrix C.

Theorem 6.1. For a given TO matrix C, we have

Pr
{
tC(L, K̃) > t

}
= 1− FtC(t)

=
∑K

i=K−K̃+1
(−1)K−K̃+i+1

(
i− 1

K − K̃

)∑
S⊂[K]:|S|=i

Pr {tj > t,∀j ∈ S} , (6.5)

which yields

tC(L, K̃) =
K∑

i=K−K̃+1

(−1)K−K̃+i+1

(
i− 1

K − K̃

) ∑
S⊂[K]:|S|=i

∫ ∞
0

Pr {tj > t,∀j ∈ S} dt.

(6.6)

Note that the dependence of the completion time on the TO matrix in (6.5) and

(6.6) is through the statistics of tj .

Proof. The event
{
tC(L, K̃) > t

}
is equivalent to the union of the events, for which

the time to complete any arbitrary set of at least K − K̃ + 1 distinct computations is
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greater than t, i.e.,

Pr
{
tC(L, K̃) > t

}
= Pr

{⋃
G⊂[K]:K−K̃+1≤|G|≤K

{
tj > t, tj′ ≤ t,∀j ∈ G,∀j′ ∈ G′

}}
,

(6.7)

where we define G′ , [K]\G. Since the events
{
tj > t, tj′ ≤ t,∀j ∈ G,∀j′ ∈ G′

}
, for all

distinct sets G ⊂ [K], are mutually exclusive (pairwise disjoint), we have

Pr
{
tC(L, K̃) > t

}
=
∑K

i=K−K̃+1

∑
G⊂[K]:|G|=i

Pr
{
tj > t, tj′ ≤ t,∀j ∈ G,∀j′ ∈ G′

}
=
∑K

i=K−K̃+1

∑
G⊂[K]:|G|=i

HG,G′ , (6.8)

where, for S1 ⊂ [K] and S2 ⊂ [K], we define

HS1,S2 , Pr {tj1 > t, tj2 ≤ t,∀j1 ∈ S1, ∀j2 ∈ S2} . (6.9)

Lemma 6.1. Given a particular set G ⊂ [K], |G| = i, for i ∈ [K− K̃+1 : K], we have

HG,G′ =
∑K

m=i
(−1)i+m

∑
Ĝ⊂G′:|Ĝ|=m−iHG∪Ĝ,∅

=
∑K

m=i
(−1)i+m

∑
Ĝ⊂G′:|Ĝ|=m−i Pr

{
tj > t,∀j ∈ G ∪ Ĝ

}
. (6.10)

Proof. The proof of Lemma 6.1 can be found in [160, Appendix A], where we use the

fact that, for any g ∈ G′, we have

HG,G′ = HG,G′\{g} −HG∪{g},G′\{g}. (6.11)

According to Lemma 6.1, for i ∈ [K − K̃ + 1 : K], we have

∑
G⊂[K]:|G|=i

HG,G′ =
∑
G⊂[K]:|G|=i

∑K

m=i
(−1)i+m

∑
Ĝ⊂G′:|Ĝ|=m−iHG∪Ĝ,∅

=
∑K

m=i
(−1)i+m

∑
G⊂[K]:|G|=i

∑
Ĝ⊂G′:|Ĝ|=m−iHG∪Ĝ,∅

(a)
=
∑K

m=i
(−1)i+m

(
m

i

)∑
S⊂[K]:|S|=m

HS,∅, (6.12)
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where (a) follows since, for each set S = G ∪ Ĝ with |S| = m, there are
(
m
i

)
sets G ∪ Ĝ.

Plugging (6.12) into (6.8) yields

Pr
{
tC(L, K̃) > t

} K∑
i=K−K̃+1

K∑
m=i

(−1)i+m
(
m

i

) ∑
S⊂[K]:|S|=m

HS,∅. (6.13)

For a particular set S ⊂ [K] with |S| = S, for some S ∈ [K−K̃+1 : K], the coefficient

of HS,∅ in (6.13) is given by

∑S

i=K−K̃+1
(−1)i+S

(
S

i

)
=
∑S

i=0
(−1)i+S

(
S

i

)
−
∑K−K̃

i=0
(−1)i+S

(
S

i

)
= 0− (−1)K−K̃+S

(
S − 1

K − K̃

)
= (−1)K−K̃+S+1

(
S − 1

K − K̃

)
, (6.14)

which results in

Pr
{
tC(L, K̃) > t

}
=

K∑
i=K−K̃+1

(−1)K−K̃+i+1

(
i− 1

K − K̃

) ∑
S⊂[K]:|S|=i

HS,∅. (6.15)

According to the definition of HS,∅, (6.15) concludes the proof of (6.5). Furthermore,

since tC(L, K̃) ≥ 0, we have

tC(L, K̃) =

∫ ∞
0

(1− FtC (t)) dt, (6.16)

which yields the expression in (6.6).

Remark 6.4.1. For K̃ = K, we have

Pr {tC(L,K) > t} =
∑K

i=1
(−1)i+1

∑
S⊂[K]:|S|=i

Pr {tj > t,∀j ∈ S} , (6.17)

and

tC(L,K) =
∑K

i=1
(−1)i+1

∑
S⊂[K]:|S|=i

∫ ∞
0

Pr {tj > t,∀j ∈ S} dt. (6.18)

The minimum average completion time t
∗
(L, K̃) can be obtained as a solution of the

optimization problem t
∗
(L, K̃) = minC tC(L, K̃). Providing a general characterization
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for t
∗
(L, K̃) is elusive. Next, we will propose two specific computation task assignment

and scheduling schemes, and evaluate their average completion times.

6.5 Upper Bounds on the Minimum Average Completion

Time

Here we introduce two computation task assignment and scheduling schemes, namely

cyclic scheduling (CS) and staircase scheduling (SS). The average completion time for

these schemes will provide upper bounds on t
∗
(L, K̃).

6.5.1 CS Scheme

The CS scheme is motivated by the symmetry across the workers when we have no

prior information on their computation speeds. CS makes sure that each computation

task has the same order at different workers. This is achieved by a cyclic shift operator.

The TO matrix is given by

CCS(i, j) = g(i+ j − 1), for i ∈ [K] and j ∈ [L], (6.19)

where function g : Z→ Z is defined as follows:

g(m) ,


m, if 1 ≤ m ≤ K,

m−K, if m ≥ K + 1,

m+K, if m ≤ 0.

(6.20)

Thus, we have

CCS =


g(1) g(2) . . . g(L)

g(2) g(3) . . . g(L+ 1)
...

...
. . .

...

g(K) g(K + 1) . . . g(K + L− 1)

 , (6.21)
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which, for i ∈ [K] and j ∈ [L], results in

ti,g(i+j−1) =
∑j

m=1
T

(1)
i,g(i+m−1) + T

(2)
i,g(i+j−1). (6.22)

For i ∈ [K], we can re-write (6.22) as follows:

tg(i−j+1),i =


∑j

m=1 T
(1)
g(i−j+1),g(i−j+m) + T

(2)
g(i−j+1),i, if j ∈ [L],

∞, if j /∈ [L],

(6.23)

which results in

ti = min
j∈[L]

{∑j

m=1
T

(1)
g(i−j+1),g(i−j+m) + T

(2)
g(i−j+1),i

}
. (6.24)

6.5.2 SS Scheme

We can observe that CS imposes the same step size and direction in computations

across all the workers. Alternatively, here we propose the SS scheme, which introduces

inverse computation orders at the workers. The entries of the TO matrix CSS for the

SS scheme are given by, for i ∈ [K], j ∈ [L],

CSS(i, j) = g(i+ (−1)i−1(j − 1)). (6.25)

It follows that

CSS =


g(1) g(2) . . . g(L)

g(2) g(1) . . . g(3− L)
...

...
. . .

...

g(K) g(K + (−1)K−1) . . . g(K + (−1)K−1(L− 1))

 , (6.26)

which, for i ∈ [K] and j ∈ [L], results in

ti,g(i+(−1)i−1(j−1)) =
∑j

m=1
T

(1)

i,g(i+(−1)i−1(m−1))
+ T

(2)

i,g(i+(−1)i−1(j−1))
. (6.27)
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For i ∈ [K], we can re-write (6.27) as follows:

tg(i+(−1)i+j−1(j−1)),i =
j∑

m=1
T

(1)

g(i+(−1)i+j−1(j−1)),g(i+(−1)i+j−1(j−m))
+ T

(2)

g(i+(−1)i+j−1(j−1)),i
, if j ∈ [L],

∞, if j /∈ [L],

(6.28)

which results in

ti = min
j∈[L]

{ j∑
m=1

T
(1)

g(i+(−1)i+j−1(j−1)),g(i+(−1)i+j−1(j−m))
+ T

(2)

g(i+(−1)i+j−1(j−1)),i

}
. (6.29)

We highlight that the CS and SS schemes may not be the optimal schedules for

certain realizations of the straggling behaviour, but our interest is in the average per-

formance. We will see in Section 6.7 that both perform reasonably well, and neither

scheme outperforms the other at all settings.

6.5.3 Average Completion Time Analysis

Here we analyze the performance of CS and SS providing upper bounds on t
∗
(L, K̃).

We represent the average completion time of CS and SS by tCS(L, K̃) and tSS(L, K̃),

respectively. In order to characterize these average values through (6.6), we need

to obtain HS,∅ = Pr {ti > t,∀i ∈ S}, for any set S ⊂ [K], K − K̃ + 1 ≤ |S| ≤ K,

where t1, . . . , tK are given in (6.24) and (6.29), for CS and SS, respectively. For ease

of presentation, we denote HS,∅ for CS and SS by HCS
S,∅ and HSS

S,∅, respectively. For

S ⊂ [K] with K − K̃ + 1 ≤ |S| ≤ K, we have

HCS
S,∅ = Pr

{ j∑
m=1

T
(1)
g(i−j+1),g(i−j+m) + T

(2)
g(i−j+1),i > t,∀j ∈ [L], ∀i ∈ S

}
= Pr

{
T CS
S (t)

}
,

(6.30)

where we define

T CS
S (t) ,

{(
T

(1)
1,1 , . . . , T

(1)
K,K , T

(2)
1,1 , . . . , T

(2)
K,K

)
:
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∑j

m=1
T

(1)
g(i−j+1),g(i−j+m) + T

(2)
g(i−j+1),i > t,∀j ∈ [L],∀i ∈ S

}
. (6.31)

Similarly, for any set S ⊂ [K], K − k + 1 ≤ |S| ≤ K, we have

HSS
S,∅ = Pr

{∑j

m=1
T

(1)

g(i+(−1)i+j−1(j−1)),g(i+(−1)i+j−1(j−m))

+ T
(2)

g(i+(−1)i+j−1(j−1)),i
> t,∀j ∈ [L],∀i ∈ S

}
= Pr

{
T SS
S (t)

}
(6.32)

where we define

T SS
S (t) ,

{(
T

(1)
1,1 , . . . , T

(1)
K,K , T

(2)
1,1 , . . . , T

(2)
K,K

)
:

j∑
m=1

T
(1)

g(i+(−1)i+j−1(j−1)),g(i+(−1)i+j−1(j−m))

+ T
(2)

g(i+(−1)i+j−1(j−1)),i
> t,∀j ∈ [L],∀i ∈ S

}
. (6.33)

It follows that, for X ∈ {CS, SS},

HX
S,∅ =

∫
· · ·
∫

T X
S (t)

f
(1)
1,[L]

(
τ

(1)
1

)
· · · f (1)

K,[L]

(
τ

(1)
K

)
f

(2)
1,[L]

(
τ

(2)
1

)
· · · f (2)

K,[L]

(
τ

(2)
K

)

dτ
(1)
1 · · · dτ (1)

K dτ
(2)
1 · · · dτ (2)

K . (6.34)

By plugging (6.34) into (6.6), we can obtain, for X ∈ {CS,SS},

tX(L, K̃) =
∑K

i=K−K̃+1
(−1)K−K̃+i+1

(
i− 1

K − K̃

)∑
S⊂[K]:|S|=i

∫ ∞
0

HX
S,∅dt. (6.35)

Note that we have obtained a general characterization of the average completion

time of CS and SS in terms of the CDFs of the delays associated with different tasks

at different workers. The numerical evaluation of the performances of CS and SS and

the lower bound will be presented in Section 6.7.

6.6 Lower Bound

Here we present a lower bound on t
∗
(L, K̃) by considering an adaptive model. Note

that the TO matrix, in general, may depend on the statistics of the computation
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and communication delays, i.e., F
(l)
i,[K], ∀l ∈ [2], but not on the realization of T

(l)
i,C(i,j),

i ∈ [K], j ∈ [L]. Let T̂
(1)
i,j and T̂

(2)
i,j , respectively, represent the computation and com-

munication delays associated with the task worker i executes with its j-th computation,

i ∈ [K], j ∈ [L]. We note that T̂
(l)
i,j is a random variable independent of the TO matrix,

i ∈ [K], j ∈ [L], l ∈ [2]. We define

T ,
(
T̂

(1)
1,1 , T̂

(2)
1,1 , . . . , T̂

(1)
1,L, T̂

(2)
1,L, . . . , T̂

(1)
K,1, T̂

(2)
K,1, . . . , T̂

(1)
K,L, T̂

(2)
K,L

)
. (6.36)

For each realization of T, we allow the master to employ a distinct TO matrix CT,

and denote the completion time by tCT
(T, L, K̃), which is a random variable due to

the randomness of T. We define

tLB(T, L, K̃) , minCT

{
tCT

(T, L, K̃)
}
, (6.37)

and

tLB(L, K̃) , E
[
tLB(T, L, K̃)

]
, (6.38)

where the expectation is taken over T. It is easy to verify that

t
∗
(L, K̃) = minC

{
E
[
tC(L, K̃)

]}
≥ E

[
minCT

{
tCT

(T, L, K̃)
}]

= tLB(L, K̃). (6.39)

We denote by t̂i,j the time at which the master receives the task computed by worker

i with its j-th computation, i ∈ [K], j ∈ [L]. It follows that

t̂i,j =
∑j

l=1
T̂

(1)
i,l + T̂

(2)
i,j . (6.40)

For a realization of T, tLB(T, L, K̃) is the K̃-th order statistics of
{
t̂1,1, . . . , t̂1,L, . . . ,

t̂K,1, . . . , t̂K,L
}

, i.e., the K̃-th smallest value among
{
t̂1,1, . . . , t̂1,L, . . . , t̂K,1, . . . , t̂n,L

}
,

denoted by t̂T,(K̃). To prove that tLB(T, L, K̃) = t̂T,(K̃), we note that tLB(T, L, K̃)

cannot be smaller than t̂T,(K̃), since, according to the definition, for any time before

t̂T,(K̃) master has not received K̃ computations. Also, since master receives the K̃-

th computation exactly at time t̂T,(K̃), knowing the realization of T, one can design
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the TO matrix CT such that the first K̃ computations received by the master are all

distinct. Since finding the statistics of t̂T,(K̃) is analytically elusive, we obtain the lower

bound on t
∗
(L, K̃) through Monte Carlo simulations.

6.7 Performance Comparisons

In this section, we evaluate the average completion time of the proposed CS and SS

schemes, and compare them with different results in the literature. We will focus on

distributed linear regression as the reference scenario.

We would like to compare the performance of the proposed uncoded computation

schemes with coded computation techniques that have received significant interest in

recent years. We will consider, in particular, the polynomially coded (PC) scheme [107]

and the polynomially coded multi-message (PCMM) scheme [111]. We also consider an

uncoded computing scheme, reffered to as the random assignment (RA) scheme [112],

in which L = K, i.e., the whole dataset is available at each worker, and each worker

executes the computations sequentially through a random scheduling. PC and PCMM

focus exclusively on linear computation tasks; and hence, we also consider a linear

regression problem, in which the goal is to minimize

F (θ) =
1

N
‖Λθ − v‖22 , (6.41)

where θ ∈ Rd is the model parameter vector, Λ ∈ RN×d is the data matrix, and v ∈ RN

is the vector of labels. We split Λ into K disjoint sub-matrices Λ = [Λ1 · · ·ΛK ]T , where

Λi ∈ Rd×N/K , and v =
[
vT1 · · · vTK

]T
, where vi ∈ RN/K , i ∈ [K]. The gradient of loss

function F (θ) is given by

∇F (θ) =
2

N
ΛT (Λθ − v) =

2

N

∑K

i=1

(
ΛiΛ

T
i θ − Λivi

)
. (6.42)

We perform gradient descent to minimize (6.41), in which the model parameters at the

l-th iteration, θl, are updated as

θl+1 = θl − ηl · ∇F (θl) = θl − ηl ·
2

N

∑n

i=1

(
ΛiΛ

T
i θl − Λivi

)
, (6.43)
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where ηl is the learning rate at iteration l. We consider a DGD algorithm, in which

the computation of ∇F (θ) is distributed across K workers, and the master updates

the parameter vector according to (6.43) after receiving enough computations from the

workers, and sends the updated parameter vector to the workers. For the l-th iteration

of DGD, we set

h(Λi) = ΛiΛ
T
i θl, for i ∈ [K], (6.44)

A detailed description of the computation tasks carried out by the workers and the

master along with computational complexities for different schemes is provided in [160,

Section VI-B].

For the numerical experiments we generate each entry of data matrix Λ inde-

pendently according to distribution N (0, 1). We also generate the labels as vi =

(Λi + Υ)TΩ, where Υ ∈ Rd×N/K , with each entry distributed independently according

to N (0, 0.01), and Ω ∈ Rd with each entry distributed independently according to

U(0, 1). For fairness we use the same dataset for all the schemes.

We train a linear regression model using the DGD algorithm described above with

a constant learning rate ηl = 0.01. We run experiments on an Amazon EC2 cluster

over t2.micro instance with K+1 servers, where one of the servers is designated as the

master and the rest serve as workers. We implement different schemes in Python and

employ MPI4py library for message passing between different nodes.

At each iteration of the DGD algorithm, we measure the computation and commu-

nication delays of each task at each worker. We can then obtain the completion time

of each scheme according to its completion criteria. We obtain the average completion

time over 500 iterations.

We compare the average completion time of different schemes with respect to the

computation load L, L ≥ 2, in Fig. 6.1, whereK = 15, d = 400, andN = 900. As it can

be seen, CS and SS outperform PC and PCMM significantly; while PCMM improves

upon PC. This result shows that standard coded computation framework cannot fully

exploit the computing capabilities in the network, and splitting the computational tasks

assigned to each worker and receiving partial computations performed by each worker
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Figure 6.1: Average completion time of different schemes with respect to computa-
tion load, L ≥ 2, with K̃ = K.

can reduce the average completion time significantly. We also observe that the average

completion time of PC increases with L. This is because the delays at different workers

are not significantly different; and thus, increasing the computation load to reduce the

number of received computations from different workers can increase the total delay.

This is another limitation of the coded computation framework, as it requires careful

tuning of the parameters based on the statistics of the delays in the system. We

observe that the gap between the average completion time of SS and the lower bound

is relatively small for the entire range, and reduces with L, and SS outperforms CS with

the improvement slightly increasing with L. The average completion time of RA, which

requires L = K, is 0.895 millisecond, while SS achieves 0.64 millisecond, i.e., around

%28.5 reduction. Thus, designing the TO matrix, rather than random computations,

can provide significant improvement in computation speed.

In Fig. 6.2, we compare the performances of different schemes with respect to the

number of workers, K. We consider d = 500, N = 1000, and L = K. When N/K is

not an integer, we zero-pad the dataset. We observe that, except PCMM, the average

completion time of different schemes reduce slightly with K when N is fixed. For

PC, when L = K, the computation received from the fastest worker determines the

completion time, and, with all other parameters fixed, the computation delay at each



Chapter 6. Distributed Computing 152

10 11 12 13 14 15
Number of workers, K

100

101

Av
er
ag
e 
co
m
pl
et
io
n 
tim

e 
(in

 m
illi
se
co
nd
s)

PC scheme
PCMM scheme
RA scheme
CS scheme
SS scheme
Lower bound

Figure 6.2: Average completion time of different schemes with respect to the number
of workers, 10 ≤ K ≤ 15, with L = K̃ = K.

worker depends mostly on N . Thus, by introducing new workers when N is fixed, the

average completion time is expected to decrease. Whereas, with PCMM, although the

computation time of each task is expected to decrease with K, the average completion

time increases, which is due to the increase in the number of communications required

by a factor of two. For uncoded computing schemes, RA, CS and SS, the average

completion time decreases with K, as they allow a better utilization of the computing

resources. As before, we observe that CS and SS improve the average completion time

significantly compared to PC and PCMM. Also, based on the superiority of the CS and

SS over RA, we conclude that the TO matrix design is essential in reducing the average

delay of uncoded computing schemes. CS outperforms SS for small K values, but SS

takes over as K increases. The relatively small gap between the average completion

times of CS and SS and the lower bound illustrates their efficiency in scheduling the

tasks despite the lack of any information on the speeds of the workers.

6.8 Conclusions

In this chapter we have studied distributed computation across inhomogeneous work-

ers with the goal of minimizing the average delay of computing an arbitrary function.
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The computation may correspond to each iteration of a DGD algorithm applied on

a large dataset. We assume that each worker has access to a limited portion of the

dataset, defined as the computation load. In contrast to the growing literature on

coded computation to mitigate straggling servers, we have studied uncoded compu-

tations and sequential communication to the master in order to benefit from all the

computations carried out by the workers. Since the instantaneous computation speeds

of the workers are not known in advance, allocation of the tasks to the workers and

their scheduling become crucial in minimizing the average completion time. In partic-

ular, we have considered the assignment of sub-data to the workers with a predesigned

computation order. Workers send the result of each computation to the master as

soon as it is executed, and move on to compute the next task assigned to them. As-

suming a general statistics for the computation and communication delays of different

workers, we have obtained closed-form expressions for the average completion time of

two particular computation allocation schemes, called CS and SS. We have compared

the performance of these proposed schemes with the existing ones in the literature,

particularly the coded PC [107], PCMM [111], and uncoded RA [112] schemes. The

results of the experiments carried out on Amazon EC2 cluster show that the CS and

SS schemes provide significant reduction in the average completion time over these

schemes.



Chapter 7

Machine Learning Over-the-Air

7.1 Overview

In this chapter we study collaborative ML at the wireless edge, where power and

bandwidth-limited wireless devices with local datasets carry out DSGD with the help

of a remote PS. Standard approaches assume separate computation and communica-

tion, where local gradient estimates are compressed and communicated to the PS over

orthogonal links. Following this digital approach, we introduce D-DSGD, in which

the wireless terminals (workers) employ gradient quantization and error accumulation,

and transmit their gradient estimates to the PS over the underlying wireless MAC. We

then introduce an analog scheme, called A-DSGD, which exploits the additive nature

of the wireless MAC for over-the-air gradient computation. In A-DSGD, the workers

first sparsify their gradient estimates, and then project them to a lower dimensional

space imposed by the available channel bandwidth. These projections are transmitted

directly over the MAC without employing any digital code. Numerical results show

that A-DSGD converges much faster than D-DSGD thanks to its more efficient use of

the limited bandwidth and the natural alignment of the gradient estimates over the

channel. The improvement is particularly compelling at low power and low bandwidth

regimes. We also observe that the performance of A-DSGD improves with the number

of workers (keeping the total size of the dataset constant), while D-DSGD deteriorates,

limiting the ability of the latter in harnessing the computation power of edge devices.

The lack of quantization and channel encoding/decoding in A-DSGD further speeds

up communication, making it very attractive for low-latency ML applications at the

wireless network edge.

154
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7.2 Introduction

ML problems often require the minimization of the empirical loss function

F (θ) =
1

N

∑N

n=1
f (θ,un) , (7.1)

where θ ∈ Rd denotes the model parameters to be optimized, un is the n-th training

data sample, for n ∈ [N ], and f(·) is the loss function defined by the learning model.

The minimization of (7.1) is typically carried out through iterative gradient descent

(GD), in which the model parameters at the t-th iteration, θt, are updated according

to

θt+1 = θt − ηt∇F (θt) = θt − ηt
1

N

∑N

n=1
∇f (θt,un) , (7.2)

where ηt is the learning rate at iteration t. However, in the case of massive datasets

each iteration of GD becomes prohibitively demanding. Instead, in SGD the parameter

vector is updated with a stochastic gradient

θt+1 = θt − ηt · g (θt) , (7.3)

which satisfies E [g (θt)] = ∇F (θt). SGD also allows parallelization when the dataset

is distributed across tens or even hundreds of workers. Due to the growth in the di-

mensions of the datasets and complexity of the neural networks, exploiting a single

machine to carry out a learning task is prohibitively slow, and it is essential to develop

distributed ML algorithms. In distributed SGD (DSGD), workers process data samples

in parallel while maintaining a globally consistent parameter vector θt. In each itera-

tion, worker i computes a gradient vector based on the global parameter vector with

respect to its local dataset, denoted by Bi, and sends the result to the PS, which stores

and updates the global parameter vector, i ∈ [K]. Once the PS receives the computed

gradients from all the workers, it updates the global parameter vector according to

θt+1 = θt − ηt
1

K

∑K

i=1
gi (θt) , (7.4)
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where gi (θt) , 1
|Bi|
∑
un∈Bi ∇f (θt,un) is the stochastic gradient of the current model

computed at worker i, i ∈ [K], using the locally available portion of the dataset, Bi.

Ideally, the data parallelism with DSGD should speed up the process K times providing

linear scalability. However, in practice, it suffers from extensive communications from

the workers to the PS, which is to maintain a consistent global model, and communica-

tion is reported as the major bottleneck of DSGD [115,119,120,126,160]. There is no

doubt that the communication will be an even bigger hurdle in wireless edge learning

due to stringent bandwidth and energy constraints on the workers.

Numerous studies have been dedicated to the reduction of the communication load

of DSGD [114,115,117,118,118–136]; however, these works ignore the communication

channel, and simply focus on reducing the amount of data that needs to be transmitted

from each worker to the PS. Here we consider DSGD over-the-air; that is, we consider

a wireless shared medium from the workers to the PS, and treat each iteration of the

DSGD algorithm as a distributed over-the-air computation problem. This can model

machine learning at the wireless network edge, where the workers correspond to IoT

devices or sensor nodes that collect their local data samples. Distributed learning in

this scenario is attractive also due to privacy and personalization. We will provide

two distinct approaches for this wireless DSGD problem, based on digital and analog

computation approaches, respectively. We will show that analog “over-the-air” com-

putation can significantly speed up wireless DSGD, particularly in bandwidth-limited

and low-power settings, typically experienced by wireless edge devices.

The remainder of this chapter is organized as follows. In Section 7.3 we introduce

the system model of ML over-the-air. We elaborate our DGSD algorithms with digital

and analog transmission approaches in Sections 7.4 and 7.5, respectively. In Section

7.6 we provide experimental results. Conclusions are drawn in Section 7.7.

7.3 System Model

We consider distributed ML at the wireless network edge, where K wireless edge

nodes, called the workers, employ SGD with the help of a remote PS, to which they

are connected through a noisy wireless MAC (see Fig. 7.1). Let Bi denote the set of
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Figure 7.1: Illustration of the studied distributed ML framework at the wireless
edge. Workers with local datasets collaborate through a PS to carry out DSGD at
the network edge, where the local gradient estimates of the workers are transmitted
to the PS over a shared wireless MAC.

data samples available at worker i, i ∈ [K], and gi (θt) ∈ Rd be the stochastic gradient

computed by worker i using local data samples, where we remind that θt ∈ Rd is the

model parameters at the t-th iteration. At each iteration of the DSGD algorithm in

(7.4), the local gradient estimates of the workers are sent to the PS over s uses of a

Gaussian MAC, characterized by1:

yt =
∑K

i=1
xi + zt, (7.5)

where xi ∈ Rs is the length-s channel input vector transmitted by worker i at iteration

t, yt ∈ Rs is the channel output received by the PS, and zt ∈ Rs is the independent

additive white Gaussian noise (AWGN) vector with each entry independent and identi-

cally distributed (i.i.d.) according to N
(
0, σ2

)
. Since we focus on DSGD, the channel

input vector of worker i at iteration t is a function of the current parameter vector θt

and the local dataset Bi, and more specifically the current gradient estimate at worker

i, gi (θt), i ∈ [K]. A total average transmit power constraint is imposed:

1

KT

∑T

t=1

∑K

i=1
||xi,t||22 ≤ P̄ , (7.6)

averaged over iterations of the DSGD algorithm and the workers. The goal is to recover

the average of the locally computed gradients 1
K

∑K
i=1 gi (θt) at the PS, and update

1Here we study a Gaussian MAC to present the main ideas behind the proposed ML approach in
a simple setting. This approach has been extended to a wireless fading MAC in [161].



Chapter 7. Machine Learning Over-the-Air 158

the model parameter as in (7.4). However, due to the pre-processing performed at each

worker and the noise added by the wireless channel, it is not possible to recover the

average gradient perfectly at the PS, and instead, it uses a noisy estimate to update

the model parameter vector; i.e., we have θt+1 = φ(θt,yt) for some update function

φ : Rd × Rs → Rd. The updated model parameter is then multicast to the workers

by the PS through an error-free shared link. We assume that the PS has enough

resources to deliver a consistent global parameter vector to the workers reliably for

their computations in the next iteration.

The transmission of the local gradient computations, gi (θt), i ∈ [K], to the PS with

the goal of PS reconstructing their average can be considered as a distributed function

computation problem over a MAC [162]. We will consider both a digital approach

treating computation and communication separately, and an analog approach that

does not use any coding, and instead applies gradient sparsification followed by a linear

transformation to compress the gradients, which are then transmitted simultaneously

over the channel in an uncoded fashion.

7.4 Digital DSGD (D-DSGD)

In this section, we present DSGD at the wireless network edge utilizing digital com-

pression and transmission over the wireless MAC, referred to as the digital DSGD

(D-DSGD) algorithm. Since we do not know the variances of the gradient estimates

at different workers, we allocate the power equally among the workers, so that worker

i sends xi,t with power Pt, i.e., ||xi,t||22 = Pt, where Pt values are chosen to satisfy the

average transmit power constraint over T iterations

1

T

∑T

t=1
Pt ≤ P̄ . (7.7)

Due to the intrinsic symmetry of the model, we assume that the workers transmit at the

same rate at each iteration (while the rate may change across iterations depending on

the allocated power, Pt). Accordingly, the total number of bits that can be transmitted

from each of the workers over s uses of the Gaussian MAC, described in (7.5), is upper
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bounded by

RD,t =
s

2K
log2

(
1 +

KPt
sσ2

)
, (7.8)

where KPt/s is the sum-power per channel use. Note that this is an upper bound since

it is the Shannon capacity of the underlying Gaussian MAC, and we further assumed

that the capacity can be achieved over a finite blocklength of s.

Remark 7.4.1. We note that having a distinct sum power KPt at each iteration t

enables each user to transmit different numbers of bits at different iterations. This

corresponds to a novel gradient compression scheme for DSGD, in which the workers

can adjust over time the amount of information they send to the PS about their

gradient estimates. They can send more information bits at the beginning of the DSGD

algorithm when the gradient estimates have higher variances, and reduce the number

of transmitted bits over time as the variance decreases. We observed empirically that

this improves the performance compared to the standard approach in the literature,

where the same compression scheme is applied at each iteration [129].

We will adopt the scheme proposed in [129] for gradient compression at each iteration

of the DSGD scheme, as it provides the state-of-the-art in convergence speed with the

minimum number of bits transmitted by each worker at each iteration. However, we

modify this scheme by allowing different numbers of bits to be transmitted by the

workers at each iteration.

At each iteration the workers sparsify their gradient estimates as described below.

In order to retain the accuracy of their local gradient estimates, workers employ error

accumulation [115,116], where the accumulated error vector at worker i until iteration

t is denoted by ∆i,t−1 ∈ Rd, where we set ∆i,0 = 0, ∀i ∈ [K]. Hence, after the

computation of the local gradient estimate for parameter vector θt, i.e., gi (θt), worker

i updates its estimate with the accumulated error as gi (θt) + ∆i,t−1, i ∈ [K]. At

iteration t, worker i, i ∈ [K], sets all but the highest κt and the smallest κt of the entries

of its gradient estimate vector gi (θt) + ∆i,t−1, of dimension d, to zero, where κt ≤ d/2

(to have a communication-efficient scheme, in practice, the goal is to have κt � d, ∀t).

Then, it computes the mean values of all the remaining positive entries and all the
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remaining negative entries, denoted by µ+
i,t and µ−i,t, respectively. If µ+

i,t >
∣∣∣µ−i,t∣∣∣, then

it sets all the entries with negative values to zero and all the entries with positive values

to µ+
i,t, and vice versa. We denote the resulting sparse vector at worker i by ĝi (θt), and

worker i updates the local accumulated error vector as ∆i,t = gi (θt)+∆i,t−1− ĝi (θt),

i ∈ [K]. It then aims to send ĝi (θt) over the channel by transmitting its mean value and

the positions of its non-zero entries. For this purpose, we use a 32-bit representation

of the absolute value of the mean (either µ+
i,t or

∣∣∣µ−i,t∣∣∣) along with 1 bit indicating its

sign. To send the positions of the non-zero entries, it is assumed in [129] that the

distribution of the distances between the non-zero entries is geometrical with success

probability qt, which allows them to use Golomb encoding to send these distances with

a total number of bits

b∗ +
1

1− (1− κt)2b∗
, (7.9)

where b∗ = 1 +

⌊
log2

(
log((

√
5−1)/2)

log(1−κt)

)⌋
. However, we argue that, sending log2

(
d
κt

)
bits to transmit the positions of the non-zero entries is sufficient regardless of the

distribution of the positions. This can be achieved by simply enumerating all possible

sparsity patterns. Thus, with the D-DSGD scheme, the total number of bits sent by

each worker at iteration t is given by

rD,t = log2

(
d

κt

)
+ 33, (7.10)

where κt is chosen as the highest integer satisfying rD,t ≤ RD,t.

7.5 Analog DSGD (A-DSGD)

Next, we propose an analog DSGD algorithm, called A-DSGD, which does not em-

ploy any digital coding scheme, either for compression or channel coding, and instead

all the workers transmit their gradient estimates simultaneously in an uncoded manner.

This is motivated by the fact that, the PS is not interested in the individual gradient

vectors, but only in their average. The underlying wireless MAC naturally provides
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the sum of the gradients, which is the only information required at the PS to update

the parameter vector. See Algorithm 8 for a description of the A-DSGD scheme.

Similarly to the D-DSGD scheme, workers employ local error accumulation. Hence,

after the computation of the local gradient estimate for parameter vector θt, each

worker updates its estimate with the accumulated error as geci (θt) , gi (θt) + ∆i,t−1,

i ∈ [K].

The challenge in the analog transmission approach is to compress the gradient vectors

to the available channel bandwidth. In many modern ML applications, such as deep

neural networks, the parameter vector, and hence the gradient vectors, have extremely

large dimensions, whereas the channel bandwidth, measured by parameter s, is small

due to the bandwidth limitations, and to limit the latency of each DSGD iteration.

Thus, transmitting all the model parameters one-by-one in an uncoded/analog fashion

is not possible as we typically have d� s.

Lossy compression at any required level is at least theoretically possible in the digital

domain. For the analog scheme, in order to reduce the dimension of the gradient vector

to that of the channel, the workers apply gradient sparsification. In particular, worker

i sets all but the k elements of the error-compensated resulting vector geci (θt) with

the highest magnitudes to zero. We denote the sparse vector at worker i by gspi (θt),

i ∈ [K]. This k-level sparsification is represented by function sparsek in Algorithm 8,

i.e., gspi (θt) = sparsek (geci (θt)). The accumulated error at worker i, i ∈ [K], is then

updated according to

∆i,t =geci (θt)− gspi (θt) = gi (θt) + ∆i,t−1 − sparsek (gi (θt) + ∆i,t−1) . (7.11)

We would like to transmit only the non-zero entries of these sparse vectors. However,

simply ignoring the zero elements would require transmitting their indeces to the PS

separately. To avoid this additional data transmission, we will employ a random pro-

jection matrix, similar to compressive sensing. A similar idea is recently used in [163]

for analog image transmission over a bandwidth-limited channel.
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Algorithm 8 A-DSGD

1: Initialize θ1 = 0 and ∆1,0 = · · · = ∆K,0 = 0
2: for t = 1, . . . , T do

• Workers do:
3: for i = 1, . . . ,K in parallel do
4: Compute gi (θt) with respect to ui ∈ Bi
5: geci (θt) = gi (θt) + ∆i,t−1

6: gspi (θt) = sparsek (geci (θt))
7: ∆i,t = geci (θt)− gspi (θt)
8: EPA:
9: g̃i (θt) = Asg

sp
i (θt)

10: xi,t (θt) =
√
αtg̃i (θt)

11: UPA:
12: g̃i (θt) = As−1g

sp
i (θt)

13: xi,t (θt) =
[√

αi,tg̃i (θt)
T √

αi,t

]T
14: end for

• PS does:
15: EPA:
16: ĝEPA (θt) = AMPAs

(
1

K
√
αt
y (θt)

)
17: θt+1 = θt − ηt · ĝEPA (θt)
18: UPA:
19: ĝUPA (θt) = AMPAs−1

(
1

ys(θt)
ys−1 (θt)

)
20: θt+1 = θt − ηt · ĝUPA (θt)
21: end for

Assuming identically distributed datasets across the workers, the local gradient es-

timates will also follow identical distributions, and hence, will have similar sparsity

patterns. A pseudo-random matrix As̃ ∈ Rs̃×d, for some s̃ ≤ s, with each en-

try i.i.d. according to N (0, 1/s̃), is generated and shared between the PS and the

workers before starting the computations. At each iteration t, worker i computes

g̃i (θt) , As̃g
sp
i (θt) ∈ Rs̃, and transmits xi,t (θt) ,

[√
αi,tg̃i (θt)

T ai,t
T
]T

, where

ai,t ∈ Rs−s̃, over the MAC, i ∈ [K], while satisfying the average power constraint

(7.6). The PS receives

y (θt) =
∑K

i=1
xi,t (θt) + zt =

As̃
∑K

i=1
√
αi,tg

sp
i (θt)∑K

i=1 ai,t

+ zt. (7.12)

In the following, we propose two schemes for this analog transmission approach employ-

ing different scaling coefficients, or equivalently, different power allocation schemes.
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7.5.1 Equal power allocation (EPA)

In the EPA scheme, we set s̃ = s, and at iteration t, worker i computes g̃i (θt) =

Asg
sp
i (θt), i ∈ [K], and scales its computed low-dimensional gradient vector g̃i (θt)

with the same factor
√
αt, which is known by the workers and the PS, and sends

xi,t (θt) =
√
αtg̃i (θt), i.e., ai,t = ∅. The scaling factor

√
αt is chosen to satisfy the

following average power constraint over T iterations of A-DSGD algorithm

1

KT

∑T

t=1

∑K

i=1
αt ‖g̃i (θt)‖22 ≤ P̄ . (7.13)

Thus, the received vector at the PS is given by

y (θt) =
√
αt
∑K

i=1
g̃i (θt) + zt. (7.14)

Since αt is known also at the PS, it can normalize the received vector to obtain:

1

K
√
αt
y (θt) =

1

K

K∑
i=1

g̃i (θt) +
1

K
√
αt
zt = As

1

K

K∑
i=1

gspi (θt) +
1

K
√
αt
zt. (7.15)

The goal of the PS is to recover 1
K

∑K
i=1 g

sp
i (θt) from its noisy observation above.

For this, we employ the approximate message passing (AMP) algorithm [164]. The

AMP algorithm is represented by the AMPAs function in Algorithm 8. The estimate

ĝEPA (θt) is then used to update the model parameters as follows:

θt+1 = θt − ηt · ĝEPA (θt) . (7.16)

7.5.2 Unequal power allocation (UPA)

With the UPA scheme, we set s̃ = s − 1, which requires s ≥ 2. At iteration t,

we set ai,t =
√
αi,t, and worker i computes g̃i (θt) = As−1g

sp
i (θt), and sends vector

xi,t (θt) =
[√

αi,tg̃i (θt)
T √

αi,t

]T
with the same power Pt = ||xi,t (θt) ||22 satisfying

the average power constraint 1
T

∑T
t=1 Pt ≤ P̄ , for i ∈ [K]. Accordingly, scaling factor
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√
αi,t is determined to satisfy

Pt = αi,t

(
‖g̃i (θt)‖22 + 1

)
, (7.17)

which yields

αi,t =
Pt

‖g̃i (θt)‖22 + 1
, for i ∈ [K]. (7.18)

Since ‖g̃i (θt)‖22 may vary across workers, so can the scaling factor
√
αi,t. That is

why, at each iteration t, worker i allocates one channel use to provide the value of

√
αi,t to the PS along with its scaled low-dimensional gradient vector g̃i (θt), i ∈ [K].

Accordingly, the received vector at the PS is given by

y (θt) =

As−1
∑K

i=1
√
αi,tg

sp
i (θt)∑K

i=1 αi,t

+ zt, (7.19)

where αi,t, i ∈ [K], is replaced by (7.18). For j ∈ [s], we define

yj (θt) ,
[
y1 (θt) y2 (θt) · · · yj (θt)

]T
(7.20)

zjt ,
[
zt,1 zt,2 · · · zt,j

]T
, (7.21)

where yj (θt) and zt,j denote the j-th element of y (θt) and zt, respectively. Thus, we

have

ys−1 (θt) = As−1

∑K

i=1

√
αi,tg

sp
i (θt) + zs−1

t , (7.22a)

ys (θt) =
∑K

i=1
αi,t + zt,s. (7.22b)

Note that the goal is to recover 1
K

∑K
i=1 g

sp
i (θt) at the PS, while, from ys−1 (θt) given

in (7.22a), the PS observes a noisy version of the weighted sum
∑K

i=1
√
αi,tg

sp
i (θt)

projected to a low-dimensional vector through As−1. According to (7.18), each value

of ‖g̃i (θt)‖22 results in a distinct scaling factor αi,t. However, due to the independence

of data samples, for large enough d and |Bi|, the values of ‖g̃i (θt)‖22 ,∀i ∈ [K], are not

going to be too different across workers. As a result, scaling factors
√
αi,t,∀i ∈ [K],
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are not going to be very different either. Accordingly, to diminish the effect of scaled

gradient vectors, we choose to scale down the received vector ys−1 (θt) at the PS, given

in (7.22a), with the sum of the scaling factors, i.e.,
∑K

i=1
√
αi,t, whose noisy version is

received by the PS as ys (θt) given in (7.22b). The resulting scaled vector at the PS is

given by

1

ys (θt)
ys−1 (θt) =

1

ys (θt)

(
As−1

∑K

i=1

√
αi,tg

sp
i (θt) + zs−1

t

)
= As−1

K∑
i=1

√
αi,t∑K

i=1
√
αi,t + zt,s

gspi (θt) +
1∑K

i=1
√
αi,t + zt,s

zs−1
t , (7.23)

where αi,t is given in (7.18). By our choice, the PS tries to recover 1
K

∑K
i=1 g

sp
i (θt) from

ys−1 (θt) /ys (θt) knowing the measurement matrix As−1. The PS estimates ĝUPA (θt)

using the AMP algorithm. The estimate ĝUPA (θt) is then used to update the model

parameter as follows:

θt+1 = θt − ηt · ĝUPA (θt) . (7.24)

Remark 7.5.1. We remark here that, with SGD the empirical variance of the stochas-

tic gradient vectors reduce over time approaching zero asymptotically. The power

should be allocated over iterations taking into account this decaying behaviour of gra-

dient variance, while making sure that the noise term would not become dominant over

time. To reduce the variation in the scaling factors αi,t, ∀i ∈ [K], which is particularly

efficient for the UPA power allocation scheme, variance reduction techniques can be

used [165]. We also note that setting Pt = P̄ , ∀t, results in a special case of the UPA

scheme, where the power is allocated uniformly over time to be resistant against the

noise term.

Remark 7.5.2. We remark that in the considered model the main limitation is the

channel bandwidth, s. In the proposed A-DSGD algorithm, first a k-level sparsifica-

tion is applied at worker i, resulting in vector gspi (θt), i ∈ [K]. Thus, k can take

different values satisfying k < s leading to a tradeoff. For a relatively small value of k,

1
K

∑K
i=1 g

sp
i (θt) can be more reliably recovered from 1

K

∑K
i=1 g̃i (θt); however it may not

provide an accurate estimate of the actual average gradient 1
K

∑K
i=1 gi (θt). Whereas,
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Table 7.1: Final test accuracy for various DSGD schemes considered in Fig. 7.2

D-DSGD
Pt = P̄
P̄ = P̄1

D-DSGD
distinct Pt
P̄ = P̄1

D-DSGD
Pt = P̄
P̄ = P̄2

D-DSGD
distinct Pt
P̄ = P̄2

A-DSGD
UPA
P̄ = P̄1

A-DSGD
EPA
P̄ = P̄1

0.459 0.501 0.698 0.705 0.811 0.812
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Figure 7.2: Performance of the A-DSGD and D-DSGD algorithms for different P̄
values.

with a higher k value, 1
K

∑K
i=1 g

sp
i (θt) provides a better estimate of 1

K

∑K
i=1 gi (θt),

but reliable recovery of 1
K

∑K
i=1 g

sp
i (θt) from the vector 1

K

∑K
i=1 g̃i (θt) is less likely.

Remark 7.5.3. The proposed A-DSGD algorithm mainly focuses on the analog trans-

mission from the workers, where the dimension of the gradient vectors is reduced uti-

lizing the compressive sensing technique, leading to a more efficient communication

scheme with smaller bandwidth requirement. While our focus in this paper has been

on the transmission of the gradients, we can apply the existing schemes in the litera-

ture that trade-off an increase in the computation load at each worker with a reduction

in the communication load. Such schemes include introducing communication delay,

where each worker performs SGD algorithm updating the model parameter locally

multiple times, and communicates only after multiple local iterations [133]. Moreover,

applying momentum correction [118] improves the convergence speed of the DSGD

algorithms with communication delay.
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7.6 Numerical Experiments

Here we evaluate the performances of the proposed A-DSGD and D-DSGD algo-

rithms for the task of image classification. We run experiments on MNIST dataset [166]

with N = 60000 training and 10000 test data samples, and train a single layer neu-

ral network with d = 7850 parameters utilizing ADAM optimizer [167]. The training

dataset is split into K disjoint batches with equal size, and each batch is randomly

assigned to a distinct worker. We set the channel noise variance to σ2 = 1. The

performance is measured as the accuracy with respect to the training dataset versus

iteration count t, and the final accuracy with respect to the test samples, i.e., test

accuracy, after 50 training iterations.

In Fig. 7.2, we compare the performance of the A-DSGD algorithm with both EPA

and UPA with D-DSGD algorithm for different values of the available average transmit

power P̄1 = 127 and P̄2 = 422. Since we need rD,t ≤ RD,t for the digital approach,

we set number of channel uses s and P̄ to relatively high values, and number of work-

ers K to a relatively small value to make sure that κt ≥ 1, ∀t, i.e., each worker can

transmit at least one information bit at each iteration. We consider K = 25 workers,

and s = 0.5d channel uses. We set a fixed ratio k = bs/2c for sparsification. The

final test accuracy of different DSGD algorithms based on the parameter vector ob-

tained after 50 training iterations is given in Table 7.1. We observe that the analog

approach significantly outperforms the standard digital approach of separating com-

putation from communication. We did not include the performance of the A-DSGD

algorithm for P̄ = P̄2 since it is very close to the one with P̄ = P̄1 for both power

allocation schemes. Bearing this in mind, we observe that, unlike the A-DSGD scheme,

the performance of D-DSGD significantly deteriorates by reducing P̄ for both power

allocation schemes under consideration. Therefore, analog computation approach is

particularly attractive for learning across low-power devices as it allows them to align

their limited transmission powers to dominate the noise term. For the UPA, we set

Pt = P̄ , ∀t, which satisfies the average power constraint, and for the EPA, we set

αt = 100+10t/3 and αt = 300+10t resulting in P̄ = P̄1 and P̄ = P̄2, respectively. For

each average power constraint P̄ , we consider two different power allocation schemes
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Table 7.2: Final test accuracy for various DSGD schemes considered in Fig. 7.3

D-DSGD
M = 40
s = 0.3d

D-DSGD
M = 20
s = 0.3d

D-DSGD
M = 20
s = 0.5d

A-DSGD
M = 20
s = 0.3d

A-DSGD
M = 40
s = 0.3d

A-DSGD
M = 20
s = 0.5d

0.704 0.729 0.76 0.811 0.816 0.828
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Figure 7.3: Performance of the A-DSGD and D-DSGD algorithms for different
(M, s) pairs.

for transmission with the D-DSGD algorithm: in the first scheme, we set Pt = P̄ ,

∀t, and in the second, we let Pt to be the same as the sum-power consumed by the

workers at iteration t of the A-DSGD algorithm with EPA leading to a distinct Pt

value at each iteration t. Observe that, for the D-DSGD algorithm, letting Pt vary

over time improves the performance, particularly for the smaller P̄ value; however, for

the A-DSGD, UPA and EPA have a close performance and the improvement of EPA

over UPA is negligible for the considered setting parameters.

In Fig. 7.3, we compare the performance of the A-DSGD algorithm with UPA

and the D-DSGD algorithm, where, for both analog and digital communications, we

set Pt = P̄ = 1100, ∀t, for different K and s values. We consider two different

wireless networks K ∈ {20, 40}, and for each, we consider two different values of

number of channel uses s ∈ {0.3d, 0.5d}, and a fixed ratio k = bs/2c. We present

the final test accuracy of different DSGD algorithms based on the parameter vector

obtained after 50 training iterations in Table 7.2. As it can be seen, for s = 0.3d,
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increasing K by a factor of 2 deteriorates the performance of D-DSGD. Accordingly,

the performance of D-DSGD algorithm is vulnerable to a relatively small increase in

K, as well as a decrease in the average transmit power P̄ , whose effect was observed in

Fig. 7.2. We can conclude that the digital scheme prefers to have a smaller number of

workers, which are then allocated more channel resources to be able to transmit their

gradient estimates to the PS more accurately. However, this means that D-DSGD

cannot harvest the computation power of many edge devices; and its performance

compared to A-DSGD will become even poorer when the computation time and energy

is also taken into account. On the other hand, we observe that the performance of A-

DSGD improves slightly by increasing K from K = 20 to K = 40 when s = 0.3d,

and is significantly superior compared to D-DSGD, and the improvement increases

remarkably with K. We further observe that reducing the available channel uses s from

s = 0.5d to s = 0.3d degrades the performance of the D-DSGD algorithm considerably,

whereas the sensitivity of A-DSGD to channel bandwidth is much weaker.

We highlight that in [161] we have extended the analog and digital approaches pro-

posed here to a wireless fading MAC setting, and we have shown the advantage of the

analog approach over the digital one for wireless fading MAC.

7.7 Conclusions

In this chapter we have studied distributed machine learning at the wireless edge,

where K workers aim to minimize a loss function by performing DSGD with the help

of a remote PS. Workers communicate with the PS over a wireless MAC. We have con-

sidered both a digital approach (D-DSGD) that separates computation and commu-

nication, and an analog approach (A-DSGD) that exploits the superposition property

of the wireless channel to have the average gradient at the PS computed over-the-air.

In the D-DSGD scheme, the amount of information bits sent by each worker at each

iteration can be adaptively adjusted with respect to the average transmit power con-

straint P̄ . In the A-DSGD scheme, we have proposed gradient sparsification followed

by compressive sensing employing the same measurement matrix at all the workers in
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order to reduce the typically very large parameter vector dimension to the limited chan-

nel bandwidth. This analog approach allows a much more efficient use of the limited

channel bandwidth, and benefits from the beamforming effect thanks to the identi-

cal distributions of the gradients across the workers. Numerical results have shown

significant improvement in performance with the analog approach, particularly in the

low-power and low-bandwidth regimes. We have also observed that, unlike D-DSGD,

the performance of A-DSGD improves with the number of workers.



Chapter 8

Conclusions

Growing demand not only for content but also for computation over wireless net-

works requires moving some of the core processing capabilities close to the network

edge. This dissertation can be divided into two parts exploiting edge processing capa-

bilities to make content delivery more efficient, as well as to bring network intelligence

close to edge devices. In Chapters 2, 3, 4, and 5 we have studied coded caching tech-

niques for various settings and developed information-theoretic tools to characterize the

fundamental limits. The considered caching model and the presented results illustrate

that even a limited storage can be converted into spectral efficiency in communica-

tion networks, benefiting the whole network, if it is exploited intelligently. Moreover,

in Chapters 6 and 7 we have studied fundamental limits of exploiting the computa-

tional capabilities of edge devices, which are prevalent with their local datasets, to

carry out a learning algorithm collaboratively. We have developed tools to analyze the

performance of distributed ML at the edge of wireless networks.

In Chapter 2, we have studied proactive content caching at user terminals, each

equipped with a cache of limited size. The system considered here models wireless net-

works, in which the caches are filled over off-peak periods without any cost constraint

or rate limitation (apart from the limited cache capacities), but without knowing the

user demands; and all the user demands arrive (almost) simultaneously, and they are

served simultaneously through an error-free shared link by the server hosting the whole

library. We have first considered the same cache size across the users, and proposed a

novel centralized coded caching scheme that places coded contents in the users’ caches,

referred to as the PCC scheme, and provides improvement for relatively small cache

sizes. The delivery phase of PCC exploits both coded and uncoded transmission of var-

ious pieces of contents, carefully created to retain the symmetry across users and files.

We have then extended the PCC scheme to higher cache sizes, and proposed GBC

171
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and GBD schemes for centralized and decentralized caching scenarios, respectively.

We have finally considered distinct cache capacities at different users, and proposed a

novel coded caching scheme in a decentralized scenario that improves upon the state-

of-the-art delivery rate. The improvement is achieved by creating more multicasting

opportunities for the delivery of bits that have not been cached by any of the users,

or cached by only a single user. In particular, the proposed scheme exploits the idea

behind the GBC scheme introduced for centralized caching in a system with symmetric

cache capacities.

In contrast to the setting considered in Chapter 2, we have studied a noisy channel

for the transmission of contents in the delivery phase in Chapters 3, 4, and 5 in order

to model the physical layer communication.

In Chapter 3 we have studied cache-aided content delivery over a packet erasure

BC with arbitrary erasure probabilities. The capacity of this network is defined as

the maximum common rate of files in the library, which allows reliable delivery to

all the receivers, independent of their demands. We have derived a lower bound on

the capacity by proposing a novel caching and delivery scheme, which enables all the

receivers to benefit from the cache memories available at the network. The proposed

scheme utilizes a finer subpacketization of the files in the library, and provides a better

exploitation of the available cache memories with a higher achievable rate than the

state-of-the-art.

In Chapter 4 we have considered cache-aided content delivery over a Gaussian BC.

Considering same rate contents in the library, we have studied both the minimum

peak transmission power, which is the minimum transmit power that can satisfy all

user demand combinations, and the minimum average transmit power, averaged across

all demand combinations, assuming uniform demand distributions. We have proposed

a centralized caching and coded delivery scheme assuming that the channel conditions

in the delivery phase are not known beforehand. Coded contents are transmitted in

the delivery phase to their intended receivers using superposition coding and power

allocation. We have then extended the achievable scheme to the decentralized caching

scenario. We have also provided a lower bound on the required peak and average

transmission power values assuming uncoded cache placement. Our results indicate
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that even a small cache capacity at the receivers can provide a significant reduction in

the required transmission power level highlighting the benefits of caching in improving

the energy efficiency of wireless networks.

In Chapter 5 we have studied cache-aided content delivery over a Gaussian BC,

however, unlike the models studied in Sections 3 and 4, each user is allowed to demand

a file at a distinct rate. We have considered a centralized placement phase, where the

server knows the channel qualities of the links in the delivery phase in addition to the

identity of the users. By allowing the users to have different cache capacities, we have

defined the capacity region for a total cache capacity. We designed a placement phase

through cache allocation across the users and the files’ layers to maximize the rates

allocated to different layers. We have proposed three achievable schemes, which deliver

coded multicast packets through different channel coding techniques over the Gaussian

BC. Although the coded multicast packets are intended for a set of users with distinct

link capacities, channel coding techniques can be employed to deliver requested files

such that the users with better channels achieve higher rates. We have also developed

an outer bound on the capacity region assuming uncoded caching.

In Chapter 6 we have studied distributed computation of an arbitrary function over

a dataset across workers with different random speeds. In contrast to the growing

literature on coded computation to mitigate straggling servers, here we have studied

uncoded computations and sequential communication to the master in order to ben-

efit from all the computations carried out by the workers, including the slower ones.

We have considered the assignment of data points to the workers with a predesigned

computation order. Assuming a general statistics for the computation and commu-

nication delays of different workers, we have obtained closed-form expressions for the

average completion time of two particular computation allocation schemes, called CS

and SS. The results of the experiments carried out on Amazon EC2 cluster show that

the CS and SS schemes provide significant reduction in the average completion time

over the state-of-the-art coded computing schemes and an uncoded computing scheme

with random scheduling of computations.

In Chapter 7 we have studied distributed ML at the wireless network edge, where

the workers aim to minimize an empirical loss function collaboratively by performing
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DSGD with the help of a remote PS. Workers have their own local datasets, and they

communicate with the PS over a wireless MAC with limited bandwidth. As opposed

to standard approach to distributed ML, which ignores the channel aspects, and sim-

ply aims at reducing the communication load by compressing the gradients at each

iteration to a prefixed level, here we incorporate the wireless channel characteristics

and constraints into the system design. We have considered both a digital approach

(D-DSGD) that separates computation and communication, and an analog approach

(A-DSGD) that exploits the superposition property of the wireless channel to have

the average gradient computed over-the-air. Numerical results have shown significant

improvement in performance with the analog approach, particularly in the low-power

and low-bandwidth regimes.

Future Research Challenges

In this dissertation we have studied several problems related to distributed coded

caching and computing. However, there are many open research questions that need

to be addressed for a full understanding of the performance limits of coded caching

and computing at the wireless network edge.

Despite the relaxations applied to the idealistic caching model introduced in [3] to

make the model more realistic, there are still certain aspects of the coded caching and

delivery techniques proposed in this dissertation that must be reconsidered carefully to

make the proposed solutions practically relevant. Level of subpacketization is a crucial

metric for making the caching schemes practical, in particular for the decentralized

caching scenario. With the centralized and decentralized coded caching schemes pro-

posed in [3] and [26], respectively, the subpacketization level grows exponentially with

the number of workers, K. For example, for K = 50, the scheme in [3] requires a

subpacketization level of approximately 1014, which results in an impractical file size,

and would introduce significant overhead in a practical implementation. Recently,

there have been efforts to reduce the subpacketization level of caching networks while

achieving global caching gain, focusing on error-free link for communication from the

server to the users [168–174]. A potential research challenge is to develop techniques
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with relatively low subpacketization level taking into account the channel characteris-

tics.

In the different caching models considered here, the placement phase is assumed to be

performed without any cost. Instead, an appropriate cost in terms of delay or entropy

can be introduced in the placement phase. The optimal transmission policy to minimize

the total energy consumed by the server for a point-to-point fading channel, where the

receiver is equipped with a finite capacity cache has been formulated as a water-filling

solution in [9]. We argue here that one potential approach to incorporate error into the

placement phase is to extend the technique presented in [9] to a multicasting scenario,

in which the server has to satisfy the arbitrary demands of a group of users with limited

caches through a fading broadcast channel, aiming to minimize the corresponding cost

function, e.g., transmission energy.

In the distributed computing framework, we did not include the computation delay

at the PS in the evaluations, while additional encoding and decoding complexities

can introduce a relatively significant delay at the PS. This delay is more highlighted

in the case of coded computing, in which the PS requires to encode the data points

and/or decode the received computations. One possible research direction direction is

to incorporate computation delay at the PS into the framework.

One potential direction to extend the scheme proposed for the ML over-the-air

problem is to incorporate energy into the optimization framework, and investigate

a communication-efficient approach with minimum energy consumption.

Finally, for the ML at the wireless edge problem, it is important to study the case

where the data across the workers is dependent, which can happen in practice partic-

ularly for federated learning setting. In the extreme scenario, we can assume that all

the workers have access to the same portion of the dataset, and develop techniques for

transmission over a bandwidth limited wireless medium from the workers to the PS.

In conclusion, despite the considerable efforts for development of various coded

caching techniques, the optimal delivery rate-cache capacity trade-off even for the

conventional caching model in [3] is still an open problem. Also, the distributed ML

over-the-air problem is still far from being optimal in terms of the speed of convergence
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for realistic settings. However, we hope that the results presented in this Ph.D. thesis

have contributed towards our understanding of these problems and advanced the state-

of-the-art towards the optimal solutions, and encouraged research and development in

these important and challenging problems so that the remaining open problems will

be solved and some of proposed ideas will be taken up for practical implementations.
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[160] M. Mohammadi Amiri and D. Gündüz, “Computation scheduling for distributed

machine learning with straggling workers,” arXiv:1810.09992 [cs.DC], Oct. 2018.
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Appendix A

Proofs for Chapter 2

A.1 Proof of Theorem 2.1

To find the delivery rate of the proposed scheme, the delivery rate for each part of

the delivery phase is calculated separately. Having received the bits sent in the first

part of the delivery phase presented in Algorithm 1, we would like each user to recover

all the subfiles in its cache that have been cached in the XOR-ed form during the

placement phase. However, to achieve this, we transmit pieces of the files that are not

requested by that user. For example, for user j in group Gi with demand Wi, i ∈ [N ]

and j ∈ [Si−1 + 1 : Si], we deliver (N − 1) different pieces corresponding to (N − 1)

different files (except file Wi) to retrieve all the subfiles Wl,j , for l ∈ [N ]. Since there

are K users, a total of K(N − 1) different pieces, each of length F
K(N−1) bits, are sent

over the shared link in the first part of the delivery phase. As a result, the delivery

rate of part 1 of the delivery phase is DPCC1 = 1.

In part 2 of the proposed delivery phase provided in Algorithm 2, for the users

in each group Gi, (Ki − 1) XOR-ed contents
⋃Si−1
j=Si−1+1 (Wi,j ⊕Wi,j+1) are transmit-

ted over the shared link, enabling all the users in group Gi to recover the subfiles

Wi,Si−1+1, . . . ,Wi,Si . Hence, a total of
∑N

i=1 (Ki − 1) XOR-ed contents, each of size

F/K bits, are delivered over the shared link, which results in a delivery rate of

DPCC2 =
1

K

∑N

i=1
(Ki − 1) = 1− N

K
(A.1)

for the second part of the delivery phase.

Finally, Algorithm 3 corresponds to the last part of the proposed delivery scheme,

which enables file exchanges between the users in groups Gi and Gj , for i ∈ [N − 1]

195
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and j ∈ [i+ 1 : N ]. There are (N − 2) missing pieces of the file requested by users in

group Gi (Gj) that are located in the cache of each of the users in group Gj (Gi) with

indexes l1 ∈ [N − 1] \
{
mi,Sj

}
(l2 ∈ [N − 1] \ {mj,Si}). Note that, we have (N − 2)

missing pieces rather than (N − 1) as one piece was delivered in part 1 of the delivery

scheme. For the piece with index l1 and the piece with index l2, the server delivers⋃Sj−1
n=Sj−1+1

(
W

(l1)
i,n ⊕W

(l1)
i,n+1

)
,
⋃Si−1
n=Si−1+1

(
W

(l2)
j,n ⊕W

(l2)
j,n+1

)
, and W

(l1)
i,Sj
⊕W (l2)

j,Si
, which

enables all the users in group Gi to recover the pieces W
(l1)
i,Sj−1+1, ...,W

(l1)
i,Sj

, and also all

the users in group Gj to recover the pieces W
(l2)
j,Si−1+1, ...,W

(l2)
j,Si

, by delivering a total

of (Ki +Kj − 1) XOR-ed contents, each of size F
K(N−1) bits. As a result, the delivery

rate of the third part is given by

DPCC3 =
(N − 2)

K (N − 1)

∑N−1

i=1

∑N

j=i+1
(Ki +Kj − 1) = (N − 2)

(
1− N

2K

)
. (A.2)

By adding up the delivery rate of the three parts, the following delivery rate is

achieved:

DPCC

(
N − 1

K

)
= DPCC1 +DPCC2 +DPCC3 = N

(
1− N

2K

)
, (A.3)

which completes the proof of Theorem 2.1.

A.2 Proof of Theorem 2.3

We first go through the coded delivery phase presented in Algorithm 4, and show

that all user requests are satisfied at the end of the delivery phase. First part of

this algorithm enables each user to obtain the subfiles of its requested file which are

in the cache of all other users in the same group. We consider the first group, i.e.,

i = 1 in line 2 of Algorithm 4, which includes the users that demand W1. In this

case, the XOR-ed contents W1,j ⊕W1,j+1, for j ∈ [K1 − 1], are delivered by the server.

Having access to the subfile W1,j locally in its cache, each user j, for j ∈ [K1], can

decode all the remaining subfiles W1,l, for l ∈ [K1] \ {j}. Thus, a total number of

(K1 − 1) XOR-ed contents, each of size F
K bits, are delivered by the server for the

users in group G1. Similarly, the second group (i = 2 in line 2 of Algorithm 4),
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containing the users requesting file W2, the XOR-ed contents W2,j ⊕W2,j+1, for j ∈

[K1 + 1 : K1 +K2 − 1], are sent by the server. With subfile W2,j available locally

at user j, for j ∈ [K1 + 1 : K1 +K2], user j can obtain the missing subfiles W2,l,

∀l ∈ [K1 + 1 : K1 +K2] \ {j}. Hence, a total of (K2 − 1)F/K bits are served for the

users in G2, and so on so forth. Accordingly, for the users belonging to group Gi,

(Ki − 1)F/K bits are delivered by the server, for i ∈ [N ], and the total number of

bits transmitted by the server in the first part of the coded delivery phase presented

in Algorithm 4 is given by

DGBC1

(
N

K

)
=
F

K

∑N

i=1
(Ki − 1) = (K −N)

F

K
. (A.4)

In the second part of Algorithm 4, each user in group Gi, for i ∈ [N ], will decode the

missing subfiles of its requested file, which are in the cache of users belonging to groups

j ∈ [N ] \ {i}. We first start with i = 1 and j = 2 in lines 7 and 8, respectively. The

XOR-ed contents W1,l ⊕W1,l+1, for l ∈ [K1 + 1 : K1 +K2 − 1], i.e., the subfiles of W1

cached by users in group G2, are delivered in line 9. In line 10, the XOR-ed contents

W2,l⊕W2,l+1, for l ∈ [K1 − 1], i.e., the subfiles of W2 cached by users in group G1, are

delivered by the server. Finally, by delivering W1,K1+K2⊕W2,K1 in line 11, and having

already decoded W2,l (W1,l), each user l in G1 (G2) can recover the missing subfiles of

its requested file W1 (W2) which are in the cache of users in G2 (G1), for l ∈ [K1] (for

l ∈ [K1 + 1 : K1 +K2]). In this particular case, the number of bits delivered by the

server in lines 9, 10, and 11 are (K2 − 1)F/K, (K1 − 1)F/K, and F/K, respectively,

which adds up to a total number of (K1 + K2 − 1)F/K bits. In a similar manner,

the subfiles can be exchanged between users in groups Gi and Gj , for i ∈ [N − 1] and

j ∈ [i+ 1 : N ], by delivering a total of (Ki + Kj − 1)F/K bits through sending the

XOR-ed contents stated in lines 9, 10, and 11 of Algorithm 4. Hence, the total number

of bits delivered by the server in the second part of the coded delivery phase is given

by

DGBC2

(
N

K

)
=
F

K

∑N−1

i=1

∑N

j=i+1
(Ki +Kj − 1) = (N − 1)

(
K − N

2

)
F

K
. (A.5)
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By summing up (A.4) and (A.5), the delivery rate of the GBC scheme is given by

DGBC

(
N

K

)
= N − N (N + 1)

2K
. (A.6)

A.3 Proof of Theorem 2.5

Consider first the CODED DELIVERY procedure in Algorithm 6. We note that,

when N < K, the difference between the first procedure of the proposed delivery phase

and the delivery phase presented in [32, Algorithm 1] lies in the first two parts, i.e.,

delivering the missing bits of the requested files, which either have not been cached

by any user, or have been cached by only a single user. Hence, having the delivery

rate of the scheme in [32, Algorithm 1], the delivery rate of the CODED DELIVERY

procedure in Algorithm 6 can be determined by finding the difference in the delivery

rates in these first two parts.

The delivery rate for Part 1 of the proposed CODED DELIVERY procedure, in

which the bits of each request Wdi , for i ∈ [K], that have not been cached by any user

are directly sent to the users requesting the file, is given by

DGBD1

(
M[K]

)
= N

∏K

i=1

(
1− Mi

N

)
. (A.7)

We can see that the worst-case demand combination for this part of the CODED

DELIVERY procedure is when each file is requested by at least one user, i.e., Ki ≥ 1,

∀i ∈ [N ]. The corresponding delivery rate of [32, Algorithm 1] is given by:

DWLTL1

(
M[K]

)
= K

∏K

i=1

(
1− Mi

N

)
. (A.8)

The difference between these two delivery rates is

∆D1

(
M[K]

)
, DWLTL1

(
M[K]

)
−DGBD1

(
M[K]

)
= (K −N)

∏K

i=1

(
1− Mi

N

)
. (A.9)

In Part 2 of the delivery phase of the GBD scheme, we deal with the bits of each

requested file that have been cached by only a single user i, i.e., Wdj ,{i}, for some
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i, j ∈ [K]. For any request Wdj , the normalized number of bits that have been cached

exclusively by user i will be denoted by Qi. As F →∞, by the law of large numbers,

Qi can be approximated as [26]

Qi ≈
(
Mi

N

)∏
l∈[K]\{k}

(
1− Ml

N

)
=

(
Mi

N −Mi

)∏K

l=1

(
1− Ml

N

)
. (A.10)

From (A.10) we can see that Qi ≥ Qj , i 6= j, ∀i, j ∈ [K], if and only if Mi ≥Mj ; that

is, the user with a larger cache size stores more bits of each file for F sufficiently large.

Next, we evaluate the delivery rate for Part 2 of the CODED DELIVERY procedure.

We start with message X
(F )
2,1 . For the users in Gi, for i ∈ [N ], ordered in increasing

cache capacities MSi−1+1 ≤ MSi−1+2 ≤ · · · ≤ MSi , a total number of (Ki − 1) pieces,

with the normalized sizes QSi−1+2, . . . , QSi are delivered. Thus, the delivery rate of

the common message X
(F )
2,1 is given by

D1
GBD2

(
M[K]

)
,
∑N

i=1

∑Si

j=Si−1+2
Qj . (A.11)

In line 8 of Algorithm 6, (Kj − 1) pieces, each of length QSj−1+2, . . . , QSj , and (Ki − 1)

pieces, each of length QSi−1+2, . . . , QSi are delivered for users in Gi and Gj , respectively,

and also the normalized length of the bits delivered with the last content of X
(F )
2,2 is

max
{
QSj−1+1, QSi−1+1

}
, for i ∈ [N − 1] and j ∈ [i + 1 : N ]. Hence, the rate of the

common message X
(F )
2,2 is given by

D2
GBD2

(
M[K]

)
,
∑N−1

i=1

∑N

j=i+1

(∑Sj

n=Sj−1+2
Qn +

∑Si

n=Si−1+2
Qn

+ max
{
QSj−1+1, QSi−1+1

})
. (A.12)

To simplify the presentation, without loss of generality, let us assume that M1 ≤

MS1+1 ≤ · · · ≤MSN−1+1. Then (A.12) can be rewritten as

D2
GBD2

(
M[K]

)
,

N−1∑
i=1

N∑
j=i+1

(∑Sj

n=Sj−1+2
Qn +

∑Si

n=Si−1+2
Qn +QSj−1+1

)
. (A.13)



Appendix A. Proofs for Chapter 2 200

The total delivery rate for the second part of the proposed coded delivery phase is

found by summing up the rates of the two parts, i.e.,

DGBD2

(
M[K]

)
,
∑2

i=1
Di

GBD2

(
M[K]

)
. (A.14)

By substituting (A.11) and (A.13) into (A.14), we obtain

DGBD2

(
M[K]

)
= N

∑N

i=1

∑Si

j=Si−1+2
Qj +

∑N−1

i=1
iQSi+1. (A.15)

Note that, in (A.15), the coefficient of QSi+1 is i, for i ∈ [0 : N − 1], whereas the

coefficient of all other Qjs, ∀j ∈ [K]\P, where P ∆
= {1, S1 + 1, ..., SN−1 + 1}, is N .

Since N > K, the achievable rate for Part 2 of the CODED DELIVERY procedure in

Algorithm 6 is maximized (the worst-case user demands happens) if Qi ≤ Qj , for i ∈ P

and j ∈ [K] \P; or, equivalently, if Mi ≤ Mj , for i ∈ P and j ∈ [K] \P. According to

the definition of set P, the above condition means that N users with the smallest cache

sizes, i.e., users i, ∀i ∈ P, will request different files, and belong to distinct groups in

the worst-case scenario.

For simplification, without loss of generality, the users are ordered such that M1 ≤

M2 ≤ · · · ≤ MK . Then, the delivery rate of Part 2 of the CODED DELIVERY

procedure is

DGBD2

(
M[K]

)
=
∑N

i=1
(i− 1)Qi +N

∑K

i=N+1
Qi. (A.16)

By substituting Qi in (A.10), we have

DGBD2

(
M[K]

)
=

[
N∑
i=1

(i− 1)

(
Mi

N −Mi

)
+N

K∑
i=N+1

(
Mi

N −Mi

)] K∏
l=1

(
1− Ml

N

)
.

(A.17)

Now, we derive the delivery rate for the corresponding part in [32, Algorithm 1],

i.e., when the server delivers the bits of the file requested by user i, having been

cached only by user j, ∀i, j ∈ [K], i 6= j. For this case, from [32, Algorithm 1], when

M1 ≤M2 ≤ · · · ≤MK , we have

DWLTL2

(
M[K]

)
=

[∑K

i=1
(i− 1)

(
Mi

N −Mi

)]∏K

j=1

(
1− Mj

N

)
. (A.18)
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Hence, the difference between the delivery rates for the second part of the proposed

coded delivery phase and its counterpart in [32, Algorithm 1] is given by

∆D2

(
M[1:K]

)
, DWLTL2

(
M[K]

)
−DGBD2

(
M[K]

)
=

[∑K−N

i=1
(i− 1)

(
Mi+N

N −Mi+N

)]∏K

j=1

(
1− Mj

N

)
. (A.19)

Part 3 of the CODED DELIVERY procedure in Algorithm 6 is the same as its

counterpart in [32, Algorithm 1]; so, they achieve the same delivery rate. Based on [32,

Theorem 3], assuming that M1 ≤ M2 ≤ · · · ≤ MK , the delivery rate for the CODED

DELIVERY procedure is

DCD

(
M[K]

)
,
∑K

i=1

[∏i

j=1

(
1− Mj

N

)]
−∆D1

(
M[K]

)
−∆D2

(
M[K]

)
, (A.20)

where ∆D1

(
M[K]

)
and ∆D2

(
M[K]

)
are as given in (A.9) and (A.19), respectively.

Now, consider the RANDOM DELIVERY procedure in Algorithm 6. Each delivered

message in this procedure is directly targeted for the users in a group requesting the

same file. It is assumed that the users in Gi are ordered to have increasing cache

capacities, such that MSi−1+1 ≤ MSi−1+2 ≤ · · · ≤ MSi , for i ∈ [N ]. Since each

user in Gi requires at most
(
1−MSi−1+1/N

)
F bits to get its requested file, a total

number of
(
1−MSi−1+1/N

)
F bits, obtained from random linear combinations of Wi,

are sufficient to enable the users in Gi to decode their request Wi. Hence, the delivery

rate for the RANDOM DELIVERY procedure in Algorithm 6 is

DRD

(
M[K]

)
,
∑N

i=1

(
1−

MSi−1+1

N

)
. (A.21)

Observe that the worst-case user demand combination corresponding to delivery rate

DRD

(
M[K]

)
happens (i.e., the delivery rate DRD

(
M[K]

)
is maximized) when Mj , ∀j ∈

P forms the set of N smallest cache capacities, i.e., the N users with the smallest cache

capacities should request different files, which is consistent with the worst-case user

demand combination corresponding to DCD

(
M[K]

)
. If the users are labelled such that
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M1 ≤M2 ≤ · · · ≤MK , then we have

DRD

(
M[K]

)
=
∑N

i=1

(
1− Mi

N

)
. (A.22)

We emphasize here that, before starting the delivery phase, it is assumed that each

user sends its demand together with its cache contents to the server. With this infor-

mation, the server can perform the delivery procedure which requiers a smaller delivery

rate (by comparing (A.20) and (A.22)), and the following delivery rate is achievable:

DGBD

(
M[K]

)
, min

{
DCD

(
M[K]

)
, DRD

(
M[K]

)}
, (A.23)

which completes the proof of Theorem 2.5.
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Proofs for Chapter 3

B.1 Proof of Theorem 3.1

The rate of the coded content targeted to a group of weak receivers for each message

of the delivery phase is allocated such that it can be decoded by the weakest receiver

among the intended group of weak receivers.

With sub-message j of message 1 of length β1,jn channel uses, W
(q)

Sq+1
[Kw ],j

, is given in

(3.40), a message of rate R(q)/
(
Kw
q

)
is transmitted to the weak receivers in Sq+1

[Kw],j , for

j ∈
[(
Kw
q+1

)]
. The rate of W

(q)

Sq+1
[Kw ],j

is set such that the weakest receiver in Sq+1
[Kw],j can

decode it, i.e.,

R(q)(
Kw
q

) ≤ β1,j

(
1− max

r∈Sq+1
[Kw ],j

{δr}

)
F, for j ∈

[(
Kw
q+1

)]
. (B.1)

Summing over all the sets Sq+1
[Kw],j , for j ∈

[(
Kw
q+1

)]
, one can obtain

R(q)(
Kw
q

) Kw−q∑
r=1

(
Kw−r
q

)
1− δr

≤
(Kwq+1)∑
j=1

β1,jF = β1F. (B.2)

Note that with the codeword given in (3.45), W
(i)

Si+1
[Kw ],j

,m
, targeted for the receivers in

Si+1
[Kw],j , is of rate R(i)/

(
Ks

(
Kw
i

))
, while W

(i+1)

dKw+m,Si+1
[Kw ],j

, destined for receiver Kw +m,

is of rate R(i+1)/
(
Kw
i+1

)
, for m ∈ [Ks], i = q − 1, . . . , p and j ∈

[(
Kw
i+1

)]
. Proposition

3.3.2 suggests that the codeword in (3.45) can be decoded correctly by the intended

203
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receivers if, for m ∈ [Ks],

max

{
R(i)/

(
Ks

(
Kw
i

))(
1− max

r∈Si+1
[Kw ],j

{δr}

)
F

,
R(i)/

(
Ks

(
Kw
i

))
+R(i+1)/

(
Kw
i+1

)
(1− δKw+m)F

}
≤ βq−i+1,j,m, (B.3)

where the rate of W
(i)

Si+1
[Kw ],j

,m
is limited by the weakest receiver in Si+1

[Kw],j , for i =

q− 1, . . . , p, and j ∈
[(
Kw
i+1

)]
. By summing up all the Ks inequalities in (B.3), we have,

for i = q − 1, . . . , p and j ∈
[(
Kw
i+1

)]
,

max

{
R(i)/

(
Kw
i

)(
1− max

r∈Si+1
[Kw ],j

{δr}

)
F

,

(
R(i)

Ks

(
Kw
i

) +
R(i+1)(
Kw
i+1

) ) Ks∑
m=1

1

(1− δKw+m)F

}
≤ βq−i+1,j .

(B.4)

By the choice of (3.35), and the fact that

γ (p, δ, i+ 1) = γ (p, δ, i)

(
Kw
i+1

)(
Kw
i

)
Ks

(
Ks

(1− δKw−i)
∑K

l=Kw+1
1

1−δl

− 1

)
, (B.5)

which follows from the definition in (3.36), the second term of the maximization in

(B.4) is reduced to
R(i)/(Kwi )

(1−δKw−i)F
. Thus, (B.4) is simplified as follows:

max


R(i)/

(
Kw
i

)(
1−maxr∈Si+1

[Kw ],j
{δr}

)
F

,
R(i)/

(
Kw
i

)
(1− δKw−i)F

 ≤ βq−i+1,j . (B.6)

Note that
∣∣∣Si+1

[Kw],j

∣∣∣ = i+ 1; hence, for i = q − 1, ..., p,

max
r∈Si+1

[Kw ],j

{δr} ≥ δKw−i, ∀j ∈
[(

Kw

i+ 1

)]
. (B.7)

From (B.7), (B.6) is reduced to

R(i)/
(
Kw
i

)(
1− max

r∈Si+1
[Kw ],j

{δr}

)
F

≤ βq−i+1,j , for i = q − 1, . . . , p, j ∈
[(
Kw
i+1

)]
, (B.8)
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which holds for every j ∈
[(
Kw
i+1

)]
, each corresponding to a different (i + 1)-element

subset Si+1
[Kw],j . After summing up over all values of j, one can obtain

R(i)(
Kw
i

)∑Kw−i

r=1

(
Kw−r
i

)
1− δr

≤
∑(Kwi+1)

j=1
βq−i+1,jF = βq−i+1F, for i = q − 1, . . . , p. (B.9)

According to Proposition 3.3.1, each receiver l, l ∈ [Kw + 1 : K], can decode subfile

W
(p)
dk

of rate R(p), delivered by the last message, correctly, if

R(p)
∑K

l=Kw+1

1

1− δl
≤ βq−p+2F. (B.10)

By combining inequalities (B.2), (B.9) and (B.10), we have

q∑
i=p

 R(i)(
Kw
i

) Kw−i∑
j=1

(
Kw−j
i

)
1− δj

+R(p)
K∑

j=Kw+1

1

1− δj
≤

q∑
i=p−1

βq−i+1F = F. (B.11)

Finally, by replacing R(i), for i ∈ [p : q], with the expression in (3.35), one can obtain

R ≤
F
∑q

i=p γ (p, δ, i)∑q
i=p

(
γ(p,δ,i)

(Kwi )

∑Kw−i
j=1

(Kw−ji )
1−δj

)
+
∑K

j=Kw+1
1

1−δj

, (B.12)

which, together with the cache capacity of each weak receiver, M , given in (3.39),

proves the achievability of the memory-rate pairs
(
M(p,q), R(p,q)

)
in (3.46).
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Proofs for Chapter 4

C.1 Proof of Theorem 4.3

For any given Ud, let DUd denote the set of all demand vectors with the same Ud.

The union
⋃
Ud DUd form the set of all possible demand vectors [N ]K . Therefore, the

set of all possible demand vectors can be broken into classes DUd based on the Ud set

they correspond to.

For any given Ud, and an (n,R,M) code as defined in (4.1), (4.3) and (4.5) in Section

4.3, define the error probability as follows:

PeUd , Pr

{⋃
d∈DUd

⋃
k∈Ud

{
Ŵdk 6= Wdk

}}
. (C.1)

Let PUd (d) denote the average power of the codeword this code generates for a demand

vector d ∈ DUd . We say that an
(
R,M, P̄ , P̂

)
tuple is Ud-achievable if for every

ε > 0, there exists an (n,R,M) code with sufficiently large n, which satisfies PeUd < ε,

Ed [PUd (d)] ≤ P̄ , and PUd (d) ≤ P̂ , ∀d ∈ DUd . We can also define P̄ ∗Ud (R,M) and

P̂ ∗Ud (R,M) as in (4.6a) and (4.6b), respectively, by considering Ud-achievable codes.

We note from (C.1) that, a Ud-achievable code satisfies only the demands of the

users in set Ud. Accordingly, an achievable
(
R,M, P̄ , P̂

)
tuple is also Ud-achievable,

since Pe ≥ PeUd , for any Ud set. Thus, lower bounds on P̄ ∗Ud (R,M) and P̂ ∗Ud (R,M)

also serve as lower bounds on P̄ ∗ (R,M) and P̂ ∗ (R,M), respectively. In the following,

we provide lower bounds on P̄ ∗Ud (R,M) and P̂ ∗Ud (R,M).
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Let
(
R,M, P̄ , P̂

)
be any Ud-achievable tuple. For uniformly distributed demands,

we have

P̄ ≥ Ed [PUd (d)] = EUd

 1

NUd

∑
d∈DUd

PUd (d)

 , (C.2)

where we used the fact that the probability of each demand vector in DUd is equal. We

divide the set of demand vectors DUd into different subsets according to the demands

of users in Ud, where each subset consists of the demand vectors for which the demands

of all the users in Ud are the same. Note that, there are N ,
(
N
Nd

)
Nd! such subsets1,

denoted by DlUd , for l = 1, ...,N, i.e., DUd =
⋃N
l=1DlUd . We note that the number of

demand vectors in each DlUd , denoted by N ′Ud , is the same, and is given by

N ′Ud =
∏Nd

j=2
juj+1−uj−1, (C.3)

where, we remind that Ud = {u1, u2, ..., uNd
}, where 1 = u1 ≤ u2 ≤ · · · ≤ uNd

. Thus,

we have NUd = NN ′Ud , and (C.2) can be rewritten as follows:

P̄ ≥ EUd

[
1

NUd

∑
d∈DUd

PUd (d)

]
= EUd

[
1

N

N∑
l=1

(
1

N ′Ud

∑
d∈DlUd

PUd (d)

)]
. (C.4)

For any arbitrary demand vector dlUd ∈ D
l
Ud , for l ∈ [N], it is proved in [92, Lemma

14] that there exist random variables2 X
(
dlUd

)
, YπUd(1)

(
dlUd

)
, . . . , YπUd(Nd)

(
dlUd

)
, and{

V1

(
dlUd

)
, ..., VNd−1

(
dlUd

)}
, where

V1

(
dlUd

)
→ · · · → VNd−1

(
dlUd

)
→ X

(
dlUd

)
→ YπUd(Nd)

(
dlUd

)
→ · · · → YπUd(1)

(
dlUd

)
(C.5)

forms a Markov chain, and satisfy

R− εn ≤
1

n
I

(
Wdl

πUd
(1)

;UπUd (1)

)
+ I

(
VUd,1;YπUd (1)

(
dlUd

))
, (C.6a)

R− εn ≤
1

n
I

(
Wdl

πUd
(i)

;UπUd (1), . . . , UπUd (i)

∣∣∣∣Wdl
πUd

(1)
, . . . ,Wdl

πUd
(i−1)

)
+ I

(
Vi

(
dlUd

)
;YπUd (i)

(
dlUd

) ∣∣∣Vi−1

(
dlUd

))
,∀i ∈ [2 : Nd − 1], (C.6b)

1For simplicity, we drop the dependence of N on N and Nd.
2For ease of presentation, we drop the dependence of the transmitted signal Xn, and the received

signals Y n
k , ∀k ∈ [K], on the library W.
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R− εn ≤
1

n
I

(
Wdl

πUd
(Nd)

;UπUd (1), . . . , UπUd (Nd)

∣∣∣∣Wdl
πUd

(1)
, . . . ,Wdl

πUd
(Nd−1)

)
+ I

(
X
(
dlUd

)
;YπUd (Nd)

(
dlUd

) ∣∣∣VNd−1

(
dlUd

))
, (C.6c)

where dlπUd (i) is the πUd(i)-th element of demand vector dlUd , i ∈ [Nd], and εn > 0

tends to zeros as n → ∞. We note that, due to the independence of the files and the

fact that the users in Ud demand distinct files, for any uncoded cache placement phase

and any Ud set, we have

I

(
Wdl

πUd
(i)

;UπUd (1), . . . , UπUd (i)

∣∣∣∣Wdl
πUd

(1)
, . . . ,Wdl

πUd
(i−1)

)
= I

(
Wdl

πUd
(i)

;UπUd (1), . . . , UπUd (i)

)
, ∀i ∈ [2 : Nd], l ∈ [N]. (C.7)

Thus, for an uncoded cache placement phase, (C.6) is equivalent to

R− εn ≤
1

n
I

(
Wdl

πUd
(1)

;UπUd (1)

)
+ I

(
V1

(
dlUd

)
;YπUd (1)

(
dlUd

))
, (C.8a)

R− εn ≤
1

n
I

(
Wdl

πUd
(i)

;UπUd (1), . . . , UπUd (i)

)
+ I

(
Vi

(
dlUd

)
;YπUd (i)

(
dlUd

) ∣∣∣Vi−1

(
dlUd

))
,∀i ∈ [2 : Nd − 1], (C.8b)

R− εn ≤
1

n
I

(
Wdl

πUd
(Nd)

;UπUd (1), . . . , UπUd (Nd)

)
+ I

(
X
(
dlUd

)
;YπUd (Nd)

(
dlUd

) ∣∣∣VNd−1

(
dlUd

))
, (C.8c)

For the Gaussian channel (4.2), for i = 1, ..., Nd, we have [147]

I
(
Vi

(
dlUd

)
;YπUd (i)

(
dlUd

) ∣∣∣Vi−1

(
dlUd

))
≤

1

2
log2

1 +
βih

2
πUd (i)PUd

(
dlUd

)
h2
πUd (i)

∑Nd
j=i+1 βjPUd

(
dlUd

)
+ 1

 , (C.9)

for some βi ≥ 0, for i = 1, ..., Nd, such that
∑Nd

i=1 βi = 1, where we set V0

(
dlUd

)
, 0,

and VNd

(
dlUd

)
, X

(
dlUd

)
. From (C.8) and (C.9), for n sufficiently large, the average

power PUd
(
dlUd

)
to satisfy any demand vector dlUd ∈ D

l
Ud , for l ∈ [D], is lower bounded
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by

PUd

(
dlUd

)
≥F
(
clπUd (1), . . . , c

l
πUd (Nd)

)
,

Nd∑
i=1

2
2cl
πUd

(i) − 1

h2
πUd (i)

 i−1∏
j=1

2
2cl
πUd

(j) , (C.10a)

where, for i = 1, ..., Nd and l = 1, ...,N,

clπUd (i) , R− 1

n
I

(
Wdl

πUd
(i)

;UπUd (1), . . . , UπUd (i)

)
. (C.10b)

Note that the lower bound in (C.10a) does not depend on any particular demand in

DlUd , l ∈ [N]. Thus, from (C.4) and (C.10), we have

P̄ ≥ EUd

[
1

N

∑N

l=1
f
(
clπUd (1), . . . , c

l
πUd (Nd)

)]
. (C.11)

Lemma C.1. Given a set of users Ud of size Nd with distinct demands, we have

1

N

∑N

l=1
f
(
clπUd (1), . . . , c

l
πUd (Nd)

)
≥∑Nd

i=1

(
22R(1−min{iM/N,1}) − 1

h2
πUd (i)

)∏i−1

j=1
22R(1−min{jM/N,1}). (C.12)

Proof. It is proved in Appendix C.2 that F (·) is a convex function of its arguments.

Thus,

1

N

N∑
l=1

F
(
clπUd (1), . . . , c

l
πUd (Nd)

)
≥ F

(
1

N

N∑
l=1

clπUd (1), ...,
1

N

N∑
l=1

clπUd (Nd)

)
. (C.13)

From the definition, we have, for i = 1, ..., Nd,

1

N

∑N

l=1
clπUd (i) = R− 1

nN

∑N

l=1
I

(
Wdl

πUd
(i)

;UπUd (1), . . . , UπUd (i)

)
. (C.14)

where, due to the symmetry, each file Wk, for k = 1, ..., N , appears
(
N−1
Nd−1

)
(Nd − 1)!

times in the sum on the right hand side of (C.14) for each i value. Thus, for i =

1, ..., Nd, we have

1

N

∑N

l=1
clπUd (i) = R−

(
N−1
Nd−1

)
(Nd − 1)!

nN

∑N

k=1
I
(
Wk;UπUd (1), . . . , UπUd (i)

)
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= R− 1

nN

∑N

k=1
I
(
Wk;UπUd (1), . . . , UπUd (i)

)
(a)

≥ R− 1

nN
I
(
W1, ...,WN ;UπUd (1), . . . , UπUd (i)

)
= R− R

N
min{iM,N}, (C.15)

where (a) follows from the independence of the files. From (C.13) and (C.15), and the

definition of function F, we have

1

N

∑N

l=1
F
(
clπUd (1), . . . , c

l
πUd (Nd)

)
≥

F

(
R

(
1−min

{
iM

N
, 1

})
, . . . , R

(
1−min

{
iM

N
, 1

}))
, (C.16)

which concludes the proof of Lemma C.1.

According to (C.11) and Lemma C.1, P̄ is lower bounded by P̄LB(R,M) defined in

(4.52). Thus, P̄LB(R,M) is a lower bound on P̄ ∗Ud(R,M) as well as P̄ ∗(R,M).

Next, we prove the lower bound on P̂ ∗(R,M) stated in Theorem 4.3. For any Ud
set, let

(
R,M, P̄ , P̂

)
tuple be Ud-achievable. We have P̂ ≥ PUd (d), ∀d ∈ DUd , which

is equivalent to

P̂ ≥ PUd
(
dlUd

)
, ∀dlUd ∈ D

l
Ud , for l = 1, ...,N. (C.17)

Averaging over all NUd = NN ′Ud possible demands with the same Ud set, we have

P̂ ≥ 1

N

∑N

l=1

(
1

N ′Ud

∑
dlUd
∈DlUd

PUd

(
dlUd

))
. (C.18)

According to (C.10) and Lemma C.1, P̂ is lower bounded as follows:

P̂ ≥
∑Nd

i=1

(
22R(1−min{iM/N,1}) − 1

h2
πUd (i)

)∏i−1

j=1
22R(1−min{jM/N,1}), ∀Ud. (C.19)

Thus, we have

P̂ ≥max
Ud

{∑Nd

i=1

(
22R(1−min{iM/N,1}) − 1

h2
πUd (i)

)∏i−1

j=1
22R(1−min{jM/N,1})

}
. (C.20)
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We note that the term on the right hand side of the inequality in (C.20) is equivalent

to P̂LB(R,M) defined in (4.53). Thus, P̂LB(R,M) is a lower bound on P̂ ∗Ud (R,M) as

well as P̂ ∗ (R,M).

C.2 Proof of Convexity of Function F(·)

We show that, for 1 ≤ Nd ≤ K, function F : RNd → R is a convex function of

(s1, ..., sNd
):

F (s1, . . . , sNd
) =

∑Nd

i=1

(
22sk − 1

h2
πUd (i)

)∏i−1

j=1
22sj . (C.21)

After mathematical manipulation, one can obtain

F (s1, . . . , sNd
) =

∑Nd

i=1

((
1

h2
πUd (i)

− 1

h2
πUd (i+1)

)
22aTi s

)
− 1

h2
πUd (1)

, (C.22)

where h2
πUd (Nd+1) ,∞, s , [s1 s2 · · · sNd

]T , and

ai ,

1 1 · · · 1︸ ︷︷ ︸
1×i

0 0 · · · 0︸ ︷︷ ︸
1×(Nd−i)

T , for i = 1, ..., Nd. (C.23)

We note that h2
πUd (i) ≤ h2

πUd (i+1), ∀i ∈ [Nd], and function 22s, s ∈ R, is a convex

function of s. Thus, all the functions 22aTi s, ∀i ∈ [Nd], are convex since the affine

substitution of the arguments preserves convexity. Hence, function F is convex with

respect to (s1, ..., sNd
) since any linear combination of convex functions with non-

negative coefficients is convex.
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Proofs for Chapter 5

D.1 Proof of Theorem 5.2

For ease of presentation, we prove the outer bound for G = [K], and the proof of

general case follows similarly. By an abuse of the notation, for a demand vector d with

distinct entries and noise variances σ in the delivery phase, we denote the channel

input, generated by function ψσ,d, by Xn
d , and the channel output at user k by Y n

d,k,

where

Y n
d,k = Xn

d + Znk , for k ∈ [K]. (D.1)

Lemma D.1. Let (R1, . . . , RK) be an achievable rate tuple. For a demand vector d =

(d1, . . . , dK) with all distinct entries, there exist random variables Xd, Yd,1, . . . , Yd,K ,

and Vd,1, . . . , Vd,K−1, where

Vd,1 → · · · → Vd,K−1 → Xd → Yd,K → · · · → Yd,1 (D.2)

forms a Markov chain, that satisfy

R1 − ε ≤I (Vd,1;Yd,1) +
1

n
I
(
W

(1)
d1

;U1

)
, (D.3a)

Rk − ε ≤I (Vd,k;Yd,k |Vd,k−1 ) +
1

n
I

(
k⋃
l=1

W
(l)
dk

;U1, . . . , Uk

∣∣∣∣∣
k−1⋃
m=1

m⋃
l=1

W
(l)
dm

)
,

∀k ∈ [2 : K − 1], (D.3b)

RK − ε ≤I (Xd;Yd,K |Vd,K−1 ) +
1

n
I

(
K⋃
l=1

W
(l)
dk

;U1, . . . , UK

∣∣∣∣∣
K−1⋃
m=1

m⋃
l=1

W
(l)
dm

)
, (D.3c)

where ε > 0 tends to zero as n→∞.

Proof. See Appendix D.2.
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Assuming N ≥ K, let Dk be the set of all
(
N
k

)
k! k-dimensional vectors, where all

entries of each vector are distinct, and each entry of every vector takes a value in [N ],

for k ∈ [K]. We note that DK is the set of all demand vectors, each with all different

entries. By averaging over all demand vectors with different entries, we can obtain

from Lemma D.1 that

R1 − ε ≤I (Vd,1;Yd,1) +
1(

N
K

)
K!

∑
d∈DK

1

n
I
(
W

(1)
d1

;U1

)
(D.4a)

=I (Vd,1;Yd,1) +
1(

N
K

)
K!

(
N − 1

K − 1

)
(K − 1)!

∑N

j=1

1

n
I
(
W

(1)
j ;U1

)
(D.4b)

=I (Vd,1;Yd,1) +
1

N

∑N

j=1

1

n
I
(
W

(1)
j ;U1

)
(D.4c)

≤I (Vd,1;Yd,1) +
1

nN
I
(
W(1);U1

)
(D.4d)

≤I (Vd,1;Yd,1) +
M1

N
, (D.4e)

where (D.4d) follows from the independence of the files, and, for k ∈ [2 : K],

Rk − ε ≤ I (Vd,k;Yd,k |Vd,k−1 ) +
1(

N
K

)
K!

∑
d∈DK

1

n
I

(
k⋃
l=1

W
(l)
dk

;U1, . . . , Uk

∣∣∣∣∣
k−1⋃
m=1

m⋃
l=1

W
(l)
dm

)

(D.5a)

=I (Vd,k;Yd,k |Vd,k−1 ) +

1(
N
K

)
K!

∑
d̃∈Dk−1

∑
d∈DK :(d1,...,dk−1)=d̃

1

n
I

(⋃k

l=1
W

(l)
dk

;U1, . . . , Uk

∣∣∣∣⋃k−1

m=1

⋃m

l=1
W

(l)
dm

)
(D.5b)

=I (Vd,k;Yd,k |Vd,k−1 ) +
1(

N
K

)
K!

∑
d̃∈Dk−1

∑
d∈DK :(d1,...,dk−1)=d̃

1

n
I

(⋃k

l=1
W

(l)
dk

;U1, . . . , Uk

)
(D.5c)

=I (Vd,k;Yd,k |Vd,k−1 ) +

1(
N
K

)
K!

∑
d̃∈Dk−1

∑
j∈[N ]\{d̃1,...,d̃k−1}

1

n
I

(⋃k

l=1
W

(l)
j ;U1, . . . , Uk

)(
N − k
K − k

)
(K − k)!

(D.5d)

=I (Vd,k;Yd,k |Vd,k−1 ) +
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N∑
j=1

1
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(⋃k
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(l)
j ;U1, . . . , Uk

)(
N − k
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(K − k)!

(
N − 1
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)
(k − 1)! (D.5e)

=I (Vd,k;Yd,k |Vd,k−1 ) +
1

N

∑N

j=1

1

n
I

(⋃k

l=1
W

(l)
j ;U1, . . . , Uk

)
(D.5f)

≤I (Vd,k;Yd,k |Vd,k−1 ) +
1

nN
I

(⋃k

l=1
W(l);U1, . . . , Uk

)
(D.5g)

≤I (Vd,k;Yd,k |Vd,k−1 ) +
1

N

∑k

i=1
Mk, (D.5h)

where (D.5c) follows from the assumption of uncoded caching and the independence of

the files, d̃i in (D.5d), for i ∈ [k−1], returns the i-th element of vector d̃, (D.5g) follows

from the the independence of the files, and we define Vd,K , X. For the Gaussian

channel, we have [147]

I (Vd,k;Yd,k |Vd,k−1 ) ≤ CηkP∑K
i=k+1 ηiP+σ2

k

, for k ∈ [K], (D.6)

for some non-negative coefficients η1, . . . , ηK , such that
∑K

i=1 ηi = 1, where we set

Vd,0 , 0. This completes the proof of Theorem 5.2 for G = [K]. The proof can be

extended to the general case by taking similar steps.

D.2 Proof of Lemma D.1

We follow the same steps as in [92, Lemma 14], but for multi-layer massages.

Given a demand vector d with all different entries and σ in the delivery phase, con-

sider an achievable rate tuple (R1, . . . , RK). Thus, there exist K caching functions

φσ,1, . . . , φσ,K , an encoding function ψσ,d, and K decoding functions µd,1, . . . , µd,K ,

which, for large enough n, Pe < ε, where ε tends to 0 as n → ∞. From Fano’s

inequality, we have

Rk − ε ≤
1

n
I

(⋃k

l=1
W

(l)
dk

;Y n
d,k, Uk

)
, for k ∈ [K]. (D.7)

Accordingly,

R1 − ε ≤
1

n
I
(
W

(1)
d1

;Y n
d,1, U1

)
(D.8a)
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=
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n
I
(
W

(1)
d1

;U1

)
+

1

n
I
(
W

(1)
d1

;Y n
d,1 |U1

)
, (D.8b)

where the second term in (D.8b) can be bounded as follows:

1

n
I
(
W

(1)
d1

;Y n
d,1 |U1

)
=

1

n

∑n

i=1
I
(
W

(1)
d1

;Yd,1,i

∣∣∣U1, Y
i−1
d,1

)
(D.9a)

≤ 1

n

∑n

i=1
I
(
W

(1)
d1
, Y i−1

d,1 ;Yd,1,i |U1

)
, (D.9b)

where we define Y i
d,k , (Yd,k,1, . . . , Yd,k,i), for k ∈ [K] and i ∈ [n]. Let E be a

random variable uniformly distributed over [n] and independent from all other random

variables. We have

1

n

∑n

i=1
I
(
W

(1)
d1
, Y i−1

d,1 ;Yd,1,i |U1

)
=I
(
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(1)
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, Y E−1

d,1 ;Yd,1,E |U1,E
)

(D.10a)
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)
(D.10b)

=I (Vd,1;Yd,1) , (D.10c)

where we define Vd,1 ,
(
W

(1)
d1
, Y E−1

d,1 , U1,E
)

, and Yd,1 , (Yd,1,T ). From (D.8)-(D.10),

(D.3a) is proved. We also have, for k ∈ [2 : K],
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(D.11a)
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where (D.11b) follows from the independence of the files. We now bound the second

term in (D.11d) as follows:
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(D.12e)

= I (Vd,k;Yd,k |Vd,k−1 ) , (D.12f)

where Vd,k ,
(
Vd,k−1,

⋃k
l=1W

(l)
dk
, Y E−1

d,k , Uk

)
, and Yd,k , (Yd,k,E), for k ∈ [2 : K]. We

also note that Vd,K = Xd. By plugging (D.12) into (D.11), the proof of Lemma D.1 is

completed.
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