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Abstract

The thesis investigates the way that decision-makers’ understanding of risks impacts real and

financial markets. The first two chapters explore theoretically how decision-makers learn about

the risks that they are exposed to, and what are the implications of their information choices in

terms of the transmission of shocks to the real economy. The last chapter proposes an econometric

framework for empirically testing whether the compensation that decision-makers require for being

exposed to systematic sources of risk in financial markets is in line with economic theory.
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Overview of the Thesis

The first chapter proposes an information based theory of shock transmission to explain how the

impact of a shock can decrease with exposure to it. The chapter is motivated by evidence from

the 2007-2008 financial crisis which shows that countries which were relatively more exposed to

the crisis epicenter, the United States, were among the least affected. This evidence points to the

existence of a negative correlation between the degree of exposure to a shock and the impact of

that shock which has not been rationalised using existing theories of contagion. I propose a model

in which decision-makers learn about the risk factors that they are exogenously exposed to, but

have limited capacity to process information. I find that decision-makers optimally choose to learn

more about the risk factors they are more exposed to. This informational advantage mitigates the

direct impact of shocks to risk factors that decision-makers are relatively more exposed to because

it enables them to take better informed investment decisions and thus minimize the loss due to

suboptimal action. By the same token, the impact of shocks to risk factors that decision-makers are

relatively less exposed to is amplified through their poorly informed investment decisions because

they result in a higher loss due to suboptimal action. Relative to an exogenous information

benchmark, the endogenous information model proposed here predicts that shocks to risk factors

that decision-makers are relatively less exposed to are amplified, while shocks to risk factors that

decision-makers are relatively more exposed to are attenuated.

The second chapter proposes an information based theory of state-dependent cautious beha-

vior. The chapter is motivated by evidence that certain states of the world, such as economic

downturns and financial crises in particular, are characterized by stronger reactions to negative

news by economic agents, as well as stronger correlations between markets. This state-dependent

cautious behavior, whereby negative news affect conditional actions more than good news, has

been rationalized by assuming ambiguity-aversion. In this chapter, I endogenize ambiguity-averse

behavior using costly information acquisition. I propose a model in which decision-makers can
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invest in information about future states of the world such that upon the occurrence of any state,

they receive ambiguous signals: the precision of a given signal is not exactly know but it is only

known to lie in a range or interval of possible signal precisions. The degree of ambiguity of these

signals is determined by their informational investment decision. I find that the ambiguity of

information in a state of nature varies inversely with the ex-ante degree of anticipation of that

state. Uncertainty regarding the interpretation of information increases endogenously in highly

unexpected states of nature because decision-makers optimally choose to learn less about events

that are deemed to be unlikely. This causes ambiguity-averse decision-makers to behave cautiously

by reacting more strongly to bad news than to good news. However, in highly anticipated states

of the world there is no uncertainty regarding the interpretation of signals. Decision-makers beha-

viour no longer exhibits ambiguity-aversion, and good and bad news affect conditional actions in

a symmetric fashion. The model explains why and how the behavior of decision-makers changes

during crises, and delivers predictions that are in line with observed market outcomes. Relative to

a no-ambiguity benchmark, the model I propose predicts that the transmission of negative shocks

is amplified, while the transmission of positive shocks is attenuated as their degree of anticipation

decreases.

The third chapter proposes a multivariate inequality testing framework to assess the consistency

of risk-factor asset pricing models with the theoretical restrictions imposed by the intertemporal

CAPM (ICAPM). Multifactor asset pricing models seek to explain cross-sectional differences in

expected returns in terms of exposures to systematic risk factors. The ICAPM posits that in-

vestors should be compensated for being exposed to the risk of unexpected changes in the future

investment opportunity set, which is captured by unidentified state variables. The fact that these

state variables are not explicitly identified has allowed applied researchers to choose from a wide

range of potential risk factors and use the ICAPM as a theoretical justification for relatively ad-

hoc empirical specifications. However, the ICAPM imposes several theoretical restrictions on the

time-series and cross-sectional behaviour of the candidate state variables. This chapter develops an

inequality constraints testing framework for assessing the consistency of several multifactor models

with the time-series and cross-sectional restrictions imposed by the ICAPM. The proposed test of

joint sign restrictions takes into account the estimation error in the model parameters as well as

the uncertainty arising from potential model misspecification. The framework is applied to test

the consistency of several popular multifactor models with the ICAPM restrictions when using size

and book-to-market, and size and momentum sorted portfolios as test assets. Results indicate that

10



with a few exceptions, the null of consistency cannot be rejected. In other words, these theoretical

restrictions are rarely violated in practice, suggesting that the ICAPM may be a fishing license as

argued by Fama (1991).
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Chapter 1

Information Choice, Shock Transmission and

Contagion

1.1 Introduction

During the 2007-2008 financial crisis, countries that were relatively more exposed (in terms of

assets, debt, exports or trade) to the crisis epicenter, the United States, were among the least

affected in real terms.1 In financial markets, equity portfolios that were relatively more exposed to

a United States-specific factor experienced a drop in returns that was lower than the one predicted

by their pre-crisis exposures.2 This evidence points to the existence of a negative correlation

between the degree of exposure to a shock and the impact of that shock.

The existing literature on international financial contagion does not explain how the impact of a

shock can decrease with exposure to it.3 Specifically, theories of contagion predict a monotonically

increasing relationship between the degree of exposure to a risk factor and the impact of a shock

to that risk factor. This chapter seeks to fill this gap in the literature. I propose an information

based theory of contagion and provide a characterization of the conditions under which the impact

of shocks decreases with exposure. The notion of contagion adopted in this chapter is one where

the transmission of shocks is unexplained by the observable measure of exposure to those shocks.4

I introduce a framework in which decision-makers learn about the risk factors that they are

1See Rose and Spiegel (2010, 2011).
2See Bekaert, Ehrmann, Fratzscher, and Mehl (2014).
3Contagion is concerned with the transmission of shocks and can be most broadly described by the idea that

shocks can spread and cause a great deal more damage than the original impact (Allen and Gale, 2009).
4This definition is in line with a large literature which defines contagion as a change in shock transmission

mechanism that cannot be explained by ”fundamentals”, or co-movements that are deemed to be ”excessive” (King
and Wadhwani, 1990; Forbes and Rigobon, 2002; Karolyi, 2003; Pericoli and Sbracia, 2003; Jotikasthira, Lundblad,
and Ramadorai, 2012; Bekaert et al., 2014).
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exogenously exposed to, but have limited capacity to process information. I focus on studying the

real consequences of shocks to these risk factors by embedding my framework in a simple model

of corporate investment. The baseline model features a representative firm which undertakes

investment to maximize profits. The return on investment depends on the fundamentals of the

economy in which the firm operates. Economic fundamentals, in turn, are modelled as a sum of

risk factor exposures. Before investing, the firm chooses how much information to observe about

the risk factors that fundamentals are exposed to. Importantly, the firm has limited resources to

acquire and process information.

I find that learning about a risk factor optimally increases with exposure to it. This informa-

tional advantage gives rise to a non-monotonic relation between the degree of exposure to a risk

factor and the impact of a shock to that risk factor. Specifically, the firm optimally chooses to

learn more about the risks that it is relatively more exposed to. The reduction in uncertainty

achieved through learning mitigates the impact of shocks to risk factors that the firm is relat-

ively more exposed to, by enabling it to take a better informed investment decision. By the same

token, the impact of shocks to risk factors that the firm is relatively less exposed to is amplified

through the poorly informed investment decision of the firm. The interpretation of these predic-

tion in terms of the motivating evidence is that countries which were relatively less exposed to

the United States shock were more affected because decision-makers operating in these countries

had a poorer understanding of the shock and, as a consequence, took actions that aggravated their

circumstances.

My model shows that the actions of decision-makers can amplify or attenuate the direct impact

of shocks and thus contribute to their transmission. The model builds on the intuition that the

consequences of events depend not only on decision-makers’ direct exposure to events, but also

on the decision-makers’ degree of understanding of and their reactions to those events. Risk

perception research supports the notion that reactions to events depend importantly on the degree

of understanding of those events.5 Hence, understanding how decision-makers learn is central

to understanding how their actions contribute to the transmission of shocks. In this chapter, I

explore how endogenous information choice affects decision-makers’ responses to shocks and as a

consequence the impact of those shocks.

The information based shock transmission mechanism I propose in this chapter works through

decision-makers’ uncertainty.6 Information choice reduces the uncertainty that the firm faces when

5See Slovic (1987); Kasperson, Renn, Slovic, Brown, Emel, Goble, Kasperson, and Ratick (1988); Renn, Burns,
Kasperson, Kasperson, and Slovic (1992).

6Uncertainty refers to the variance of beliefs about the realization of a particular shock.
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choosing optimal investment. Consider a benchmark model in which the firm is endowed with an

exogenous amount of information that is equally allocated among all risk factors. Relative to this

exogenous information benchmark, uncertainty is lower when the firm can optimally choose which

risks to learn about. Importantly, uncertainty is convex in exposure when the firm is exogenously

endowed with information, but it is concave in exposure when the firm optimally learns about risk

factor exposures. Alternatively stated, uncertainty increases with exposure to relatively important

risk factors when information is given, but it decreases with exposure when information is optimally

chosen.7 In the endogenous learning model I propose, a change in exposure has two competing

effects. On the one hand, higher exposure to a risk factor increases uncertainty mechanically,

through an exposure channel. On the other hand, higher exposure to a risk factor entails a reduction

in uncertainty via learning, which operates through an information channel. For relatively low

levels of exposure to a risk factor, the exposure channel is stronger than the information channel,

but for relatively high levels of exposure to a risk factor, the information channel is stronger than

the exposure channel. As a consequence, uncertainty is concave in exposure to a risk factor. Thus,

my model highlights a trade-off between the cost of being highly exposed to a risk and the benefit

of having a better understanding of it.

Reducing uncertainty will enable the firm to accurately incorporate the shocks affecting fun-

damentals into investment decisions. To the extent that the firm’s investment deviates from the

first-best optimum obtained under perfect information, such deviations are suboptimal. In the case

of positive shocks the deviation from optimality will manifest as under-investment, while in the

case of negative shocks it will manifest as over-investment. It is thus convenient to define the loss

due to suboptimal investment as the squared deviation from the perfect information optimum. The

loss due to suboptimal investment essentially measures the contribution of actions to the trans-

mission of shocks. I find that the loss due to suboptimal investment decreases with exposure when

information is endogenously chosen, and it increases with exposure when information is exogenous.

Relative to the exogenous information benchmark, the loss due to suboptimal investment is higher

if a shock hits a risk factor that the firm is relatively less exposed to. On the other hand, if a shock

hits a risk factor that is relatively more important in terms of exposure, the loss due to suboptimal

investment is lower under the endogenous learning model than under the benchmark.

My model explains contagion manifested as shock amplification.8 In other words it explains

7The importance of a risk factor is given by the interaction between the exposure to and the volatility of the
factor.

8Amplification refers to situations in which small shocks can have disproportionately large effects (Allen and
Gale, 2004; Krishnamurthy, 2010; Benoit, Colliard, Hurlin, and Pérignon, 2017)

14



how shocks can have disproportionately large effects. Importantly, it sheds light on two important

dimensions of shock amplification, namely: (i) which of the shocks that an entity is exposed to are

likely to amplify, and (ii) which of the entities exposed to a shock are likely to be more affected.

The model predicts that the transmission of shocks is intensified as exposure to shocks decreases.9

This prediction implies that: (i) the shocks that an entity is less exposed to are amplified, and (ii)

the entities that are less exposed to a shock can be more affected.

I consider a number of extensions to the baseline model. First, I extend the baseline model to

account for the degree of anticipation of shocks, and I am thus also able to explain why unanticip-

ated crises are more contagious.10 Specifically, the extended model predicts that the transmission

of shocks is intensified as the degree of anticipation of shocks decreases. This prediction implies

that unanticipated shocks are more likely to amplify and have more severe consequences. Second, I

allow for strategic interactions and find that the amplification of shocks increases with the degree of

strategic complementary in investment. Third, I relax the assumption that the risk factors affect-

ing fundamentals are independent and find that the loss due to suboptimal investment decreases

with the degree of correlation between the risks. Finally, I relax the assumption that exposures

to the risk factors are exogenous and find that it is optimal for the firm to specialize in learning

about one risk factor and to be relatively more exposed to that factor.

The rest of the chapter proceeds as follows. Section 1.2 formally introduces the mechanism

through which the impact of shocks can decrease with exposure. Section 1.3 discusses the baseline

results, and Section 1.4 considers a number of extensions to the baseline model. 1.5 outlines some

concluding remarks. All proofs and derivations can be found in the Appendix.

1.1.1 Related literature

This chapter is mainly related and contributes to the literature on contagion, and the literature

on rational inattention.

The contagion literature is vast and fraught with disagreement over how exactly to define

contagion, how to measure it or what are the channels through which it operates. Contagion

concerns itself with studying the transmission of shocks and can be most broadly described by the

idea that shocks can spread and cause a great deal more damage than the original impact (Allen

and Gale, 2009). The main dimensions of disagreement in the literature regarding what constitutes

9Although my baseline model is a representative agent model, comparative statics with respect to exposure are
informative about a cross-section of agents which are exposed to the same set of risk factors, but which vary in their
degree of exposure to these factors.

10See evidence in Kaminsky, Reinhart, and Vegh (2003); Rigobon and Wei (2003).

15



contagion have been focused around the types of linkages through which shocks are transmitted

(in the presence or absence of linkages) and the types of shocks being transmitted (systemic or

idiosyncratic shocks). In contrast to the contagion literature that studies shock transmission in

the absence of linkages between the crisis epicenter and the entities subsequently affected, I study

the transmission of shocks that occurs in the presence of linkages but which is unexplained by

the observable shock transmission mechanism. In contrast to contagion literature that studies the

transmission of idiosyncratic shocks across entities, I focus on studying the transmission a systemic

or common shock that occurs differentially across the entities exposed to it.11

This chapter can be framed in the context of the literature that studies the transmission of

shocks in the presence of linkages (i.e. exposure), but disproportionate to the objective measure

of these linkages.12 These include real channels such as trade linkages (Eichengreen, Rose, and

Wyplosz, 1996; Glick and Rose, 1999; Forbes, 2004), as well as financial channels such as interbank

linkages (Allen and Gale, 2000; Dasgupta, 2004; Freixas, Parigi, and Rochet, 2000; Iyer and Peydro,

2011) and portfolio linkages (Yuan, 2005; Pavlova and Rigobon, 2008; Jotikasthira et al., 2012;

Manconi, Massa, and Yasuda, 2012). The basic idea underlying this literature is that decision-

makers transmit shocks by directly altering the linkages or, alternatively stated, by changing their

exposure to risks. My model offers an alternative explanation by showing that information choices

and decisions about learning can effectively alter their risk exposures, and hence the transmission

of shocks, even when decision-makers do not directly change their exposures.

The chapter is most related and contributes to the literature on information based models of

financial crises and contagion (King and Wadhwani, 1990; Calvo and Mendoza, 2000; Kodres and

Pritsker, 2002; Calvo, 2004; Acharya and Yorulmazer, 2008; Allen, Babus, and Carletti, 2012). The

basic idea underlying this literature is that idiosyncratic shocks that should not be transmitted

across entities if observable, are in fact transmitted because of imperfect information. There is

no role for information choice in most of these models. In contrast, I study how endogenous

information choices results in the differential transmission of a systemic shock in the cross-section

of entities that are exposed to it. Mondria and Quintana-Domeque (2013) also explain financial

contagion using fluctuations in attention allocation and information choice. However, they focus

on a financial channel of contagion and study how international investors transmit an idiosyncratic

shock by optimally reallocating their attention to the risk being shocked and away from the other

risks in their portfolio. In contrast, I focus on a real channel of contagion and study how firms

11The terms entities is used generically to encompass countries, financial markets or financial institutions.
12This is to be contrasted with the theories of ”pure contagion” which studies the transmission of shocks in the

absence of direct linkages between the crisis epicentre and the entities being affected (Forbes, 2012).
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undertaking investment optimally allocate their attention across the risks that they are exogenously

exposed to and what this attention allocation implies for the transmission of subsequent shocks

to these risk factors.13 Also related is the paper by Ahnert and Kakhbod (2017), who propose

an amplification mechanism of financial crises based on the information choice of investors. They

propose a global game of regime change in which changes in the public signal affects the incentives

of investors to acquire private information and thus amplify the probability of a crisis. The key

mechanism in their model relies on the interplay between private and public information, whereas

my mechanism relies on the fact that learning about one risk affect the ability to learn about

other risks and there is no distinction between public and private information. In other words,

I distinguish between information about different risks rather than information from different

sources.

The chapter is also related to the rational inattention literature popularized by Sims (2003),

which builds on the idea that attention, rather than information is a scarce resource. An increasing

number of rational inattention applications focus on attention allocation across many risks.14 A

more recent strand of literature focuses on allocation across states of the world.15 I micro-found

a model of attention allocation across fixed exposures to risk factors, which I then also extend

to account for attention allocation across states and thus provide a unified treatment of these

two frameworks. Maćkowiak and Wiederholt (2015) also explore the idea that the degree to

which decision-makers are prepared for events can exacerbate their consequences. While their

model focuses on degree of anticipation of shocks to study how economic agents make state-

contingent plans, my baseline model focuses on the degree of exposure to shocks to study how

the transmission of a common shock varies across the agents exposed to it. My baseline model

is extended to account for the degree of anticipation of shocks as well, so my work complements

theirs in that I study attention allocation both across risky exposures (type of risk) and across

states of the world (degree of anticipation of risk). The result from my model that diversified

exposures are suboptimal under endogenous learning relates to the under-diversification result

noted in the portfolio allocation literature (Van Nieuwerburgh and Veldkamp, 2010). While in a

13Alternatively stated, rather than studying how a shock to one risk factor affects the attention allocated to other
factors, I focus on studying how exposure to one risk factor affects the attention allocated to other risk factors.

14Rational inattention applications to setups in which agents learn about many risks include asset pricing and port-
folio choice (Mondria, 2010; Van Nieuwerburgh and Veldkamp, 2010; Kacperczyk, Van Nieuwerburgh, and Veldkamp,
2016), monetary policy (Woodford, 2001, 2009; Paciello and Wiederholt, 2013; Alvarez, Lippi, and Paciello, 2015),
consumption dynamics (Luo, 2008; Tutino, 2013), price setting (Mackowiak and Wiederholt, 2009; Stevens, 2015;
Matějka, 2015).

15Rational inattention applications to setups in which agents learn about future states of the world has been
explored in a static setting by Maćkowiak and Wiederholt (2015) and in a dynamic setting by Sundaresan (2018);
Nimark and Sundaresan (2018); Ilut and Valchev (2017).
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portfolio allocation context decision-makers choose both their information about and exposure to

risk factors, in my baseline model decision-makers only choose how much information to acquire

about the risks they are exogenously exposed to. My model captures situations in which decision-

makers are exposed to risk that are beyond their immediate control, with a focus on understanding

how attention allocation affects the transmission of shocks.

1.2 Model

This section formally introduces the mechanism through which the impact of shocks can decrease

with exposure. It outlines a baseline model of learning about exogenous risk factor exposures when

the capacity to process information is limited. The basic result is that it is optimal to learn more

about higher risk exposures and this information advantage can mitigate the negative impact or

consequences of shocks.

1.2.1 Structure of the economy

I illustrate the mechanism in the context of a simple canonical model of investment. There is a

risk-neutral, representative firm in the economy. The firm undertakes investment with an aim to

maximize expected profits. Realized profits are given by

π = λθ − C(λ) (1.1)

where λ is the chosen level of investment, C(λ) is the cost of investment and θ is the exogenous gross

return to investment. The return on investment is thus parametrized by an unknown exogenous

state variable θ. Following Angeletos and Pavan (2004) and in line with the motivation, I interpret

the random variable θ as the underlying fundamentals in the economy, but it can also be thought of

as exogenous productivity or production technology. My preferred interpretation captures the idea

that real investment returns are affected by the state of the economy in which the firm operates.

The cost function C(λ) is increasing and convex in investment, and assumed to take the form λ2

2 .

Economic fundamentals θ are a function of exogenous exposures to independent risk factors.

More specifically, economic fundamentals are modelled as an exhaustive sum of independent risks

θ = αf1 + (1− α)f2 (1.2)

where f1 and f2 are exogenous risk factors which affect fundamentals in proportion to exogenous
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exposures or factor loadings α and 1− α respectively. The risk factors fi are given by

fi = µi + εi, i = 1, 2

where µi are constants and εi are independently distributed normal random variables εi ∼ N (0, σ2
i ),

which will be further referred to as shocks.

This simple factor structure accommodates a number of interpretations. The interpretation

preferred here is that they are country-specific risks. This captures the intuition that aggregate

economic outcomes in a country, such as GDP, are affected both by events occurring within the

country i.e. domestic risks, and, to the extent that it engages in economic relations with other

countries, by events occurring within those other countries i.e. foreign risks. Alternatively stated,

fundamentals in a country are determined by risks that are specific to that country and risks that

are specific to other countries that the country has links with. The extent to which these risks

affect economic fundamentals is captured by the exposure parameters α and 1− α. For instance,

the first factor f1 can be thought of as capturing domestic risks and the second factor f2 can

be thought of as capturing foreign risks; a relatively high exposure parameter α > 0.5 would thus

describe a relatively closed economy for which domestic risks are more important, while a relatively

low parameter α < 0.5 would describe a relatively open economy that is more exposed to foreign

risks.

Fundamentals are realized but unknown when the firm chooses its investment and this intro-

duces uncertainty about the optimal level of investment. To reduce this uncertainty, the firm

chooses how much information to observe about the risk factors affecting fundamentals, before

investing. Reducing the uncertainty about the unobserved fundamentals will enable the firm to

reduce the loss due to suboptimal investment and thus achieve a higher payoff and utility. The

sequence of events is illustrated below.

information chosen information observed | take action payoff realized

t = 1 t = 2 t = 3

The model can thus be broken down into three periods 1, 2 and 3. In the first period the

representative firm chooses its information. In the second period, the firm observes the chosen

information and optimally decides on a level of investment. In the third period the payoff of the

investment is realized and utility is consumed. The firm’s objective function is to maximize date-1

utility given by

U1 ≡ E1[E2[π]] (1.3)

19



where Ei[·] and Ui[·] denote the expected value and expected utility, respectively, conditional on

the information available at time i.

1.2.2 Information structure

The firm takes the structure of risk factor exposures as given and decides how much to reduce

uncertainty about each risk through learning. However, the firm has limited capacity to process

information, meaning that its choice of how much information to observe about each risk factor is

subject to a constraint on the total amount of information that it can observe.

The firm devotes limited information processing resources to learn about the factor-specific

shocks affecting fundamentals. It is endowed with the prior beliefs that the shocks follow εi ∼

N (0, σ2
i ) and acquires noisy signals about each shock

si = εi + εsi , i = 1, 2 (1.4)

where the signal noise is normally distributed εsi ∼ N (0, σ2
si) and uncorrelated with the other

signals. The firm combines the prior beliefs with the acquired signals and forms posterior beliefs

according to Bayes’ law. Let θ̂ and σ̂2 denote the posterior mean and variance of fundamentals,

respectively, conditional on the information available at time 2

θ̂ ≡ E[θ|s1, s2] = α

(
µ1 +

σ−2
s1

σ−2
1 + σ−2

s1

s1

)
+ (1− α)

(
µ2 +

σ−2
s2

σ−2
2 + σ−2

s2

s2

)
(1.5)

σ̂2 ≡ V [θ|s1, s2] = α2 1

σ−2
1 + σ−2

s1

+ (1− α)2 1

σ−2
2 + σ−2

s2

. (1.6)

Denoting the factor-specific posterior variance by σ̂2
i ≡

(
σ−2
i + σ−2

si

)−1
, i = 1, 2, the conditional

mean and variance of fundamentals can be re-written as

θ̂ ≡ E[θ|s1, s2] = α

(
µ1 +

σ̂2
1

σ2
s1

s1

)
+ (1− α)

(
µ2 +

σ̂2
2

σ2
s2

s2

)
(1.7)

σ̂2 ≡ V [θ|s1, s2] = α2σ̂2
1 + (1− α)2σ̂2

2. (1.8)

The firm has limited resources or capacity to process information about the risk factors that

fundamentals are exposed to. Let K denote this total capacity to process information and let ki

denote the amount of capacity devoted to learning about risk factor i = 1, 2. The information
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processing constraint can be generically formulated as

k1 + k2 ≤ K. (1.9)

Essentially, this condition tells us that the firm’s choice of how much information to observe

about each risk factor is subject to a constraint on the total amount of information it can observe.

It also implies that for a given total capacity, learning more about one risk reduces the resources

that can be devoted to learning about the other risk.

The capacity devoted to learning about a risk factor ki, henceforth referred to as factor-specific

information processing capacity, is essentially a measure of the reduction in uncertainty that can be

achieved through learning. I employ the rational inattention framework proposed by Sims (2003),

and model this reduction in uncertainty using tools from information theory, namely entropy and

mutual information. Entropy is the standard measure of information in information theory, and it

measures the amount of uncertainty in a distribution. Mutual information is the difference between

the entropy of an unconditional and a conditional distribution, and it measures the amount of

uncertainty resolved by conditioning on information. The factor-specific information processing

capacity ki is defined as the difference between the entropy of prior and posterior beliefs. The

higher the factor-specific information processing capacity ki, the higher the uncertainty resolved

by a signal and the more informative or precise the signal is said to be. Given the assumption of

normally distributed priors and signals, the factor-specific information processing capacity ki is

ki ≡
1

2
ln
σ2
i

σ̂2
i

, i = 1, 2 (1.10)

where σ̂2
i is the factor-specific posterior variance.

The entropy-based learning technology essentially imposes a bound on the product of posterior

precisions.16 This has two implications that make this information processing technology suitable

for the setup considered here. First, it has a form of increasing returns to learning built into it,

which means that it is less costly to learn about risk factors that are already well understood.17

This captures the intuition that learning about risk factor exposures that are fixed, stable or

sticky, and which take a long time to build or terminate, such as the cross-country real or financial

linkages considered in the motivating example, is a process of refined learning. Secondly, the

16 This follows from combining (1.9) and (1.10) and re-writing it as
∏2
i=1 σ

2
i σ̂
−2
i ≤ e2K . Thus, more information

capacity implies a higher product of (weighted) posterior precisions σ̂−2
i .

17 This is due to the fact that an increase in signal precision when prior precision is high increases the product
by less (since posterior precision is the sum of prior precision and signal precision).
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entropy-based learning technology accounts for the fact that the number and composition of risks

affecting fundamentals are relevant for learning, which means that it is costly to learn about all

the risk factors.18 It captures the intuition that learning about one risk factor will affect the ability

to learn about the other factors and it is less costly to specialize in learning about one rather than

all the risk factors.

In addition to the capacity constraint, the firm also faces a no-forgetting constraint which rules

out the possibility of forgetting information about one risk in order to obtain more information

about another one, without violating the capacity constraint:

ki ≥ 0, i = 1, 2. (1.11)

This is essentially a condition that the precision of each signal must be non-negative and it

captures the intuition that learning about a risk factor should not increase uncertainty i.e. posterior

variance should not exceed prior variance.

1.2.3 Solving the model

Given a level of capacity K, a solution to the model is: a choice of factor-specific capacity ki to

maximize date-1 utility (1.3), subject to the capacity constraint (1.9), the no-forgetting constraint

(1.11), and rational expectations about the date-2 (conditional) investment; posterior beliefs which

are formed according to Bayes’ law (1.5) and (1.6), given a signal about the risk factors; a choice

of investment that maximizes expected utility, given the signal realization.

The model is solved using backward induction. First, given an arbitrary information choice,

the firm decides the optimal investment. Then, given the optimal investment for each information

choice, the firm decides the optimal information choice.

1.3 Results

In this section, I derive the equilibrium allocation of information capacity across risk factors. Then

I discuss the implications of these information choices in terms of the uncertainty faced by the firm

when investing. Finally, I discuss the implications in terms of the chosen level of investment and

the loss due to suboptimal investment.

18This comes from the fact that the marginal cost of an increase in precision about one risk factor is proportional
to the precision about the other risk factors (since the constraint applies to the product of factor-specific posterior
precisions).
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1.3.1 Optimal information choice

The date-2 problem consists of the firm choosing an investment level to maximize expected profits

(1.1), while taking information choice as given

max
λ

U2 ≡ E2[π] = λE2[θ]− λ2

2
(1.12)

where E2[·] denotes the expected value conditional on the information available at date 2.

The first order condition with respect to λ yields best investment response λ = E2[θ] = θ̂. Thus,

for any given information choice, the optimal investment level is the expected level of economic

fundamentals. Substituting this optimal investment choice into the objective (1.12) delivers the

indirect date-2 utility of having any posterior beliefs and investing optimally

U2 =
(E2[θ])2

2
=
θ̂2

2
. (1.13)

The date-1 problem consists of choosing the optimal level of capacity devoted to learning about

each risk factor to maximize the expected value of (1.13), and subject to the capacity constraint

(1.9) and the no-forgetting constraint (1.11). The posterior mean belief θ̂ is unknown at date-1.

It is a normally distributed random variable, θ̂ ∼ N (θ, σ2 − σ̂2), so date-1 utility is given by

U1 ≡ E1[U2] =
E1[θ̂2]

2
=
E1[θ̂]2 + V1[θ̂]

2
=
θ2 + σ2 − σ̂2

2
. (1.14)

Since date-1 utility is decreasing in posterior uncertainty σ̂2 and all other terms are exogenous

variables, maximizing date-1 utility in equation (1.14) is equivalent to minimizing posterior variance

max
k1,k2

− σ̂2 = α2σ̂2
1 + (1− α)2σ̂2

2

s.t. σ̂2
i = σ2

i e
−2ki and

2∑
i=1

ki ≤ K and 0 ≤ ki, i = 1, 2.

The unique solution to this problem delivers the following optimal factor-specific capacity

allocation

k1 =


0 if ασ1

(1−α)σ2
< e−K

1
2

(
K + ln ασ1

(1−α)σ2

)
if e−K ≤ ασ1

(1−α)σ2
≤ eK

K if ασ1
(1−α)σ2

> eK

(1.15)

and k2 = K − k1.
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Figure 1.1 Optimal Information Choice.
The figure illustrates the relationship between the degree of exposure to factor 1, α, and the
optimal level of information processing capacity allocated to factor 1, k1, and factor 2, k2.
The parameter values are σ1 = σ2 = 1 and K = 1

At the interior optimum, the optimal level of capacity devoted to learning about a risk factor

increases with factor-specific exposure, factor-specific prior uncertainty and total information pro-

cessing capacity. In other words, the firm will optimally choose to learn more about the risk factors

that fundamentals are more exposed to and which are ex-ante more uncertain. Note that corner

solutions are possible. For a given level of capacity, no (all) capacity is allocated to a risk factor if

factor-specific exposure and prior uncertainty are low (high) enough relative to the other factor.

The higher the capacity to process information K the smaller the range of (exposure and

uncertainty) parameter values for which corner solutions are obtained, in line with the intuition

that less capacity constrained agents are able to attend to more sources of risk. Note that for any

limited information processing capacity, the firm will stop learning about one of the risk factor

exposures. In other words, for any finite level of capacity, ∀ K <∞, there exists a level of exposure

0 < α < 1 for which the conditions in (1.15) hold and corner solutions are obtained.

Figure 1.1 plots the optimal level of information processing capacity allocated to the two factors

against exposure to factor 1. If exposure to factor 1 is very low, then the firm optimally chooses

to pay no attention to it and instead devotes all information processing resources to factor 2. The

economic intuition is that when exposure to factor 1 is very low, the marginal benefit of learning

about factor 1 is lower than the benefit of learning about factor 2, whose exposure is relatively

higher. Consequently, the firm would like to forget information about factor 1 in order to obtain

more information about factor 2 but the no-forgetting constraint prevents it from doing so and the
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zero corner solution is obtained. A similar reasoning is applied when exposure to factor 1 is very

high, leading to the full capacity corner solution. At the interior optimum, factor-specific capacity

increases with factor-specific exposure and the firm optimally learns more about the risk factor

fundamentals are relatively more exposed to.

1.3.2 Implications for uncertainty

Information choice is a tool to reduce the uncertainty that the firm faces when deciding on the

level of investment. Relative to an equal capacity, exogenous information benchmark, uncertainty is

lower when the firm can optimally choose what risk factors to learn about. Importantly, uncertainty

is convex in exposure when the firm is exogenously endowed with information, but it is concave in

exposure when the firm optimally learns about risk factor exposures.

Given the optimal information processing capacity allocated to each factor in (1.15), uncertainty

can be backed out using results (1.10) and (1.8), and it is given by

σ̂2 =


α2σ2

1 + (1− α)2σ2
2e
−2K if ασ1

(1−α)σ2
< e−K

2α(1− α)σ1σ2e
−K if e−K ≤ ασ1

(1−α)σ2
≤ eK

α2σ2
1e
−2K + (1− α)2σ2

2 if ασ1
(1−α)σ2

> eK

(1.16)

The uncertainty expressions for the corner solutions reflect the intuition that when there is no

learning about a factor its factor-specific posterior uncertainty is equal to its prior uncertainty (σ̂2
i =

σ2
i ), while the uncertainty about the other factor is reduced in proportion to the total capacity (σ̂2

i =

σ2
i e
−2K). At the interior optimum, uncertainty increases with the attention grabbing attributes of

the two risk factors, namely exposure and prior uncertainty, and decreases with total capacity.

In order to assess the implications of learning for uncertainty, and thus conditional investment,

a suitable benchmark is needed for comparison. I consider as benchmark a model in which the

firm is endowed with an exogenous amount of information which is equally allocated among the

risk factors. This model will be further referred to as the exogenous information benchmark. The

firm in this model has the same priors as the endogenous learning firm in my model but it is now

endowed with signals with exogenous noise ε̃si ∼ N (0, σ̃2
si), i = 1, 2. Posterior beliefs are formed

according to Bayes’ rule, such that benchmark uncertainty is

σ̃2
B = α2σ̃2

1 + (1− α)2σ̃2
2 (1.17)

where σ̃2
i ≡

(
σ−2
i + σ̃−2

si

)−1
, i = 1, 2.
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Figure 1.2 Implications for Uncertainty.
The figure illustrates the relationship between the degree of exposure to factor 1, α, and
the uncertainty faced by the firm that is implied by the exogenous information model
(red line) and the endogenous information model (blue line). The parameter values are
σ1 = σ2 = 1, σ̃s1 = σ̃s2 = 0.75 and the total capacity implied by these parameters is
K = 1

2 lnσ2
1

(
σ−21 + σ̃−2s1

)
+ 1

2 lnσ2
1

(
σ−22 + σ̃−2s2

)
= 1.

Figure 1.2 depicts the relationship between the degree of exposure to a risk factor and the

uncertainty implied by the endogenous information model σ̂2 (blue line) and the exogenous in-

formation benchmark model σ̃2 (red line). This exercise is informative of the uncertainty faced

by firms operating in economies whose fundamentals share the same factor structure but vary in

the degree of exposure to a risk factor (in this case the exposure to factor 1, measured by α). To

enable meaningful comparisons, the total capacity in the endogeous learning model is set equal to

the capacity implied by exogenous signal precisions in the benchmark model when the capacity

constraint is binding i.e. 1
2 ln

σ2
1

σ̃2
1

+ 1
2 ln

σ2
2

σ̃2
2

= K. This ensures that the two models are otherwise

identical except for the ability to optimally reallocate information processing resources. Note that

Figure 1.2 illustrates a symmetric equilibrium whereby the factors are ex-ante equally risky and

the exogenous signals are equally informative, hence the symmetry around and intersection of the

two lines at the α = 0.5 exposure midpoint.

In terms of levels, note that relative to the equal capacity, exogenous information benchmark,

uncertainty is lower when the firm can optimally allocate information resources across risk factor

exposures. This is because learning effectively reduces the uncertainty about individual factors.

The reduction in uncertainty achieved through learning operates through what will be further

referred to as the information channel. Recall that the endogenous learning firm optimally learns
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more about the risk factor fundamentals are relatively more exposed to. The regions at the left

and right of the α = 0.5 midpoint depict situations of relatively higher exposure to a factor whose

effective or learning-adjusted uncertainty is lower under the endogenous learning model than under

the benchmark. Consequently, for any given level of exposure in these regions, overall uncertainty

will be higher under the exogenous information model than under the endogenous information

model. Appendix A.1 provides an analytical proof of this intuition.

In terms of dynamics, note that both models illustrates a non-monotonic relationship between

overall uncertainty and the degree of exposure to a risk factor. However, whereas in the benchmark

model uncertainty is convex in exposure, in the endogenous learning model uncertainty is concave

in exposure when the firm optimally learns about both risk factors i.e. at the interior optimum.

Alternatively stated, uncertainty increases with exposure to relatively important risk factors when

information is exogenously given, but it decreases with exposure when information about the two

risks is endogenously chosen. Thus, one implication of the endogenous learning model is that in

the cross-section of entities exposed to a relatively important risk factor, an entity that is more

exposed to that risk will have a better understanding of it and will thus face a lower uncertainty

than an entity which is less exposed to it.

Proposition 1. Provided that a risk is relatively important, uncertainty decreases with exposure

when the firm optimally learns i.e. ∂σ̂2

∂α < 0 if α > 0.5 and k ∈ (0,K).

Proof. See Appendix A.1.

Proposition 1 sheds light on why the shock transmission patterns observed during the financial

crisis of 2007-2008 were different relative to those observed during past contagious crises such as

the Mexican crisis of 1994 and the Asian crisis of 1997.19 It is because in the last crisis the shock

originated in a country that plays a central role in the global economy: the United States is both

a country that is relatively important for most other countries (α > 0.5), as well as a country that

foreign decision-makers are likely to learn about (k ∈ (0,K)). Thus, variation in the extent to

which other countries were exposed to the United States, translates into variation in uncertainty

which follows the dynamics illustrated at the right of the α = 0.5 exposure midpoint in Figure 1.2.

In other words, my model suggests that countries which were relatively more exposed to the United

States shock faced a relatively lower level of uncertainty regarding the implications of the shock.

19During these past crises the epicentre country in which the shock originated was more severely affected than
the other countries that were subsequently affected by the shock. More generally, the impact of the original shock
increased with exposure to it during the Mexican and Asian crises, but it decreased with exposure during the last
financial crisis of 2007-2008.
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This provides a potential explanation for why during the financial crisis of 2007-2008, unlike during

previous crises, the transmission of the shock decreased with exposure to the shock.

The benchmark model illustrates a diversification effect whereby high exposure to a risk factor

implies high overall uncertainty, and the lowest level of uncertainty is achieved when exposure to

the two factors is equal. To understand the forces that are at play let us focus on the right part

of Figure 1.2, where exposure to factor 1 is relatively higher i.e. α > 0.5. Given two equally risky

factors, which is the case in light of the symmetric equilibrium considered, overall uncertainty is

driven by the factor that is important in terms of exposure. Consequently, increasing exposure to

factor 1 beyond the 0.5 midpoint results in an increase in overall uncertainty. This works through

what will be further referred to as the exposure channel. The idea behind it is that the overall risk

of a bundle of factors which are equally risky will be driven by those that are important in terms

of exposure; in other words, for fixed risk overall dynamics are dictated by exposure.

The endogenous learning model, on the other hand, predicts that uncertainty is convex in

exposure when the firm optimally learns about one factor only, and it is concave in exposure when

the firm learns about both factors.20 In the corners, when the firm devotes all capacity to learning

about one factor, information is essentially exogenous, so uncertainty dynamics will be the same as

in the benchmark and will operate through the exposure channel. At the interior optimum though,

uncertainty initially increases with exposure, but once the factor becomes important in terms of

exposure, uncertainty will start to decrease. To understand the mechanism behind this, let us

start from the situation in which exposure to the two factors is equal i.e. α = 0.5. As exposure to

factor 1 is increased beyond this 0.5 midpoint, the uncertainty about factor 1 is effectively reduced

through learning. The reduction in uncertainty entailed by learning is stronger than the increase

in exposure, so increasing exposure to factor 1 results in a decrease in overall uncertainty. In other

words, the information channel dominates the exposure channel. However, the benefits of learning

are limited and increasing exposure beyond a certain point will undo the reduction in uncertainty

achieved through learning, resulting in an increase in overall uncertainty. In other words, the

exposure channel will overturn the information channel if exposure is high enough and the firm

only learns about one factor. This is reflected in the turning point in the uncertainty, which occurs

when the learning-adjusted risk exposures of the two factors are equal.21

20Note that uncertainty in the endogenous information model is convex on the same interval of exposure paramet-
ers over which the factor-specific capacity allocation illustrated in Figure 1.1 is extreme i.e. either zero or maximum.

21At the first corner (when learning about factor 2) uncertainty decreases if ασ2
1 < (1−α)σ2

2e
−2K , which essentially

reads that increasing exposure to a factor whose learning-adjusted risk is relatively lower decreases overall uncertainty.
At the second corner (when learning about factor 1), uncertainty starts to increase when ασ2

1e
−2K > (1− α)σ2

2 i.e.
when learning-adjusted risk is higher.
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In sum, the benchmark illustrates a classic diversification effect which operates through the

exposure channel. In the endogenous learning model, learning substitutes for diversification in

reducing risk, resulting in a specialization effect. In a portfolio allocation context, Van Nieuwer-

burgh and Veldkamp (2010) also make the point that diversification is not optimal if portfolio

choice is preceded by information choice. While they focus on the implications of information

choice in terms of portfolio holdings when decision-makers choose both their information about

and exposure to risks, I focus on the role of information in terms of the impact of shocks when

decision-makers choose their information about risks they are exogenously exposed to. Section

1.4.4 relaxes the assumption of exogenous exposures to risk factors and provides a characterization

of the optimal exposure points.

1.3.3 Implications for investment

Reducing uncertainty will enable the firm to take an investment decision that is more aligned

with underlying fundamentals and thus reduce the loss due to suboptimal investment.22 Insofar

as the firm’s investment deviates from the first-best optimum obtained under perfect information,

it contributes to the transmission of shocks. The basic result is that the transmission of shocks

decreases with exposure when the firm optimally learns about the shocks affecting fundamentals.

Consequently, relative to the exogenous learning benchmark, the impact of shocks that fundament-

als are relatively less exposed to is amplified, while the impact of shocks that fundamentals are

relatively more exposed to is attenuated.

Recall that the firm optimally chooses a level of investment that is equal to the expected level of

fundamentals conditional on the information available at the intermediate date 2 i.e. λ = E2[θ] = θ̂.

Thus, the investment decision is essentially a response to information about the realization of shocks

affecting fundamentals. Figure 1.3 depicts the relationship between the degree of exposure to a

shock and the response or sensitivity of investment to that shock that is implied by the exogenous

information benchmark (red line), the endogenous information model (blue line) as well as a full

information model (black line).

Note that the shock sensitivity increases with exposure under all the three models considered

but the rate of increase is different. Under the full information model shocks can be perfectly

observed so there is a one to one mapping between exposure to the shock and the sensitivity to

it. This is the optimal or first-best response; to the extent that responses deviate or are not

22Mathematically a lower level of uncertainty means higher response to signals that are informative about the
underlying shocks affecting fundamentals.
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Figure 1.3 Sensitivity of Investment to Shocks.
The figure illustrates the relationship between the degree of exposure to factor 1, α, and the
sensitivity of investment to a shock to factor 1 that is implied by the exogenous information
model (red line), the endogenous information model (blue line) and a perfect information
model (black line). The parameter values are σ1 = σ2 = 1, σ̃s1 = σ̃s2 = 0.75 and K = 1.

aligned with it they are said to be suboptimal and to act as a shock transmission mechanism.

Under exogenous information, the response departs from the optimal one as exposure increases

because shocks are observed with a precision that is fixed so the exposure effect dominates. Under

the endogenous info model three situations can be observed: for sufficiently low exposure, the

firm does not acquire any information and there is no response to shocks; shock sensitivity is

zero because as the firm is essentially unaware of the underlying shock realization. Second, as

exposure increases and the firm starts learning about factor 1, its response to shocks will become

increasingly more aligned with the optimal one because the precision of information about shocks

affecting fundamentals optimally increases with exposure. Finally, when exposure is sufficiently

high that the firm only learns about factor 1, the response starts to decrease again with exposure

because information precision, albeit set at the maximum, is essentially exogenous.

Thus, information frictions introduce a loss or inefficiency relative to the full information bench-

mark. When shocks can be perfectly observed they affect investment in proportion to exposure.

However, when shocks cannot be perfectly observed investment decisions are relatively less re-

sponsive to shocks; the firm fails to fully incorporate underlying shocks into decision-making. In

case of positive shocks, the deviation from the full information optimum is negative and represents

a situation of underinvestment. The firm increases investment by less than it optimally should,

resulting in missed or lost business opportunities. In case of negative shocks the deviation is pos-
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itive and decreases with exposure. This is a situation of overinvestment, whereby the firm reduces

investment by less than it optimally should, resulting in wasted resources through excess capacity.

In order to ease analysis and abstract from the nature of shocks, I define the loss due to suboptimal

action as L ≡ (θ̂ − θ)2. This symmetric loss function captures a more general situation in which

shocks are changes in circumstances that the firm needs to adapt to rather than good or bad events,

such as the introduction of standards, technological disruption, terms of trade changes.

Figure 1.4 plots the loss due to suboptimal investment against exposure to factor 1. The

example considers a one standard deviation shock to factor 1, abstracts from factor 2 shocks

as well as from information shocks. Under the exogenous information benchmark, loss increases

monotonically with exposure to the shock (red line). Given that signal noise is fixed, this result

works through the exposure channel and is due to increasing exposure to a risk that is constant.

Under the endogenous learning model, three scenarios can be observed as exposure increases (blue

line). First, when exposure is sufficiently low such that the firm does not learn about factor 1, the

loss due to suboptimal investment is increasing in exposure. The rate of increase is higher relative

to the exogenous information benchmark because the firm chooses to observe no information, as

opposed to fixed information, about factor 1. Second, as exposure increases and the firm starts

learning about factor 1, the loss due to suboptimal investment decreases with exposure because

the firm is able to incorporate shocks more accurately into decision-making. Third, when the

firm learns only about factor 1, the loss due to suboptimal investment starts to increase again

because information precision is essentially exogenous and as a consequence dynamics resemble

the benchmark.

Worth emphasizing is the fact that the predictions of the two models are starkly different

when an interior solution is obtained for endogenous information choice i.e. when the firm learns

about both risk factors. Whereas the loss due to suboptimal action is increasing with exposure

when the firm is exogenously endowed with information about the risks, it is decreasing with

exposure when the firm optimally chooses what risks to learn about. Consequently, relative to

the exogenous learning benchmark, shocks that fundamentals are relatively more exposed to are

attenuated (lower loss) while shocks that fundamentals are relatively less exposed to are amplified

(higher loss). The magnitude of amplification decreases with the firm’s capacity to learn. In other

words, amplification is more severe for more capacity constrained firms that are only able to learn

about one risk factor.

If the shock to factor 1 is interpreted as a shock to United States, Figure 1.4 implies that

a country which is less exposed to the United States (which is situated towards the left end of
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Figure 1.4 Loss Due to Suboptimal Investment
The figure illustrates the relationship between the degree of exposure to factor 1, α, and the
loss due to suboptimal action that is induced by a shock to factor 1. This example considers
a one standard deviation shock to factor 1 i.e. ε1 = σ1, abstracts from factor 2 shocks i.e.
ε2 = 0 and information shocks i.e. εs1 = εs2 = 0. The parameter values are µ1 = µ2 = 1,
σ1 = σ2 = 1 and σ̃s1 = σ̃s2 = 0.75 and the total capacity implied by these parameters is
K = 1

2 lnσ2
1

(
σ−21 + σ̃−2s1

)
+ 1

2 lnσ2
1

(
σ−22 + σ̃−2s2

)
= 1.

the x-axis) will incur a higher loss due to suboptimal action compared to a country which is more

exposed to the United States (which is situated towards the right end of the x-axis). It also implies

that a country which is less exposed to the United States will incur a higher loss due to suboptimal

action compared to the United States itself (which is likely to be situated towards the right end

of the x-axis). These predictions are in line with evidence from the GFC that countries other

than the epicentre have been more severely affected than United States itself, and more generally

countries that were less exposed to the United States were more affected.

The results depicted in Figure 1.4 can be understood by examining how investment decisions

act as a shock transmission mechanism analytically. To that end, I define the shock transmission

mechanism as the change in the loss function due to a shock i.e. ∂L
∂εi

. The shock transmission

mechanism essentially measures the extent to which shocks translate into losses. The interaction

between the magnitude of the shock and the strength of the shock transmission mechanism de-

termines the impact of a shock. Consequently, statements about the impact of a shock amount to

statements about the negative consequences of a shock or the losses induced by it. The stronger the

shock transmission mechanism, the higher the loss due to suboptimal investment and the higher

the impact of the shock is said to be.
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Proposition 2. The transmission of shocks decreases with exposure when the firm optimally learns

i.e. ∂2L
∂ε1∂α

< 0 if k ∈ (0,K).

Proof. See Appendix A.2.

Proposition 2 pins down the mechanism through which the impact of a shock can decrease with

exposure to it. When the firm optimally learns about the risk factors affecting fundamentals, the

loss due to suboptimal investment that is induced by a shock decreases with exposure. In other

words, the contribution of actions to the transmission of shocks decreases with exposure. This is

because the reduction in uncertainty that is achieved through learning increases with exposure,

and as a consequence the deviation of the firm’s investment from the perfect information optimum

decreases. Thus, the informational benefit mitigates the direct impact of shocks to risk factors that

fundamentals are relatively more exposed to as it enables the firm to take better informed decisions

and minimize the loss due to suboptimal investment. By the same token, the impact of shocks to

risk factors that fundamentals are relatively less exposed to is amplified through the firm’s poorly

informed investment decision as it implies a higher loss due to suboptimal investment.

1.4 Extensions

In this section, I consider the following extensions to the baseline model studied so far. First, I

account for the degree of anticipation of shocks. Second, I allow for strategic complementarity

in investment. Third, I relax the assumption that the risk factors affecting fundamentals are

independent. Finally, I relax the assumption that exposures to the risk factors are exogenous.

1.4.1 Extension: shock anticipation

The baseline model considers the case in which the firm allocates an exogenously given information

processing capacity K across risk factor exposures. This section endogenizes the capacity available

to the firm in a certain state of nature, by linking it to the degree of anticipation of that state.

The basic result is that the impact of unanticipated shocks is amplified because the firm optimally

allocates less information processing capacity to learning about low probability states of nature.

One of the risk factors affecting fundamentals is assumed to be in one of two possible states of

nature: a low-probability, low-mean so-called bad state of nature - interpreted as rare times, and

a high-probability, high-mean so-called good state of nature - interpreted as normal times. Let

pr > 0 denote the probability that factor 1 is in the bad state of nature. If it is ex-ante unlikely
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for this state to occur, then pr will be small, and a rare event or crisis is said to occur if the state

is revealed to be bad. This setup can thus be graphed as

f1

µ1 + ε1, ε1 ∼ N (0, σ2
1)pn = 1− pr

µ1 + ε1, ε1 ∼ N (0, σ2
1)pr

where µ1 < µ1 and pr < pn. To isolate the effect of the degree of anticipation alone, I assume that

only the mean level of the risk factors is different in the two states while the priors associated with

the shocks affecting the risk factors in the two states are the same.23

In this setup, there are two dimensions of information choice: how much information to acquire

about a state of the world, and how to allocate that information across risk factors in each state

of the world.24 Let K denote the total capacity or total amount of information resources available

to the firm , Ks the state capacity or amount of information resources dedicated to state of nature

s ∈ {n, r}, and kis denote the amount of information processing capacity dedicated to factor i

in state s ∈ {n, r}. The capacity constraint (1.9) governing the allocation of capacity across risk

factors in any state of nature s ∈ {n, r} can now be formulated as

k1s + k2s ≤ Ks, s ∈ {n, r},

and the capacity constraint governing the allocation of total capacity across states of nature is

given by

Kn +Kr ≤ K.

The model is solved following the same steps as in the baseline model in Section ??, except

that now the date-1 problem consists of two steps. As before, the firm first allocates information

resources across risk factor exposures given the optimal investment level and an arbitrary state

capacity. The second step is to allocate total information resources across states of nature given

the optimal investment and optimal capacity allocation across exposures in any state. Let U1(Ks)

denote the date-1 utility of investing optimally at the second date and optimally allocating the

available state capacity Ks across risk factors at the first date

23In any state of nature, the capacity allocation across risk factors is mean independent but increases with
the prior uncertainty surrounding that factor i.e. volatility. Accounting for the intuition that crises episodes are
characterized by high volatility would weaken the ensuing result but the main result still holds. This case is dealt
with in Appendix A.3.

24This can be thought of as capturing situations in which decision-makers prepare for different contingencies.
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U1(Ks) =


−α2σ2

1 − (1− α)2σ2
2e
−2Ks if k1 = 0

−2α(1− α)σ1σ2e
−Ks if k1 = 1

2

(
Ks + ln ασ1

(1−α)σ2

)
−α2σ2

1e
−2Ks − (1− α)2σ2

2 if k1 = Ks

(1.18)

The date-1 problem for the allocation of total capacity across states is

max
Kn,Kr

pnU1(Kn) + prU1(Kr) (1.19)

s.t. Kn +Kr ≤ K and Ks ≥ 0, s ∈ {n, r} (1.20)

The basic result is that the optimal level of information processing capacity dedicated to a

state of nature increases with the probability of occurrence of the state. Appendix A.3 provides a

full characterization of the equilibria. At the interior optimum, when the firm learns about both

factors, the optimal level of capacity dedicated to the rare state is

Kr =


0 if pr

pn
< e−K

1
2

(
K + ln pr

pn

)
if pr

pn
≥ e−K

(1.21)

Note that a corner solution is possible. More specifically, if the probability of the state of

nature is low enough, no capacity is allocated to the state. Otherwise, the information-processing

capacity allocated to a state of nature increases with its degree of anticipation, as well as with the

total capacity K available.

The implication of this capacity allocation in terms of state contingent investment schedules

is that the impact of shocks decreases with their degree of anticipation because the loss due to

suboptimal investment is higher the more unanticipated the shock. The firm optimally devotes

little attention to low-probability events. Thus, the contribution of investment decisions to the

transmission of shocks is higher the lower their ex-ante probability of occurrence. In other words,

the deviation of the firm’s investment from the perfect information optimum will be higher the

lower the probability of occurrence of a shock, which essentially intensifies its transmission. The

amplification of unanticipated shocks will thus be higher.

Proposition 3. The transmission of shocks decreases with their degree of anticipation when the

firm optimally learns i.e. ∂2L
∂ε1∂ps

< 0 if k1s ∈ (0,Ks), s ∈ {n, r}.

Proof. See Appendix A.3.

Proposition 3 essentially says that the contagious transmission of crises is higher the lower
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their probability of occurrence. This prediction is in line with evidence that documents a negative

relation between the degree of anticipation of crises and the occurrence of contagion (Kaminsky

et al., 2003; Rigobon and Wei, 2003; Didier, Mauro, and Schmukler, 2008; Mondria and Quintana-

Domeque, 2013). Additionally, it is related to the debates on whether the highly unexpected nature

of the Lehman shock might have amplified its transmission. My model predicts that contagion is

more likely to occur following unexpected crises because decision-makers optimally prepare less for

unexpected states of the nature.

Figure 1.5 plots the loss due to suboptimal investment against exposure to a one standard

deviation shock to factor 1, for varying degrees of anticipation of the shock. The loss due to

suboptimal investment is larger when the shock occurs with a small probability (solid lines), relative

to the case in which the shock occurs with a higher probability (dashed lines). The loss due to

suboptimal investment that is induced by a shock decreases with the degree of anticipation of

that shock because the firm optimally learns less about less anticipated states of nature. Thus,

endogenizing the information processing capacity available in a state of nature has the effect of

amplifying the impact of shocks occurring in unexpected states; decision-makers are unprepared

for unexpected shocks and this amplifies their consequences.

Figure 1.5 Loss Due to Suboptimal Investment for Varying Degrees of
Shock Anticipation.

The figure illustrates the relationship between the degree of exposure to factor 1, α, and
the loss due to suboptimal action that is induced by a shock to factor 1, for varying degrees
of anticipation of the shock. This example considers a one standard deviation shock to
factor 1 i.e. ε1 = σ1, abstracts from factor 2 shocks i.e. ε2 = 0 and information shocks i.e.
εs1 = εs2 = 0. The parameter values are σ1 = σ2 = 1; when p = 25% σ̃s1 = σ̃s2 = 0.55 and
K = 1.45, and when p = 5% σ̃s1 = σ̃s2 = 1.20 and K = 0.53.
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1.4.2 Extension: investment complementarities

This subsection extends the baseline model to account for strategic interactions and their implica-

tions for equilibrium information choice and the loss due to suboptimal investment. Relative to the

baseline model, strategic complementarity in investment reduces the incentive to learn about risks

fundamentals have relatively low exposure to. Thus, the transmission of shocks that fundamentals

are relatively less exposed to is intensified when firms seek to coordinate their investment decisions,

which implies that the loss due to suboptimal investment is higher relative to the baseline.

There is a continuum of firms indexed by j. Each firm chooses level of investment λj to

maximize expected profits. The profit function for firm j is given by

πj = Rλj −
1

2
λ2
j (1.22)

The return on investment R is a function of the unknown fundamentals in the economy θ and

the average investment in the population λ̄ =
∫
j λj

R = (1− r)θ + rλ̄

where r is a constant governing the type of strategic interactions between firms. Real investment

environments have typically been treated as being characterized by strategic complementarities.

In such environments decision-makers want to do what others do. This is modelled by imposing

that r > 0, which implies that optimal individual responses λj increase in the actions of others λ̄.

If r = 0 individual actions are independent of the average action in the population and the baseline

model is obtained.

As in the baseline model, the solution strategy is to work backwards. At date-2, each firm un-

dertakes a level of investment to maximize the expected profit πj in (1.22), while taking information

choice as given. The objective function is formulated as

max
λj

U2j ≡ E2j [Rλj −
1

2
λ2
j ].

The first-order condition yields

λj = E2j [R] = (1− r)E2j [θ] + rE2j [λ̄]. (1.23)

I consider equilibria in which the mean investment in the population is a linear function of the
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shocks affecting fundamentals

λ̄ = ψ + φ1ε1 + φ2ε2 (1.24)

where ψ, φ1 and φ2 are constants determined in equilibrium. Recalling that E2j [θ] = α(µ1 +

E2j [ε1]) + (1 − α)(µ2 + E2j [ε2]) and substituting conjecture (1.24) into the first order condition

(1.23) yields

λj = rψ + (1− r)(αµ1 + (1− α)µ2) + [α(1− r) + rφ1]E2[ε1] + [(1− α)(1− r) + rφ2]E2[ε2].

Calculating first the conditional expectation of the shocks Eij [εi] = (1 − γi)sij , and then the

mean action in the population yields

λ̄ = rψ + (1− r)(αµ1 + (1− α)µ2) + [α(1− r) + rφ1](1− γ1)ε1 + [(1− α)(1− r) + rφ2](1− γ2)ε2.

Matching coefficients verifies the conjecture (1.24) that the average investment level is linear

in the shocks. The linear weights are given by ψ = rψ+ (1− r)(αµ1 + (1−α)µ2), φ1 = [α(1− r) +

rφ1](1− γ1) and φ2 = [(1− α)(1− r) + rφ2](1− γ2). Collecting the unknown coefficients yields

ψ = αµ1 + (1− α)µ2 (1.25)

φ1 =
α(1− r)(1− γ1)

1− r(1− γ1)
(1.26)

φ2 =
(1− α)(1− r)(1− γ2)

1− r(1− γ2)
. (1.27)

The date-1 problem consists of choosing the optimal level of capacity devoted to learning

about each risk factor to maximize expected utility implied by the investment rule (1.24) and the

equilibrium coefficients (1.25)-(1.27), subject to the capacity constraint (1.9) and the no-forgetting

constraint (1.11)

max
k1,k2

U1j = E1j [U2j ] =
1

2

[
ψ2 +

α2(1− r)2σ2
1(1− γ1)

(1− r(1− γ1))2
+

(1− α)2(1− r)2σ2
2(1− γ2)

(1− r(1− γ2))2

]

s.t. γi = e−2ki ,
∑

ki ≤ K, 0 ≤ ki, i = 1, 2.

Numerical results indicate that relative to the baseline model (r = 0), the firm is more likely to

learn about a single risk rather than both risks when investment actions are strategic complements

(r > 0). In other words, as the degree of strategic complementarities increases, corner solutions

occur more easily. In fact, if the degree of strategic complementarity r is high enough the parameter
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region for which an interior solution is obtained collapses to a single point.25 The implication is

that for high levels of strategic complementarity, a small change in the exposure parameter can

have a large effect on the equilibrium allocation of attention.

At the interior optimum, when the firm optimally learns about both risks, the optimum level of

capacity allocated to factor 1 decreases with the degree of complementarity r if exposure to factor

1 is relatively low (α < 0.5) but it increases if exposure to factor 1 is relatively high (α > 0.5). This

is because the firm anticipates that learning optimally increases with exposure in the population,

and as a consequence it also chooses to learn less about low-exposure risk factor and more about

high-exposure risk factors. In other words, strategic complementarity in investment reduces the

incentive to learn about risk factors that fundamentals have relatively low exposure to, which

implies that the transmission of shocks to these risk factors will be amplified compared to the

baseline model. Consequently, the contagious transmission of shocks is intensified as the degree of

strategic complementarity increases.

The implications in terms of shock impact are illustrated in Figure 1.6, which plots the loss

due to suboptimal investment against exposure to a one standard deviation shock to factor 1, for

varying levels of strategic complementarity. The loss due to suboptimal investment is larger in

environments characterized by a higher level of strategic complementarity (dashed lines), relative

to the case in which there are no strategic interactions (solid lines). This is due to the fact that the

firm’s incentive to hedge against shocks through learning is weakened by its desire to coordinate its

investment decison with the average investment in the population. Since the firm anticipates other

firms will optimally choose to learn less about the risk factors that fundamentals have relatively

little exposure to, its incentive to learn about these low-exposure risk factors decreases as the

degree of strategic complementarity increases. As a consequence, the loss due to suboptimal action

that is induced by a shock is amplified in the presence of strategic complementarities.

25For strategic complementary parameters beyond this point multiple equilibria exist.
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Figure 1.6 Loss Due to Suboptimal Investment for Varying Degrees of Stra-
tegic Complementarity.

The figure illustrates the relationship between the degree of exposure to factor 1, α, and the
loss due to suboptimal action that is induced by a shock to factor 1, for varying degrees of
strategic complementary between the firms populating the economy. This example considers
a one standard deviation shock to factor 1 i.e. ε1 = σ1, abstracts from factor 2 shocks
i.e. ε2 = 0 and information shocks i.e. εs1 = εs2 = 0. The other parameter values are
σ1 = σ2 = 1, K = 1 and σ̃s1 = σ̃s2 = 0.75.

1.4.3 Extension: correlated risks

The baseline model considers the case in which the risk factors affecting fundamentals are inde-

pendent. In this section I allow for the risk factors to be correlated. I find that the baseline main

result remains unchanged and the loss due to suboptimal investment increases with the degree of

correlation between the two risk factors.

To deal with the case of correlated risks it is useful to use matrix notation. As in the baseline

model, fundamentals are a sum of risk factors. Let f be a N × 1 vector of risk factors and A be a

N × 1 vector of exposures to these factors. Fundamentals can be expressed as

θ = A′f

where the risk factors f are ex-ante known to be correlated i.e. the prior variance-covariance

matrix of the risk factors f is non-diagonal. Assuming that the prior variance-covariance matrix

of the factors f is non-diagonal is equivalent to assuming the following linear structure for the risk

factors

f = µ+ Γε, ε ∼ N (0,Σ) (1.28)
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where µ is a N×1 vector of constants measuring the mean level of each risk factor, ε is a N×1 vector

of independent shocks with diagonal variance-covariance matrix Σ, and Γ is an N ×N matrix of

loadings which measures the extent to which the independent shocks affect the risk factors.26 The

ith row of the matrix Γ, denoted Γi, gives the loadings of the ith risk factor fi on the independent

shocks in the vector ε. Thus, each risk factor fi is expressed as the sum of a factor-specific mean

µi and the independent random variables or shocks contained in the vector ε, which affect it in

proportion to the loadings Γi.

This factor structure essentially allows for correlations between the risk factors through shared

exposure to underlying independent shocks. It accounts for the existence of underlying forces that

might be driving more than one of the risk factors affecting fundamentals. I conceptualize these

independent shocks as factor-specific shocks. For instance, I interpret shock 1, ε1, as being specific

to factor 1, f1, and shock 2, ε2, as being specific to factor 2, f2. Correlation is introduced by

allowing factor 1 to load on the shock specific to factor 2, and vice versa.

Interpreted in the context of the motivating example, this setup accounts for the reality that

domestic and foreign risks are likely to be correlated. The linear factor modelling approach ad-

opted above is essentially equivalent to principal component analysis, which provides a way to

decompose correlated risks into independent risks. In the portfolio literature it is common to use

principal components analysis to decompose sets of correlated asset returns into independent un-

derlying risk factors such as business-cycle risk, industry-specific risk, and firm-specific risk (Ross,

1976). Similarly, correlated domestic and foreign risks can be decomposed into an exhaustive set

of independent underlying risk factors, which can be interpreted as pure country-specific risks.

The firm aims to reduce uncertainty about these underlying shocks through learning. Thus,

signals will be about the independent shocks contained in the vector ε. I assume that learning

about independent shocks is done independently. In other words, the firm acquires independent

noisy signals about each of the independent shocks contained in the vector ε, and thus receives a

N × 1 vector of independent signals

s = ε+ εs, εs ∼ N (0,Σs)

where the Σs variance-covariance matrix of the εs signal noise vector is diagonal, thus capturing

26The variance-covariance matrix of the risk factors that is implied by (1.28) is ΓΣΓ′. Note that an alternative
solution method is to assume that the prior variance-covariance matrix of the shocks is non-diagonal, say Ω, and
then use eigen-decomposition to re-write it as Ω = ΓΣΓ′; learning would then be about the principal components
with diagonal variance-covariance matrix Σ.
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the assumption that signal about independent risks are independent.

Applying Bayes’s rule on the transformed variable Γ−1f , and then pre-multiplying this solution

by Γ, I obtain that posterior beliefs about the correlated risk factors have mean E[f |s] = µ+Γ(I−

Σ̂Σ−1)s and variance V [f |s] = ΓΣ̂Γ′, where Σ̂ ≡ (Σ−1 + Σ−1
s )−1 denotes the posterior variance-

covariance matrix of the independent shocks ε.27 Consequently, the posterior mean and variance

of fundamentals, respectively, conditional on the information available at time 2 are

θ̂ ≡ E[θ|s] = A′E[f |s] = A′(µ+ Γ(I − Σ̂Σ−1)s)

σ̂2 ≡ V [θ|s] = A′V [f |s]A = A′ΓΣ̂Γ′A

The solution strategy follows the same steps as in the baseline model. The date-2 problem

is unchanged and yields solution λ = E[θ|s] = θ̂. Similarly, the date-1 utility decreases with

uncertainty regarding fundamentals V [θ|s], so the date-1 problem is to minimize

V [θ|s] = A′ΓΣ̂Γ′A

subject to the information processing constraint

1

2
ln
|Σ|
|Σ̂|
≤ K (1.29)

and the the no-forgetting constraint, which is essentially a restriction that the matrix Σs is positive

semi-definite. Note that since the variance-covariance matrices that enter the determinants in (1.29)

are diagonal, the information processing constraint can be re-written as a sum. Furthermore, define

the information-processing capacity devoted to learning about each of the underlying independent

shocks as ki ≡ 1
2 ln Σii

Σ̂ii
. The information-processing constraint (1.29) thus reduces to

∑
i ki ≤ K.

The matrix of loadings Γ is essentially a measure of the correlation structure between the risk

factors. The rows of the loadings matrix give the loadings of each factor on all the shocks and the

columns give the loadings of all the factors on each shock . The ith row of the matrix Γ, denoted

Γi, gives the loadings of the ith risk factor on the independent shocks in the vector of shocks ε.

Denote by Γj the jth column of the matrix Γ, which gives the loadings of all the risk factors on

the jth shock. Define exposure to shock j as

27Transforming the variable f∗ = Γ−1f = Γ−1µ + ε, allows applying standard Bayesian rules for updating
normally distributed variables and yields posterior mean E[f∗|s] = Γ−1µ + V [f∗|s]Σ−1

s s and posterior variance
V [f∗|s] = V [ε|s] = (Σ−1 + Σ−1

s )−1 ≡ Σ̂.
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Ej ≡ A′Γj =
n∑
i=1

αiΓij .

This measure of exposure captures the intuition that when the risk factors are correlated, the

degree to which an underlying shock affects fundamentals will depend on the interaction between

the observable exposure to the risk factors (captured by A) as well as on the loading of the risk

factor on the underlying common shocks (captured by Γ). In other words, the effective exposure to

a shock depends on the interaction between the observed exposure and the underlying correlation

structure.

For ease of exposition, in what follows I consider and solve for the case in which n = 2. In

this case the relevant effective exposure parameters are Ej = α1Γ1j + α2Γ2j , j = 1, 2. The date-1

problem can thus be expressed as

min
k1,k2

V [θ|s] = A′ΓΣ̂Γ′A = Σ̂11E
2
1 + Σ̂22E

2
2

s.t. Σ̂ii = Σiie
−2ki ,

∑
ki ≤ K, 0 ≤ ki, i = 1, 2.

The optimal capacity allocated to the factor-specific shocks is

k1 =



0 if

√
Σ11E2

1

Σ22E2
2
< e−K

1
2

(
K + ln

√
Σ11E2

1

Σ22E2
2

)
if e−K ≤

√
Σ11E2

1

Σ22E2
2
≤ eK

K if

√
Σ11E2

1

Σ22E2
2
> eK

(1.30)

and k2 = K − k1. Note that this solution for the attention allocated to the underlying shocks

is similar in spirit to the attention allocated the independent risk factors that was discussed in

Section 1.3.1. However, the implications in terms of magnitude of losses are different relative to

baseline model.

Figure 1.7 plots the loss due to suboptimal action against exposure to factor 1, for varying

degrees of correlation between the two risk factors. The example considers a one standard deviation

shock to factor 1 ε1, abstracts from factor 2 shocks ε2 as well as from information shocks εs. The

main result on the non-monotonic relationship between exposure and the loss due to suboptimal

investment remains unchanged. However, the figure shows that relative to the zero correlation

baseline, the loss due to suboptimal investment increases with the degree of correlation between

the two factors (Appendix A.4 provides an algebraic derivation of this result).
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Figure 1.7 Loss Due to Suboptimal Investment for Correlated Risks.
The figure illustrates the relationship between the degree of exposure to factor 1, α, and
the loss due to suboptimal action that is induced by a shock to factor 1, for varying degrees
of correlation between the risk factors. This example considers a one standard deviation
factor 1 specific shock i.e. ε1 = Σ11, abstracts from factor 2 shocks i.e. ε2 = 0 and
information shocks i.e. εs1 = εs2 = 0. The parameter values are K = 1, σ̃s1 = σ̃s2 = 0.75,
Σ11 = Σ22 = 1. Both risk factors are assumed to load equally on the underlying independent
shocks: Γ11 = Γ22 = 1 and Γ12 = Γ21 = 0.15. The implied correlation between the two risk
factors is 0.3.

A higher degree of correlation between the two risk factors has two implications. On the one

hand, correlation introduces learning complementarity benefits, as the firm can use information

about one factor-specific shock to reduce uncertainty about both risk factors. On the other hand

correlation also increases the effective exposure to shocks because now a shock specific to factor

1 will affects fundamentals not only through exposure to factor 1, but also through exposure to

factor 2. The effect of complementary in learning is to shift the loss turning point along the x-axis.

In the specific case illustrated in Figure 1.7, the loss function is shifted to the left relative to the

zero-correlations baseline because the firm starts learning about the shock specific to factor 1 at a

lower level of observable exposure (the observable exposure plotted on the x-axis is lower than the

effective exposure which drives learning choices in (1.30)). The effect of increased effective exposure

to shocks is to shift the loss function upwards along the y-axis. The loss is higher relative to the

zero-correlations baseline because effective exposure is higher than the observable exposure that

is plotted on the x-axis. This result highlights that the apparently unexplained transmission of

shocks i.e. transmission of shocks that is not explained by observable measure of exposure to shock

can also occur because of underlying correlations between the risk factors driving fundamentals.
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1.4.4 Extension: endogenous exposure

The baseline model considered the case in which exposures to risk factors are exogenous. In this

section, I allow for exposure to be endogenous quantities determined in equilibrium. The basic

result is that it is optimal for the firm to specialize in learning about one risk factor and to be

more relatively exposed to that factor.

The solution strategy follows the same steps as in the baseline model in Section 1.3, except that

at the first date, in addition to choosing the amount of information processing resources devoted

to each risk factor, the firm also chooses the exposure to these risk factors. In particular, given

the optimal action and the optimal factor-specific information processing capacity for any given

exposure, the firm then chooses the optimal level of exposure by solving

max
α

U1 =


−α2σ2

1 − (1− α)2σ2
2e
−2K if k1 = 0

−2α(1− α)σ1σ2e
−K if k1 = 1

2

(
K + ln ασ1

(1−α)σ2

)
−α2σ2

1e
−2K − (1− α)2σ2

2 if k1 = K

(1.31)

The following proposition summarizes the optimal level of exposure result.

Proposition 4. It is optimal to be relatively more exposed to the risk factor that the firm learns

about

α∗ =


σ2
2

σ2
2+σ2

1e
2K if k1 = 0

σ2
2

σ2
2+σ2

1e
−2K if k1 = K

(1.32)

If the risk factors are ex-ante equally volatile, then the firm is indifferent between the two exposure

allocations. If the risk factors are not ex-ante equally volatile, then it is optimal to be relatively

more exposed to the factor that is ex-ante less volatile.

Proof. See Appendix A.5 for the full characterization of the equilibria.

The analytical expression (1.32) reveals that the optimal level of exposure to factor 1 decreases

with factor 1 uncertainty and increases with factor 2 uncertainty. Furthermore, optimal factor 1

exposure increases with total capacity K if the firm chooses to learn about factor 1 and it decreases

with capacity K if the firm chooses to learn about factor 2.28 Note that for any limited precision

and ex-ante uncertain risk factor, unit exposure to one factor is not optimal i.e. for any K < ∞

and σ2
i > 0, i = 1, 2 ⇒ 0 < α∗ < 1.

28This is because less capacity constrained agents are able to learn more and the levels of exposure for which
specialized learning occurs are more extreme
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Therefore, the firm prefers to be relatively more exposed to one factor, the factor that it learns

about. Indifference between exposure allocations arises if the risk factors are ex-ante equally

volatile. Otherwise, it is optimal to learn about and to be relatively more exposed to the risk

factor that is ex-ante less volatile. Thus, it is ex-ante optimal for the firm to specialize in learning

about one risk factor and to be relatively more exposed to it. Note that for any finite level of

capacity full exposure to a risk factor is never optimal and the optimal exposure is an interior

solution. These ex-ante optimal exposure allocations will, however, expose the firm to the risk of

incurring a higher loss due to suboptimal investment in the event that the risk factor that it is

relatively less exposed to (and about which it does not learn) is hit by a shock.

1.5 Concluding remarks

The financial crisis of 2007-2008 has highlighted the existence of a remarkable and poorly under-

stood type of contagion whereby countries that were relatively less exposed to the crisis epicentre,

the United States, were among the most severely affected. In other words, this crisis has shown

that the impact of a shock can decrease with exposure to it. In this chapter, I study how endo-

genous information choice affects decision-makers’ reactions to shocks and as a consequence the

impact of those shocks. By linking information choice and learning behavior with exposure, the

model I propose in this chapter explains the puzzling observation that the impact of a shocks can

decrease with exposure to it. The key mechanism in my model is that learning increases with

exposure, such that the cost of being highly exposed to a shock is mitigated by the benefit of hav-

ing a better understanding of it. My model contributes to understanding observed cross-sectional

and time-series patterns of contagion. In particular, my model explains how countries that are

more exposed to a crisis can be less affected and why contagion is more likely to occur following

unexpected crises.
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Appendix

A.1 Proof of Proposition 1:

Start by deriving the factor-specific posterior uncertainty. Recalling the relation between

the information processing capacity allocated to a risk factor and reduction in uncertainty

achieved by it implied by the entropy constraint in (1.10), factor-specific posterior uncertainty

can be determined to be

σ̂2
1 =


σ2

1 if ασ1
(1−α)σ2

< e−K

1−α
α σ1σ2e

−K if e−K ≤ ασ1
(1−α)σ2

≤ eK

σ2
1e
−2K if ασ1

(1−α)σ2
> eK

(A.1)

and σ̂2
2 = σ2

1σ
2
2σ̂
−2
1 e−2K . Note that factor-specific risk is effectively reduced through learning.

Relative to a full information benchmark (i.e. σ̂2
1 = σ2

1), risk is lower if exposure is relatively

high and/or prior uncertainty is relatively high (i.e. σ̂2
1 < σ2

1 if α ≥ 0.5 and/or σ1 ≥ σ1); this

can also be interpreted as risks being under-estimated.

Uncertainty under the exogenous information benchmark is given by

σ̃2
B = α2σ̃2

1 + (1− α)2σ̃2
2 (A.2)

Under the endogenous information model uncertainty σ̂2 = α2σ̂2
1 + (1− α)2σ̂2

2 is given by

σ̂2 =


α2σ2

1 + (1− α)2σ2
2e
−2K if ασ1

(1−α)σ2
< e−K

2α(1− α)σ1σ2e
−K if e−K ≤ ασ1

(1−α)σ2
≤ eK

α2σ2
1e
−2K + (1− α)2σ2

2 if ασ1
(1−α)σ2

> eK

(A.3)

Contrast comparative statics with respect to exposure under the two models (at the interior

optimum for endogenous information choice)

∂σ̃2
B

∂α
= 2ασ̃2

1 − 2(1− α)σ̃2
2 > 0 if α > 0.5 (A.4)

∂σ̂2

∂α
= 2(1− 2α)σ1σ2e

−K < 0 if α > 0.5 (A.5)

Analytically, we can contrast the results under the learning model with the exogenous in-
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formation benchmark results by setting equal the information processing capacity in the two

models (plug K when the capacity constraint is binding i.e. 1
2 ln

σ2
1σ

2
2

σ̃2
1 σ̃

2
2

= K ⇒ e−K = σ̃1σ̃2
σ1σ2

into result (A.3)). This is informative of the factor-specific risk reduction entailed by learning,

or the learning-adjusted risk of a factor and its contribution to overall uncertainty.

σ̂2 =


α2σ2

1 + (1− α)2σ̃2
2
σ̃2
1

σ2
1

if ασ1
(1−α)σ2

< σ̃1σ̃2
σ1σ2

α2σ̃2
1

1−α
α

σ̃2
σ̃1

+ (1− α)2σ̃2
2

α
1−α

σ̃1
σ̃2

if σ̃1σ̃2
σ1σ2

≤ ασ1
(1−α)σ2

≤ σ1σ2
σ̃1σ̃2

α2σ̃2
1
σ̃2
2

σ2
2

+ (1− α)2σ2
2 if ασ1

(1−α)σ2
> σ1σ2

σ̃1σ̃2

(A.6)

These analytical results confirm the message conveyed in Figure 1.2 that relative to the equal

capacity, exogenous information benchmark, uncertainty is lower when decision-makers are

allowed to optimally allocate their information resources across risk factor exposures. It can

be shown that the corner solutions are always smaller than the benchmark solutions. For

the first benchmark solution: α2σ̃2
1 + (1 − α)2σ̃2

2 > α2σ2
1 + (1 − α)2σ̃2

2
σ̃2
1

σ2
1
⇔ σ̃2

2 >
α2

(1−α)2
σ2

1

which is true in light of the condition for obtaining the corner solution, which can be written

as σ̃1
σ1
σ̃2 >

α
1−ασ1. Since σ̃2 ≥ σ̃1

σ1
σ̃2

(
> α

1−ασ1

)
⇒ σ̃2

2 >
α2

(1−α)2
σ2

1. Similarly, for the second

corner solution we have that α2
1σ̃

2
1 + α2

2σ̃
2
2 > α2σ̃2

1
σ̃2
2

σ2
2

+ α2
2σ

2
2 ⇔ α

1−α
1
σ2

> 1
σ̃1

. This follows

from the corner solution condition which can be re-written as α
1−α

1
σ2
≥ σ2

σ̃1σ̃2
and the fact that

1
σ̃1

σ2
σ̃2

> 1
σ̃1

. For the interior solution we have that α2σ̃2
1 + (1 − α)2σ̃2

2 ≥ 2α1α2σ̃1σ̃2, which

holds because (α1σ̃1 − α2σ̃2)2 ≥ 0.

Importantly, they shed further light into the mechanism behind the observed dynamics.

Relative to the benchmark, when exposure to a factor is very low and there is no learning

about it (corner solution), the effective or learning-adjusted risk of that factor is higher

(σ2
1 ≥ σ̃2

1), while the effective risk of the other factor is lower (σ̃2
1
σ̃2
1

σ2
1
≤ σ̃2

1). At the interior

optimum, factor-specific effective risk is higher if factor-specific exposure is relatively low (all

else equal σ̃2
1

1−α
α ≥ σ̃2

1 if α < 1 − α) and it is lower if factor-specific exposure is relatively

high (all else equal σ̃2
1

1−α
α ≤ σ̃2

1 if α > 1− α).

A.2 Proof of Proposition 2:

Define γi =
σ̂2
i

σ2
i

so that we can re-write the conditional mean value of fundamentals as

θ̂ ≡ E[θ|s1, s2] = α [µ1 + (1− γ1)s1] + (1− α) [µ2 + (1− γ2)s2] (A.7)
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where

γ1 =


1 if ασ1

(1−α)σ2
< e−K

1−α
α

σ2
σ1
e−K if e−K ≤ ασ1

(1−α)σ2
≤ eK

e−2K if ασ1
(1−α)σ2

> eK

(A.8)

γ2 = γ−1
1 e−2K (A.9)

Recalling that θ = α(µ1 + ε1) + (1−α)(µ2 + ε2) and si = εi + εsi , the loss due to suboptimal

action is given by

L ≡ (θ̂ − θ)2 =
(
α [(1− γ1)εs1 − γ1ε1] + (1− α) [(1− γ2)εs2 − γ2ε2]

)2
(A.10)

such that the interpretation of the parameters γi, i = 1, 2 is that of the weight assigned to the

shocks affecting fundamentals. The loss function under the exogenous information benchmark

takes the same form except that the weight coefficients are different γ̃i ≡
σ̃2
i

σ2
i
, i = 1, 2

Introduce the exogenous information, equal capacity benchmark

LB = (θ̂B − θ)2 = (α [(1− γ̃1)εs1 − γ̃1ε1] + (1− α) [(1− γ̃2)εs2 − γ̃2ε2])2 (A.11)

where γ̃1 ≡
σ̃2
1

σ2
1
, γ̃2 ≡

σ̃2
2

σ2
2
, γ1 ≡

σ̂2
1

σ2
1

= 1−α
α σ1σ2e

−K , γ2 ≡
σ̂2
2

σ2
2

= α
1−ασ1σ2e

−K .

Define the shock transmission mechanism as the loss induced by a shock

∂L

∂ε1
= −2αγ1

(
α [(1− γ1)εs1 − γ1ε1] + (1− α) [(1− γ2)εs2 − γ2ε2]

)
(A.12)

∂LB
∂ε1

= −2αγ̃1

(
α [(1− γ̃1)εs1 − γ̃1ε1] + (1− α) [(1− γ̃2)εs2 − γ̃2ε2]

)
(A.13)

We are interested in how the transmission mechanism varies with exposure α. Let us recall

that the weight coefficients in the endogenous learning model are functions of exposure γ1 ≡
σ̂2
1

σ2
1

= 1−α
α σ1σ2e

−K , γ2 ≡
σ̂2
2

σ2
2

= α
1−ασ1σ2e

−K . Abstracting from factor 2 effects by setting

ε2 = εs2 = 0, and using the result that ∂γ1
∂α = − 1

α(1−α)γ1, we have that

∂2L

∂ε1∂α
= 2αγ1

[(
2α− 1

1− α
− 2α

1− α
γ1

)
εs1 −

2α

1− α
γ1ε1

]
(A.14)

∂2LB
∂ε1∂α

= −4αγ̃1 [(1− γ̃1)εs1 − γ̃1ε1] (A.15)
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In the limiting case in which the signal noise is zero εs1 = 0 (the signal is perfectly inform-

ative), it is clear that ∂2L
∂ε1∂α

< 0 (the transmission mechanism decreases with exposure) and

∂2LB
∂ε1∂α

> 0 (the transmission mechanism increases with exposure). These results hold more

generally if the signal is informative i.e. the signal noise is sufficiently small εs1 <
γ1

1−γ1 ε1.

A.3 Proof of Proposition 3:

The date-1 utility function (1.18) is a continuous piecewise function that is increasing in state

capacity. It is useful to distinguish between three types of equilibria: (i) the equilibrium

capacity allocation across factors has the property k1 = 0, (ii) the equilibrium capacity

allocation across factors has the property k1 = K, and (iii) the equilibrium capacity allocation

across factors has the property k1 = 1
2

(
K + ln ασ1

(1−α)σ2

)
. Substituting the constraint (1.20)

into the objective function (1.19) and differentiating with respect to Kr yields first-order

condition in the three set of equilibria
2pr(1− α)2σ2

2e
−2Kr − 2pn(1− α)2σ2

2e
−2(K−Kr) if k1 = 0

2prα(1− α)σ1σ2e
−Kr − 2pnα(1− α)σ1σ2e

−(K−Kr) if k1 = 1
2

(
K + ln ασ1

(1−α)σ2

)
2prα

2σ2
1e
−2Kr − 2pnα

2σ2
1e
−2(K−Kr) if k1 = K

(A.16)

Solving for Kr yields

Kr =


1
4

(
2K + ln pr

pn

)
if k1 = 0 or k1 = K

1
2

(
K + ln pr

pn

)
if k1 = 1

2

(
K + ln ασ1

(1−α)σ2

) (A.17)

Imposing the no-forgetting constraint 0 ≤ Kr and noting that Kr ≤ K is always satisfied

because ln pr
pn
< 0 when pr < pn, the optimal capacity allocation across states when the firm

can only learn about one state (when a corner solution is obtained for capacity allocation

across factors) is given by

Kr =


0 if pr

pn
< e−2K

1
4

(
2K + ln pr

pn

)
if pr

pn
≥ e−2K

(A.18)

Kn = K −Kr (A.19)

and the optimal information processing capacity allocated to the rare state of nature when

the firm can only learn about one state (when an interior solution is obtained for capacity
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allocation across factors) is given by

Kr =


0 if pr

pn
< e−K

1
2

(
K + ln pr

pn

)
if pr

pn
≥ e−K

(A.20)

Kn = K −Kr (A.21)

Note that if the firm only learns about one as opposed to both factors, it is more likely that

it will dedicate information processing resources to the rare state (since e−2K < e−K) but the

overall capacity allocated to the state is smaller (since 1
4

(
2K + ln pr

pn

)
< 1

2

(
K + ln pr

pn

)
).

If the shock variance is different in the two states

f1

µ1 + ε1n, ε1 ∼ N (0, σ2
1n)pn = 1− pr

µ1 + ε1r, ε1 ∼ N (0, σ2
1r)pr

then the capacity allocation is

Kr =


0 if prσ1r

pnσ1n
< e−K

1
2

(
K + ln prσ1r

pnσ1n

)
if e−K ≤ prσ1r

pnσ1n
≤ eK

K if prσ1r
pnσ1n

> eK

A.4 Derivation of correlated risks result

The shock-specific posterior uncertainty implied by the capacity allocation (1.30) is given by

Σ̂11 =



Σ11 if

√
Σ11E2

1

Σ22E2
2
< e−K√

Σ11Σ22E2
2

E2
1

e−K if e−K ≤
√

Σ11E2
1

Σ22E2
2
≤ eK

Σ11e
−2K if

√
Σ11E2

1

Σ22E2
2
> eK

(A.22)

and Σ̂22 = Σ11Σ22e
−2KΣ̂−1

11

51



Consequently, the uncertainty about fundamentals is given by

V [θ|s] = Σ̂11E
2
1 + Σ̂22E

2
2 =



Σ11E
2
1 + Σ22E

2
2e
−2K if

√
Σ11E2

1

Σ22E2
2
< e−K

2
√

Σ11Σ22E2
1E

2
2e
−K if e−K ≤

√
Σ11E2

1

Σ22E2
2
≤ eK

Σ11E
2
1e
−2K + Σ22E

2
2 if

√
Σ11E2

1

Σ22E2
2
> eK

The loss due to suboptimal investment is

L ≡ (E[θ|s]− θ)2 = (A′E[f |s]−A′f)2 = [A′(µ+ Γ(I − Σ̂Σ−1)s−A′(µ+ Γε)]2

= [A′(µ+ Γ(I − Σ̂Σ−1)(ε+ εs)−A′(µ+ Γε)]2

= [A′Γ(I − Σ̂Σ−1)εs +A′Γ(I − Σ̂Σ−1)ε−A′Γε]2

= [A′Γ(I − Σ̂Σ−1)εs −A′ΓΣ̂Σ−1ε]2

Abstracting from information shocks i.e. εs = 0 we have that

L = (A′ΓΣ̂Σ−1ε)2

A.5 Proof of Proposition 4:

The objective function (1.31) is a continuous piecewise function, which is concave in exposure

when a corner solution is obtained for capacity allocation, and convex in exposure when an

interior solution is obtained. Hence, an interior solution is obtained for optimal exposure

if a corner solution is obtained for information choice, and a corner solution is obtained for

optimal exposure if an interior solution is obtained for information choice. The first-order

condition is

∂U1

∂α
=


−2ασ2

1 + 2(1− α)σ2
2e
−2K if k1 = 0

−2(1− 2α)σ1σ2e
−K if k1 = 1

2

(
K + ln ασ1

(1−α)σ2

)
−2ασ2

1e
−2K + 2(1− α)σ2

2 if k1 = K

(A.23)

It is useful to distinguish between three types of equilibria: (i) the equilibrium capacity alloca-

tion has the property k1 = 0, (ii) the equilibrium capacity allocation has the property k1 = K,

and (iii) the equilibrium capacity allocation has the property k1 = 1
2

(
K + ln ασ1

(1−α)σ2

)
.
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Equilibria (i) and (ii) represents situations in which the firm is only able to learn about

one factor. In these situations, it is optimal to be relatively more exposed to the factor

the firm learns about, and the optimal point of exposure is the one at which the learning

adjusted risk exposures are equal. More specifically, if k1 = 0 optimal exposure is implied by

ασ2
1 = (1− α)σ2

2e
−2K . If k1 = K optimal exposure is implied by ασ2

1e
−2K = (1− α)σ2

2.

α∗ =


σ2
2

σ2
2+σ2

1e
2K if k1 = 0

σ2
2

σ2
2+σ2

1e
−2K if k1 = K

(A.24)

Equilibrium (iii) represents a situation in which the parameter values are such that the firm

can learn about both factors. In this case, it is optimal to be as exposed as possible to

one factor, where the maximum level of exposure to a factor is implied by the condition

for learning about both risks e−K ≤ ασ1
(1−α)σ2

≤ eK . To determine which risk factor it is

optimal to relatively more exposed to, I compare the expected utility of each corner solution

for exposure. The maximum exposure or loading to factor 1 is obtained when ασ1
(1−α)σ2

= eK ,

which implies α = σ2
σ2+σ1e−K

and the utility of being relatively more exposed to factor 1 is

U1(α) = −2
(

σ1σ2
σ1+σ2eK

)2
. The maximum exposure or loading to factor 2 is obtained when

ασ1
(1−α)σ2

= e−K , which implies minimum factor 1 exposure α = σ2
σ2+σ1eK

and the utility of

being relatively more exposed to factor 2 is U1(α) = −2
(

σ1σ2
σ1eK+σ2

)2
. In the case of symmetric

equilibria whereby the two factors are ex-ante equally volatile, the firm will be indifferent

between the two exposure allocations i.e. U1(α) = U1(α) if σ1 = σ2. However, in the case of

non-symmetric equilibria, it is optimal to be more exposed to the less volatile risk factor i.e.

U1(α) > U1(α) if σ1 < σ2 hence α∗ = α, and U1(α) < U1(α) if σ1 > σ2 hence α∗ = α.

α∗ =


σ2

σ2+σ1eK
if k1 = 1

2

(
K + ln ασ1

(1−α)σ2

)
and σ1 > σ2

σ2
σ2+σ1e−K

if k1 = 1
2

(
K + ln ασ1

(1−α)σ2

)
and σ1 < σ2

σ2
σ2+σ1eK

or σ2
σ2+σ1e−K

if k1 = 1
2

(
K + ln ασ1

(1−α)σ2

)
and σ1 = σ2

(A.25)

However, since the firm is not constrained to learn about both risk factors (i.e. to be in

equilibria of the type (iii)), it will optimally choose to learn about one factor only and to

be relatively more exposed to the factor it learns about. This follows from the fact that the

expected utility associated with the optimal levels of exposure (A.25) obtained in equilibrium

(iii) is lower than the utility associated with the optimal levels of exposure (A.24) that are
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obtained in equilibria (i) and (ii). Indifference between these latter exposure allocations

(A.24) arises if the risk factors are ex-ante equally volatile, but it is otherwise optimal to be

relatively more exposed to the factor that is ex-ante less volatile.
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Chapter 2

Endogenously Ambiguous Information and

Cautious Behaviour

2.1 Introduction

Information is important in shaping economic outcomes but carries a substantial risk of being mis-

interpreted. There is widespread evidence that the confidence that decision-makers have regarding

the interpretation of information varies across time and markets. Specifically, there is evidence

that certain states of the world, such as economic downturns and financial crises in particular,

are characterized by stronger reactions to negative news by decision-makers, i.e. asymmetric re-

action to news, as well as stronger correlations between markets i.e. asymmetric contagion.1 This

state-dependent cautious behavior, whereby negative news affect conditional actions more than

good news, has been rationalized by assuming ambiguity-aversion. In this chapter, I endogenize

ambiguity-averse behavior using costly information acquisition.

The theory I propose exploits an information acquisition mechanism whereby uncertainty in the

interpretation of information increases endogenously in highly unanticipated states of the world,

which causes ambiguity-averse decision-makers to behave cautiously by reacting more strongly to

negative relative to positive news. More specifically, decision-makers in the model can invest in

information about future states of the world such that upon the occurrence of any state, they receive

signals about payoff-relevant variables. The degree of ambiguity of these signals is determined by

their informational investment decision. The benefit of investing in information varies positively

1See Andersen, Bollerslev, Diebold, and Vega (2007); Bollerslev and Todorov (2011); Ben-David, Graham, and
Harvey (2013); Kuhnen (2015); Zhou (2015); Williams (2014) for evidence on asymmetric reactions to news, and
Ang and Chen (2002); Connolly and Wang (2003); Yuan (2005); Boyer, Kumagai, and Yuan (2006); Ozsoy (2013)
for evidence on contagion asymmetry.
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with the ex-ante likelihood of the state, but the cost does not. As a consequence, the ambiguity of

information in a state of the world varies inversely with the ex-ante degree of anticipation of that

state.

The model features uncertainty in the form of information that is difficult to interpret. It

captures the intuition that the occurrence of highly unanticipated events creates a lot of uncertainty

about their implications and about how things are going to be played out on account of a lack

of precedent. An example of such a highly unanticipated event is the bankruptcy of Lehman

Brothers, the emblematic event that triggered the collapse of the global economy. While Lehman

was undoubtedly large and interconnected, it has been argued that it was not the event itself

that played a crucial role in the unfolding of the crisis but it was the information content of

the event.2 Prior to Lehman’s failure, an expectation of government assistance prevailed, which

was strengthened by Bear-Stern’s bailout earlier that year, as well as by the implicit government

guarantees behind Fannie Mae and Freddie Mac’s liabilities. The fact that Lehman was allowed

to fail shocked the global financial community as it was widely assumed that no major financial

institution would be allowed to go bankrupt. The subsequent bailout of AIG, along with a series of

other seemingly impossible events helped form a strong feeling of uncertainty as economic decision-

makers really had no idea what might happen.3 The model I propose captures this intuition by

building on the distinction between risk and Knightian uncertainty or ambiguity.4

Much of the subsequent policy measures taken by governments and regulators around the

world have contained an element of uncertainty. From unconventional monetary policy, such as

large-scale asset purchase programmes and zero or negative interest rates, to stringent banking

regulations and a wide range of macroprudential tools, the lack of precedent characterising all these

measures created an overall sense of uncertainty. The concerns regarding the limited knowledge

on macroprudential tools have been numerous and the implications of unconventional monetary

policy continue to be a matter of debate among experts.5 It is not hard to imagine that all

these unprecedented events, untested financial innovations and policy measures, have lead market

participants to question their understanding of the environment and have made learning difficult.

Decision-makers could no longer draw on their experience to interpret information and guide choice,

2As noted by the Committee on Capital Markets Regulation (2014) ”the anti-bailout signal transmitted by the
failure of Lehman, not the failure itself, triggered the spread of contagion effects”.

3See The Federal Reserve of St. Louis for a timeline of events and policy actions during the financial crisis.
4Whereas risk refers to situations in which probabilities can be assigned to all possible outcomes of a situation,

Knightian uncertainty refers to situations in which outcomes cannot be associated with a uniquely determined
probability i.e. neither the outcomes nor the probabilities associated with the outcomes are known.

5See Claessens (2014); Sixteenth Jacques Polak Annual Research Conference (2015).
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news and their implications were not always easy to understand, giving way to speculation and

interpretation instead. Forward guidance, one of the new unconventional policy tools that the

Federal Reserve has relied on to fulfil its dual mandate since 2008, makes the most compelling case

for the fact that information is both important and carries a substantial risk of being misinterpreted.

Against this background, this chapter studies the implications of ambiguous information, which

is modelled using the framework of learning under ambiguity of Epstein and Schneider (2007), for

investment decisions by firms. The contagion theory explored in this chapter operates through the

real channel of corporate investment insofar as evidence suggests that private investment has been

a major contributor to the output dynamics observed in the aftermath of the Lehman shock. The

model features a representative firm that undertakes investment to maximize profits. The return

on investment is affected by random exogenous shocks that cannot be perfectly observed. Before

investing, the firm chooses how much information to observe about the shocks affecting investment

returns. Importantly, I assume that the information that the firm observes about the shocks is

ambiguous: the precision of signals is not exactly known but is only known to lie in a range of

possible signal precisions. The firm can reduce, at a cost, the range of precisions associated with

a signal, i.e. its degree of ambiguity. My model departs from the framework proposed by Epstein

and Schneider (2007) in that the degree of ambiguity of a signal is the endogenous outcome of an

information acquisition problem rather than being exogenosuly given.

The representative firm in the model is assumed to be averse to ambiguity, which I model using

the Minimum Expected Utility (MEU) framework of Gilboa and Schmeidler (1989). Specifically,

the firm lacks the confidence to assign unique probabilities to all relevant events and instead

evaluates actions using a worst-case probability chosen from a set of multiple probabilities. A key

implication of combining worst-case evaluation as in Gilboa and Schmeidler (1989) with learning

under ambiguity as in Epstein and Schneider (2008) is an asymmetric response to news whereby

the worst-case likelihood used to interpret a signal depends on the nature of the signal itself. This

implies that good news is interpreted as very imprecise and is given less weight, while bad news

is interpreted as very precise and given more weight. Beliefs are endogenous and depend on the

nature of signals, and as a consequence the firm behaves cautiously by reacting more strongly to

bad relative to good news.

The model predicts that the ambiguity of the information that the firm chooses to receive in

a state of the world optimally decreases with the ex-ante probability of the state. Furthermore,

information ambiguity is zero in highly anticipated states of the world. In other words, the firm

optimally choose to learn more about states that are deemed to be more likely. This follows from
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the fact that benefit of acquiring better information increases with the ex-ante likelihood of a

state, but the cost does not. Consequently, uncertainty regarding the interpretation of information

increases endogenously in highly unexpected states of nature, which causes the ambiguity-averse

firm to behave cautiously by reacting more strongly to bad news than to good news. However,

in highly anticipated states of the world there is no uncertainty regarding the interpretation of

signals. The firm’s behaviour no longer exhibits ambiguity-aversion, and good and bad news

affect conditional actions in a symmetric fashion. Thus, the model predicts that ambiguity-averse

behavior is state-dependent: the firm does not behave cautiously in all states of the world, but

only in rare states that are expected to occur with low probability.

The model captures the intuition that decision-makers behave cautiously following exceptional

events and its prediction is in line with growing empirical evidence documenting stronger reactions

to bad news relative to good news (Conrad, Cornell, and Landsman, 2002; Andersen et al., 2007;

Bollerslev and Todorov, 2011; Ben-David et al., 2013; Williams, 2014; Kearney and Liu, 2014;

Zhou, 2015; Kuhnen, 2015; Li, Tiwari, and Tong, 2016). This asymmetric response to news is a

prediction that is unique to a model incorporating ambiguity-aversion and would not obtain in a

model that incorporates risk-aversion only as in that case good and bad news would be given equal

weights.

The model provides a micro-foundation for crises-contingent theories of contagion, which are

based on the idea that contagion occurs when shocks are transmitted through channels that change

or are only active during crises; in contrast, the transmission of shocks that occurs through stable

channels that exist at all times does not constitute contagion, but only interdependence (Forbes

and Rigobon, 2001; Pericoli and Sbracia, 2003; Forbes, 2012). The notion of contagion adopted in

this chapter is that of a crisis-contingent change in the transmission of a shock to the real economy,

where a crisis is defined as a state occurring with low probability. In my model, contagion is the

outcome of learning about an underlying state when there is uncertainty about the interpretation

of information, and the channel of contagion is beliefs. The model predicts that decision-makers

behave cautiously during crises because the ambiguity of the information they act on increases

endogenously. This is because when information is costly it is not optimal to prepare, through

learning, for states of the world that are expected to occur with low probability, such as crises.

Relative to a no-ambiguity benchmark, the endogenous ambiguity model I propose predicts that the

transmission of negative shocks is amplified, while the transmission of positive shocks is attenuated

as the degree of anticipation of these shocks decreases.

I also relate my model to the extensive literature that defines contagion as comovement in ex-
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cess of some benchmark (i.e. normal or tranquil times, absence of frictions) and tests for contagion

manifested as excess correlation (King and Wadhwani, 1990; Forbes and Rigobon, 2002; Karolyi,

2003; Pericoli and Sbracia, 2003; Jotikasthira et al., 2012; Bekaert et al., 2014). I do so by extend-

ing the baseline model to a two-country setup, which allows examining cross-country conditional

investment correlations. I find that relative to the no-ambiguity benchmark negative shocks in-

duce excess comovement when the information regarding these shocks is ambiguous. On the other

hand, positive shocks induce less comovement relative to the no-ambiguity benchmark when the

information regarding them is ambiguous. These effects are stronger the more unanticipated the

shocks. Furthermore, the model predicts that correlations are asymmetric in good and bad states

of the world, which is in line with market evidence (Ang and Chen, 2002; Connolly and Wang,

2003; Yuan, 2005; Boyer et al., 2006; Ozsoy, 2013).

2.1.1 Related literature

This chapter is mainly related and contributes to the literature on contagion, and the literature

on ambiguity.

The literature on contagion has yet to reach a consensus on how exactly to define contagion

and what are the channels through which shocks are transmitted. The definitions of contagion

vary across studies and even aspects over which there was initial agreement have evolved over

time, highlighting our limited understanding of the contagion phenomenon. In the early literature,

global shocks such as changes in global or US interest rates, risk or liquidity were not classified

as contagion. However, academic papers analyzing the spread of the 2007-2008 Global Financial

Crisis (GFC) have found that global shocks have played a key role in the transmission of this

crisis (Calomiris, Love, and Peria, 2010; Chudik and Fratzscher, 2011a; Forbes and Warnock, 2012;

Fratzscher, 2012a; Eichengreen, Mody, Nedeljkovic, and Sarno, 2012; Forbes, 2012). In fact most

of these papers avoid using the term contagion due to the difficulty in reconciling this global

transmission mechanism with the bilateral linkages that were previously the focus of research.

Notwithstanding the disagreement, a widely accepted view regarding what constitutes conta-

gion is the one popularized by Forbes and Rigobon (2002). According to this view contagion occurs

if shocks are transmitted through mechanisms or linkages that are active only during crises, while

the transmission of shocks that occurs through stable mechanisms that exist at all times constitutes

interdependence. Worth noting is the fact that the debate on how exactly to define contagion is

not just academic but has important implications for measuring contagion and evaluating policy

responses: while contagion warrants policy intervention, interdependence does not.
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The model I propose in this chapter can be framed in the context of the literature on crisis-

contingent theories of contagion.6 The idea underlying this literature is that the mechanism

through which shocks are transmitted change during crises. The model essentially provides an

information based micro-foundation for crisis-contingent contagion theories, as it explains why and

how the behavior of decision-makers, and as a consequence the transmission of shocks, changes

during crisis episodes. The model shows that when information is costly it is not optimal to prepare

for highly unlikely events. Consequently, decision-makers behave differently during crises because

the ambiguity of the information they act on increases endogenously in these low probability state.

The GFC has highlighted that the risks of contagion have not declined, as was argued in the

mid 2000s, but instead they have just changed (Forbes, 2012). In addition to emphasizing the

importance of global shocks, it has brought to light the existence of a poorly understood type

of contagion, one that is triggered by unanticipated events and fuelled by uncertainty about how

events will play out on account of a lack of precedent. A model which highlights the importance of

unexpected events in generating contagion is proposed by Oh (2013), who studies a model in which

contagion of a liquidity crisis between two unrelated firms occurs because of learning activity within

a common creditor pool, and shows that contagion is more likely if the triggering event occurs with

low probability. Another paper that is related to mine is Kannan and Köhler-Geib (2009), who

propose a model of international contagion in which the degree of anticipation of crises, through

its impact on investor uncertainty, determines the occurrence of contagion. More specifically,

the incidence of surprise crises in other countries leads investors to doubt the accuracy of their

information gathering technology and this increases the probability of a crisis in the home country.

However, uncertainty in this model only refers to the variance of signal noise, i.e. the signal

precision, and the model does not incorporate elements of Knightian uncertainty or ambiguity,

which represents the central part of my model.

The study of ambiguity was motivated by the classic Ellsberg (1961) experiments, which have

shown that the difference between risky and ambiguous situations is behaviourally meaningful.

More specifically, given two urns, one with a known composition of 50 red and 50 black balls (risky

urn) and one with an unknown composition of 100 balls in total (ambiguous urn), agents prefer

to bet on a red draw from the risky urn as opposed to the ambiguous urn, and they also prefer

to bet on a black draw from the risky urn as opposed to the ambiguous one. Such preference is

inconsistent with the existence of a single prior on the composition of the ambiguous urn and cannot

be rationalized using the standard economic model of decision making under risk, the Subjective

6See Forbes and Rigobon (2001) for an overview of this literature
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Expected Utility (SEU) axiomized by Savage (1972).7 Ellsberg’s conjecture has been repeatedly

confirmed in a large number of subsequent experimental studies, thus lending support to the study

of ambiguity-averse preferences.8

The substantial body of experimental evidence has motivated an extensive theoretical literature

that aims to explain empirically observed phenomena using ambiguity-aversion. A large number

of applications of models of ambiguity to finance focus on the implications for asset pricing and

portfolio choice.9 Epstein and Schneider (2008), the paper that I build on, is part of this literature.

They propose the model of learning from ambiguous signals and show how such signals induce an

asymmetric response to news. The focus is on assessing the impact of ambiguous information on

stock prices, in terms of contribution to risk premia as well as negative skewness in returns. I

depart from their model by endogenising the ambiguity of information using costly information

acquisition i.e. the degree of ambiguity of a signal is the endogenous outcome of an information

acquisition problem rather than being exogenosuly given. Additionally, I focus on the implications

of endogenously ambiguous information for corporate investment and the transmission of shocks.

This chapter is part of the growing body of literature that uses ambiguity to explain events

from the GFC (Caballero and Krishnamurthy, 2008; Routledge and Zin, 2009; Uhlig, 2010; Easley

and O’Hara, 2010; Guidolin and Rinaldi, 2010; Caballero and Simsek, 2013; Pritsker, 2013; Cuki-

erman and Izhakian, 2015; Dicks and Fulghieri, 2019). The paper most related to mine is Dicks

and Fulghieri (2019), who also show that ambiguity in itself, through its impact on beliefs, is a

new source of contagion. In their model the channel of contagion is a change in beliefs which endo-

genously depends on the composition of portfolios such that bad news on one asset class induces

investors to hold worse expectations on other asset classes as well. In contrast, in my model beliefs

endogenously depend on the nature of the signals such that bad news are interpreted as being very

precise and incorporated more in conditinal actions whereas good news are interpreted as very

imprecise and given less weight. Furthermore, whereas Dicks and Fulghieri (2019) incorporate

uncertainty in a Diamond and Dybvig (1983) model and focus on systemic bank runs, the focus

in my model is on real investment as I incorporate uncertainty in a simple model of corporate

7Essentially, the idea at the core of the Ellsberg pardox is that when an agent has insufficient or inadequate
information to form a unique prior, then the agent considers a set of plausible probability distributions and not a
single one.

8 Trautmann and Van De Kuilen (2015) provide an extensive review of the experimental work on ambiguity
attitudes and conclude that notwithstanding the caveats on the role of the elicitation methods and the robustness
of ambiguity aversion, ”there is clear evidence that on average, and across various elicitation methods, ambiguity
aversion is the typical qualitative finding”.

9Epstein and Schneider (2010) and Guidolin and Rinaldi (2013) provide an excellent review of this literature,
whose common emerging theme is that ambiguity-averse agents command a discount for holding ambiguous assets
and take more conservative positions.
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investment.

Despite the extensive theoretical literature on ambiguity in finance, there is relatively little

empirical evidence of Ellsberg-type ambiguity attitude outside the lab. However, initial evidence

suggests that experimental measures of ambiguity correlate with behaviour outside the lab, sup-

porting the external validity of the ambiguity-aversion concept (Anderson, Ghysels, and Juergens,

2009; Antoniou, Harris, and Zhang, 2015). Particularly relevant are those empirical studies that

document an asymmetric response to news using aggregate stock market data (Ozsoy, 2013; Zhou,

2015), data on mutual fund flows (Li et al., 2016), and earnings announcements (Williams, 2014).

The rest of the chapter proceeds as follows. Section 2.2 outlines the model, and the main

results are discussed in Section 2.3. Section 2.4 extends the baseline model to a two-country setup

and relates its predictions to the empirical literature on contagion manifested as excess correlation.

Section 2.5 concludes and the Appendix contains all proofs and derivations.

2.2 Model

This section formally introduces the mechanism through which information becomes endogenously

ambiguous. It outlines a baseline model of learning under ambiguity in which decision-makers can

reduce, at a cost, the degree of ambiguity of information to be received in a given state of the

world. The basic results is that the optimal degree of information ambiguity decreases with the

degree of anticipation of the state of the world.

2.2.1 Structure of the economy

There is a risk-neutral, ambiguity-averse representative firm in the economy. The firm undertakes

investment with an aim to maximize expected profits. Realized profits are

π = λf − C(λ) (2.1)

where f is the return on investment, λ is the chosen level of investment, and C(λ) is the cost of

investment. The cost function C(λ) is increasing and convex in the scale of investment, λ, i.e.

C ′(λ) > 0 and C ′′(λ) > 0. It is assumed to take the form λ2

2 .

The return on investment, f , is given by

f = µ+ ε (2.2)
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where µ is a constant, interpreted as the mean return on investment, and ε is a normally distributed

random variable, interpreted as a random exogenous shock affecting investment returns and further

referred to simply as a shock.

The shock affecting investment returns is realised but cannot be perfectly observed when the

firm chooses its investment. Instead, the firm chooses how much information to observe about the

shock, before investing. The sequence of events is illustrated below.

information chosen information observed | take action payoff realized

t = 1 t = 2 t = 3

The model can thus be broken down into three periods 1, 2 and 3. In the first period the

representative firm chooses its information. In the second period, the firm observes the chosen

information and optimally decides on a level of investment. In the third period the payoff of the

investment is realized and utility is consumed. The firm’s objective function is to maximize date-1

expected utility given by

U1 ≡ E1[u1(E2[u2(π)])] (2.3)

where Ei[·] and Ui[·] denote the expected value and expected utility, respectively, conditional on

the information available at time i.

I assume that the representative firm in the economy is averse to ambiguity. Preferences are

described using the Minimum Expected Utility (MEU) axiomized Gilboa and Schmeidler (1989),

which represents the standard model of decision-making in the presence of ambiguity. Firms

operating under the MEU framework lack the confidence to assign unique probabilities to all

relevant events and instead they evaluate actions using a worst-case probability chosen from a set

of multiple probabilities

min
p∈P

Ep[·]. (2.4)

In contrast, under the canonical model of decision making under risk, the Subjective Expected

Utility (SEU) axiomized by Savage (1972), firms are able to assign unique probabilities to all

relevant events, and evaluate actions using a unique probability measure, interpreted as their

subjective probability or belief

Ep[·].
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2.2.2 Information structure

The firm acquires ambiguous signals about the shock affecting investment returns in any given

state of the world. It can reduce the degree of ambiguity of the signals at a cost.

The signal conveying information about the exogenous shock affecting returns is assumed to

be ambiguous

s = ε+ εs, εs ∼ N (0, σ2
s), σ2

s ∈ [σ2
s , σ

2
s ]. (2.5)

The fact that the variance of the signal noise is not precisely known, but it is known only

to lie in an interval makes the signal ambiguous and captures the idea that the interpretation of

information can sometimes be difficult. In modelling terms, this means that the signal is related to

the parameter of interest by a family or set of likelihoods traced by the variance of the signal noise,

σ2
s . The assumption of a set of likelihoods accommodates the possibility that the precision of the

signal is not exactly known to the firm, but it is only known to lie in an interval or set of possible

signal precisions
[
1/σ2

s , 1/σ
2
s

]
. In the benchmark case of a firm that does not perceive signals as

ambiguous, the set of possible signal noise variances collapses to a singleton, σ2
s . I assume that

the interval of signal noise variances contemplated by the firm in my model is centred around this

value, σ2
s , and the size of this belief set depends on the value of an underlying parameter ζ ∈ [0, 1],

which measures the ambiguity of information. More specifically, the bounds of the set of signal

noise variances are defined as

σ2
s = (1− ζ)σ2

s (2.6)

σ2
s = (1 + ζ)σ2

s . (2.7)

Introducing the parameter ζ represents a departure from the original Epstein and Schneider

(2008) model of learning under ambiguity and is endogenously determined in my model as the

outcome of an information acquisition problem. The information ambiguity parameter ζ essentially

governs the range of possible interpretations associated with the signal and it captures the intuition

that the firm might be uncertain regarding the exact interpretation or information content of a

signal. I assume that the firm can reduce the range of possible signal interpretations, i.e. the

degree of ambiguity of the signal, at a cost K. The information acquisition cost K(ζ) is decreasing

and convex in information ambiguity, ζ, i.e. K ′(ζ) < 0 and K ′′(ζ) > 0. This can be thought

of as the firm investing in resources that would facilitate the interpretation and understanding of

information.
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The firm is endowed with prior beliefs that the shock ε affecting investment returns can be in

two possible states of nature: a low-probability, high-volatility state interpreted as rare times or a

crisis, and a high-probability, low-volatility state of nature, interpreted as normal times. The prior

over the shock in the rare state is εr ∼ N (0, σ2
r ), while the prior associated with the normal state

is εn ∼ N (0, σ2
n), where σ2

n < σ2
r . This setup can thus be graphed as:

ε

εn ∼ N (0, σ2
n)pn = 1− pr

εr ∼ N (0, σ2
r )pr

where pr ∈ (0, 0.5) is the probability of occurrence of the rare state of nature, pn = 1 − pr is the

probability that the normal state would occur.

Upon the occurrence of any state, the firm receives an ambiguous signal about the shock

affecting the return on investment in that state

si = εi + εsi , εsi ∼ N
(
0, σ2

si

)
, σ2

si ∈ [(1− ζi)σ2
s , (1 + ζi)σ

2
s ], i ∈ {r, n}.

The degree of ambiguity of the signal received in each state of nature is determined by the

firm’s informational investment decision. Specifically, the firm can choose the degree of information

ambiguity ζi, i ∈ {r, n}, at a cost K(ζi) that does not vary with the ex-ante likelihood of the state.

Learning follows standard Bayesian rules for updating normal random variables. However,

since the signal is described by a family of probability distributions, a set of posterior mean beliefs

is obtained and it is given by

E[f |si] = µ+
σ2
i

σ2
i + σ2

si

si, σ2
si ∈

[
(1− ζi)σ2

s , (1 + ζi)σ
2
s

]
, i ∈ {r, n}. (2.8)

For any given state of nature, even though there is a unique prior over the parameter of interest,

updating leads to a non-degenerate set of posteriors, due to the fact that the signal is related to

the parameter by a family of likelihoods. This can be thought of as a situation in which there is

confidence in the initial information about the environment but firms entertain multiple theories

about how signals were generated and what their information content is. Hence, although there

is no ambiguity ex-ante, the ambiguous signal introduces ambiguity into posterior beliefs about

fundamentals.
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Define the information content of a signal as

γi(σ
2
si) ≡

σ2
i

σ2
i + σ2

si

, σ2
si ∈

[
(1− ζi)σ2

s , (1 + ζi)σ
2
s

]
, i ∈ {r, n}. (2.9)

This ratio measures the fraction of prior variance that is resolved by the signal.10 In any

given state i ∈ {r, n}, the information content of the signal decreases as the signal noise variance,

σ2
si , ranges over the interval created by the ambiguity parameter, ζi, i.e.

[
(1− ζi)σ2

s , (1 + ζi)σ
2
s

]
.

The signal is most informative when signal noise variance is lowest, i.e. σ2
si = (1 − ζi)σ

2
s , and

this represents the upper bound on information content, denoted γi ≡ γi
(
(1− ζi)σ2

s

)
. On the

other hand, the least informative signal is obtained when signal noise variance is highest, i.e. σ2
si =

(1+ζi)σ
2
s , and this represents the lower bound on information content, denoted γi ≡ γi

(
(1 + ζi)σ

2
s

)
.

If there is no information ambiguity, the signal noise variance take the value around which the

interval is centred, i.e. σ2
si = σ2

s , and the information content of the signal is denoted γi ≡ γi
(
σ2
s

)
.

The signal information content in these three cases is thus given by

γi =
σ2
i

σ2
i + σ2

s

, γi =
σ2
i

σ2
i + (1− ζi)σ2

s

, γi =
σ2
i

σ2
i + (1 + ζi)σ2

s

, i ∈ {r, n}. (2.10)

The relation between these variables is γi < γi < γi. The difference (γi − γi) measures the

confidence in the information content of a signal; the greater the difference, the lower the confidence

regarding the interpretation of information. An increase in information ambiguity maps into a loss

of confidence as it shifts the lower bound on information content lower and the upper bound higher

i.e.
∂γi
∂ζi

< 0 and ∂γi
∂ζi

> 0. In the benchmark case in which there is no information ambiguity, and the

upper and lower bounds coincide (γi = γi = γi) and the firm knows exactly how much information

the signal contains.

2.2.3 Solving the model

A solution to the model is: a choice of information ambiguity ζi to maximize date-1 expected

utility (2.3), given ambiguity-averse preferences described by (2.4), and subject to the constraint

that the degree of information ambiguity satisfies ζi ∈ [0, 1], and rational expectations about the

date-2 (conditional) investment; posterior beliefs which are formed according to Bayes’ law (2.9)

given a signal about the shock; a choice of investment that maximizes expected utility, given the

signal realization.

10It is essentially the regression coefficient obtained by regressing the signal on the shock.
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The model is solved using backward induction. First, given an arbitrary level of information

ambiguity, the firm decides the optimal level of investment. Second, given the optimal level of

investment for each information ambiguity level, the firm chooses the optimal degree of information

ambiguity.

2.3 Results

In this section, I derive the optimal choice of information ambiguity, and discuss the implications

of ambiguous information for investment and the transmission of shocks.

2.3.1 Optimal investment

At date 2 the firm chooses the optimal level of investment taking information ambiguity as given.

Since the following analysis holds for any arbitrary level of information ambiguity, I abstract from

differentiating between the rare and normal states and suppress the subscript i for notational

convenience. The firm’s date-2 problem is

max
λ

U2 ≡ E2[u2(π)]

where E2[·] denotes the expected value conditional on the information available at date 2. Recalling

the firm’s profit function (2.1) and the ambiguity-averse preferences considered (2.4), date-2 utility

is given by

U2 = E2[u2(π)] = min
σ2
s

E [π|s] = λ min
σ2
s

E [f |s]− λ2

2
. (2.11)

The first order conditional yields the following optimal level of investment when information

ambiguity ζ is taken as given

λ(ζ) = min
σ2
s

E [f |s] . (2.12)

Thus, for any given information choice, the optimal investment level is proportional to the ex-

pected return on investment. Using the Bayesian updating result in (2.9) and the signal information
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content notation in (2.10), the conditional investment level is given by

λ(ζ) = min
σ2
s

E [f |s] =


µ+ γs if s ≥ 0

µ+ γs if s < 0

(2.13)

Ambiguous information introduces cautious behavior, which is defined as asymmetry in condi-

tional actions. More specifically, news are incorporated into beliefs, and as a consequence invest-

ment decisions, in an asymmetric fashion: good news (s ≥ 0) is interpreted as very imprecise and

given less weight, while bad news (s < 0) is interpreted as very precise and given more weight. This

is because ambiguity-averse firms evaluate actions using a worst-case belief that is chosen from a

set of conditional probabilities. If an ambiguous signal conveys good news then the worst case is

that the signal is unreliable and viceversa. Hence, the worst-case likelihood used to interpret a

signal depends on the nature of the signal itself. In other words, beliefs are endogenous and depend

on the nature of signals, with the implication that bad news affect conditional actions more than

good news.

In order to assess the implications of information ambiguity for belief formation and conditional

investment a suitable benchmark is needed for comparison. I consider as benchmark a model in

which there is no information ambiguity, i.e. ζ = 0. Under this no-ambiguity benchmark news are

given the same weights, i.e. γ, regardless of their nature, and there is no asymmetric response to

news

λ(0) = µ+ γs. (2.14)

Figure 2.1 illustrates the optimal level of investment obtained under the ambiguity model (red

line) and the no-ambiguity benchmark (blue line) conditional on the signal, s, which takes both

positive and negative values.

The first thing to note is that the conditional investment level is lower when information is

ambiguous relative to the no-ambiguity benchmark. This follows from the relationship γ < γ < γ.

When information is ambiguous, negative news induce a decrease in investment that is excessive

compared to the no-ambiguity benchmark, i.e. γ < γ. On the other hand, positive news induce an

increase in investment that is lower when information is ambiguous than under the benchmark, i.e.

γ < γ. These results can also be interpreted as amplification of negative shocks and attenuation

of positive shocks, respectively. As a consequence, ambiguous information introduces a loss in

investment relative to the no-ambiguity benchmark.
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Figure 2.1 Optimal Investment.
The figure illustrates the relationship between the signal s and the conditional level of
investment implied by the ambiguity model (red line) and the no-ambiguity benchmark
(red line). The parameter values are µ = 10, σ = 1, σs = 1, ζ = 0.8

Second, note that investment decisions respond more strongly to bad news relative good news.

This follows from the relation γ < γ, which implies that the decrease in investment in response

negative news is stronger than the increase in response to positive news. This asymmetry in

conditional investment levels is also reflected in asymmetry in conditional investment correlations.

Section 2.4 extends the model to a two-country setup and discusses the implications of ambiguous

information in terms of cross-country conditional investment correlations. Worth noting is that the

asymmetric response to news is unique to a model incorporating ambiguity-aversion. It would not

obtain in a model that incorporates risk-aversion only as in that case good and bad news would be

given equal weights.11 However, when ambiguity-averse firms process news of uncertain quality,

investment decisions respond more strongly to bad news than good news.

Substituting the optimal investment choice (2.12) into the objective function (2.15) delivers the

indirect date-2 utility of having any degree of information ambiguity ζ and investing optimally

U2(ζ) =

(
min
σ2
s

E [f |s]
)2

− 1

2

(
min
σ2
s

E [f |s]
)2

=
1

2

(
min
σ2
s

E [f |s]
)2

. (2.15)

11To see this, consider the date 1 valuation of a risk-averse SEU firm. Risk preferences are represented by a von
Neumann-Morgenstern utility function with constant absolute risk aversion (CARA) i.e. u(π) = −e−φπ, where φ > 0
is the degree of absolute risk aversion, and the shock affecting returns follows ε ∼ N (0, σ2)

λ = E[f |s]− 1

2
φV [f |s] = µ+ γs− 1

2
φ (1− γ)σ2.
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2.3.2 Optimal information choice

At date 0 the firm chooses the optimal degree of information ambiguity taking as given the optimal

level of investment. Specifically, the firm maximizes the probability weighted sum of the expected

payoff in each state, net the cost of acquiring information relevant for that state. The firm’s date-1

problem is

max
ζr,ζn

prU1(ζr) + pnU1(ζn)−K(ζr)−K(ζn) (2.16)

s.t. 0 ≤ ζi ≤ 1, i ∈ {r, n} (2.17)

where U1(ζi), i ∈ {r, n} denotes the date-1 expected utility in the rare and normal states, re-

spectively, and K(ζi), i ∈ {r, n} denotes the cost of acquiring information for the rare and normal

states. Recalling the date-2 utility of having any posterior beliefs and investing optimally in (2.15),

and the ambiguity-averse preferences considered (2.4), date-1 expected utility is given by

U1(ζi) ≡ E1[u1(U2(ζi))] = min
σ2
si

E[U2(ζi)], i ∈ {r, n}.

The solution for the optimal degree of information ambiguity is summarised in the following

proposition, and represents the key mechanism in the model.

Proposition 1. (State-dependent ambiguous information)

Information ambiguity decreases with the ex-ante probability of the state i.e. ∂ζi
∂pi

< 0, i ∈ {r, n}.

Information ambiguity is zero in highly anticipated states of the world i.e. ζi = 0 if pi > pi where

the threshold probability pi is such that ∂K(ζi)
∂ζi

∣∣
ζi=0

= pi
∂U1(ζi)
∂ζi

∣∣
ζi=0

, i ∈ {r, n}.

Information ambiguity is maximum in highly unanticipated states of the world i.e. ζi = 1 if pi < pi

where the threshold probability pi is such that ∂K(ζi)
∂ζi

∣∣
ζi=1

= pi
∂U1(ζi)
∂ζi

∣∣
ζi=1

, i ∈ {r, n}.

Proof. See Appendix A.1.

The optimal degree of information ambiguity in a state of the world decreases with the ex-ante

probability of occurrence of that state. This is due to the fact that the benefit of improving the

quality of information to be received in a state of the world increases with the probability of the

state but the cost does not. As a consequence, the firm is less likely to prepare, by reducing

information ambiguity, for rare states that are expected to occur with low probability. In fact,

for sufficiently unlikely states, the firm will optimally choose not to reduce information ambiguity

at all, thus setting ζ = 1. On the other hand, the firm will completely reduce the ambiguity

of information to be received in highly anticipated states of the world by setting ζ = 0. The

70



Figure 2.2 Optimal Information Ambiguity.
The figure illustrates the relationship between the optimal level of information ambiguity
in a state of nature and the ex-ante probability of occurrence of that state. The cost of
acquiring information is assumed to take the form K(ζ) = k exp(−ζ). The parameter
values are µ = 10, σ = 1, σs = 1, k = 1.5

.

implication is that information ambiguity endogenously increases in rare times, while in normal

times there is no uncertainty regarding the interpretation of information.

Figure 2.2 provides a graphical illustration of this result. It plots the optimal level of information

ambiguity in a state of nature against the probability of occurrence of that state. It illustrates that

for very low ex-ante probabilities of state occurrence information ambiguity is set at its maximum

as the firm optimally chooses not prepare for rare events. At the interior optimum, the degree of

information ambiguity acquired for a state of nature decreases with the probability of occurrence

of the state. For states expected to occur with sufficiently high probability the ambiguity of

information is minimized and set at zero.

An important implication of this result is that ambiguity-averse behavior is state-dependent:

the firm does not behave cautiously in all states of the world, but only in rare states that are

expected to occur with sufficiently low probability. This result can be understood by recalling that

a non-zero degree of information ambiguity entails an asymmetric response to news, something

that I term cautious or ambiguity-averse behavior. Proposition 1 shows that in states of the world

that occur with sufficiently low probability information ambiguity is non-zero, which commands a

stronger response to bad relative to good news. On the other hand, in states that are expected to

occur with high probability, there is no information ambiguity and as a consequence behavior no

longer exhibits ambiguity-aversion, as good and bad news affect conditional actions symmetrically.
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Corollary 1. (State-dependent cautious behavior) The firm does not behave cautiously in all states

of the world, but only in sufficiently unanticipated states of the world.

Interpreted in terms of crisis and normal times i.e. highly unanticipated and anticipated states

of the world, respectively, this corollary says that during crises the firm behaves cautiously by

reacting more strongly to negative than positive news. During normal times, however, the firm’s

behavior no longer exhibits cautiousness, such that negative and positive news affect conditional

actions in a symmetric fashion.

2.3.3 Implications for the transmission of shocks

This section explores the relationship between the degree to which shocks affect investment de-

cisions and the degree of anticipation of these shocks. To that end, I define the shock transmission

mechanism as the change in investment due to a shock i.e. ∂λ
∂ε = γ∗, where γ∗ denotes the random

variable that is equal to γ when information is not ambiguous, γ when information is ambiguous

and positive, and γ when information is ambiguous and negative. Thus, the shock transmission

mechanism is essentially a measure of the degree to which shocks are incorporated into investment

decisions.

The model predicts that the shock transmission mechanism is state-dependent. In low prob-

ability states of the world the shock transmission mechanism is asymmetric: the transmission of

unanticipated negative shocks is amplified, while the transmission of unanticipated positive shocks

is attenuated. However, in high probability states of the world the shock transmission mechanism

is the same in case of both negative and positive shocks.

Proposition 2. (Crisis-contingent contagion) The shock transmission mechanism changes during

crises. Specifically, the transmission of negative shocks is amplified, and the transmission of positive

shocks is attenuated as the degree of anticipation of these shocks decrease i.e. if p < p then

∂γ∗

∂p
=


> 0 if s ≥ 0

< 0 if s < 0

.

Proof. See Appendix A.2.

Figure 2.3 provides a graphical illustration of how the transmission of shocks depends on their

degree of anticipation. If the degree of anticipation of a shock is sufficiently low so that the

ambiguity of information regarding that shock is non-zero, i.e. p < p, then the shock transmission
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Figure 2.3 Shock Transmission Mechanism.
The figure illustrates the relationship between the ex-ante probability of occurrence of a
state and shock transmission mechanism in that state conditional on ambiguous good news
(blue line), ambiguous bad news (red line), and news that are not ambiguous (black line).
The cost of acquiring information is assumed to take the form K(ζ) = k exp(−ζ). The
parameter values are µ = 10, σ = 1, σs = 1, k = 1.5.

is asymmetric: negative shocks are amplified and positive shocks are attenuated. This shock

transmission asymmetry decreases with the degree of anticipation of the shock, and it vanishes

for sufficiently high probabilities. Consequently, in high probability states of the world the shock

transmission mechanism is no longer asymmetric.

Worth noting is that, the amplification of unanticipated shocks could be also obtained with risk-

averse decision-makers and noisy information. Presumably one could think that foreign information

becomes more noisy and/or investors become more risk averse after negative unexpected shocks.

However, information processing would be symmetric. These represent two alternative and non

mutually exclusive channels whose validity remains an empirical question. A testable implication

is that following unexpected events bad news affect conditional actions more than good news. The

effect is stronger the more unanticipated the shock.

2.4 Two-country model

The synchronized collapse of financial and macroeconomic aggregates lies at the center of a large

literature on contagion. This extensive literature defines contagion as comovement in excess of some

benchmark (i.e. normal or tranquil times, absence of frictions) and tests for contagion manifested

as excess correlation. This section extends the model to a two-country setup in order to examine
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cross-country conditional investment correlations and relate its predictions to the literature on

contagion manifested as excess comovement.

I focus on cross-sectional differences in information ambiguity across firms operating in two

different countries and so I abstract from differentiating between the rare and the normal states

of nature, and instead use the subscript j to differentiate between the two countries; the analysis

holds regardless of the state of nature. The interest lies in exploring heterogeneity and deriving

the conditions under which a synchronized collapse in investment occurs, which in the context of

this model manifests as an increase in correlations between the levels of investment.

I consider the case of two representative firms which operate in different countries, and which

have profit functions that follow the same functional form as in the baseline model (2.1). Each

firm’s return on investment now depends on the fundamentals of the economy in which the firm

operates. Fundamentals, in turn, are affected both by idiosyncratic shocks, which are specific to

each country, as well as an aggregate shock, which affects fundamentals in multiple countries

fj = µj + εdj + αjεg, j ∈ {1, 2} (2.18)

where µj is the mean level of fundamentals in the two countries j ∈ {1, 2}, εdj are country-specific,

idiosyncratic shocks - interpreted as domestic shocks, εg is a common, aggregate shock - interpreted

as a global shock, and αj ∈ [0, 1] are country-specific exposures or sensitivities to the global shock.

The domestic and global shocks are mutually independent and normally distributed with zero

mean.

Each firm knows the structure of the economy in which it operates but cannot perfectly observe

the shocks affecting fundamentals. Instead, each firm learns about the realization of the domestic

and global shocks by acquiring independent signals. The signal conveying information about each

domestic shock εdj , henceforth referred to as the domestic signal, is assumed to be noisy

xj = εdj + εxj , εxj ∼ N (0, σ2
xj ), j ∈ {1, 2} (2.19)

where all the shocks are mutually independently distributed.

On the other hand, the signal conveying information about the global shock εg, henceforth

referred to as the global signal, is assumed to be ambiguous

y = εg + εy, εy ∼ N (0, σ2
y), σ2

y ∈ [(1− ζ)σ2, (1 + ζ)σ2]. (2.20)

74



The assumption that the precision of the domestic signal is objectively known, but the precision

of the global signal is only known to lie in a range of signal precisions, captures firm’s uncertainty

regarding the interpretation of foreign information.12 The notion that agents have an advantage in

interpreting domestic news but are unsure as to how accurate their foreign information-processing

technology lies at the heart of an extensive literature on international finance and home bias.

Note that I assume that both firms observe the same public signal about the shock. However,

I allow for the possibility that they might interpret it differently. Mounting evidence based on

survey data on expectations has shown that there is substantial heterogeneity in how decision-

makers perceive the current and form inferences about the future economic conditions. As noted

by Acemoglu, Chernozhukov, and Yildiz (2016), in most cases the source of disagreement among

decision-makers does not seem to be differences in observations or experiences but differences

in interpreting the available data. Consequently, I consider the case of differentially interpreted

public information by assuming that firms observe the same public global signal but may not all

interpret it identically. Technically, this refers to a setup in which the distribution of error in public

signal is heterogeneous. Following the literature on differential interpretation of information (Kim

and Verrecchia, 1994; Kandel and Pearson, 1995), I model this by endowing firms with different

likelihoods about the error in the public signal. More specifically, I assume that the representative

firm in country j believes that signal noise follows εyj ∼ N (0, σ2
yj ). Consequently, firm j’s estimate

of the global shock conditional on the public signal can be backed out as

εgj = y − εyj , εyj ∼ N (0, σ2
yj ), σ2

yj ∈
[
(1− ζj)σ2

j , (1 + ζj)σ
2
j

]
(2.21)

and the resulting distribution associated with the global shock is εgj ∼ N (0, σ2
gj ), j ∈ {1, 2}.

On the other hand, the firm is endowed with the prior that the distribution associated with the

domestic shock is εdj ∼ N (0, σ2
dj

), j ∈ {1, 2}.

This can also be thought of a situation in which firms form estimates based on the public signal

and an error but may not disagree about the error. Note that I combine differential interpretation of

public information, which translates into heterogeneous signal noise variances, σ2
j , with ambiguous

information, which translates into heterogeneous degrees of information ambiguity, ζj , thus yielding

the interval σ2
yj ∈

[
(1− ζj)σ2

j , (1 + ζj)σ
2
j

]
, j ∈ {1, 2}. Given a signal, this information structure

12Worth noting is that the chapter’s focus on learning about domestic versus global shocks is motivated by the
international contagion framework considered, and by evidence that global shocks have played an important role
during the global financial crisis (Forbes and Warnock, 2012; Fratzscher, 2012b; Chudik and Fratzscher, 2011b;
Calomiris, Love, and Peŕıa, 2012; Eichengreen et al., 2012), but the model more generally applies to more or less
understood shocks.

75



implies a clear trade-off between uncertainty related to the global shock and uncertainty related

to the signal noise. The precision of the signals allows firms some latitude in interpreting public

signals. The intuition is that although firms might observe the same public signal, they can

interpret it differently and as a consequence entertain different beliefs about the impact of the

global shock on fundamentals.

The solution method follows the same steps as in the baseline model. As before, the optimal

level of investment for each of the firms is given by the expected level of fundamentals, conditional

on the available information

λj = E[f |xj , y] = µj + γxjxj + αjγyjy, j ∈ {1, 2} (2.22)

where γxj and γxj denote the information content of the domestic and global signals, respectively

γxj =
σ2
dj

σ2
dj

+ σ2
xj

and γyj =
σ2
gj

σ2
gj + σ2

yj

, σ2
yj ∈

[
(1− ζj)σ2

j , (1 + ζj)σ
2
j

]
, j ∈ {1, 2}. (2.23)

The conditional correlation between the levels of investment undertaken by the representative

firms in the two countries, λ1 and λ2, is given by

ρ ≡ [λ1, λ2|x1, x2, y] =
α1α2γ

∗
y1γ
∗
y2

(
1− 2

π

)
V [y]√

γ2
x1 V [x1] + α2

1γ
∗2
y1

(
1− 2

π

)
V [y]

√
γ2
x2 V [x2] + α2

2γ
∗2
y2

(
1− 2

π

)
V [y]

(2.24)

where γ∗yj denotes the random variable that is equal to γyj when information is not ambiguous, γyj

when information is ambiguous and positive, and γyj when information is ambiguous and negative.

To the extend that the information content of the signal, γ∗yj , is driven by the degree of information

ambiguity perceived by the two firms, it will be a key driver of the correlation between the levels

of conditional investment undertaken by these firms.

Proposition 3. (Asymmetric Contagion) Conditional correlation is increasing with the informa-

tion content of the global signal i.e. ∂ρ
∂γ∗yi

> 0.

Proof. See Appendix A.3.

The relation γy < γy < γy implies that relative to the no-ambiguity benchmark, correlations

are higher conditional on negative news when information is ambiguous. On the other hand,

ambiguous information means that correlations conditional on positive news are lower relative

to the no-ambiguity benchmark. This result is also illustrated in Figure 2.4, which illustrates

the relationship between information ambiguity and the correlation between the optimal levels of
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Figure 2.4 Conditional Investment Correlations.
The figure illustrates the relationship between the degree of information ambiguity in coun-
try 1, ζ1, and the correlation between the optimal levels of investment in the two countries
conditional on ambiguous good news (blue line), ambiguous bad news (red line), and news
that are not ambiguous (black line). The examples abstract from information ambiguity
in country 2 and considers a symmetric equilibrium by setting ζ2 = 0, αj = 1, σdj = 1,
σxj

= 1, σgj = 1, σyj = 1, j ∈ {1, 2}.

investment in the two countries conditional on ambiguous positive news (blue line), ambiguous

negative news (red line) and news that are not ambiguous (black line). The example considers the

case in which information ambiguity is non-zero in one country, and abstracts from information

ambiguity in the other country.

Interpreted in terms of shocks, these results indicate that relative to the no-ambiguity bench-

mark negative shocks induce excess comovement when the information regarding those shocks

is ambiguous. On the other hand, positive shocks induce less comovement relative to the no-

ambiguity benchmark when the information regarding them is ambiguous. Also worth noting is

the asymmetry in correlations: correlations are higher conditional on negative rather than positive

shocks when the information regarding these shocks is ambiguous. This prediction is in line with

market evidence (Ang and Chen, 2002; Connolly and Wang, 2003; Yuan, 2005; Boyer et al., 2006;

Ozsoy, 2013).

The excess correlation prediction is in line with the empirical literature on contagion, which

defines contagion as excess correlation relative to some benchmark which reflects fundamentals

or lack of frictions (King and Wadhwani, 1990; Claessens, Dornbusch, and Park, 2001; Forbes

and Rigobon, 2002; Karolyi, 2003; Pericoli and Sbracia, 2003; Bekaert, Harvey, and Ng, 2005;

Jotikasthira et al., 2012; Bekaert et al., 2014). However, as emphasized by Forbes and Rigobon
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(2002) when the increase in correlation is caused by an increase in volatility, the resulting effect

should not be classified as contagion but as interdependence. The excess correlation obtained in my

model qualifies as contagion because it is a consequence of an (endogenous) increase in information

ambiguity and is not due to an increase in the volatility of fundamentals. In other words, it is not

induced by an actual change in fundamentals but result solely from a change in the ambiguity of

information.

2.5 Concluding remarks

Building on the premise that information is important in shaping economic outcomes but carries a

substantial risk of being misinterpreted, I propose a model in which costly information acquisition

leads to endogenous variation in information ambiguity and cautious behaviour. In my model

uncertainty regarding the interpretation of information increases endogenously in the aftermath of

highly unanticipated events. This causes ambiguity-averse decision-makers to behave cautiously by

reacting more strongly to bad news than to good news. However, in highly anticipated states of the

world there is no uncertainty regarding the interpretation of signals. Decision-makers’ behaviour

no longer exhibits ambiguity-aversion, and good and bad news affect conditional actions in a

symmetric fashion. The model explains why and how the behaviour of decision-makers changes

during crises, and delivers predictions that are in line with observed market outcomes.
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Appendix

A.1 Proof of Proposition 1:

The Lagrangian associated with problem (2.16) - (2.17) is

L =
∑

i∈{r,n}

piU1(ζi)−K(ζi) + ϑiζi + ϕi(1− ζi)

The first order conditions are

pi
∂U1(ζi)

∂ζi
− ∂K(ζi)

∂ζi
+ ϑi − ϕi = 0

ϑiζi = 0

ϕi(1− ζi) = 0

Implicit differentiation yields

∂pi
∂ζi

∂U1(ζi)

∂ζi
+ pi

∂2U1(ζi)

∂ζ2
i

=
∂2K(ζi)

∂ζ2
i

⇒ ∂pi
∂ζi

=

∂2K(ζi)
∂ζ2i

− pi ∂
2U1(ζi)
∂ζ2i

∂U1(ζi)
∂ζi

I want to prove that information ambiguity decrease with the ex-ante probability of the

state i.e. ∂ζi
∂pi

< 0. I assume that marginal cost of improving information quality / reducing

information ambiguity is higher than the marginal benefit i.e. ∂2K(ζi)
∂ζ2i

> ∂2U1(ζi)
∂ζ2i

, which is a

technical assumption to guarantee an interior solution. Hence, the proof relies on showing

that ∂U1(ζi)
∂ζi

< 0.

To evaluate the date-1 expected utility function, U1(ζi) = min
σ2
si

E[U2(ζi)], recall the expression

for date-2 utility, U2(ζi), in (2.15)

U1(ζi) = min
σ2
si

E[U2(ζi)] = min
σ2
s

E

1

2

(
min
σ2
si

E [f |si]

)2


=
1

2
min
σ2
si

E [min
σ2
si

E [f |si]

]2

+ V

[
min
σ2
si

E [f |si]

]
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Recalling the expression for the conditional mean, min
σ2
si

E [f |si], in (2.9) yields

U1(ζi) =
1

2
min
σ2
si

[
E
[
µ+ γisi +

(
γi − γi

)
min{si, 0}

]2
+ V

[
µ+ γisi +

(
γi − γi

)
min{si, 0}

]]
=

1

2
min
σ2
si

[
(µ+ E[γisi])

2 + V [γisi]
]

To compute the moments of γisi, where γi is a random variable which takes the value γi

if si ≥ 0 and it takes the value γi if si < 0, I make use of the formulas for the moments

of truncated normal distributions. Specifically, for a normally distributed random variable

x ∼ N (0, σ2
x) it holds that E[x|x ≥ 0] = 2√

2π
σx, E[x|x < 0] = − 2√

2π
σx and E[x2|x ≥ 0] =

E[x2|x < 0] = σ2
x. The expected value of the term γisi is thus given by

E[γisi] = E[γiE[si|γi]] =
1

2
γiE[si|γi = γi] +

1

2
γiE[si|γi = γi]

=
1

2
γiE[si|si ≥ 0] +

1

2
γiE[si|si < 0]

= −(γi − γi)
1√
2π

√
V [si]

and the variance is given by

V [γisi] = E[γ2
i s

2
i ]− E[γisi]

2 = E[γ2
i E[s2

i |γi]]− E[γisi]
2

=
1

2
γy

2E[s2
i |γi = γi] +

1

2
γi

2E[s2
i |γi = γi]− E[γisi]

2

=
1

2
γi

2E[s2
i |si ≥ 0] +

1

2
γi

2E[s2
i |si < 0]− E[γisi]

2

=
1

2
γi

2V [si] +
1

2
γi

2V [si]−
1

2π
(γi − γi)2V [si]

=
1

2

(
γi

2 + γi
2 − 1

π
(γi − γi)2

)
V [si].

Therefore, the date-1 utility can be re-written as

U1(ζi) =
1

2
min
σ2
si

[
(µ+ E[γisi])

2 + V [γisi]
]

=
1

2
min
σ2
si

[(
µ− (γi − γi)

1√
2π

√
V [si]

)2

+
1

2

(
γi

2 + γi
2 − 1

π
(γi − γi)2

)
V [si]

]

=
1

2
min
σ2
si

[
µ2 +

1

2
(γi

2 + γi
2)V [si]− 2µ(γi − γi)

1√
2π

√
V [si]

]

where the variance of the signal is V [si] = σ2
i +σ2

si , σ
2
si ∈

[
(1− ζi)σ2

s , (1 + ζi)σ
2
s

]
, i ∈ {r, n}.
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Minimizing the term in square brackets with respect to the variance of the signal noise

σ2
si ∈

[
(1− ζi)σ2

s , (1 + ζi)σ
2
s

]
is equivalent to minimizing it with respect to the variance of

the signal V [si] = σ2
i + σ2

si ∈
[
σ2
i + (1− ζi)σ2

s , σ
2
i + (1 + ζi)σ

2
s

]
. The first derivative with

respect to V [si]
1

2
(γi

2 + γi
2)− (γi − γi)

µ√
2π

1√
V [si]

= 0

yields solution13

V [si]
∗ =

2

π

µ2(γi − γi)2

(γi2 + γi2)2
.

Denote the lower bound of the signal variance interval V ≡ σ2
i + (1 − ζi)σ2

s and the upper

bound V ≡ σ2
i + (1 + ζi)σ

2
s . The signal variance that minimizes the term in square brackets

is thus given by

V [si] =


V = σ2

i γi
−1 if V [si]

∗ < V

V [si]
∗ = 2

π

µ2(γi−γi)2

(γi2+γi2)2
if V [si]

∗ ∈ [V , V ]

V = σ2
i γi
−1 if V [si]

∗ > V

Therefore, the expression for the date-1 expected utility is

U1(ζi) =


1
2

(
µ2 +

σ2
i
2

(γi
2+γi

2)

γi
− 2µσi√

2π

(γi−γi)√
γi

)
if V [si]

∗ < V

1
2

(
µ2 − 1

π

µ2(γi−γi)2

γi2+γi2

)
if V [si]

∗ ∈ [V , V ]

1
2

(
µ2 +

σ2
i
2

(γi
2+γi

2)

γi
− 2µσi√

2π

(γi−γi)√
γi

)
if V [si]

∗ > V

I now verify that ∂U1(ζi)
∂ζi

in each of the three cases. Recall

γi =
σ2
i

σ2
i + (1 + ζi)σ2

s

⇒
∂γi

∂ζi
= − σ2

i σ
2
s

(σ2
i + (1 + ζi)σ2

s)
2

= −σ
2
s

σ2
i

γi
2 (A.1)

γi =
σ2
i

σ2
i + (1− ζi)σ2

s

⇒ ∂γi
∂ζi

=
σ2
i σ

2
s

(σ2
i + (1− ζi)σ2

s)
2

=
σ2
s

σ2
i

γi
2 (A.2)

13Note that the second derivative is positive, hence the solution is a minimum.
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(a) Consider the case when V [si]
∗ > V .

∂U(ζi)

∂ζi
=

σ2
i

4

(
2γi

∂γi
∂ζi

+ 2γi
∂γi
∂ζi

)
γi − (γi

2 + γi
2)
∂γi
∂ζi

γi2
− µσi√

2π

(
∂γi
∂ζi
− ∂γi

∂ζi

)√
γi − (γi − γi) 1

2
√
γi

∂γi
∂ζi

γi

=
σ2
i

4

σ2
s

σ2
i

2
(
γi

3 − γi3
)
γi + (γi

2 + γi
2)γi

2

γi2
− µσi√

2π

σ2
s

σ2
i

2
(
γi

2 + γi
2
)
γi + (γi − γi)γi2

2γi
√
γi

=
σ2
s

4

[
2(γi

3 − γi3)

γi
+ (γi

2 + γi
2)−

√
2

π

µ

σi

2
(
γi

2 + γi
2
)

√
γi

−
√

2

π

µ

σi
(γi − γi)

√
γi

]

=
σ2
s

2γi

[
(γi

3 − γi3)−
√

2

π

µ

σi

(
γi

2 + γi
2
)√

γi

]
+
σ2
s

4

[
(γi

2 + γi
2)−

√
2

π

µ

σi
(γi − γi)

√
γi

]

Condition V [si]
∗ > V can be re-written as 2

π
µ2

σ2
i
(γi − γi)2γi > (γi

2 + γi
2)2, which implies that

(γi
2+γi

2)−
√

2
π
µ
σi

(γi−γi)√γi < 0. Thus, the second term in square brackets in negative. The

first term in square brackets is negative because
√

2
π
µ
σi

(
γi

2 + γi
2
)√

γi >
√

2
π
µ
σi

(γi − γi)√γi

and (γi
3 − γi3) < (γi

2 + γi
2). This follows from the fact that γi ∈ [0, 1], γi ∈ [0, 1], γi < γi.

Therefore (γi
3 − γi3) < (γi

2 + γi
2) ⇔ γi

2(γi − 1) < γi
2(γi + 1) is true since the left hand

side term is negative while the right hand side term is positive.

(b) Consider the case when V [si]
∗ ∈ [V , V ]. Date-1 expected utility can be re-written as

U(ζi) =
µ2

2
− µ2

2π

γi
2 − 2γiγi + γi

2

γi2 + γi2
=
µ2

2
− µ2

2π
+
µ2

π

γiγi

γi2 + γi2

so that the first order derivative with respect to ambiguity is

∂U1(ζi)

∂ζi
=

µ2

π

(
∂γi
∂ζi
γi +

∂γi
∂ζi
γi

)
(γi

2 + γi
2)− γiγi

(
2γi

∂γi
∂ζi

+ 2γi
∂γi
∂ζi

)
(γi2 + γi2)2

=
µ2

π

σ2
s

σ2
i

(
γi

2γi − γi2γi
)

(γi
2 + γi

2)− 2γiγi(γi
3 − γi3)

(γi2 + γi2)2

=
µ2

π

σ2
s

σ2
i

γiγi
(
γi − γi

) [
γi

2 + γi
2 − 2γi

2 − 2γiγi − 2γi
2
]

(γi2 + γi2)2

=
µ2

π

σ2
s

σ2
i

γiγi
(
γi − γi

) [
−γi2 − 2γiγi − γi2

]
(γi2 + γi2)2

= −µ
2

π

σ2
s

σ2
i

γiγi
(
γi − γi

) (
γi + γi

)2
(γi2 + γi2)2

< 0

(c) Consider the case when V [si]
∗ < V
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∂U1(ζi)

∂ζi
=

σ2
i

4

(
2γi

∂γi
∂ζi

+ 2γi
∂γi
∂ζi

)
γi − (γi

2 + γi
2)∂γi∂ζi

γi
2 − µσi√

2π

(
∂γi
∂ζi
− ∂γi

∂ζi

)√
γi − (γi − γi) 1

2
√
γi

∂γi
∂ζi

γi

=
σ2
i

4

σ2
s

σ2
i

2
(
γi

3 − γi3
)
γi − (γi

2 + γi
2)γi

2

γi
2 − µσi√

2π

σ2
s

σ2
i

2(γi
2 + γi

2)γi − (γi − γi)γi2

2γi
√
γi

=
σ2
s

4

[
2(γi

3 − γi3)

γi
− (γi

2 + γi
2)−

√
2

π

µ

σi

2
(
γi

2 + γi
2
)

√
γi

+

√
2

π

µ

σi
(γi − γi)

√
γi

]

=
σ2
s

2γi

[
(γi

3 − γi3)−
√

2

π

µ

σi

(
γi

2 + γi
2
)√

γi

]
− σ2

s

4

[
(γi

2 + γi
2)−

√
2

π

µ

σi
(γi − γi)

√
γi

]

Condition V [si]
∗ < V implies 2

π
µ2

σ2
i
(γi− γi)2γi < (γi

2 + γi
2)2, which implies that (γi

2 + γi
2)−√

2
π
µ
σi

(γi − γi)
√
γi > 0. Thus, the second term in square brackets is positive. The first term

in square brackets is negative because because
√

2
π
µ
σi

(
γi

2 + γi
2
)√

γi >
√

2
π
µ
σi

(γi − γi)√γi

and (γi
3 − γi3) < (γi

2 + γi
2).

Corner solutions

If the non-negativity constraint binds i.e. ζi = 0 then the first FOC becomes

pi
∂U1(ζi)

∂ζi

∣∣∣∣∣
ζi=0

− ∂K(ζi)

∂ζi

∣∣∣∣∣
ζi=0

+ ϑi = 0

which is equivalent to

∂K(ζi)

∂ζi

∣∣∣∣∣
ζi=0

≥ pi
∂U1(ζi)

∂ζi

∣∣∣∣∣
ζi=0

because ϑi ≥ 0. Define a critical point p∗i such that ∂K(ζi)
∂ζi

∣∣
ζi=0

= p∗i
∂U1(ζi)
∂ζi

∣∣
ζi=0

. For values of

pi smaller than this threshold probability p∗i the inequality holds. For values of pi beyond this

threshold probability p∗i , the ambiguity of information ζi is constrained at the minimum i.e.

ζi = 0. In other words, for sufficiently probable states of the world there is no information

ambiguity (information ambiguity is completely reduced).

If the other complementary slackness constraint binds i.e. ζi = 1 then the first FOC becomes

pi
∂U1(ζi)

∂ζi

∣∣∣∣∣
ζi=1

− ∂K(ζi)

∂ζi

∣∣∣∣∣
ζi=1

− ϕi = 0
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Since it has to be that the Lagrange multiplier is positive i.e. ϕi ≥ 0 we have

∂K(ζi)

∂ζi

∣∣∣∣∣
ζi=1

≤ pi
∂U1(ζi)

∂ζi

∣∣∣∣∣
ζi=1

For probability values pi smaller than a defined threshold p∗i for which ∂K(ζi)
∂ζi

∣∣
ζi=1

= p∗i
∂U1(ζi)
∂ζi

∣∣
ζi=1

,

the ambiguity of information is constrained at the maximum i.e. ζi = 1. For values of pi lar-

ger than this threshold the inequality is satisfied. In other words, for sufficiently improbable

states of the world there is no learning (information ambiguity is not reduced at all).

A.2 Proof of Proposition 2:

Define the shock transmission mechanism as the change in investment induced by a shock

∂λ
∂ε = γ∗, where γ∗ is a random variable taking the value γ when information is not ambiguous,

γ when information is ambiguous and positive, and γ when information is ambiguous and

negative. The interest lies in examining how the shock transmission mechanism changes with

the degree of anticipation of the shock.

∂γ∗

∂p
=
∂γ∗

∂ζ

∂ζ

∂p
=


> 0 if s ≥ 0

< 0 if s < 0

since ∂ζ
∂p < 0 as shown in Proposition 1, and

∂γ

∂ζ < 0, ∂γ
∂ζ > 0 (A.1)-(A.2)

∂γ∗

∂ζ
=


∂γ

∂ζ = − σ2σ2
s

(σ2+(1+ζ)σ2
s)2

< 0 if s ≥ 0

∂γ
∂ζ = σ2σ2

s
(σ2+(1−ζ)σ2

s)2
> 0 if s < 0

A.3 Proof of Proposition 3:

To derive the conditional correlation between investment levels across countries, first derive

the variance and covariance of the conditional country-specific level of investment in (2.22):

V [λj |xj , y] = V [µj + γxjxj + αjγyjy] = γ2
xjV [xj ] + α2

jV [γyy]

= γ2
xjV [xj ] + α2

jγ
∗2
yj V [y|y ≶ 0]
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cov[λ1, λ2|x1, x2, y] = cov[µ1 + γx1x1 + α1γy1y, µ2 + γx2x2 + α2γy2y|y ≶ 0]

= α1α2cov[γy1y, γy2y|y ≶ 0]

= α1α2

(
E[γy1γy2y

2|y ≶ 0]− E[γy1y|y ≶ 0]E[γy2y|y ≶ 0]
)

= α1α2γy1γy2
(
E[y2|y ≶ 0]− E[y|y ≶ 0]E[y|y ≶ 0]

)
= α1α2γ

∗
y1γ
∗
y2V [y|y ≶ 0]

The conditional variance of the global signal, V [y|y ≶ 0], can be derived by making use of

formulas for the moments of truncated normal distributions.14 Specifically, V [y|y ≥ 0] =

V [y|y < 0] =
(
1− 2

π

)
V [y], so that the conditional investment correlation is

ρ ≡ [λ1, λ2|x1, x2, y] =
α1α2γ

∗
y1γ
∗
y2

(
1− 2

π

)
V [y]√

γ2
x1 V [x1] + α2

1γ
∗2
y1

(
1− 2

π

)
V [y]

√
γ2
x2 V [x2] + α2

2γ
∗2
y2

(
1− 2

π

)
V [y]

The derivative of this conditional correlation with respect to the information content extrac-

ted by the firm in country 1 is

∂ρ

∂γ∗y1
=

α1α2γ
2
x1γ
∗
y2V [x1]

(
1− 2

π

)
V [y]

(γ2
x1 V [x1] + α2

1γ
∗2
y1

(
1− 2

π

)
V [y])3/2

√
γ2
x2 V [x2] + α2

2γ
∗2
y2

(
1− 2

π

)
V [y]

> 0.

14Specifically, for a normally distributed random variable x ∼ N (0, σ2
x) it holds that E[x|x ≥ 0] =

√
2
π
σx,

E[x|x < 0] = −
√

2
π
σx and E[x2|x ≥ 0] = E[x2|x < 0] = σ2

x.
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Chapter 3

Testing Inequality Restrictions in Multifactor

Asset-Pricing Models1

3.1 Introduction

Multifactor asset-pricing models seek to explain cross-sectional differences in expected asset returns

in terms of exposures to one or more sources of systematic risk. The capital asset pricing model

(CAPM) of Treynor (1961), Sharpe (1964), Lintner (1965), and Mossin (1966) is the cornerstone

of modern asset-pricing theory. It posits that the expected return on an asset is proportional to its

covariance with the return on aggregate market wealth. The CAPM is a single-period model which,

as shown by Fama (1970), can be treated as if it holds intertemporally only if the preferences and

future investment opportunities are constant. However, as shown by Merton (1973), the CAPM

does not hold in an intertemporal setting when the investor faces a state-dependent investment

opportunity set.

The intertemporal CAPM (ICAPM) of Merton (1973) extends the CAPM to a multi-period

framework. Unlike the single-period maximizer of the CAPM who does not take into account events

beyond the current period, the intertemporal maximizer of the ICAPM also takes into account the

relationship between current returns and returns that will be available in the future. This gives

rise to additional sources of risk that an investor has to hedge against. According to the ICAPM,

the expected return on an asset is not only proportional to the asset’s covariance with the market

portfolio return, but also to the asset’s covariance with changes in the investment opportunity set.

Following Cochrane (2005), the cross-sectional equilibrium relation between expected return and

1This chapter is joint work with Cesare Robotti and Jay Shanken, and adapted from the working paper ”Testing
Inequality Restrictions in Multifactor Asset-Pricing Models”, 2015.
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risk in the context of the ICAPM can be expressed as follows:

Et(Ri,t+1)−Rf,t = λCovt(Ri,t+1, Rm,t+1) + λzCovt(Ri,t+1,∆zt+1), (3.1)

where Ri denotes the expected return on asset i, Rf denotes the risk-free rate, Rm is the return

on aggregate market wealth or simply the market portfolio, λ is the market price of covariance

risk (which corresponds to the coefficient of relative risk aversion of the representative investor),

λz is the intertemporal price of covariance risk, and ∆z denotes innovations in state variables that

capture uncertainty about future investment opportunities.

The second term of equation (3.1) is the expected return component that arises as compens-

ation for unexpected changes in the investment opportunity set. These changes in investment

opportunities are captured by the state variables z, which are essentially variables that describe

the conditional distribution of returns that will be available in the future. The fact that the

ICAPM does not explicitly identify these state variables has prompted Fama (1991) to label it a

“fishing license”, in the sense that it essentially allows applied researchers to choose from a wide

range of potential risk factors and use the ICAPM as a theoretical justification for relatively ad-hoc

empirical specifications. Although the ICAPM does not explicitly tell us what the state variables

are, there are several restrictions that candidate state variables need to satisfy for their innovations

to be considered candidate risk factors in an ICAPM setting (Maio and Santa-Clara, 2012). First,

the candidate state variables should predict changes in the investment opportunity set. Second,

if a state variable predicts positive (negative) changes in investment opportunities in the time-

series, then its innovation should earn a positive (negative) intertemporal price of covariance risk

in the cross-sectional relation. Finally, the market price of risk should be an economically plausible

estimate of the coefficient of relative risk aversion of the representative investor.

Therefore, it would seem that the ICAPM cannot be used as a theoretical justification for

any multifactor model as it imposes several restrictions on the time-series and cross-sectional

behavior of the candidate state variables and their innovations. However, the mere existence of

these theoretical restrictions would not bear much weight against the claim that the ICAPM is

a “fishing license” if these restrictions were indeed rarely violated in practice. Current research

provides mixed evidence as to whether the ICAPM restrictions are satisfied in empirical tests of

multifactor asset-pricing models. Maio and Santa-Clara (2012) consider eight popular multifactor

asset-pricing specifications and find that most of these models are not consistent with an ICAPM

interpretation. Lutzenberger (2015) replicates the Maio and Santa-Clara (2012) study for the
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European stock market and reaches similar conclusions. On the other hand, Boons (2016) focuses

on state variables that forecast macroeconomic activity and the prices of covariance risk that

the innovations in these state variables earn in a large cross-section of individual stocks. He finds

consistency of the considered models with the ICAPM. Cooper and Maio (2018) study traded factor

models and focus in particular on a number of recent prominent models incorporating investment

and profitability factors. They find that the models studied are ”to a large degree compatible with

the ICAPM framework” but none of them satisfies all the restrictions imposed by the ICAPM.

Barroso, Boons, and Karehnke (2019) focus on non-traded factor models, and account for time-

variation in the risk premia by analyzing the conditional asset-pricing implications of the ICAPM.

They find that conditional risk premia in a large cross-section of individual stocks are consistent

in sign with how the state variables predict consumption growth in the time-series. Despite the

lack of consensus, what all these studies have in common is the fact that the consistency of the

models with the restrictions imposed by the ICAPM is assessed through a visual exercise whereby

the researcher compares the signs of the slope estimates in the predictive regressions with the signs

of the price of covariance risk estimates in the cross-sectional regressions.

We present a rigorous econometric framework to formally evaluate the consistency of a mul-

tifactor model with the time-series and cross-sectional restrictions imposed by the ICAPM and

provide an in-depth empirical analysis to demonstrate the relevance of our methodological results.

We focus on the empirical performance of nine multifactor models using two different sets of test

assets and different estimation methods. First, we run multiple predictive ordinary least squares

(OLS) time-series regressions to estimate the slope coefficients associated with the state variables.

This allows us to obtain an a priori knowledge of the sign restrictions that the prices of covariance

risk must satisfy for the various multifactor models to receive an ICAPM interpretation. Second,

we estimate the prices of covariance risk by running two-pass cross-sectional regressions of average

realized excess returns on the estimated covariances between the test asset returns and the innov-

ations in the state variables (see Kan, Robotti, and Shanken (2013)). The estimation of the prices

of covariance risk is performed using OLS, generalized least squares (GLS), and weighted least

squares (WLS) weighting schemes. Third, we develop and implement a multivariate inequality

test, based on Wolak (1987, 1989), to determine whether the signs of the prices of covariance risk

are consistent with the signs of the slope coefficients in the predictive regressions. This allows us

to go beyond the common practice of informally comparing the signs of the estimated coefficients

in the predictive regressions with the signs of the estimated prices of covariance risk in the cross-

sectional regressions. Our methods account for the estimation error in the covariances and for the
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fact that the consistency of a multifactor model with the implications of the ICAPM should be

evaluated using tests of joint sign restrictions across factors. Importantly, in the estimation of the

prices of covariance risk and in the tests of the sign restrictions, we employ asymptotic standard

errors that are robust to potential model misspecification in addition to the traditional standard

errors computed under the assumption that the model is correctly specified.

Our testing methodology delivers conclusions that are substantially different from the ones

reached by following the common practice of visually comparing sign estimates that is used in the

existing literature. If we simply compare the signs of the estimates, we find sign consistency in 20

out of 54 cases, which suggests that most multifactor models do not satisfy the restrictions imposed

by the ICAPM. However, if we apply our multivariate inequality test, we find that in 43 out of

54 cases we do not have enough evidence to reject the null hypothesis of sign consistency at the

5% level, which indicates that most models do satisfy the ICAPM restrictions. Another important

finding is that accounting for potential model misspecification can make a significant difference

in terms of the conclusions reached. When the test statistic is computed using the traditional

Fama and MacBeth (1973) standard errors, we obtain sign consistency in 32 out of 54 cases, but

when misspecification-robust standard errors are used, the sign restrictions are satisfied in 43 out

of 54 cases. Moreover, we find that the use of misspecification-robust standard errors makes a

substantial difference when the correlation between the returns on the test assets and the factors

is low, as it is the case when using size and momentum sorted portfolios (see Kan et al. (2013) for

a discussion of this point). Specifically, when the 25 size and momentum sorted portfolios are used

as test assets, the sign consistency hypothesis is rejected in 17 out of 27 cases if the test statistics

are computed using Fama and MacBeth (1973) standard errors but only in 8 out of 27 cases if

misspecification-robust standard errors are used. On the other hand, when the test assets are the

25 size and book-to-market sorted portfolios, the test statistics based on the Fama and MacBeth

(1973) asymptotic variance indicate rejection of the null in only 5 out of 27 cases, whereas the

misspecification-robust test statistics indicate rejection in 3 out of 27 cases.

The rest of the chapter is organized as follows. Section 2 presents an asymptotic analysis of the

estimates of the prices of covariance risk under potentially misspecified models. In addition, we

provide the limiting distribution of the sample cross-sectional R2. Finally, we develop a multiple

sign restriction test and show how this test accounts for estimation and model misspecification

uncertainty. Section 3 presents our main empirical findings and Section 4 concludes. The proofs

of the propositions are provided in the Appendix.
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3.2 Asymptotic analysis under potentially misspecified models

As discussed in the introduction, an asset-pricing model seeks to explain cross-sectional differences

in expected asset returns in terms of asset exposures computed relative to the model’s systematic

economic factors. The two-pass cross-sectional regression (CSR) methodology has become the most

popular approach for estimating and testing linear asset-pricing models. Despite the existence of

many variations of the CSR methodology, the basic approach always involves two steps or passes. In

the first pass, the betas of the test assets are estimated from OLS time-series regressions of returns

on some common factors. In the second pass, the returns on the test assets are regressed on the

betas estimated from the first pass. The intercept and the slope coeficients from the second-pass

CSR are the estimates of the zero-beta rate and factor risk premia.

Let f be a K-vector of factors and R a vector of excess returns (i.e., returns on zero investment

portfolios) on N test assets. We define Y = [f ′, R′]′ and its mean and covariance matrix as

µ = E[Y ] ≡

 µf

µR

 , (3.2)

V = Var[Y ] ≡

 Vf Vf,R

VR,f VR

 , (3.3)

where V is assumed to be positive definite. The multiple regression betas of the N assets with

respect to the K factors are defined as β = VR,fV
−1
f . These are measures of systematic risk or the

sensitivity of the asset returns to the factors. In addition, we denote the covariance matrix of the

residuals of the N assets by Σ = VR − VR,fV −1
f Vf,R.

In the following analysis, we focus on an excess returns specification of the CSR methodology.

This essentially involves constraining the zero-beta rate to equal the risk-free rate, a practice that is

common in other parts of the empirical asset-pricing literature. For example, studies that focus on

time-series “alphas” when all factors are traded impose this restriction (see, for example, Gibbons,

Ross, and Shanken (1989)). We implement the zero-beta rate restriction in the CSR context by

working with test asset returns in excess of the T-bill rate, while excluding the constant from the

expected return relations. Thus, the proposed K-factor beta-pricing model specifies that asset

expected excess returns are linear in the betas, i.e.,

µR = βγ, (3.4)
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where β is assumed to be of full column rank and γ is a vector consisting of the risk premia on the

K factors. When the model is misspecified, the pricing-error vector, µR − βγ, will be nonzero for

all values of γ. In that case, it makes sense to choose γ to minimize some aggregation of pricing

errors. Denoting by W an N × N symmetric positive-definite weighting matrix, we define the

(pseudo) risk premia as the choice of γ that minimizes the quadratic form of pricing errors:

γW = argminγ(µR − βγ)′W (µR − βγ) = (β′Wβ)−1β′WµR. (3.5)

The corresponding pricing errors of the N assets are then given by

eW = µR − βγW = [IN − β(β′Wβ)−1β′W ]µR. (3.6)

In addition to the pricing errors, researchers are often interested in a normalized goodness-

of-fit measure for a model. A popular measure is the cross-sectional R2. Following Kandel and

Stambaugh (1995), this is defined as

ρ2
W = 1− Q

Q0
, (3.7)

where

Q0 = µ′RWµR, (3.8)

Q = e′WWeW = µ′RWµR − µ′RWβ(β′Wβ)−1β′WµR. (3.9)

Note that 0 ≤ ρ2
W ≤ 1 and it is a decreasing function of the aggregate pricing errors Q = e′WWeW .

Thus, ρ2
W is a natural measure of goodness of fit.

While the betas are typically used as the regressors in the second-pass CSR, there is a potential

issue with the use of multiple regression betas when K > 1: in general, the beta of an asset with

respect to a particular factor depends on what other factors are included in the first-pass time-

series OLS regression. As a consequence, the interpretation of the risk premia γ in the context of

model selection becomes problematic. To overcome this problem, in the subsequent analysis we

focus on an alternative second-pass CSR that uses the covariances VR,f instead of the betas β as

the regressors.2 Let λW be the choice of coefficients that minimizes the quadratic form of pricing

2Another solution to this problem is to use simple regression betas as the regressors in the second-pass CSR, as in
Chen, Roll, and Ross (1986) and Jagannathan and Wang (1996, 1998). Kan and Robotti (2011) provide asymptotic
results for the CSR with simple regression betas under potentially misspecified models.
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errors:

λW = argminλ(µR − VR,fλ)′W (µR − VR,fλ) = (Vf,RWVR,f )−1Vf,RWµR. (3.10)

Given (3.5) and (3.10), there is a one-to-one correspondence between γW and λW :

λW = V −1
f γW . (3.11)

It is easy to see that the pricing errors from this alternative second-pass CSR, eW = µR −

VR,fλW , are the same as those in (3.6). It follows that the ρ2
W for these two CSRs are also

identical. However, it is important to note that unless Vf is a diagonal matrix, λW,i = 0 does not

imply γW,i = 0, and vice versa (see Kan et al. (2013) for a detailed discussion of this point).

It should be emphasized that unless the model is correctly specified, γW , λW , eW , and ρ2
W

depend on the choice of W . Popular choices of W in the literature are W = IN (OLS CSR),

W = V −1
R (GLS CSR), and W = Σ−1

d (WLS CSR), where Σd = Diag(Σ). To simplify the notation,

we suppress the subscript W from γW , λW , eW , and ρ2
W when the choice of W is clear from the

context.

We now turn to estimation of the models. Let Yt = [f ′t , R
′
t]
′, where ft is the vector of K

proposed factors at time t and Rt is the vector of N excess returns on the test assets at time t. We

assume the time series Yt is jointly stationary and ergodic, with finite fourth moment. Suppose we

have T observations on Yt and denote the sample moments of Yt by

µ̂ =

 µ̂f

µ̂R

 =
1

T

T∑
t=1

Yt, (3.12)

V̂ =

 V̂f V̂f,R

V̂R,f V̂R

 =
1

T

T∑
t=1

(Yt − µ̂)(Yt − µ̂)′. (3.13)

When the weighting matrix W is known (say OLS CSR), we can estimate λW in (3.10) by

λ̂ = (V̂f,RWV̂R,f )−1V̂f,RWµ̂R. (3.14)

In the GLS and WLS cases, the weighting matrix W involves unknown parameters and, therefore,

we need to substitute a consistent estimate of W , say Ŵ , in (3.14). This is typically the corres-

ponding matrix of sample moments, Ŵ = V̂ −1
R for GLS and Ŵ = Diag(Σ̂)

−1
= Σ̂−1

d for WLS,

where Σ̂ = V̂R − V̂R,f V̂ −1
f V̂f,R.
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The sample measure of ρ2 is similarly defined as

ρ̂2 = 1− Q̂

Q̂0

, (3.15)

where Q̂0 and Q̂ are consistent estimators of Q0 and Q in (3.8) and (3.9), respectively. When W

is known, we estimate Q0 and Q using

Q̂0 = µ̂′RWµ̂R, (3.16)

Q̂ = µ̂′RWµ̂R − µ̂′RWV̂R,f (V̂f,RWV̂R,f )−1V̂f,RWµ̂R. (3.17)

When W is not known, we replace W with Ŵ .

3.2.1 Asymptotic distribution of λ̂ under potentially misspecified models

When computing the standard error of λ̂, researchers typically rely on the asymptotic distribution

of λ̂ under the assumption that the model is correctly specified. In the following proposition, we

relax this assumption and provide general expressions for the asymptotic variance of λ̂ for the OLS,

GLS, and WLS cases under potential model misspecification.

Proposition 1. Under a potentially misspecified model, the asymptotic distribution of λ̂ is given

by
√
T (λ̂− λ)

A∼ N(0K , V (λ̂)), (3.18)

where

V (λ̂) =
∞∑

j=−∞
E[hth

′
t+j ]. (3.19)

To simplify the expressions for ht, we define Gt = VR,f − (Rt−µR)(ft−µf )′, H = (Vf,RWVR,f )−1,

A = HVf,RW , λt = ARt, ut = e′W (Rt−µR), and Ψt = Diag(εtε
′
t), where εt = Rt−µR−β(ft−µf ).

(a) With a known weighting matrix W , λ̂ = (V̂f,RWV̂R,f )−1V̂f,RWµ̂R and

ht = (λt − λ) +AGtλ+H(ft − µf )ut. (3.20)

(b) For GLS, λ̂ = (V̂f,RV̂
−1
R V̂R,f )−1V̂f,RV̂

−1
R µ̂R and

ht = (λt − λ) +AGtλ+H(ft − µf )ut − (λt − λ)ut. (3.21)
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(c) For WLS, λ̂ = (V̂f,RΣ̂−1
d V̂R,f )−1V̂f,RΣ̂−1

d µ̂R and

ht = (λt − λ) +AGtλ+H(ft − µf )ut −AΨtΣ
−1
d e. (3.22)

When the model is correctly specified, we have:

ht = (λt − λ) +AGtλ. (3.23)

Proof. See Appendix A.1.

To conduct statistical tests, we need a consistent estimator of V (λ̂). This can be obtained by

replacing the ht’s with their sample counterparts ĥt’s. In particular, if ht is uncorrelated over time,

then we have V (λ̂) = E[hth
′
t], and its consistent estimator is given by

V̂ (λ̂) =
1

T

T∑
t=1

ĥtĥ
′
t. (3.24)

When ht is autocorrelated, one can use Newey and West’s (1987) method to obtain a consistent

estimator of V (λ̂).

Inspection of (3.20) reveals that there are three sources of asymptotic variance for λ̂. The

first term λt − λ measures the asymptotic variance of λ̂ when the true covariances are used in the

CSR. For example, if Rt is i.i.d., then λt is also i.i.d. and we can use the time-series variance of λt

to compute the standard error of λ̂. This coincides with the popular Fama and MacBeth (1973)

method. Since the covariances are estimated with error, an errors-in-variables (EIV) problem

is introduced in the second-pass CSR. The second term AGtλ is the EIV adjustment term that

accounts for the estimation errors in the estimated covariances. The first two terms together give

us the V (λ̂) under the correctly specified model. When the model is misspecified (e 6= 0N ), there is

a third term H(ft− µf )ut, which we call the misspecification adjustment term. Traditionally, this

term has been ignored by empirical researchers. Comparing (3.21) and (3.22) with the expression

for ht in (3.20), we see that there is an extra term in ht associated with the use of Ŵ instead of

W . This fourth term vanishes if the weighting matrix W is known.

3.2.2 Asymptotic distribution of the sample cross-sectional R2

The sample R2 (ρ̂2) in the second-pass CSR is a popular measure of goodness of fit for a model.

A high ρ̂2 is viewed as evidence that the model under study does a good job of explaining the

cross-section of expected returns. Lewellen, Nagel, and Shanken (2010) point out several pitfalls to
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using this approach and explore simulation techniques to obtain approximate confidence intervals

for ρ2.3 In this subsection, we provide a formal statistical analysis of ρ̂2.

The asymptotic distribution of ρ̂2 crucially depends on the value of ρ2. When ρ2 = 1 (that

is, a correctly specified model), the asymptotic distribution serves as the basis for a specification

test of the asset-pricing model. This is an alternative to the various multivariate asset-pricing

tests that have been developed in the literature. Although all of these tests focus on an aggregate

pricing-error measure, the R2-based test examines pricing errors in relation to the cross-sectional

variation in expected returns, allowing for a simple and appealing interpretation. At the other

extreme, the asymptotic distribution when ρ2 = 0 (a misspecified model that does not explain any

of the cross-sectional variation in expected returns) permits a test of whether the model has any

explanatory power for expected returns.

When 0 < ρ2 < 1 (a misspecified model that provides some explanatory power), the case of

primary interest, ρ̂2 is asymptotically normally distributed around its true value. It is readily

verified that the asymptotic standard error of ρ̂2 approaches zero as ρ2 → 0 or ρ2 → 1, and thus it

is not monotonic in ρ2. The asymptotic normal distribution of ρ̂2 breaks down for the two extreme

cases (ρ2 = 0 or 1) because, by construction, ρ̂2 will always be above zero (even when ρ2 = 0) and

below one (even when ρ2 = 1).

Proposition 2. In the following, we set W to be V −1
R and Σ−1

d for the GLS and WLS cases,

respectively.

(a) When ρ2 = 1,

T (ρ̂2 − 1) = −TQ̂
Q̂0

A∼ −
N−K∑
j=1

ξj
Q0

xj , (3.25)

where the xj’s are independent χ2
1 random variables, and the ξj’s are the eigenvalues of

P ′W
1
2SW

1
2P, (3.26)

where P is an N × (N − K) orthonormal matrix with columns orthogonal to W
1
2VR,f , S is the

asymptotic covariance matrix of 1√
T

∑T
t=1 εtyt, and yt = 1−λ′(ft−µf ) is the normalized stochastic

discount factor (SDF).

3Jagannathan, Kubota, and Takehara (1998), Kan and Zhang (1999), and Jagannathan and Wang (2007) use
simulations to examine the sampling errors of the cross-sectional R2 and risk premium estimates under the assumption
that one of the factors is “useless,” that is, independent of returns.
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(b) When 0 < ρ2 < 1,

√
T (ρ̂2 − ρ2)

A∼ N

0,
∞∑

j=−∞
E[ntnt+j ]

 , (3.27)

where

nt = 2
[
−utyt + (1− ρ2)vt

]
/Q0 for known W, (3.28)

nt =
[
u2
t − 2utyt + (1− ρ2)(2vt − v2

t )
]
/Q0 for Ŵ = V̂ −1

R , (3.29)

nt =
[
−2utyt + e′Γte+ (1− ρ2)(2vt − µ′RΓtµR)

]
/Q0 for Ŵ = Σ̂−1

d , (3.30)

with Γt = Σ−1
d ΨtΣ

−1
d and vt = µ′RW (Rt − µR).

(c) When ρ2 = 0,

T ρ̂2 A∼
K∑
j=1

ξj
Q0

xj , (3.31)

where the xj’s are independent χ2
1 random variables and the ξj’s are the eigenvalues of

(Vf,RWVR,f )V (λ̂), (3.32)

where V (λ̂) is given in Proposition 1.

Proof. See Appendix A.2.

3.2.3 Multiple sign restriction test

In this section, we develop and implement a formal test of multiple sign restrictions. This is a

multivariate inequality test based on results in the statistics literature due to Wolak (1987, 1989).

Suppose that interest lies in testing

H0 : Qλ ≥ 0p vs. H1 : λ ∈ <K , (3.33)

where Q is a p×K matrix of linear inequality restrictions with rank p (p ≤ K) and 0p is a (p× 1)-

vector of zeros. The Q matrix can be set up to incorporate restrictions that either come from some

a priori knowledge or from theory.

Given the normality result in Proposition 1, the test statistic is constructed by first solving the

quadratic programming problem

min
λ

(λ̂− λ)′Q′(QV̂ (λ̂)Q′)−1Q(λ̂− λ) s.t. Qλ ≥ 0p, (3.34)
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where V̂ (λ̂) is a consistent estimator of V (λ̂). Let λ̃ be the optimal solution of the problem in

(3.34). The likelihood ratio test of the null hypothesis is

LR = T (λ̂− λ̃)′Q′(QV̂ (λ̂)Q′)−1Q(λ̂− λ̃). (3.35)

For computational purposes, it is more convenient to consider the dual problem

min
ρ
ρ′Qλ̂+

1

2
ρ′(QV̂ (λ̂)Q′)ρ s.t. ρ ≥ 0p. (3.36)

Let ρ̃ be the optimal solution of the problem in (3.36). The Kuhn-Tucker test of the null

hypothesis is given by

KT = T ρ̃′(QV̂ (λ̂)Q′)ρ̃. (3.37)

The objective functions of the primal and dual problems evaluated at the optimum (λ̃, ρ̃) are

equal and we have that LR = KT .

To conduct statistical inference, we need to derive the asymptotic distribution of LR. Wolak

(1989) shows that under H0 : Qλ = 0p (that is, the least favorable value of Qλ under the null

hypothesis), LR has a weighted chi-squared distribution

LR
A∼

p∑
i=0

wi

(
(QV (λ̂)Q′)−1

)
Xi =

p∑
i=0

wp−i

(
QV (λ̂)Q′

)
Xi, (3.38)

where the Xi’s are independent χ2 random variables with i degrees of freedom, χ2
0 ≡ 0, and the

weights wi sum up to one. To compute the p-value of LR, we replace V (λ̂) with V̂ (λ̂) in the weight

functions.

3.3 Empirical analysis

In this section we evaluate whether several prominent multifactor models satisfy the sign restric-

tions imposed by the ICAPM. To obtain an a priori knowledge of the expected signs of the λ

parameters, we first run multiple predictive time-series regressions of the changes in the invest-

ment opportunity set (proxied by the future expected return on the aggregate equity market) on

the model-specific state variables. Next, we run cross-sectional regressions of average excess re-

turns on the estimated covariances between the excess returns and the innovations in these state

variables (i.e., the factors). A multifactor model is said to satisfy the restrictions imposed by the

ICAPM if the signs with which the model’s state variables predict changes in the investment op-

97



portunity set coincide with the signs of the prices of covariance risk that their innovations earn in

the cross-section. In addition, since the covariance price of market risk has a natural interpretation

of relative risk aversion coefficient, we incorporate in our set of sign restrictions the constraint that

the market premium should be positive.

In addition to the models considered in Maio and Santa-Clara (2012), we analyze the five-

factor specification proposed by Fama and French (2015). More specifically, we estimate and test

nine multifactor models. Four of these models are theory based and contain innovations in state

variables that have often been used in the return predictability literature. The rest are empirically

motivated models that have sometimes received an ICAPM interpretation in the asset-pricing

literature.

The first of the theory motivated models is the specification of Hahn and Lee (2006), which

extends the CAPM by including innovations in a term state variable and a default state variable.

The multifactor model proposed by Petkova (2006) contains innovations in the dividend yield and

in the risk-free rate in addition to the factors in the Hahn and Lee (2006) model. We also test

an unrestricted version of the ICAPM specification of Campbell and Vuolteenaho (2004), which

incorporates innovations in a price-to-earnings state variable, a term state variable, and a value

spread state variable in addition to the market. The last theory motivated model is the multifactor

model proposed by Koijen, Lustig, and Van Nieuwerburgh (2017), which includes, in addition to

the market return, innovations in the term state variable and in the return-forecasting factor of

Cochrane and Piazzesi (2005).

As for the empirically motivated models, the first model we consider is the Fama and French

(1993) three-factor model, which extends the CAPM by including size and value in addition to the

market. The Carhart (1997) four-factor model extends the Fama and French (1993) three-factor

model by including a momentum factor. The Pástor and Stambaugh (2003) model extends the

Fama and French (1993) three-factor model by including a liquidity factor. We also consider the

five-factor model used by Fama and French (1993) to explain the expected returns on stocks and

bonds. Their augmented model includes a term and a default factor in addition to the market,

size, and value factors. Finally, we also estimate and test the five-factor model proposed by Fama

and French (2015) which incorporates a profitability and an investment factor in addition to the

classical three factors, namely market, size and value.
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3.3.1 Predictive regressions for ICAPM state variables

In this section, we examine whether and with what sign the candidates state variables forecast

changes in investment opportunities. The proxy for the investment opportunity set is the aggregate

equity market and changes in investment opportunities are proxied by the monthly return on the

value-weighted stock market index (from Kenneth French’s website). The sample period is from

July 1963 until December 2018. For each of the previously described models, we assess the joint

forecasting power of the state variables by running multiple predictive time-series OLS regressions

of the following form:

rt,t+q = aq + bqzt + ut,t+q, (3.39)

where rt,t+q = rt+1 + ..+ rt+q is the continuously compounded return over q periods, zt is the set

of candidate state variables corresponding to each model, and ut,t+q is a conditionally zero-mean

forecasting error. The forecasting horizons q we consider are one, twelve, and sixty months. Here,

our interest lies in the estimates of bq and their associated t-statistics. This is indicative of whether

a state variable forecasts positive or negative changes in future investment opportunities and of

whether this effect is statistically significant.

We start by describing the state variables that will be used in the theory-based models. The

predictive regressions for the Hahn and Lee (2006) model (HL) are given by

rt,t+q = aq + bqTERMt + cqDEFt + ut,t+q, (3.40)

where TERM is slope of the Treasury yield curve, computed as the difference between the yields

on ten-year and one-year Treasury bonds, and DEF is corporate bond default spread, computed as

the difference between the yields on BAA- and AAA-rated corporate bonds. The yield data used

for computing these factors are from the Federal Reserve Bank of St. Louis database (FRED).

For the Petkova (2006) model (P) we have

rt,t+q = aq + bqTERMt + cqDEFt + dqDYt + eqRFt + ut,t+q, (3.41)

where DY is the aggregate dividend-to-price ratio of the S&P Composite index, computed as the

log ratio of annual dividends to the price level of the index (from Robert Shiller’s website), and

RF is the one-month Treasury bill rate (from Kenneth French’s website).

99



In case of the Campbell and Vuolteenaho (2004) model (CV) we have

rt,t+q = aq + bqTERMt + cqPEt + dqV St + ut,t+q, (3.42)

where PE is the aggregate price-to-earnings ratio of the S&P Composite index, computed as

the log ratio of the price level of the index to a ten-year moving average of earnings (cyclically

adjusted price-earnings) using data available on Robert Shiller’s website, and V S is the value

spread of Campbell and Vuolteenaho (2004), computed as the difference between the monthly log

book-to-market ratios of the small high-book-to-market portfolio and the small low-book-to-market

portfolio using data on the six portfolios sorted on size and book-to-market from Kenneth French’s

website.

Finally, for the Koijen et al. (2017) model (KLVN), the predictive regression is formulated as

rt,t+q = aq + bqTERMt + cqCPt + ut,t+q, (3.43)

where CP is the Cochrane and Piazzesi (2005) factor, computed as the fitted value from a regression

of the average (across maturities) excess bond return on a linear combination of forward rates using

the Fama-Bliss data from CRSP.4

For the empirical specifications, the state variables are constructed as in Maio and Santa-Clara

(2012). Specifically, in the case of the Fama and French (1993) three-factor model (FF3), the

state variables corresponding to the size (SMB) and value (HML) factors are approximated using

monthly market-to-book data on the six portfolios sorted on size and book-to-market (BM) from

Kenneth French’s website:

SMB∗FF3 =
MBSL +MBSM +MBSH

3
− MBBL +MBBM +MBBH

3
, (3.44)

HML∗FF3 =
MBSH +MBBH

2
− MBSL +MBBL

2
, (3.45)

where MBSL, MBSM , MBSH , MBBL, MBBM , and MBBH are the monthly market-to-book

ratios of the small-low BM, small-medium BM, small-high BM, big-low BM, big-medium BM,

and big-high BM portfolios. This approximation allows us to interpret SMB∗FF3 and HML∗FF3

as the state variables and the factors themselves as innovations in these state variables, that is,

SMB ' ∆SMB∗FF3 and HML ' ∆HML∗FF3 (see Maio and Santa-Clara (2012)). Hence the

4For details on the construction of the CP factor see Cochrane and Piazzesi (2005).
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predictive regression for FF3 is

rt,t+q = aq + bqSMB∗FF3,t + cqHML∗FF3,t + ut,t+q. (3.46)

For the Carhart (1997) model (C), we approximate the state variable associated with the

momentum factor using cumulative sums of the factor returns over the previous 60 months:

CUMDt =
t∑

s=t−59

UMDs, (3.47)

where UMD is the momentum factor (from Kenneth French’s website). As pointed out by Maio

and Santa-Clara (2012) and Cooper and Maio (2018), we use the 60 months cumulative sum

because the total cumulative sum is close to being non-stationary and the momentum factors is

approximated by the first difference in this constructed state variable UMD ' ∆CUMD. Thus,

the predictive regression takes the form

rt,t+q = aq + bqSMB∗FF3,t + cqHML∗FF3,t + dqCUMDt + ut,t+q. (3.48)

We adopt a similar approach for constructing the state variable associated with the liquidity

factor in the Pástor and Stambaugh (2003) model (PS):

CLt =
t∑

s=t−59

Ls, (3.49)

where L is the non-traded liquidity factor from Lubos Pastor’s website. The first difference in the

state variable closely approximates the original factor, that is, L ' ∆CL. The predictive regression

is formulated as

rt,t+q = aq + bqSMB∗FF3,t + cqHML∗FF3,t + dqCLt + ut,t+q. (3.50)

The predictive regression for the Fama and French (1993) five-factor model (FFTD) that in-

corporates the bond-market factors TERM and DEF is given by

rt,t+q = aq + bqSMB∗FF3,t + cqHML∗FF3,t + dqTERMt + eqDEFt + ut,t+q, (3.51)

where SMB∗FF3 and HML∗FF3 are the state variables defined in (3.44) and (3.45), respectively.

The state variables corresponding to the Fama and French (2015) five-factor model (FF5) are
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constructed using a similar approach to the one used for obtaining the FF3 state variables, except

that we now use market-to-book data on three sets of portfolios instead of just one, namely the

six portfolios sorted on size and book-to-market, the six portfolios sorted on size and operating

profitability, as well as the six portfolios sorted on size and investment (from Kenneth French’s

website). More specifically, the state variables corresponding to the size (SMB), value (HML),

profitability (RMW ), and investment (CMA) factors are obtained by combining monthly market-

to-book ratios across the relevant portfolios as follows:

SMB∗FF5 =
SMBB/M + SMBOP + SMBINV

3
, (3.52)

SMBB/M =
MBSL +MBSM +MBSH

3
− MBBL +MBBM +MBBH

3
, (3.53)

SMBOP =
MBSW +MBSM +MBSR

3
− MBBW +MBBM +MBBR

3
, (3.54)

SMBINV =
MBSC +MBSM +MBSA

3
− MBBC +MBBM +MBBA

3
, (3.55)

HML∗FF5 =
MBSH +MBBH

2
− MBSL +MBBL

2
, (3.56)

RMW ∗FF5 =
MBSR +MBBR

2
− MBSW +MBBW

2
, (3.57)

CMA∗FF5 =
MBSC +MBBC

2
− MBSA +MBBA

2
, (3.58)

where MBSW , MBSM , MBSR, MBBW , MBBM , and MBBR are the monthly market-to-book

ratios of the small-weak profitability, small-medium profitability, small-robust profitability, big-

weak profitability, big-medium profitability, and big-robust profitability portfolios, and MBSC ,

MBSM , MBSA, MBBC , MBBM , and MBBA are the monthly market-to-book ratios of the small-

conservative investment, small-medium investment, small-aggressive investment, big-conservative

investment, big-medium investment, and big-aggressive investment portfolios. As before, this

approximation enables us to interpret the original factors as innovations in the state variables, that

is, SMB ' ∆SMB∗FF5, HML ' ∆HML∗FF5, RMW ' ∆RMW ∗FF5, and CMA ' ∆CMA∗FF5.

Therefore, the predictive regression for the FF5 model is

rt,t+q = aq + bqSMB∗FF5,t + cqHML∗FF5,t + dqRMW ∗FF5,t + eqCMA∗FF5,t + ut,t+q. (3.59)

In Table I we present estimation results for the multiple predictive regressions at horizons q

of one, twelve, and sixty months. We report slope parameter estimates and associated t-ratios
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computed using Newey and West (1987) standard errors with q lags to correct for the serial

correlation in the residuals induced by the overlapping cumulative returns.

Table I.2
Multiple Predictive Regressions for Theory Motivated ICAPM State Variables

The table presents the estimation results of the multiple long-horizon predictive regressions corresponding to
the models explicitly proposed as ICAPM applications. The forecasted variable is the monthly continuously
compounded return on the value-weighted stock market index, at horizons q of 1, 12 and 60 months ahead.
The forecasting variables are the current values of the term spread (TERM), default spread (DEF), market
dividend yield (DY), one-month Treasury bill rate (RF), market price-earnings ratio (PE), value spread (VS),
Cochrane-Piazzesi factor (CP). The original sample is from July 1963 to December 2018 but q observations
are lost in each of the q-horizon regressions. We report parameter estimates and corresponding Newey-West
t-ratios computed with q lags in parenthesis.

Panel A: q = 1

TERM DEF DY RF PE VS CP

HL 0.15 0.51
(1.01) (0.97)

P 0.19 0.15 0.01 -0.64
(0.83) (0.23) (1.83) (-0.47)

CV 0.36 -0.00 -0.03
(2.19) (-0.93) (-2.40)

KLVN 0.07 0.19
(0.42) (1.77)

Panel B: q = 12

TERM DEF DY RF PE VS CP

HL 1.21 6.42
(0.85) (2.11)

P 1.43 2.39 0.14 -8.60
( 0.85) ( 0.72) ( 2.29) (-0.98)

CV 2.78 -0.09 -0.14
(1.87) (-1.82) (-0.89)

KLVN 1.02 0.95
(0.61) (0.94)

Panel C: q = 60

TERM DEF DY RF PE VS CP

HL 5.50 26.75
(1.14) (2.71)

P 12.82 5.36 0.45 16.52
(2.68) (0.55) (4.96) (0.69)

CV 8.85 -0.52 0.22
(2.67) (-7.32) (1.33)

KLVN 5.60 2.70
(1.13) (1.44)

In Panels A, B, C of Table I.1, we report the estimation results from the multiple predictive

regressions corresponding to the theoretical models that have been explicitly proposed as ICAPM

applications, at horizons of one, twelve, and sixty months, respectively. Several observations are

in order. First, there seems to be stronger evidence of return predictability at longer horizons.

For the one-month ahead predictive regressions (Panel A), only two out of eleven estimates are

statistically significant at the 5% level, while for the sixty-month ahead predictive regressions five
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estimates are statistically significant at the 5% level (Panel C). The exceptions are the estimated

coefficients on the TERM state variable in the HL and KLVN models, on the DEF and RF state

variables in the P model, on the V S state variable in the CV model, and the CP state variable in

the KLVN model.

Second, the state variables do not predict future returns with the same signs across the different

horizons considered. For instance, the RF state variable in the P model negatively affects future

market returns in the one-month and twelve-month ahead predictive regressions (Panels A and

B) but positively affects future market returns in the sixty-months ahead predictive regression

(Panel C). However, these estimates are not statistically significant. Similarly, the V S state variable

in the CV model has a negative and statistically significant estimated slope coefficient at the one-

month horizon (Panel A), but this estimate becomes positive and statistically insignificant at the

sixty-month horizon (Panel C).

In Panels A, B, and C of Table I.2, we report predictive regressions for the empirical specific-

ations at horizons of one, twelve, and sixty months, respectively. The pattern of stronger return

predictability at longer horizons seems to persist. At the one-month horizon (Panel A), none of

the estimates is statistically significant at the 5% level. In contrast, at the sixty-month horizon

(Panel C), the return predictability hypothesis receives support in seven out of sixteen instances

at the 5% level.

Furthermore, we can observe the same issue of changing signs across predictive horizons. For

example, the CUMD state variable in the C model has a negative estimate in the one-month and

twelve-month ahead predictive regressions (Panels A and B), but the slope estimate associated

with it becomes positive in the sixty-month ahead predictive regression (Panel C). The CMA∗FF5

state variable behaves similarly. These estimates are not statistically significant at the 5% level

though.

These results raise a number of questions. On the one hand, it is unclear what is the appropriate

horizon over which the ability of the state variables to forecast future investment opportunities

should be assessed. The horizon choice is somewhat arbitrary from an economic perspective, but

from a statistical perspective the choice will naturally be driven by the availability of evidence in

support of the predictability hypothesis. In our analysis of sign restrictions, we will rely on the

sixty-month horizon, for which there is the strongest evidence of return predictability.
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Table I.2
Multiple Predictive Regressions for Empirically Motivated ICAPM State Variables

The table presents the estimation results of the multiple long-horizon predictive regressions corresponding to
the empirical models that have been given a ICAPM interpretation. The forecasted variable is the monthly
continuously compounded return on the value-weighted stock market index, at horizons q of 1, 12 and
60 months ahead. The forecasting variables are the current values of the size factor for the FF3 model
(SMB∗FF3), value factor for the FF3 model (HML∗FF3), cumulative momentum factor (CUMD), cumulative
liquidity factor (CL), term spread (TERM), default spread (DEF), size factor for the FF5 model (SMB∗FF5),
value factor for the FF5 model (HML∗FF5), profitability factor for the FF5 model (RMW∗FF5), investment
factor for the FF5 model (CMA∗FF5). The original sample is from July 1963 to December 2018 but q
observations are lost in each of the q-horizon regressions. We report parameter estimates and corresponding
Newey-West t-ratios computed with q lags in parenthesis.

Panel A: q = 1
SMB∗FF3 HML∗FF3 CUMD CL TERM DEF SMB∗FF5 HML∗FF5 RMW∗FF5 CMA∗FF5

FF3 0.01 0.00
(0.99) (1.57)

C 0.01 0.00 -0.01
(0.53) (1.79) (-1.33)

PS 0.00 0.01 0.01
(0.07) (1.70) (1.04)

FFTD 0.01 0.00 0.23 0.22
(0.88) (1.38) (1.45) (0.34)

FF5 0.00 -0.00 -0.00 0.01
(0.43) (-0.10) (-0.45) (1.67)

Panel B: q = 12
SMB∗FF3 HML∗FF3 CUMD CL TERM DEF SMB∗FF5 HML∗FF5 RMW∗FF5 CMA∗FF5

FF3 0.17 0.02
(1.55) (1.40)

C 0.17 0.02 -0.01
(1.47) (1.44) (-0.15)

PS 0.13 0.03 0.02
(0.97) (1.24) (0.48)

FFTD 0.15 0.02 1.96 3.66
(1.44) (1.25) (1.44) (1.10)

FF5 0.06 -0.02 -0.06 0.07
(1.04) (-0.67) (-0.90) (0.83)

Panel C: q = 60
SMB∗FF3 HML∗FF3 CUMD CL TERM DEF SMB∗FF5 HML∗FF5 RMW∗FF5 CMA∗FF5

FF3 0.39 0.14
(1.86) (3.81)

C 0.47 0.14 0.14
(2.41) (3.48) (0.77)

PS 0.36 0.15 0.01
(1.07) (2.31) (0.09)

FFTD 0.35 0.14 7.51 11.43
(1.73) (4.76) (2.01) (1.00)

FF5 0.12 -0.04 -0.40 -0.02
(1.07) (-0.48) (-2.82) (-0.14)

On the other hand, it is not entirely clear how to proceed when an estimate in the predictive re-

gression is statistically insignificant, especially in light of the somewhat limited evidence in support

of the predictability hypothesis discussed above. Since a statistically insignificant slope estimate is
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consistent with the true coefficient being either positive or negative, we believe that we should not

impose a sign restriction on the corresponding price of covariance risk in this case. Surprisingly,

previous studies have failed to take this aspect into account when evaluating the sign consistency of

the considered models. Tests of sign consistency merely relied on an eye-balling exercise whereby

the researcher simply compared the signs of the estimates in the time-series regressions with the

signs of the estimates in the cross-sectional regressions, regardless of precision. As we will see later

on, making inferences in the absence of statistical significance can strongly affect one’s conclusions

on the consistency of a multifactor model with the restrictions imposed by the ICAPM.

3.3.2 Multifactor models

In this section we examine the performance of several multifactor models in cross-sectional tests of

asset-pricing models. Our main interest is in assessing whether and with what signs the innovations

in the state variables are priced in the cross-section of equity returns. For each of the multifactor

models considered, we estimate the prices of covariance risk by running two-pass cross-sectional

regressions of average excess returns on the estimated factor covariances. The cross-sectional

specification for a generic multifactor model is

µR = VR,fλf , (3.60)

where µR are the expected excess returns on the test assets, VR,f are the covariances between the

excess returns on the test assets and the innovations in the state variables, and λf are the prices

of covariance risk.

The test assets returns used in the analysis are the monthly value-weighted returns on the 25

Fama-French size and book-to-market ranked portfolios, as well as the 25 Fama-French size and

momentum ranked portfolios (from Kenneth French’s website). The sample period runs from July

1963 until December 2018 (666 monthly observations). Following Maio and Santa-Clara (2012),

we use first differences as proxies for the innovations in the state variables and use the notation ∆

to indicate these first differences or changes.

In each of the nine models considered, the first factor is the excess market return (rm), which

is proxied by the monthly return on the value-weighted stock market index in excess of the one-

month Treasury bill rate (from Kenneth French’s website). Hence, in the case of the Hahn and
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Lee (2006) model (HL), the cross-sectional specification is

µR = VR,rmλrm + VR,∆termλ∆term + VR,∆defλ∆def , (3.61)

where ∆term denotes the change in the slope of the Treasury yield curve and ∆def denotes the

change in the corporate bond default spread.

For the ICAPM proposed by Petkova (2006) (P) we have

µR = VR,rmλrm + VR,∆termλ∆term + VR,∆defλ∆def + +VR,∆dyλ∆dy + VR,∆rfλ∆rf , (3.62)

where ∆dy denotes changes in the aggregate dividend-to-price ratio and ∆rf denotes changes in

the one-month Treasury bill rate.

The Campbell and Vuolteenaho (2004) model (CV) takes the form

µR = VR,rmλrm + VR,∆termλ∆term + VR,∆peλ∆pe + VR,∆vsλ∆vs, (3.63)

where ∆pe denotes changes in the aggregate price-to-earnings ratio and ∆vs denotes changes in

the value spread of Campbell and Vuolteenaho (2004).

The Koijen et al. (2017) model (KLVN) is

µR = VR,rmλrm + VR,∆termλ∆term + VR,∆cpλ∆cp, (3.64)

where ∆cp denotes changes in the return-forecasting factor of Cochrane and Piazzesi (2005).

In the case of the Fama and French (1993) three-factor model (FF3) we have

µR = VR,rmλrm + VR,smbλsmb + VR,hmlλhml, (3.65)

where smb is the return difference between portfolios of stocks with small and big market capital-

izations, and hml is the return difference between portfolios of stocks with high and low book-to-

market ratios (from Kenneth French’s website).

The cross-sectional specification for the Carhart (1997) four-factor model (C) is

µR = VR,rmλrm + VR,smbλsmb + VR,hmlλhml + VR,umdλumd, (3.66)

where umd is return difference between portfolios of stocks with high and low prior returns (from
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Kenneth French’s website).

For the Pástor and Stambaugh (2003) model (PS), we have

µR = VR,rmλrm + VR,smbλsmb + VR,hmlλhml + VR,lλl, (3.67)

where l is the non-traded liquidity factor (from Lubos Pastor’s website).

The Fama and French (1993) three-factor model augmented with the bond-market factors, the

term spread and corporate default spread, (FFTD) is

µR = VR,rmλrm + VR,smbλsmb + VR,hmlλhml + VR,∆termλ∆term + VR,∆defλ∆def . (3.68)

Finally, the Fama and French (2015) five-factor model (FF5) is

µR = VR,rmλrm + VR,smbλsmb + VR,hmlλhml + VR,rmwλrmw + VR,cmaλcma, (3.69)

where rmw is the return difference between portfolios of stocks with robust and weak operating

profitability, and cma is the return difference between portfolios of stocks with conservative and

aggressive investment (from Kenneth French’s website).

3.3.3 Sample cross-sectional R2s of the models

In Table II, we report the sample cross-sectional R2 (ρ̂2) for each model and investigate whether

the model does a good job of explaining the cross-section of expected returns. We denote the

p-value of a specification test of H0 : ρ2 = 1 by p(ρ2 = 1), and the p-value of a test of H0 : ρ2 = 0

by p(ρ2 = 0). Both tests are based on the asymptotic results in Section 2 for the sample cross-

sectional R2 statistic. We also provide an approximate F -test of model specification for comparison,

denoted Q̂c. Next, we report the asymptotic standard error of the sample R2, se(ρ̂2), computed

under the assumption of a misspecified model that provides some explanatory power i.e. 0 < ρ2 < 1.

Finally, No. of para. is the number of parameters in each asset-pricing model.

The F -test is a generalized version of the cross-sectional regression test (CSRT) of Shanken

(1985). It is based on a quadratic form in the model’s deviations, Q̂c = ê′V̂ (ê)+ê, where V̂ (ê) is a

consistent estimator of the asymptotic variance of the sample pricing errors and V̂ (ê)+ its pseudo-

inverse. When the model is correctly specified (that is, e = 0N or ρ2 = 1), we have TQ̂c
A∼ χ2

N−K−1.

Following Shanken (1985), the reported p-value, p(Qc = 0), is for a transformation of Q̂c that has

an approximate F distribution: Q̂c
app.∼

(
N−K−1
T−N+1

)
FN−K−1,T−N+1.

108



Table II.1
Sample Cross-Sectional R2s and Specification Tests of the Models Using the 25 Size and

Book-to-Market Portfolios as Test Assets

The table presents the sample cross-sectional R2 (ρ̂2) and the generalized CSRT (Q̂c) of nine asset-pricing
models. The models include the ICAPM specifications proposed by Hahn and Lee (2006) (HL), Petkova
(2006) (P), Campbell and Vuolteenaho (2004) (CV), Koijen et al. (2017) (KLVN), the Fama and French
(1993) three-factor model (FF3), the Carhart (1997) model (C), the Pástor and Stambaugh (2003) model
(PS), the Fama and French (1993) three-factor model augmented by TERM and DEF (FFTD), and the
Fama and French (2015) five-factor model (FF5). The models are estimated using monthly excess returns on
the 25 Fama-French size and book-to-market ranked portfolios. The data are from July 1963 to December
2018 (666 observations). p(ρ2 = 1) is the p-value for the test of H0 : ρ2 = 1. p(ρ2 = 0) is the p-value for the
test of H0 : ρ2 = 0. se(ρ̂2) is the standard error of ρ̂2 under the assumption that 0 < ρ2 < 1. p(Qc = 0)
is the p-value for the approximate F -test of H0 : Qc = 0. No. of para. is the number of parameters in the
model.

Panel A: OLS
HL P CV KLVN FF3 C PS FFTD FF5

ρ̂2 0.970 0.979 0.968 0.969 0.966 0.982 0.971 0.973 0.979
p(ρ2 = 1) 0.231 0.678 0.069 0.199 0.000 0.214 0.000 0.007 0.000
p(ρ2 = 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
se(ρ̂2) 0.020 0.018 0.021 0.023 0.020 0.015 0.017 0.017 0.013

Q̂c 0.049 0.025 0.052 0.054 0.144 0.052 0.099 0.061 0.092
p(Qc = 0) 0.095 0.696 0.048 0.046 0.000 0.045 0.000 0.008 0.000
No. of para. 3 5 4 3 3 4 4 5 5

Panel B: GLS
HL P CV KLVN FF3 C PS FFTD FF5

ρ̂2 0.288 0.433 0.310 0.355 0.212 0.491 0.246 0.313 0.336
p(ρ2 = 1) 0.002 0.252 0.001 0.016 0.000 0.040 0.000 0.000 0.000
p(ρ2 = 0) 0.005 0.014 0.019 0.002 0.000 0.000 0.003 0.008 0.000
se(ρ̂2) 0.150 0.209 0.146 0.155 0.074 0.152 0.092 0.129 0.095

Q̂c 0.081 0.037 0.080 0.061 0.145 0.062 0.115 0.088 0.096
p(Qc = 0) 0.001 0.259 0.000 0.015 0.000 0.010 0.000 0.000 0.000
No. of para. 3 5 4 3 3 4 4 5 5

Panel C: WLS
HL P CV KLVN FF3 C PS FFTD FF5

ρ̂2 0.979 0.983 0.979 0.980 0.974 0.986 0.976 0.979 0.982
p(ρ2 = 1) 0.320 0.582 0.124 0.295 0.000 0.154 0.000 0.004 0.000
p(ρ2 = 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
se(ρ̂2) 0.014 0.015 0.014 0.015 0.015 0.010 0.014 0.013 0.011

Q̂c 0.066 0.038 0.072 0.070 0.145 0.058 0.110 0.071 0.095
p(Qc = 0) 0.007 0.239 0.002 0.004 0.000 0.018 0.000 0.001 0.000
No. of para. 3 5 4 3 3 4 4 5 5

In Panels A, B, and C of Table II.1, we provide results for the OLS, GLS, and WLS CSRs,

respectively, for the case when the 25 size and book-to-market sorted portfolios are used as test

assets. When estimation is done using OLS (Panel A), four models out of nine, namely FF3, PS,

FFTD, and FF5, are rejected by the R2 test, while the F -test indicates rejection of all but the HL

and P models at the 5% level. The same four models are also rejected by the R2 test when using

WLS (Panel C) and the same significance level, while in this case the F -test rejects all but the
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P model. However, when estimation is made using GLS (Panel B), all the models except the P

model are rejected at the 5% significance level by both the R2 and the F -test. The null hypothesis

that the model does not explain any of the variation in expected returns, (H0 : ρ2 = 0), is rejected

at the 5% level for all the models and under all estimation methods.

Table II.2 is for the 25 size and momentum sorted portfolios. Based on the OLS R2 (Panel A),

four out of nine models, namely HL, CV, FF3 and C, are rejected at the 5% level, while the F -test

indicates rejection of the same four models except the CV model. Using WLS (Panel C), all but

the P, KLVN and FF5 models are rejected by the R2 test, while the WLS F -test rejects four out

of the nine models at the 5% level, namely the HL, CV, FF3 and C models. As for the test of

H0 : ρ2 = 0, the null of no explanatory power is strongly rejected at the 1% level for all the models

both in the OLS case (Panel A) and the WLS case (Panel C). When estimation is done using GLS

(Panel B), the null hypothesis that the model is correctly specified (H0 : ρ2 = 1) is rejected at the

5% level for all the models by both the R2 test and the F -test. Additionally, the hypothesis of no

explanatory power H0 : ρ2 = 0 cannot be rejected at the 5% level in three instances, and indicates

that this choice of test assets is particularly challenging for the HL, CV and KLVN models.

Although the results are sensitive to the criterion minimized in estimation as well as to the set

of test assets used, there is widespread evidence of model misspecification. These are situations

in which the use of misspecification-robust standard errors is likely to affect the outcomes of the

parameter and multivariate inequality tests.

3.3.4 Properties of the λ estimates under correctly specified and potentially

misspecified models

In this section, we follow what has been done in the literature and compare the signs of the time-

series estimates with the signs of the cross-sectional estimates. In addition, we require the market

price of covariance risk to be positive. We draw conclusions on sign consistency regardless of the

statistical significance of the estimates.
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Table II.2
Sample Cross-Sectional R2s and Specification Tests of the Models Using the 25 Size and

Momentum Portfolios as Test Assets

The table presents the sample cross-sectional R2 (ρ̂2) and the generalized CSRT (Q̂c) of nine asset-pricing
models. The models include the ICAPM specifications proposed by Hahn and Lee (2006) (HL), Petkova
(2006) (P), Campbell and Vuolteenaho (2004) (CV), Koijen et al. (2017) (KLVN), the Fama and French
(1993) three-factor model (FF3), the Carhart (1997) model (C), the Pástor and Stambaugh (2003) model
(PS), the Fama and French (1993) three-factor model augmented by TERM and DEF (FFTD), and the
Fama and French (2015) five-factor model (FF5). The models are estimated using monthly excess returns on
the 25 Fama-French size and book-to-market ranked portfolios. The data are from July 1963 to December
2018 (666 observations). p(ρ2 = 1) is the p-value for the test of H0 : ρ2 = 1. p(ρ2 = 0) is the p-value for the
test of H0 : ρ2 = 0. se(ρ̂2) is the standard error of ρ̂2 under the assumption that 0 < ρ2 < 1. p(Qc = 0)
is the p-value for the approximate F -test of H0 : Qc = 0. No. of para. is the number of parameters in the
model.

Panel A: OLS
HL P CV KLVN FF3 C PS FFTD FF5

ρ̂2 0.856 0.928 0.880 0.910 0.787 0.971 0.851 0.925 0.979
p(ρ2 = 1) 0.002 0.065 0.039 0.442 0.000 0.000 0.207 0.122 0.115
p(ρ2 = 0) 0.001 0.001 0.001 0.001 0.001 0.000 0.003 0.001 0.000
se(ρ̂2) 0.095 0.056 0.094 0.089 0.116 0.017 0.169 0.064 0.015

Q̂c 0.063 0.032 0.037 0.021 0.164 0.112 0.019 0.032 0.043
p(Qc = 0) 0.011 0.420 0.304 0.917 0.000 0.000 0.928 0.437 0.117
No. of para. 3 5 4 3 3 4 4 5 5

Panel B: GLS
HL P CV KLVN FF3 C PS FFTD FF5

ρ̂2 0.116 0.347 0.087 0.145 0.127 0.369 0.164 0.202 0.476
p(ρ2 = 1) 0.000 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.008
p(ρ2 = 0) 0.089 0.009 0.314 0.173 0.003 0.000 0.022 0.028 0.000
se(ρ̂2) 0.076 0.181 0.053 0.131 0.059 0.095 0.088 0.096 0.133

Q̂c 0.170 0.066 0.200 0.141 0.229 0.115 0.162 0.154 0.066
p(Qc = 0) 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.003
No. of para. 3 5 4 3 3 4 4 5 5

Panel C: WLS
HL P CV KLVN FF3 C PS FFTD FF5

ρ̂2 0.907 0.942 0.912 0.933 0.917 0.978 0.933 0.952 0.989
p(ρ2 = 1) 0.000 0.071 0.012 0.388 0.000 0.000 0.032 0.036 0.160
p(ρ2 = 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
se(ρ̂2) 0.056 0.048 0.065 0.068 0.046 0.013 0.056 0.038 0.007

Q̂c 0.104 0.041 0.062 0.028 0.186 0.113 0.045 0.048 0.049
p(Qc = 0) 0.000 0.157 0.010 0.690 0.000 0.000 0.117 0.062 0.057
No. of para. 3 5 4 3 3 4 4 5 5

In Table III, we report estimates of the price of covariance risk λ̂ and associated t-ratios under

correctly specified and potentially misspecified models. For correctly specified models, we give the

t-ratio of Fama and MacBeth (1973), followed by that of Shanken (1992) and Jagannathan and

Wang (1998), which account for estimation error in the covariances. Last, we report the t-ratio

under potentially misspecified models, based on the results presented in Section 2. The various

t-ratios are identified by subscripts fm, s, jw, and pm, respectively. Additionally, we also report

111



the signs with which the underlying state variables predict future returns in the multiple time-series

regressions (as a superscript in λ̂, that is, λ̂(±)).

In Panels A, B, and C of Table III.1, we provide results for the OLS, GLS, and WLS CSRs,

respectively, for the case when the 25 size and book-to-market sorted portfolios are used as test

assets. When estimation is done using OLS (Table III.1, Panel A), only three models, namely

FF3, C and FFTD, appear to be consistent with an ICAPM interpretation. However, none of

the estimates with an inconsistent sign is statistically significant at the 5% level, except for the

profitability (rmw) factor in the FF5 model. The estimate on the risk-free (rf) factor in the

P model is also sign-inconsistent and statistically significant when Fama and MacBeth (1973)

standard errors are used in the estimation, but becomes insignificant when using EIV-corrected

and misspecification-robust standard errors.

For GLS (Table III.1, Panel B), six out of nine models appear to be consistent with an ICAPM

interpretation. Only three models, namely P, CV and FF5, have estimated prices of covariance

risk whose signs are inconsistent with the signs of the estimated slopes from the predictive regres-

sions. As for the statistical significance of the estimates with an inconsistent sign, most of them

are not statistically significant after accounting for the estimation error in the covariances and for

potential model misspecification. For instance, in case of the estimates on the market (rm) and

dividend-yield (dy) factors in the P model, the Fama and MacBeth (1973) t-ratios indicate statist-

ical significance at the 5% level but this is no longer the case if one considers the Shanken (1992),

Jagannathan and Wang (1998) and misspecification-robust t-ratios. The only factor whose price

of covariance risk is significant, as indicated by the set of all t-ratios, is the profitability (rmw)

factor in the FF5 model.
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Table III.1
Estimates and t-ratios of Prices of Covariance Risk Using the 25 Size and Book-to-Market

Portfolios as Test Assets

The table presents the estimation results of nine asset-pricing models. The models include the ICAPM
specifications proposed by Hahn and Lee (2006) (HL), Petkova (2006) (P), Campbell and Vuolteenaho
(2004) (CV), Koijen et al. (2017) (KLVN), the Fama and French (1993) three-factor model (FF3), the
Carhart (1997) model (C), the Pástor and Stambaugh (2003) model (PS), the Fama and French (1993)
three-factor model augmented by TERM and DEF (FFTD), and the Fama and French (2015) five-factor
model (FF5). The models are estimated using monthly excess returns on the 25 Fama-French size and book-
to-market ranked portfolios. The data are from July 1963 to December 2018 (666 observations). We report

parameter estimates λ̂, the Fama and MacBeth (1973) t-ratio under correctly specified models (t-ratiofm),
the Shanken (1992) and the Jagannathan and Wang (1998) t-ratios under correctly specified models that
account for the EIV problem (t-ratios and t-ratiojw, respectively), and our model misspecification-robust
t-ratios (t-ratiopm).

Panel A:OLS

HL P

λ̂
(+)
rm λ̂

(+)
term λ̂

(+)
def λ̂

(+)
rm λ̂

(+)
term λ̂

(+)
def λ̂

(+)
dy λ̂

(+)
rf

Estimate -0.63 495.37 182.31 -7.25 339.23 725.36 -11.25 -1363.82
t-ratiofm (-0.55) ( 4.66) ( 0.65) (-1.42) ( 2.67) ( 3.31) (-1.13) (-2.38)
t-ratios (-0.32) ( 2.70) ( 0.38) (-0.70) ( 1.32) ( 1.63) (-0.55) (-1.17)
t-ratiojw (-0.28) ( 2.46) ( 0.37) (-0.71) ( 1.17) ( 1.71) (-0.57) (-1.12)
t-ratiopm (-0.29) ( 2.53) ( 0.35) (-0.55) ( 0.97) ( 1.53) (-0.40) (-0.58)

CV KLVN FF3

λ̂
(+)
rm λ̂

(+)
term λ̂

(−)
pe λ̂

(+)
vs λ̂

(+)
rm λ̂

(+)
term λ̂

(+)
cp λ̂

(+)
rm λ̂

(+)
smb λ̂

(+)
hml

Estimate -0.65 485.08 -0.50 0.57 -0.29 430.61 29.08 3.26 1.74 6.56
t-ratiofm (-0.17) ( 4.27) (-0.07) ( 0.10) (-0.17) ( 3.20) ( 0.66) ( 3.36) ( 1.26) ( 4.40)
t-ratios (-0.10) ( 2.56) (-0.04) ( 0.06) (-0.11) (1.78) (0.73) ( 3.27) ( 1.23) ( 4.25)
t-ratiojw (-0.10) ( 2.27) (-0.04) ( 0.07) (-0.10) ( 1.88) ( 0.41) ( 3.01) ( 1.25) ( 4.25)
t-ratiopm (-0.10) ( 2.39) (-0.04) ( 0.04) (-0.11) ( 2.03) ( 0.39) ( 3.01) ( 1.25) ( 4.23)

C PS

λ̂
(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
umd λ̂

(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
l

Estimate 7.70 1.14 14.19 21.07 -0.86 0.74 6.08 10.14
t-ratiofm ( 6.49) ( 0.82) ( 7.18) ( 6.21) (-0.48) ( 0.50) ( 4.12) ( 2.55)
t-ratios ( 4.80) ( 0.62) ( 5.28) ( 4.60) (-0.42) ( 0.44) ( 3.55) ( 2.21)
t-ratiojw ( 3.75) ( 0.48) ( 4.09) ( 3.53) (-0.42) ( 0.36) ( 3.02) ( 1.97)
t-ratiopm ( 3.55) ( 0.49) ( 4.18) ( 2.91) (-0.36) ( 0.35) ( 2.99) ( 1.80)

FFTD FF5

λ̂
(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
term λ̂

(+)
def λ̂

(+)
rm λ̂

(+)
smb λ̂

(−)
hml λ̂

(−)
rmw λ̂

(−)
cma

Estimate 0.99 2.15 3.09 301.70 430.77 3.96 5.88 3.65 13.98 3.23
t-ratiofm ( 0.84) ( 1.50) ( 1.72) ( 3.73) ( 2.34) ( 3.03) ( 3.57) ( 0.86) ( 3.68) ( 0.38)
t-ratios ( 0.58) ( 1.04) ( 1.20) ( 2.59) ( 1.63) ( 2.86) ( 3.35) ( 0.82) ( 3.45) ( 0.36)
t-ratiojw ( 0.48) ( 1.07) ( 1.12) ( 2.38) ( 1.77) ( 2.72) ( 3.33) ( 0.81) ( 3.04) ( 0.37)
t-ratiopm ( 0.40) ( 1.04) ( 0.81) ( 1.35) ( 1.47) ( 2.58) ( 3.33) ( 0.58) ( 2.41) ( 0.26)
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Table III.1 (Continued)

Estimates and t-ratios of Prices of Covariance Risk Using the 25 Size and Book-to-Market

Portfolios as Test Assets

Panel B:GLS

HL P

λ̂
(+)
rm λ̂

(+)
term λ̂

(+)
def λ̂

(+)
rm λ̂

(+)
term λ̂

(+)
def λ̂

(+)
dy λ̂

(+)
rf

Estimate 0.73 309.76 84.34 -10.97 279.96 443.78 -21.49 -593.66
t-ratiofm ( 0.72) ( 5.09) ( 0.70) (-3.19) ( 3.79) ( 3.02) (-3.23) (-1.25)
t-ratios ( 0.55) ( 3.80) ( 0.53) (-1.92) ( 2.28) ( 1.82) (-1.95) (-0.75)
t-ratiojw ( 0.50) ( 3.65) ( 0.57) (-1.93) ( 2.21) ( 1.88) (-1.89) (-0.79)
t-ratiopm ( 0.50) ( 2.69) ( 0.37) (-1.29) ( 1.52) ( 1.28) (-1.23) (-0.46)

CV KLVN FF3

λ̂
(+)
rm λ̂

(+)
term λ̂

(−)
pe λ̂

(+)
vs λ̂

(+)
rm λ̂

(+)
term λ̂

(+)
cp λ̂

(+)
rm λ̂

(+)
smb λ̂

(+)
hml

Estimate -1.99 282.35 4.51 6.68 1.15 314.46 55.50 3.38 1.85 5.90
t-ratiofm (-0.83) ( 4.49) ( 1.12) ( 1.58) ( 1.14) ( 5.17) ( 3.00) ( 3.55) ( 1.37) ( 4.03)
t-ratios (-0.64) ( 3.43) ( 0.86) ( 1.21) ( 0.81) ( 3.62) ( 2.12) ( 3.45) ( 1.34) ( 3.90)
t-ratiojw (-0.71) ( 3.31) ( 0.97) ( 1.14) ( 0.75) ( 3.41) ( 2.05) ( 3.15) ( 1.37) ( 3.87)
t-ratiopm (-0.55) ( 2.26) ( 0.69) ( 0.63) ( 0.73) ( 2.64) ( 1.38) ( 3.14) ( 1.36) ( 3.85)

C PS

λ̂
(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
umd λ̂

(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
l

Estimate 6.67 1.59 12.06 17.13 0.92 1.06 5.87 6.34
t-ratiofm ( 6.06) ( 1.18) ( 6.72) ( 5.95) ( 0.61) ( 0.76) ( 4.01) ( 2.06)
t-ratios ( 4.83) ( 0.96) ( 5.34) ( 4.74) ( 0.57) ( 0.71) ( 3.71) ( 1.92)
t-ratiojw ( 3.85) ( 0.82) ( 4.26) ( 4.05) ( 0.54) ( 0.66) ( 3.30) ( 1.70)
t-ratiopm ( 3.58) ( 0.82) ( 4.07) ( 3.21) ( 0.37) ( 0.60) ( 3.29) ( 1.11)

FFTD FF5

λ̂
(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
term λ̂

(+)
def λ̂

(+)
rm λ̂

(+)
smb λ̂

(−)
hml λ̂

(−)
rmw λ̂

(−)
cma

Estimate 1.54 1.23 3.00 238.54 128.14 4.97 4.74 1.31 12.38 9.13
t-ratiofm ( 1.34) ( 0.87) ( 1.71) ( 3.27) ( 1.03) ( 4.01) ( 2.96) ( 0.34) ( 3.76) ( 1.19)
t-ratios ( 1.09) ( 0.71) ( 1.40) ( 2.66) ( 0.84) ( 3.77) ( 2.80) ( 0.33) ( 3.55) ( 1.14)
t-ratiojw ( 1.00) ( 0.69) ( 1.37) ( 2.52) ( 0.91) ( 3.60) ( 2.80) ( 0.31) ( 2.91) ( 1.17)
t-ratiopm ( 0.92) ( 0.69) ( 1.11) ( 1.61) ( 0.59) ( 3.17) ( 2.64) ( 0.21) ( 2.29) ( 0.75)

The results for the WLS case (Table III.1, Panel C) indicate that the same six models, namely

HL, KLVN, FF3, C, PS, and FFTD are consistent with the sign restrictions imposed by the

ICAPM. Out of the models with price of covariance risk estimates whose signs do not coincide

with the signs of the time-series estimates, only the FF5 model contains a coefficient that remains

statistically significant at the 5% level using all sets of standard errors.

Table III.2 presents results for the 25 size and momentum sorted portfolios. In the OLS case

(Table III.2, Panel A), only the C model appears to be consistent with an ICAPM interpretation as

the signs of its price of covariance risk estimates coincide with the signs of the time-series estimates

and it also satisfies the requirement that the market price of covariance risk is positive. The P, FF3

and PS models contain estimates with inconsistent signs that become insignificant when using EIV-
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Table III.1 (Continued)

Estimates and t-ratios of Prices of Covariance Risk Using the 25 Size and Book-to-Market

Portfolios as Test Assets

Panel C:WLS

HL P

λ̂
(+)
rm λ̂

(+)
term λ̂

(+)
def λ̂

(+)
rm λ̂

(+)
term λ̂

(+)
def λ̂

(+)
dy λ̂

(+)
rf

Estimate 0.13 392.99 83.67 -2.43 257.46 425.95 -3.17 -1288.26
t-ratiofm ( 0.11) ( 3.79) ( 0.30) (-0.43) ( 2.02) ( 2.09) (-0.29) (-2.18)
t-ratios ( 0.08) ( 2.55) ( 0.20) (-0.25) ( 1.19) ( 1.23) (-0.17) (-1.28)
t-ratiojw ( 0.07) ( 2.43) ( 0.19) (-0.25) ( 1.09) ( 1.15) (-0.16) (-1.25)
t-ratiopm ( 0.07) ( 2.44) ( 0.18) (-0.22) ( 0.99) ( 0.96) (-0.14) (-0.68)

CV KLVN FF3

λ̂
(+)
rm λ̂

(+)
term λ̂

(−)
pe λ̂

(+)
vs λ̂

(+)
rm λ̂

(+)
term λ̂

(+)
cp λ̂

(+)
rm λ̂

(+)
smb λ̂

(+)
hml

Estimate -0.41 348.48 1.05 3.81 0.72 329.01 26.14 3.39 1.67 6.08
t-ratiofm (-0.10) ( 3.13) ( 0.13) ( 0.67) ( 0.50) ( 2.92) ( 0.69) ( 3.51) ( 1.22) ( 4.07)
t-ratios (-0.07) ( 2.24) ( 0.09) ( 0.48) ( 0.37) ( 2.14) ( 0.51) ( 3.41) ( 1.19) ( 3.94)
t-ratiojw (-0.07) ( 2.12) ( 0.09) ( 0.51) ( 0.35) ( 2.03) ( 0.48) ( 3.13) ( 1.21) ( 3.93)
t-ratiopm (-0.07) ( 2.06) ( 0.09) ( 0.33) ( 0.36) ( 2.00) ( 0.47) ( 3.14) ( 1.21) ( 3.92)

C PS

λ̂
(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
umd λ̂

(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
l

Estimate 7.16 1.26 12.69 18.58 0.22 0.92 5.62 7.73
t-ratiofm ( 6.31) ( 0.92) ( 6.67) ( 5.90) ( 0.13) ( 0.63) ( 3.81) ( 2.15)
t-ratios ( 4.89) ( 0.73) ( 5.16) ( 4.58) ( 0.12) ( 0.58) ( 3.45) ( 1.95)
t-ratiojw ( 3.90) ( 0.58) ( 4.18) ( 3.66) ( 0.12) ( 0.51) ( 3.01) ( 1.70)
t-ratiopm ( 3.61) ( 0.59) ( 4.01) ( 2.82) ( 0.08) ( 0.46) ( 2.97) ( 1.14)

FFTD FF5

λ̂
(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
term λ̂

(+)
def λ̂

(+)
rm λ̂

(+)
smb λ̂

(−)
hml λ̂

(−)
rmw λ̂

(−)
cma

Estimate 0.55 0.57 1.82 343.94 69.40 4.14 5.50 2.56 13.05 4.76
t-ratiofm ( 0.46) ( 0.40) ( 1.02) ( 4.29) ( 0.41) ( 3.21) ( 3.37) ( 0.62) ( 3.63) ( 0.57)
t-ratios ( 0.33) ( 0.29) ( 0.73) ( 3.07) ( 0.30) ( 3.04) ( 3.19) ( 0.59) ( 3.43) ( 0.54)
t-ratiojw ( 0.30) ( 0.27) ( 0.74) ( 2.87) ( 0.32) ( 2.87) ( 3.19) ( 0.58) ( 2.94) ( 0.56)
t-ratiopm ( 0.26) ( 0.28) ( 0.54) ( 1.65) ( 0.23) ( 2.66) ( 3.14) ( 0.41) ( 2.35) ( 0.40)

corrected and misspecification-robust standard errors. On the other hand, the HL, CV, KLVN,

FFTD and FF5 models contain estimates with an inconsistent sign that are statistically significant

even after accounting for potential model misspecification.
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Table III.2
Estimates and t-ratios of Prices of Covariance Risk Using the 25 Size and

Momentum Portfolios as Test Assets

The table presents the estimation results of nine asset-pricing models. The models include the ICAPM
specifications proposed by Hahn and Lee (2006) (HL), Petkova (2006) (P), Campbell and Vuolteenaho
(2004) (CV), Koijen et al. (2017) (KLVN), the Fama and French (1993) three-factor model (FF3), the
Carhart (1997) model (C), the Pástor and Stambaugh (2003) model (PS), the Fama and French (1993)
three-factor model augmented by TERM and DEF (FFTD), and the Fama and French (2015) five-factor
model (FF5). The models are estimated using monthly excess returns on the 25 Fama-French size and
momentum ranked portfolios. The data are from July 1963 to December 2018 (666 observations). We report

parameter estimates λ̂, the Fama and MacBeth (1973) t-ratio under correctly specified models (t-ratiofm),
the Shanken (1992) and the Jagannathan and Wang (1998) t-ratios under correctly specified models that
account for the EIV problem (t-ratios and t-ratiojw, respectively), and our model misspecification-robust
t-ratios (t-ratiopm).

Panel A:OLS

HL P

λ̂
(+)
rm λ̂

(+)
term λ̂

(+)
def λ̂

(+)
rm λ̂

(+)
term λ̂

(+)
def λ̂

(+)
dy λ̂

(+)
rf

Estimate 6.88 -500.30 -341.54 -0.22 -607.32 51.95 -4.92 -3014.52
t-ratiofm ( 5.63) (-4.36) (-1.58) (-0.07) (-5.05) ( 0.28) (-0.80) (-5.94)
t-ratios ( 3.15) (-2.44) (-0.89) (-0.03) (-2.28) ( 0.13) (-0.36) (-2.68)
t-ratiojw ( 2.27) (-1.93) (-0.82) (-0.03) (-1.67) ( 0.12) (-0.35) (-2.09)
t-ratiopm ( 2.49) (-2.26) (-0.71) (-0.02) (-1.55) ( 0.10) (-0.19) (-1.68)

CV KLVN FF3

λ̂
(+)
rm λ̂

(+)
term λ̂

(−)
pe λ̂

(+)
vs λ̂

(+)
rm λ̂

(+)
term λ̂

(+)
cp λ̂

(+)
rm λ̂

(+)
smb λ̂

(+)
hml

Estimate 5.05 -719.79 6.01 21.23 10.94 -745.59 182.96 1.00 2.69 -8.33
t-ratiofm (1.37) (-4.55) ( 0.77) ( 2.87) ( 6.64) (-5.48) ( 4.62) ( 0.91) ( 1.84) (-2.55)
t-ratios ( 0.57) (-1.89) ( 0.32) ( 1.20) ( 2.20) (-1.82) ( 1.54) ( 0.88) ( 1.77) (-2.45)
t-ratiojw ( 0.49) (-1.59) ( 0.30) ( 1.00) ( 1.68) (-1.55) ( 1.43) ( 0.83) ( 1.71) (-2.43)
t-ratiopm ( 0.42) (-2.21) ( 0.26) ( 0.71) ( 2.09) (-2.02) ( 1.66) ( 0.84) ( 1.66) (-1.86)

C PS

λ̂
(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
umd λ̂

(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
l

Estimate 5.59 1.17 12.44 6.67 -17.92 -1.83 -17.30 44.39
t-ratiofm ( 5.21) ( 0.81) ( 4.51) ( 6.34) (-5.56) (-1.19) (-4.15) ( 7.03)
t-ratios ( 4.75) ( 0.75) ( 4.13) ( 5.73) (-2.16) (-0.46) (-1.61) ( 2.72)
t-ratiojw ( 3.81) ( 0.70) ( 3.80) ( 3.92) (-1.41) (-0.37) (-1.03) ( 1.64)
t-ratiopm ( 3.82) ( 0.69) ( 3.68) ( 3.97) (-1.47) (-0.29) (-1.39) ( 1.55)

FFTD FF5

λ̂
(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
term λ̂

(+)
def λ̂

(+)
rm λ̂

(+)
smb λ̂

(−)
hml λ̂

(−)
rmw λ̂

(−)
cma

Estimate 10.20 7.88 14.02 -870.28 398.16 10.46 8.18 -43.38 19.48 79.66
t-ratiofm ( 6.61) ( 4.72) ( 4.39) (-5.97) ( 2.30) ( 6.58) ( 3.61) (-5.93) ( 3.43) ( 6.14)
t-ratios ( 2.59) ( 1.86) ( 1.73) (-2.34) ( 0.91) ( 4.33) ( 2.40) (-3.91) ( 2.28) ( 4.05)
t-ratiojw ( 1.73) ( 1.68) ( 1.47) (-1.59) ( 0.71) ( 3.93) ( 1.83) (-3.24) ( 1.57) ( 3.70)
t-ratiopm ( 2.07) ( 1.74) ( 1.57) (-2.01) ( 0.50) ( 3.24) ( 1.67) (-3.14) ( 1.36) ( 2.95)

For GLS (Table III.2, Panel B), six of the nine models have estimates that are not consistent

with an ICAPM interpretation. The models that satisfy the ICAPM sign requirements are FF3,

C, and PS. However, most of the coefficient estimates with an inconsistent sign are not statistically

significant at the 5% level. Only the P and FF5 models contain a statistically significant estimate
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Table III.2 (Continued)

Estimates and t-ratios of Prices of Covariance Risk Using the 25 Size and Momentum

Portfolios as Test Assets

Panel B:GLS

HL P

λ̂
(+)
rm λ̂

(+)
term λ̂

(+)
def λ̂

(+)
rm λ̂

(+)
term λ̂

(+)
def λ̂

(+)
dy λ̂

(+)
rf

Estimate 3.76 -45.13 277.89 -2.33 -170.88 350.89 -6.76 -1875.44
t-ratiofm ( 3.76) (-0.80) ( 2.20) (-1.01) (-2.84) ( 2.66) (-1.57) (-5.23)
t-ratios ( 3.51) (-0.76) ( 2.06) (-0.66) (-1.86) ( 1.74) (-1.03) (-3.41)
t-ratiojw ( 3.31) (-0.72) ( 2.04) (-0.62) (-1.56) ( 1.66) (-1.06) (-3.23)
t-ratiopm ( 2.86) (-0.47) ( 1.14) (-0.50) (-1.23) ( 1.19) (-0.77) (-2.03)

CV KLVN FF3

λ̂
(+)
rm λ̂

(+)
term λ̂

(−)
pe λ̂

(+)
vs λ̂

(+)
rm λ̂

(+)
term λ̂

(+)
cp λ̂

(+)
rm λ̂

(+)
smb λ̂

(+)
hml

Estimate 1.65 -50.98 3.21 -1.57 4.19 -70.59 55.85 3.20 2.48 4.83
t-ratiofm ( 0.69) (-0.89) ( 0.77) (-0.37) ( 4.11) (-1.24) ( 3.02) ( 3.20) ( 1.76) ( 2.08)
t-ratios ( 0.68) (-0.87) ( 0.75) (-0.36) ( 3.45) (-1.05) ( 2.55) ( 3.12) ( 1.72) ( 2.04)
t-ratiojw ( 0.66) (-0.85) ( 0.74) (-0.34) ( 3.07) (-1.02) ( 2.45) ( 2.88) ( 1.79) ( 2.08)
t-ratiopm ( 0.38) (-0.51) ( 0.40) (-0.18) ( 2.44) (-0.62) ( 1.00) ( 2.86) ( 1.74) ( 1.65)

C PS

λ̂
(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
umd λ̂

(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
l

Estimate 4.89 2.23 10.54 6.07 0.53 1.90 3.28 6.17
t-ratiofm ( 4.69) ( 1.58) ( 4.19) ( 5.92) ( 0.34) ( 1.33) ( 1.36) ( 2.32)
t-ratios ( 4.36) ( 1.49) ( 3.90) ( 5.45) ( 0.32) ( 1.25) ( 1.28) ( 2.17)
t-ratiojw ( 3.58) ( 1.50) ( 3.69) ( 3.90) ( 0.30) ( 1.22) ( 1.08) ( 1.85)
t-ratiopm ( 3.59) ( 1.47) ( 3.29) ( 3.84) ( 0.19) ( 1.17) ( 0.87) ( 1.09)

FFTD FF5

λ̂
(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
term λ̂

(+)
def λ̂

(+)
rm λ̂

(+)
smb λ̂

(−)
hml λ̂

(−)
rmw λ̂

(−)
cma

Estimate 4.37 4.28 5.84 -119.76 366.15 8.05 8.84 -28.89 20.97 53.16
t-ratiofm ( 3.86) ( 2.83) ( 2.33) (-1.97) ( 2.71) ( 5.57) ( 4.27) (-5.21) ( 4.16) ( 5.16)
t-ratios ( 3.39) ( 2.49) ( 2.05) (-1.74) ( 2.39) ( 4.30) ( 3.31) (-4.02) ( 3.23) ( 3.99)
t-ratiojw ( 2.98) ( 2.64) ( 2.11) (-1.52) ( 2.20) ( 4.08) ( 2.92) (-3.94) ( 2.61) ( 3.93)
t-ratiopm ( 2.65) ( 2.39) ( 1.58) (-1.06) ( 1.32) ( 3.34) ( 2.60) (-2.92) ( 2.05) ( 2.76)

with an inconsistent sign as indicated by the set of all four t-ratios.

When WLS is used (Table III.2, Panel C), only the C model appears to satisfy the sign restric-

tions of the ICAPM. The HL, P, and PS models contain estimates for which the sign consistency is

violated and which are statistically significant when using standard errors under correctly specified

models but insignificant when using misspecification-robust standard errors. On the other hand,

the CV, KLVN, FFTD, and FF5 models contain sign inconsistent estimates that are statistically

significant even after controlling for model misspecification.

To summarize, if we simply compare the signs of the cross-sectional estimates with the signs

of the time-series estimates and we require the market price of covariance risk to be positive, then

the sign restrictions imposed by the ICAPM are satisfied in only 20 out of 54 cases. However, it
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Table III.2 (Continued)

Estimates and t-ratios of Prices of Covariance Risk Using the 25 Size and Momentum

Portfolios as Test Assets

Panel C:WLS

HL P

λ̂
(+)
rm λ̂

(+)
term λ̂

(+)
def λ̂

(+)
rm λ̂

(+)
term λ̂

(+)
def λ̂

(+)
dy λ̂

(+)
rf

Estimate 5.02 -277.13 -426.03 -1.14 -430.90 -228.62 -4.03 -2694.15
t-ratiofm ( 4.10) (-2.61) (-1.84) (-0.37) (-4.10) (-1.12) (-0.66) (-5.58)
t-ratios ( 2.93) (-1.87) (-1.32) (-0.19) (-2.09) (-0.57) (-0.34) (-2.84)
t-ratiojw ( 2.21) (-1.52) (-1.27) (-0.17) (-1.56) (-0.59) (-0.32) (-2.30)
t-ratiopm ( 2.12) (-1.43) (-1.05) (-0.09) (-0.98) (-0.34) (-0.12) (-1.30)

CV KLVN FF3

λ̂
(+)
rm λ̂

(+)
term λ̂

(−)
pe λ̂

(+)
vs λ̂

(+)
rm λ̂

(+)
term λ̂

(+)
cp λ̂

(+)
rm λ̂

(+)
smb λ̂

(+)
hml

Estimate 1.51 -521.52 9.83 12.59 9.49 -577.07 165.58 1.66 3.61 -5.50
t-ratiofm ( 0.40) (-3.81) ( 1.27) ( 1.74) ( 6.21) (-4.71) ( 4.39) ( 1.59) ( 2.49) (-1.84)
t-ratios ( 0.22) (-2.05) ( 0.69) ( 0.94) ( 2.40) (-1.83) ( 1.70) ( 1.54) ( 2.41) (-1.79)
t-ratiojw ( 0.19) (-1.74) ( 0.64) ( 0.85) ( 1.90) (-1.63) ( 1.68) ( 1.45) ( 2.44) (-1.84)
t-ratiopm ( 0.16) (-2.29) ( 0.57) ( 0.50) ( 2.77) (-2.38) ( 1.95) ( 1.48) ( 2.42) (-1.65)

C PS

λ̂
(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
umd λ̂

(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
l

Estimate 5.22 1.84 11.97 6.40 -9.00 1.13 -10.84 24.63
t-ratiofm ( 4.90) ( 1.28) ( 4.41) ( 6.14) (-4.07) ( 0.77) (-3.12) ( 6.01)
t-ratios ( 4.50) ( 1.20) ( 4.06) ( 5.59) (-2.43) ( 0.46) (-1.87) ( 3.57)
t-ratiojw ( 3.64) ( 1.15) ( 3.84) ( 3.93) (-1.69) ( 0.40) (-1.21) ( 2.17)
t-ratiopm ( 3.64) ( 1.14) ( 3.74) ( 3.90) (-0.95) ( 0.29) (-1.35) ( 1.17)

FFTD FF5

λ̂
(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
term λ̂

(+)
def λ̂

(+)
rm λ̂

(+)
smb λ̂

(−)
hml λ̂

(−)
rmw λ̂

(−)
cma

Estimate 8.01 7.53 9.14 -656.02 334.33 9.09 9.77 -39.90 19.93 71.97
t-ratiofm ( 5.67) ( 4.45) ( 3.24) (-5.35) ( 1.79) ( 5.38) ( 4.14) (-5.29) ( 3.23) ( 5.05)
t-ratios ( 2.78) ( 2.18) ( 1.59) (-2.63) ( 0.88) ( 3.72) ( 2.87) (-3.66) ( 2.25) ( 3.50)
t-ratiojw ( 1.88) ( 2.03) ( 1.45) (-1.79) ( 0.75) ( 3.51) ( 2.20) (-3.29) ( 1.57) ( 3.47)
t-ratiopm ( 2.44) ( 2.11) ( 1.35) (-2.72) ( 0.49) ( 3.03) ( 2.07) (-3.21) ( 1.44) ( 3.00)

should be noted that most cross-sectional estimates with an inconsistent sign are not statistically

significant. In addition, accounting for model misspecification often makes a qualitative difference

in terms of the conclusions reached.

3.3.5 Test of multiple sign restrictions

In this section, we employ the test of multiple sign restrictions discussed in Section 2.3 to assess

whether the various models satisfy the time-series and cross-sectional restrictions imposed by the

ICAPM. The use of this test will lead us to conclusions that are substantially different from the

ones based on the comparative analysis of the previous section. The reason, in a nutshell, is

that the test of multiple sign restrictions accounts for the estimation error in the parameters, for
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the joint significance of the estimates, and for potential model misspecification. Specifically, a

coefficient estimate that is not statistically significant is consistent with the true coefficient being

either positive or negative. This has two implications in the current setting. On the one hand, it

is not clear whether a statistically insignificant cross-sectional estimate is consistent with the sign

restriction obtained from the time series. On the other hand, and perhaps more importantly, it is

not clear what sign restriction should be tested, if any, when the time-series estimate is statistically

insignificant. In the following analysis, we will explore two cases: (i) when our a priori knowledge

is simply based on the signs of the time-series estimates, regardless of their statistical significance,

and (ii) when our a priori knowledge is only based on the signs of the time-series estimates that

are statistically significant.

Imposing sign restrictions on all λ’s

For a K-factor model, the test of multiple sign restrictions is a test of the null hypothesis

H0 : Qλ ≥ 0K versus the alternative H1 : λ ∈ <K , where Q is a K ×K matrix of constraints with

rank K. Specifically, when testing whether the coefficient associated with the kth factor is positive

(negative), we set the (k, k)-element of the Q matrix equal to one (minus one), while the other

elements in the kth row of Q are set equal to zero.

In Table IV, we report the values of the test statistic, LR, and associated p-values under cor-

rectly specified and potentially misspecified models. The specific form of V (λ̂) in LR depends

on whether the Fama and MacBeth (1973), Shanken (1992), Jagannathan and Wang (1998), or

misspecification-robust asymptotic variances of the λ̂’s are used (see Section 2). The correspond-

ing likelihood ratio tests and their p-values are identified by the subscripts fm, s, jw, and pm,

respectively.

In Panels A, B, and C of Table IV.1, we present results for the OLS, GLS, and WLS tests of

multiple sign restrictions, respectively, for the case when the 25 size and book-to-market sorted

portfolios are used as test assets. Under all estimation methods, FF5 is the only model for which

the set of sign restrictions is systematically rejected at the 5% level by all four test statistics.

For the other eight models, we are unable to reject the null hypothesis that the sign restrictions

imposed by the ICAPM hold. These results are consistent with the analysis of the estimates of

the prices of covariance risk in Table III.1. Out of all the estimates with an inconsistent sign, only

the estimate associated with the profitability (rmw) factor in FF5 was statistically significant.

Statistical precision of the λ estimates is clearly the key driver of the power of the test of sign

restrictions.

It is worth noting that conducting inference under potential model misspecification often leads
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Table IV.1
Multiple Sign Restriction Tests of the Models Using the 25 Size and Book-to-Market

Portfolios as Test Assets

The table presents the results of the multiple sign restriction test of nine asset-pricing models for the case
where the restrictions imposed are based on the signs of the respective coefficients from the long-horizon
predictive regressions, regardless of their statistical significance. This is a likelihood ratio test of the null
hypothesis that the models satisfy the sign restrictions placed by the ICAPM H0 : Qλ ≥ 0K . The models
include the ICAPM specifications proposed by Hahn and Lee (2006) (HL), Petkova (2006) (P), Campbell
and Vuolteenaho (2004) (CV), Koijen et al. (2017) (KLVN), the Fama and French (1993) three-factor model
(FF3), the Carhart (1997) model (C), the Pástor and Stambaugh (2003) model (PS), the Fama and French
(1993) three-factor model augmented by TERM and DEF (FFTD), and the Fama and French (2015) five-
factor model (FF5). The models are estimated using monthly excess returns on the 25 Fama-French size
and book-to-market ranked portfolios. The data are from July 1963 to December 2018 (666 observations).
We report the values of the likelihood ratio statistics and corresponding p-values obtained using the Fama
and MacBeth (1973) variances under correctly specified models (LRfm and p-valuefm), the Shanken (1992)
and the Jagannathan and Wang (1998) variances under correctly specified models that account for the EIV
problem (LRs and p-values, and LRjw and p-valuejw, respectively), and our model misspecification-robust
variances (LRpm and p-valuejw).

Panel A: OLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 0.30 8.12 0.03 0.03 0.00 0.00 0.23 0.00 27.89
p-valuefm ( 0.67) ( 0.02) ( 0.77) ( 0.89) ( 0.87) ( 0.88) ( 0.87) ( 0.97) ( 0.00)
LRs 0.10 1.96 0.01 0.01 0.00 0.00 0.18 0.00 24.17
p-values ( 0.78) ( 0.36) ( 0.79) ( 0.91) ( 0.87) ( 0.88) ( 0.89) ( 0.97) ( 0.00)
LRjw 0.08 1.99 0.01 0.01 0.00 0.00 0.17 0.00 17.53
p-valuejw ( 0.79) ( 0.37) ( 0.79) ( 0.91) ( 0.86) ( 0.89) ( 0.88) ( 0.97) ( 0.00)
LRpm 0.08 1.25 0.01 0.01 0.00 0.00 0.13 0.00 16.82
p-valuepm ( 0.78) ( 0.56) ( 0.81) ( 0.91) ( 0.86) ( 0.85) ( 0.90) ( 0.98) ( 0.00)

Panel B: GLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 0.00 18.32 1.26 0.00 0.00 0.00 0.00 0.00 31.23
p-valuefm ( 0.90) ( 0.00) ( 0.44) ( 0.89) ( 0.87) ( 0.88) ( 0.98) ( 0.98) ( 0.00)
LRs 0.00 6.64 0.75 0.00 0.00 0.00 0.00 0.00 27.13
p-valuefm ( 0.90) ( 0.07) ( 0.57) ( 0.89) ( 0.87) ( 0.88) ( 0.98) ( 0.98) ( 0.00)
LRjw 0.00 7.32 0.93 0.00 0.00 0.00 0.00 0.00 22.03
p-valuejw ( 0.89) ( 0.05) ( 0.51) ( 0.90) ( 0.86) ( 0.89) ( 0.97) ( 0.98) ( 0.00)
LRpm 0.00 3.82 0.48 0.00 0.00 0.00 0.00 0.00 20.67
p-valuepm ( 0.88) ( 0.23) ( 0.66) ( 0.90) ( 0.86) ( 0.87) ( 0.98) ( 0.98) ( 0.00)

Panel C: WLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 0.00 5.42 0.02 0.00 0.00 0.00 0.00 0.00 25.18
p-valuefm ( 0.89) ( 0.08) ( 0.78) ( 0.93) ( 0.87) ( 0.88) ( 0.98) ( 0.98) ( 0.00)
LRs 0.00 1.87 0.01 0.00 0.00 0.00 0.00 0.00 22.13
p-valuefm ( 0.89) ( 0.37) ( 0.80) ( 0.93) ( 0.87) ( 0.88) ( 0.98) ( 0.98) ( 0.00)
LRjw 0.00 1.87 0.01 0.00 0.00 0.00 0.00 0.00 16.34
p-valuejw ( 0.88) ( 0.38) ( 0.79) ( 0.92) ( 0.86) ( 0.89) ( 0.97) ( 0.97) ( 0.00)
LRpm 0.00 0.76 0.01 0.00 0.00 0.00 0.00 0.00 14.94
p-valuepm ( 0.87) ( 0.68) ( 0.82) ( 0.92) ( 0.86) ( 0.85) ( 0.98) ( 0.98) ( 0.00)
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to qualitatively different conclusions. In general, the amount of evidence against the null hypothesis

decreases when using misspecification-robust standard errors and we observe an increase in p-values.

This closely matches the pattern of statistical significance of the λ estimates in the cross-sectional

analysis of Table III.1. For instance, OLS and GLS test results (Table IV.1, Panels A and B,

respectively) for the P model indicate that the sets of sign restrictions is rejected when the test

statistics are based on the Fama and MacBeth (1973) standard errors, but not when inference is

robustified against potential model misspecification. This is consistent with the pattern observed

in Panels A and B of Table III.1, showing that the P model contains estimates with inconsistent

signs that are statistically significant when using Fama and MacBeth (1973) standard errors but

insignificant when using misspecification robust standard errors.

In Panels A, B, and C of Table IV.2, we employ the 25 size and momentum sorted portfolios

as test assets. Only the FF5 model is systematically rejected under all estimation methods and

by all test statistics at the 5% level. Additionally, in the OLS case (Table IV.2, Panel A) the

consistency of the HL and CV models with the ICAPM implications is also rejected at the 5%

level when misspecification-robust standard errors are used in the estimation. Interestingly, the

misspecification-robust test statistic cannot reject the hypothesis of sign consistency in case of the

KLVN and FFTD models despite the fact that these models contained a statistically significant

estimate with an inconsistent sign as shown in Panel A of Table III.2. This is due to the fact

that we are employing a test of joint restrictions across multiple factors; given that the other

coefficient estimates in these models have the predicted sign and are statistically significant the

evidence against the null is weakened. Similarly, when using GLS (Table IV.2, Panel B) and

misspecification-robust standard errors the P model barely misses rejection with a p-valuepm of

7%, which reflects the feature of imposing joint sign restrictions across multiple factors.

For WLS (Table IV.2, Panel C), the set of all four test statistics indicates that only the FF3

and C models satisfy the ICAPM restrictions, while the CV, KLVN, FFTD, and FF5 models do

not satisfy the restrictions when considering a 5% confidence level. In line with the patterns of

diminishing statistical significance shown in Panel A of Table III.3 the test indicates rejection of the

HL, P and PS models when Fama and MacBeth (1973) standard errors are used in the estimation

but this is no longer the case once misspecification-robust errors are employed.

Several observations emerge from the analysis. First, in 43 out of 54 cases, there is not enough

evidence against the null of consistency with the ICAPM when using a 5% significance level and
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Table IV.2
Multiple Sign Restriction Tests of the Models Using the 25 Size and Momentum Portfolios

as Test Assets

The table presents the results of the multiple sign restriction test of nine asset-pricing models for the case
where the restrictions imposed are based on the signs of the respective coefficients from the long-horizon
predictive regressions, regardless of their statistical significance. This is a likelihood ratio test of the null
hypothesis that the models satisfy the sign restrictions placed by the ICAPM H0 : Qλ ≥ 0K . The models
include the ICAPM specifications proposed by Hahn and Lee (2006) (HL), Petkova (2006) (P), Campbell
and Vuolteenaho (2004) (CV), Koijen et al. (2017) (KLVN), the Fama and French (1993) three-factor model
(FF3), the Carhart (1997) model (C), the Pástor and Stambaugh (2003) model (PS), the Fama and French
(1993) three-factor model augmented by TERM and DEF (FFTD), and the Fama and French (2015) five-
factor model (FF5). The models are estimated using monthly excess returns on the 25 Fama-French size
and book-to-market ranked portfolios. The data are from July 1963 to December 2018 (666 observations).
We report the values of the likelihood ratio statistics and corresponding p-values obtained using the Fama
and MacBeth (1973) variances under correctly specified models (LRfm and p-valuefm), the Shanken (1992)
and the Jagannathan and Wang (1998) variances under correctly specified models that account for the EIV
problem (LRs and p-values, and LRjw and p-valuejw, respectively), and our model misspecification-robust
variances (LRpm and p-valuejw).

Panel A: OLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 19.38 43.69 20.69 30.08 6.50 0.00 30.94 35.65 58.24
p-valuefm ( 0.00) ( 0.00) ( 0.00) ( 0.00) ( 0.03) ( 0.91) ( 0.00) ( 0.00) ( 0.00)
LRs 6.08 8.88 3.59 3.32 5.98 0.00 4.65 5.49 25.02
p-values ( 0.04) ( 0.02) ( 0.09) ( 0.16) ( 0.04) ( 0.90) ( 0.15) ( 0.13) ( 0.00)
LRjw 4.15 4.84 2.52 2.40 5.91 0.00 1.99 2.53 15.98
p-valuejw ( 0.10) ( 0.10) ( 0.18) ( 0.25) ( 0.04) ( 0.89) ( 0.41) ( 0.41) ( 0.00)
LRpm 5.92 6.13 4.88 4.07 3.48 0.00 3.31 4.05 13.71
p-valuepm ( 0.04) ( 0.07) ( 0.05) ( 0.11) ( 0.12) ( 0.89) ( 0.24) ( 0.22) ( 0.01)

Panel B: GLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 0.65 34.16 1.15 1.54 0.00 0.00 0.00 3.87 54.50
p-valuefm ( 0.56) ( 0.00) ( 0.39) ( 0.36) ( 0.87) ( 0.91) ( 0.97) ( 0.24) ( 0.00)
LRs 0.58 14.44 1.10 1.11 0.00 0.00 0.00 3.02 31.80
p-valuefm ( 0.58) ( 0.00) ( 0.40) ( 0.45) ( 0.86) ( 0.90) ( 0.97) ( 0.33) ( 0.00)
LRjw 0.52 13.27 1.05 1.04 0.00 0.00 0.00 2.30 21.13
p-valuejw ( 0.62) ( 0.00) ( 0.42) ( 0.46) ( 0.86) ( 0.88) ( 0.96) ( 0.42) ( 0.00)
LRpm 0.22 6.23 0.34 0.39 0.00 0.00 0.00 1.12 15.04
p-valuepm ( 0.73) ( 0.07) ( 0.58) ( 0.67) ( 0.85) ( 0.89) ( 0.98) ( 0.65) ( 0.00)

Panel C: WLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 10.12 36.17 14.52 22.15 3.40 0.00 16.71 28.67 47.89
p-valuefm ( 0.01) ( 0.00) ( 0.00) ( 0.00) ( 0.13) ( 0.91) ( 0.00) ( 0.00) ( 0.00)
LRs 5.21 9.35 4.22 3.33 3.20 0.00 5.96 6.90 22.57
p-valuefm ( 0.06) ( 0.01) ( 0.06) ( 0.16) ( 0.14) ( 0.90) ( 0.08) ( 0.07) ( 0.00)
LRjw 4.57 6.12 3.02 2.64 3.40 0.00 2.85 3.19 15.60
p-valuejw ( 0.08) ( 0.06) ( 0.14) ( 0.22) ( 0.13) ( 0.89) ( 0.27) ( 0.32) ( 0.00)
LRpm 4.68 6.79 5.22 5.66 2.74 0.00 1.98 7.40 13.66
p-valuepm ( 0.08) ( 0.06) ( 0.04) ( 0.05) ( 0.18) ( 0.89) ( 0.42) ( 0.05) ( 0.01)
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misspecification-robust standard errors.5 Second, accounting for model misspecification can make

a significant difference in terms of conclusions: when the test is implemented using the Fama and

MacBeth (1973) standard errors then we observe 32 out of 54 instances in which there is not

enough evidence to reject the null of sign consistency. Third, the amount of evidence against the

null is driven by the statistical significance of the cross-sectional estimates. Finally, the statistical

significance of the individual cross-sectional estimates is only indicative of the test results since the

null hypothesis being tested is composite.

Imposing sign restrictions conditional on the state variables being robust predictors

As previously mentioned, it is not clear whether and what sign restrictions should be imposed

when the time-series estimates are not statistically significant. The results presented in Table IV

relate to the case in which the restrictions imposed are purely based on the signs of the time-

series estimates, regardless of their statistical significance. We now explore the case in which sign

restrictions are imposed conditional on the state variables being robust predictors. Specifically, if

the state variable corresponding to the kth factor in a K-factor model is not a robust predictor of

future aggregate returns, we eliminate the corresponding row from the matrix of constraints Q.

Thus, the test of multiple sign restrictions is a test of the null hypothesis H0 : Qλ ≥ 0p versus the

alternative H1 : λ ∈ <K , where Q is the p×K matrix of constraints and p ≤ K is the number of

restrictions being imposed.

In Table V, we report results by imposing sign restrictions only on the factors whose associated

state variables have estimated time-series coefficients that are statistically significant at the 5%

level, as shown in Panel C of Tables I.1 and I.2. More specifically, we maintain the sign restriction

associated with the term factor in the P, CV and FFTD models, the def factor in the HL model,

the dy factor in the P model, the pe factor in the CV model, the smb factor in the C model,

the hml factor in the FF3, C, PS and FFTD models, and the rmw factor in the FF5 model.

Additionally, we maintain the restriction that the market price of covariance risk is positive across

all the models.

In Panels A, B, and C of Table V.1, we provide results for the OLS, GLS, and WLS tests of

multiple sign restrictions, respectively, for the case when the 25 size and book-to-market sorted

portfolios are used as test assets. The results are qualitatively similar to the baseline case presented

5We also explore the impact of autocorrelation on our results by using the automatic lag length selection procedure
of Newey and West (1994) and reach similar conclusions. Specifically, failure to reject the null is now observed in 47
out of 54 cases, and the models that exhibit inconsistencies with the ICAPM at the 5% level using misspecification-
robust estimation are the FF5 model for OLS and GLS using the 25 size and book-to-market sorted portfolios, the
P model for OLS and GLS, the KLVN model for OLS and WLS, and the FFTD model for OLS using the 25 size
and momentum sorted portfolios.
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Table V.1
Robust Multiple Sign Restriction Tests of the Models Using the 25 Size and Book-to-Market

Portfolios as Test Assets
No restrictions are imposed if the state variables are not robust predictors

The table presents the results of the multiple sign restriction test of nine asset-pricing models for the case
where we impose sign restrictions only if the respective coefficient estimates from the long-horizon predictive
regressions are statistically significant; otherwise no restriction is imposed. This is a likelihood ratio test
of the null hypothesis that the models satisfy the sign restrictions placed by the ICAPM H0 : Qλ ≥ 0K .
The models include the ICAPM specifications proposed by Hahn and Lee (2006) (HL), Petkova (2006) (P),
Campbell and Vuolteenaho (2004) (CV), Koijen et al. (2017) (KLVN), the Fama and French (1993) three-
factor model (FF3), the Carhart (1997) model (C), the Pástor and Stambaugh (2003) model (PS), the Fama
and French (1993) three-factor model augmented by TERM and DEF (FFTD), and the Fama and French
(2015) five-factor model (FF5). The models are estimated using monthly excess returns on the 25 Fama-
French size and book-to-market ranked portfolios. The data are from July 1963 to December 2018 (666
observations). We report the values of the likelihood ratio statistics and corresponding p-values obtained
using the Fama and MacBeth (1973) variances under correctly specified models (LRfm and p-valuefm),
the Shanken (1992) and the Jagannathan and Wang (1998) variances under correctly specified models that
account for the EIV problem (LRs and p-values, and LRjw and p-valuejw, respectively), and our model
misspecification-robust variances (LRpm and p-valuejw).

Panel A: OLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 0.30 2.02 0.03 0.03 0.00 0.00 0.23 0.00 13.52
p-valuefm ( 0.50) ( 0.18) ( 0.62) ( 0.43) ( 0.71) ( 0.85) ( 0.52) ( 0.93) ( 0.00)
LRs 0.10 0.49 0.01 0.01 0.00 0.00 0.18 0.00 11.94
p-valuefm ( 0.61) ( 0.45) ( 0.65) ( 0.46) ( 0.71) ( 0.85) ( 0.55) ( 0.93) ( 0.00)
LRjw 0.08 0.50 0.01 0.01 0.00 0.00 0.17 0.00 9.23
p-valuejw ( 0.63) ( 0.47) ( 0.64) ( 0.46) ( 0.70) ( 0.85) ( 0.57) ( 0.92) ( 0.00)
LRpm 0.08 0.30 0.01 0.01 0.00 0.00 0.13 0.00 5.81
p-valuepm ( 0.62) ( 0.58) ( 0.66) ( 0.46) ( 0.71) ( 0.81) ( 0.58) ( 0.95) ( 0.02)

Panel B: GLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 0.00 10.58 1.26 0.00 0.00 0.00 0.00 0.00 14.15
p-valuefm ( 0.72) ( 0.00) ( 0.29) ( 0.50) ( 0.72) ( 0.85) ( 0.73) ( 0.93) ( 0.00)
LRs 0.00 3.85 0.75 0.00 0.00 0.00 0.00 0.00 12.58
p-valuefm ( 0.72) ( 0.08) ( 0.39) ( 0.50) ( 0.71) ( 0.85) ( 0.73) ( 0.93) ( 0.00)
LRjw 0.00 3.77 0.93 0.00 0.00 0.00 0.00 0.00 8.45
p-valuejw ( 0.72) ( 0.09) ( 0.35) ( 0.50) ( 0.70) ( 0.84) ( 0.73) ( 0.93) ( 0.01)
LRpm 0.00 1.66 0.48 0.00 0.00 0.00 0.00 0.00 5.23
p-valuepm ( 0.71) ( 0.27) ( 0.43) ( 0.50) ( 0.70) ( 0.82) ( 0.73) ( 0.94) ( 0.03)

Panel C: WLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 0.00 0.18 0.02 0.00 0.00 0.00 0.00 0.00 13.17
p-valuefm ( 0.72) ( 0.59) ( 0.65) ( 0.50) ( 0.71) ( 0.85) ( 0.73) ( 0.93) ( 0.00)
LRs 0.00 0.06 0.01 0.00 0.00 0.00 0.00 0.00 11.76
p-valuefm ( 0.72) ( 0.67) ( 0.66) ( 0.50) ( 0.71) ( 0.85) ( 0.73) ( 0.93) ( 0.00)
LRjw 0.00 0.06 0.01 0.00 0.00 0.00 0.00 0.00 8.64
p-valuejw ( 0.72) ( 0.68) ( 0.66) ( 0.50) ( 0.70) ( 0.84) ( 0.74) ( 0.92) ( 0.01)
LRpm 0.00 0.05 0.01 0.00 0.00 0.00 0.00 0.00 5.50
p-valuepm ( 0.72) ( 0.71) ( 0.67) ( 0.50) ( 0.70) ( 0.82) ( 0.73) ( 0.94) ( 0.02)

in Table V.1. The only model that is systematically rejected across estimation methods and by
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the set of all four test statistics is the FF5 model. This accurately reflects the fact that for this

model we kept the sign restriction on the price of covariance risk estimate associated with the

profitability (rmw) factor, which as shown in Table III.1 was statistically significant and had an

inconsistent sign. Generally, we observe a decrease in p-values relative to the baseline case when

removing a restriction from coefficient estimates with a consistent sign (which is the case for the

HL, CV, KLVN, FF3, C, PS, and FFTD models). However, when a restrictions is removed from

a coefficient estimate with an inconsistent sign (which is the case for the P model) we observe an

increase in p-values since the amount of evidence against the null of sign consistency decreases.

Table V.2 presents results for the 25 size and momentum sorted portfolios. Worth noting is

the fact that the FF5 model is no longer systematically rejected, and we only observe rejection of

the null when estimation is done using GLS (Table V.2, Panel B). Otherwise, the evidence against

the null follows closely the pattern of statistical significance of the restricted sign cross-sectional

coefficient, rmw, shown in Table III.2. Other notable differences relative to the baseline case are

the HL model for OLS estimation, and the KLVN model for WLS estimation, both of which are

now consistent with an ICAPM interpretation. Comparing Panel A of Table V.2 with Panel A of

Table IV.2, we note that the HL now satisfies the ICAPM restrictions (p-valuepm of 39% versus

p-valuepm of 4% in the baseline case). This is due to the removal of the sign restriction on the

term factor which, as shown in Panel A of Table III.2, has a statistically significant cross-sectional

estimate with an inconsistent sign. Similarly, the WLS p-valuepm associated with the KLVN model

increases beyond the point of rejecting the null (from 5% in the baseline case to 50%), which is

due to the removal of the constraint on the term factor, whose estimate was marginally significant

and had an inconsistent sign (Table III.2, Panel C).

Overall, we find that reducing the number of restrictions imposed on the model coefficients

reduces the evidence against the null hypothesis of sign consistency relative to the baseline case

whereby restrictions are imposed on all coefficients. The null hypothesis of consistency with an

ICAPM interpretation is rejected in only 7 out of 54 cases when using a 5% significance level and

misspecification-robust standard errors.6

Finally, we explore an alternative way of setting up the matrix of constraints, Q, when the

time-series estimates are statistically insignificant. We implement the new set of restrictions by

setting equal to zero the price of covariance risk corresponding to a state variable that is not a

6With a Newey and West (1994) automatic lag length selection adjustment, only in 3 out of 54 cases the
misspecification-robust test statistics reject the null hypothesis of consistency with the ICAPM at the 5% level.
Specifically, when using the size and momentum sorted portfolios as test assets the CV model for OLS estimation
and the FFTD model for OLS and WLS estimation exhibit inconsistency with the ICAPM.
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Table V.2
Robust Multiple Sign Restriction Tests of the Models Using the 25 Size and Momentum

Portfolios as Test Assets
No restrictions are imposed if the state variables are not robust predictors

The table presents the results of the multiple sign restriction test of nine asset-pricing models for the case
where we impose sign restrictions only if the respective coefficient estimates from the long-horizon predictive
regressions are statistically significant; otherwise no restriction is imposed. This is a likelihood ratio test
of the null hypothesis that the models satisfy the sign restrictions placed by the ICAPM H0 : Qλ ≥ 0K .
The models include the ICAPM specifications proposed by Hahn and Lee (2006) (HL), Petkova (2006) (P),
Campbell and Vuolteenaho (2004) (CV), Koijen et al. (2017) (KLVN), the Fama and French (1993) three-
factor model (FF3), the Carhart (1997) model (C), the Pástor and Stambaugh (2003) model (PS), the Fama
and French (1993) three-factor model augmented by TERM and DEF (FFTD), and the Fama and French
(2015) five-factor model (FF5). The models are estimated using monthly excess returns on the 25 Fama-
French size and book-to-market ranked portfolios. The data are from July 1963 to December 2018 (666
observations). We report the values of the likelihood ratio statistics and corresponding p-values obtained
using the Fama and MacBeth (1973) variances under correctly specified models (LRfm and p-valuefm),
the Shanken (1992) and the Jagannathan and Wang (1998) variances under correctly specified models that
account for the EIV problem (LRs and p-values, and LRjw and p-valuejw, respectively), and our model
misspecification-robust variances (LRpm and p-valuejw).

Panel A: OLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 2.49 25.48 20.69 0.00 6.50 0.00 30.94 35.65 11.73
p-valuefm ( 0.13) ( 0.00) ( 0.00) ( 0.50) ( 0.01) ( 0.86) ( 0.00) ( 0.00) ( 0.00)
LRs 0.79 5.21 3.59 0.00 5.98 0.00 4.65 5.49 5.20
p-valuefm ( 0.35) ( 0.03) ( 0.06) ( 0.50) ( 0.02) ( 0.86) ( 0.03) ( 0.06) ( 0.03)
LRjw 0.67 2.78 2.52 0.00 5.91 0.00 1.99 2.53 2.45
p-valuejw ( 0.37) ( 0.12) ( 0.13) ( 0.50) ( 0.02) ( 0.85) ( 0.12) ( 0.25) ( 0.13)
LRpm 0.50 2.39 4.88 0.00 3.48 0.00 3.31 4.05 1.84
p-valuepm ( 0.39) ( 0.13) ( 0.04) ( 0.50) ( 0.07) ( 0.85) ( 0.07) ( 0.12) ( 0.17)

Panel B: GLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 0.00 9.83 1.14 0.00 0.00 0.00 0.00 3.87 17.32
p-valuefm ( 0.72) ( 0.00) ( 0.31) ( 0.50) ( 0.70) ( 0.86) ( 0.68) ( 0.12) ( 0.00)
LRs 0.00 4.22 1.09 0.00 0.00 0.00 0.00 3.02 10.45
p-valuefm ( 0.72) ( 0.06) ( 0.32) ( 0.50) ( 0.70) ( 0.86) ( 0.68) ( 0.18) ( 0.00)
LRjw 0.00 3.37 1.04 0.00 0.00 0.00 0.00 2.30 6.82
p-valuejw ( 0.71) ( 0.10) ( 0.33) ( 0.50) ( 0.69) ( 0.84) ( 0.69) ( 0.25) ( 0.01)
LRpm 0.00 2.04 0.34 0.00 0.00 0.00 0.00 1.12 4.20
p-valuepm ( 0.70) ( 0.20) ( 0.49) ( 0.50) ( 0.69) ( 0.84) ( 0.66) ( 0.47) ( 0.05)

Panel C: WLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 3.37 16.82 14.52 0.00 3.40 0.00 16.71 28.67 10.42
p-valuefm ( 0.07) ( 0.00) ( 0.00) ( 0.50) ( 0.07) ( 0.86) ( 0.00) ( 0.00) ( 0.00)
LRs 1.75 4.38 4.22 0.00 3.20 0.00 5.96 6.90 5.05
p-valuefm ( 0.18) ( 0.05) ( 0.05) ( 0.50) ( 0.07) ( 0.86) ( 0.01) ( 0.03) ( 0.03)
LRjw 1.61 2.45 3.02 0.00 3.40 0.00 2.85 3.19 2.46
p-valuejw ( 0.19) ( 0.15) ( 0.10) ( 0.50) ( 0.07) ( 0.84) ( 0.08) ( 0.18) ( 0.13)
LRpm 1.11 0.96 5.22 0.00 2.74 0.00 1.98 7.40 2.06
p-valuepm ( 0.24) ( 0.26) ( 0.03) ( 0.50) ( 0.10) ( 0.84) ( 0.15) ( 0.02) ( 0.15)
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robust predictor of future equity returns. Specifically, instead of eliminating the corresponding

row from the matrix of constraints, we set each element in that row equal to zero. The results are

presented in Table VI in the Appendix. The null of consistency with the ICAPM is rejected in

only 1 of the 54 cases at the 5% level using misspecification-robust standard errors (namely the

FFTD model when using WLS estimation and size and momentum sorted portfolios).7

3.4 Concluding remarks

We develop a multivariate inequality framework for testing the consistency of multifactor asset-

pricing models with the time-series and cross-sectional restrictions imposed by the ICAPM. Our

test is based on results in the statistics literature due to Wolak (1987, 1989) and represents one

of the first applications of Wolak’s methods in empirical finance, alongside the ones in Kan et al.

(2013) and Gospodinov, Kan, and Robotti (2013).

We apply our test to nine multifactor models using two different sets of portfolios as test as-

sets and three alternative estimation schemes. We find little evidence of inconsistency of popular

multifactor models with the restrictions imposed by the ICAPM. Our findings are at odds with

the results in Maio and Santa-Clara (2012) who argue that most models do not satisfy the re-

strictions imposed by the ICAPM, but are in line with Boons (2016) and Barroso et al. (2019)

who use individual stock level evidence to show that most multifactor models are consistent with

an ICAPM interpretation. Interestingly, using our testing framework, we are able to show that

most multifactor models are consistent with the ICAPM restrictions even when portfolios instead

of individual stocks are used in analysis.

In the extant literature the consistency of the models with the ICAPM restrictions is assessed by

eye-balling the signs of the parameter estimates in the time-series and cross-sectional regressions.

We go beyond this practice and propose a multivariate inequality test to assess the consistency

of several multifactor models with the implications of the ICAPM. Specifically, our methodology

accounts for the estimation error in the covariances and for the fact that the consistency of a

multifactor model with the implications of the ICAPM should be evaluated using tests of joint

sign restrictions across factors. We also take seriously the fact that asset-pricing models are only

approximations to reality and are likely to be misspecified. Consistent with this view, we employ

inference methods that are robust to model misspecification, in addition to the traditional methods

that assume that the underlying model is correctly specified.

7When using a Newey and West (1994) automatic lag length selection adjustment all models are found to be
consistent with an ICAPM interpretation.
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Appendix

A.1 Proof of Proposition 1:

The proof relies on the fact that λ̂ is a smooth function of µ̂ and V̂ . Therefore, once we

have the asymptotic distribution of µ̂ and V̂ , we can use the delta method to obtain the

asymptotic distribution of λ̂. Let

ϕ =

 µ

vec(V )

 , ϕ̂ =

 µ̂

vec(V̂ )

 . (A.1)

We first note that µ̂ and V̂ can be written as the generalized method of moments (GMM)

estimator that uses the moment conditions E[rt] = 0(N+K)(N+K+1), where

rt =

 Yt − µ

vec((Yt − µ)(Yt − µ)′ − V )

 . (A.2)

Since this is an exactly identified system of moment conditions, it is straightforward to verify

that under the assumption that Yt is stationary and ergodic with finite fourth moment, we

have8

√
T (ϕ̂− ϕ)

A∼ N(0(N+K)(N+K+1), S0), (A.3)

where

S0 =

∞∑
j=−∞

E[rtr
′
t+j ]. (A.4)

Using the delta method, the asymptotic distribution of λ̂ under potentially misspecified

models is given by

√
T (λ̂− λ)

A∼ N

(
0K ,

[
∂λ

∂ϕ′

]
S0

[
∂λ

∂ϕ′

]′)
. (A.5)

Define Km,n as a commutation matrix (see, for example, Magnus and Neudecker (1999)) such

that Km,nvec(A) = vec(A′) where A is an m×n matrix. In addition, we denote Kn,n by Kn.

Let Θ be an N2 ×N2 matrix such that vec(Σd) = Θvec(Σ).9

8Note that S0 is a singular matrix as V̂ is symmetric, so there are redundant elements in ϕ̂. We could have
written ϕ̂ as [µ̂′, vech(V̂ )′]′, but the results are the same under both specifications.

9Specifically, Θ is a matrix with (i, i)-th element equal to one, where i = 1, 1 + 1(N + 1), 1 + 2(N + 1), . . . , 1 +
(N − 1)(N + 1), and zeros elsewhere.
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(a) The partial derivatives of λ with respect to µ are given by

∂λ

∂µ′f
= 0K×K , (A.6)

∂λ

∂µ′R
= A. (A.7)

It is easy to obtain:

∂vec(VR,f )

∂vec(V )′
= [IK , 0K×N ]⊗ [0N×K , IN ]. (A.8)

For the derivative of λ = AµR with respect to vec(V ), we use the product rule to obtain

∂λ

∂vec(V )′
= (µ′RWVR,f ⊗ IK)

∂vec(H)

∂vec(V )′
+ (µ′RW ⊗H)

∂vec(Vf,R)

∂vec(V )′
. (A.9)

The second term is given by

(µ′RW ⊗H)
∂vec(Vf,R)

∂vec(V )′
= [H, 0K×N ]⊗ [0′K , µ

′
RW ]. (A.10)

For the first term, we use the chain rule to obtain

(µ′RWVR,f ⊗ IK)
∂vec(H)

∂vec(V )′

= (µ′RWVR,f ⊗ IK)
∂vec(H)

∂vec(H−1)′
∂vec(H−1)

∂vec(V )′

= −(µ′RWVR,f ⊗ IK)(H ⊗H)

[
(Vf,RW ⊗ IK)

∂vec(Vf,R)

∂vec(V )′
+ (IK ⊗ Vf,RW )

∂vec(VR,f )

∂vec(V )′

]
= −(λ′ ⊗H) {([0K×K , Vf,RW ]⊗ [IK , 0K×N ])KN+K + [IK , 0K×N ]⊗ [0K×K , Vf,RW ]}

= [H, 0K×N ]⊗ [0′K , −λ′Vf,RW ] + [−λ′, 0′N ]⊗ [0K×K , A]. (A.11)

Combining the two terms, we have

∂λ

∂vec(V )′
= [H, 0K×N ]⊗

[
0′K , e

′W
]
−
[
λ′, 0′N

]
⊗ [0K×K , A] . (A.12)

Using the expression of ∂λ/∂ϕ′, we can simplify the asymptotic variance of λ̂ to

V (λ̂) =

∞∑
j=−∞

E[ht(ϕ)ht+j(ϕ)′], (A.13)
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where

ht(ϕ) =
∂λ

∂ϕ′
rt(ϕ)

= A(Rt − µR) + vec

[0′K , e
′W ][(Yt − µ)(Yt − µ)′ − V ]

 H

0N×K




− vec

[0K×K , A][(Yt − µ)(Yt − µ)′ − V ]

 λ

0N




= (λt − λ) +H(ft − µf )ut −A(Rt − µR)(ft − µf )′λ+AVR,fλ

= (λt − λ) +AGtλ+H(ft − µf )ut. (A.14)

This completes the proof of part (a).

(b) The partial derivatives of λ with respect to µ are the same as in the fixed weighting

matrix case. For the derivative of λ with respect to vec(V ), we use the product rule to

obtain

∂λ

∂vec(V )′
= (µ′RV

−1
R VR,f⊗IK)

∂vec(H)

∂vec(V )′
+(µ′RV

−1
R ⊗H)

∂vec(Vf,R)

∂vec(V )′
+(µ′R⊗HVf,R)

∂vec(V −1
R )

∂vec(V )′
.

(A.15)

The last two terms are given by

(µ′RV
−1
R ⊗H)

∂vec(Vf,R)

∂vec(V )′
= [H, 0K×N ]⊗ [0′K , µ

′
RV
−1
R ], (A.16)

(µ′R ⊗HVf,R)
∂vec(V −1

R )

∂vec(V )′
= −[0′K , µ

′
RV
−1
R ]⊗ [0K×K , A]. (A.17)
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For the first term, we use the chain rule to obtain

(µ′RV
−1
R VR,f ⊗ IK)

∂vec(H)

∂vec(V )′

= (µ′RV
−1
R VR,f ⊗ IK)

∂vec(H)

∂vec(H−1)′
∂vec(H−1)

∂vec(V )′

= −(µ′RV
−1
R VR,f ⊗ IK)(H ⊗H)

[
(Vf,RV

−1
R ⊗ IK)

∂vec(Vf,R)

∂vec(V )′

+ (Vf,R ⊗ Vf,R)
∂vec(V −1

R )

∂vec(V )′
+ (IK ⊗ Vf,RV −1

R )
∂vec(VR,f )

∂vec(V )′

]
= −(λ′ ⊗H)

{(
[0K×K , Vf,RV

−1
R ]⊗ [IK , 0K×N ]

)
KN+K

− [0K×K , Vf,RV
−1
R ]⊗ [0K×K , Vf,RV

−1
R ]

+ [IK , 0K×N ]⊗ [0K×K , Vf,RV
−1
R ]
}

= [H, 0K×N ]⊗ [0′K , −λ′Vf,RV −1
R ]

+ [−λ′, λ′Vf,RV −1
R ]⊗ [0K×K , A]. (A.18)

Combining the three terms, we have

∂λ

∂vec(V )′
= [H, 0K×N ]⊗

[
0′K , e

′V −1
R

]
−
[
λ′, e′V −1

R

]
⊗ [0K×K , A] . (A.19)

Using the expression of ∂λ/∂ϕ′, we can simplify the asymptotic variance of λ̂ to

V (λ̂) =

∞∑
j=−∞

E[ht(ϕ)ht+j(ϕ)′], (A.20)

where

ht(ϕ) =
∂λ

∂ϕ′
rt(ϕ)

= A(Rt − µR) + vec

[0′K , e
′V −1
R ][(Yt − µ)(Yt − µ)′ − V ]

 H

0N×K




− vec

[0K×K , A][(Yt − µ)(Yt − µ)′ − V ]

 λ

V −1
R e




= (λt − λ) +H(ft − µf )ut −A(Rt − µR)(ft − µf )′λ−A(Rt − µR)ut +AVR,fλ

= (λt − λ) +AGtλ+H(ft − µf )ut − (λt − λ)ut. (A.21)
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This completes the proof of part (b).

(c) The partial derivatives of λ with respect to µ are the same as in the fixed weighting

matrix case. For the derivative of λ with respect to vec(V ), we use the product rule to

obtain

∂λ

∂vec(V )′
= (µ′RΣ−1

d VR,f⊗IK)
∂vec(H)

∂vec(V )′
+(µ′RΣ−1

d ⊗H)
∂vec(Vf,R)

∂vec(V )′
+(µ′R⊗HVf,R)

∂vec(Σ−1
d )

∂vec(V )′
.

(A.22)

The last two terms are given by

(µ′RΣ−1
d ⊗H)

∂vec(Vf,R)

∂vec(V )′
= [H, 0K×N ]⊗ [0′K , µ

′
RΣ−1

d ], (A.23)

(µ′R ⊗HVf,R)
∂vec(Σ−1

d )

∂vec(V )′
= −(µ′RΣ−1

d ⊗A)Θ([−β, IN ]⊗ [−β, IN ]). (A.24)

For the first term, we use the chain rule to obtain

(µ′RΣ−1
d VR,f ⊗ IK)

∂vec(H)

∂vec(V )′

= (µ′RΣ−1
d VR,f ⊗ IK)

∂vec(H)

∂vec(H−1)′
∂vec(H−1)

∂vec(V )′

= −(µ′RΣ−1
d VR,f ⊗ IK)(H ⊗H)

[
(Vf,RΣ−1

d ⊗ IK)
∂vec(Vf,R)

∂vec(V )′

+ (Vf,R ⊗ Vf,R)
∂vec(Σ−1

d )

∂vec(V )′
+ (IK ⊗ Vf,RΣ−1

d )
∂vec(VR,f )

∂vec(V )′

]
= −(λ′ ⊗H)

{(
[0K×K , Vf,RΣ−1

d ]⊗ [IK , 0K×N ]
)
KN+K

− (Vf,RΣ−1
d ⊗ Vf,RΣ−1

d )Θ([−β, IN ]⊗ [−β, IN ])

+ [IK , 0K×N ]⊗ [0K×K , Vf,RΣ−1
d ]
}

= [H, 0K×N ]⊗ [0′K , −λ′Vf,RΣ−1
d ]

+ (λ′Vf,RΣ−1
d ⊗A)Θ([−β, IN ]⊗ [−β, IN ])− [λ′, 0′N ]⊗ [0K×K , A].(A.25)

Combining the three terms, we have

∂λ

∂vec(V )′
= [H, 0K×N ]⊗

[
0′K , e

′Σ−1
d

]
− [λ′, 0′N ]⊗ [0K×K , A]− (e′Σ−1

d ⊗A)Θ([−β, IN ]⊗ [−β, IN ]).(A.26)
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Using the expression of ∂λ/∂ϕ′, we can simplify the asymptotic variance of λ̂ to

V (λ̂) =

∞∑
j=−∞

E[ht(ϕ)ht+j(ϕ)′], (A.27)

where

ht(ϕ) =
∂λ

∂ϕ′
rt(ϕ)

= A(Rt − µR) + vec

[0′K , e
′Σ−1
d ][(Yt − µ)(Yt − µ)′ − V ]

 H

0N×K




− vec

[0K×K , A][(Yt − µ)(Yt − µ)′ − V ]

 λ

0N




− (e′Σ−1
d ⊗A)Θvec

[−β, IN ][(Yt − µ)(Yt − µ)′ − V ]

 −β′
IN




= (λt − λ) +H(ft − µf )ut −A(Rt − µR)(ft − µf )′λ

+AVR,fλ− (e′Σ−1
d ⊗A)Θvec(εtε

′
t − Σ)

= (λt − λ) +AGtλ+H(ft − µf )ut −AΨtΣ
−1
d e. (A.28)

The second last equality follows from the first order condition Vf,RΣ−1
d e = 0K . This

completes the proof of part (c).

Note that when the model is correctly specified, we have e = 0N and ut = 0. In this case, we

have

ht(ϕ) = (λt − λ) +AGtλ. (A.29)

This completes the proof of Proposition 1.

A.2 Proof of Proposition 2:

(a) We first derive the asymptotic distribution of

TQ̂ = T (µ̂′RŴ µ̂R − µ̂′RŴ β̂(β̂′Ŵ β̂)−1β̂′Ŵ µ̂R) (A.30)

under H0 : ρ2 = 1, where Ŵ
a.s.−→ W (this includes the known weighting matrix case as

a special case). This can be accomplished by using the GMM results of Hansen (1982).
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Let θ = (θ′1, θ
′
2)′, where θ1 = (α′, vec(β)′)′ and θ2 = γ. Define

gt(θ) ≡

 g1t(θ1)

g2t(θ)

 =

 lt ⊗ εt

Rt − βγ

 , (A.31)

where lt = [1, f ′t ]
′ and εt = Rt − α − βft. When the model is correctly specified, we

have E[gt(θ)] = 0p+N , where p = N(K + 1). The sample moments of gt(θ) are given by

ḡT (θ) =

 1
T

∑T
t=1 g1t(θ1)

1
T

∑T
t=1 g2t(θ)

 . (A.32)

Let θ̂ = (θ̂′1, θ̂
′
2)′, where θ̂1 = (α̂′, vec(β̂)′)′ is the OLS estimator of α and β, and

θ̂2 = γ̂ = (β̂′Ŵ β̂)−1β̂′Ŵ µ̂R (A.33)

is the second-pass CSR estimator of γ. Note that θ̂ is the solution to the following

first-order condition

BT ḡT (θ) = 0p+K , (A.34)

where

BT =

 Ip 0p×N

0K×p β̂′Ŵ

 a.s.−→

 Ip 0p×N

0K×p β′W

 ≡ B. (A.35)

Writing

lt ⊗ εt = vec(εtl
′
t) = (lt ⊗ IN )vec(εt), (A.36)

εt = Rt − α− βft = Rt − (l′t ⊗ IN )θ1, (A.37)

βγ = (γ′ ⊗ IN )vec(β), (A.38)
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we have:

∂g1t(θ1)

∂θ′1
= −ltl′t ⊗ IN , (A.39)

∂g1t(θ1)

∂θ′2
= 0p×K , (A.40)

∂g2t(θ)

∂θ′1
= [0, −γ′]⊗ IN , (A.41)

∂g2t(θ)

∂θ′2
= −β. (A.42)

Let

DT =
∂ḡT (θ)

∂θ′

=

 −
(

1
T

∑T
t=1 ltl

′
t

)
⊗ IN 0p×K

[0, −γ′]⊗ IN −β


a.s.−→

 −E[ltl
′
t]⊗ IN 0p×K

[0, −γ′]⊗ IN −β

 ≡ D. (A.43)

Hansen (1982, Lemma 4.1) shows that when the model is correctly specified, we have:

√
T ḡT (θ̂)

A∼ N(0p+N , [Ip+N −D(BD)−1B]S[Ip+N −D(BD)−1B]′), (A.44)

where

S =
∞∑

j=−∞
E[gt(θ)gt+j(θ)

′]. (A.45)

Using the partitioned matrix inverse formula, it is easy to verify that

E[ltl
′
t]
−1 =

 1 + µ′fV
−1
f µf −µ′fV

−1
f

−V −1
f µf V −1

f

 . (A.46)

135



It follows that

BD =

 −E[ltl
′
t]⊗ IN 0p×K

[0, −γ′]⊗ β′W −H−1

 , (A.47)

(BD)−1 =

 −E[ltl
′
t]
−1 ⊗ IN 0p×K

[−γ′V −1
f µf , γ

′V −1
f ]⊗A −H

 , (A.48)

D(BD)−1B =

 Ip 0p×N

[−γ′V −1
f µf , γ

′V −1
f ]⊗ (IN − βA) −βA

 , (A.49)

IN −D(BD)−1B =

 0p×p 0p×N

[γ′V −1
f µf , −γ′V −1

f ]⊗ (IN − βA) IN − βA

 . (A.50)

We now provide a simplification of the asymptotic distribution of ḡ2T (θ̂). From (A.44),

we have:
√
T ḡ2T (θ̂)

A∼ N(0N , Vq), (A.51)

where

Vq =
∞∑

j=−∞
E[qt(θ)qt+j(θ)

′], (A.52)

and

qt(θ) = [0N×p, IN ][Ip+N −D(BD)−1B]gt(θ)

= −(IN − βA)εtγ
′V −1
f (ft − µf ) + (IN − βA)(Rt − βγ)

= (IN − βA)[Rt − εtγ′V −1
f (ft − µf )]

= (IN − βA)εtyt

= [IN − β(β′Wβ)−1β′W ]εtyt

= W−
1
2 [IN −W

1
2β(β′Wβ)−1β′W

1
2 ]W

1
2 εtyt

= W−
1
2 [IN −W

1
2VR,f (Vf,RWVR,f )−1Vf,RW

1
2 ]W

1
2 εtyt

= W−
1
2PP ′W

1
2 εtyt, (A.53)

where yt = 1− λ′(ft − µf ) = 1− γ′V −1
f (ft − µf ). The fourth equality follows from the

fact that, under H0 : ρ2 = 1, (IN − βA)Rt = (IN − βA)εt. With this expression of qt,

136



we can write Vq as

Vq = W−
1
2PP ′W

1
2SW

1
2PP ′W−

1
2 , (A.54)

where S is the asymptotic covariance matrix of 1√
T

∑T
t=1 εtyt. Having derived the asymp-

totic distribution of ḡ2T (θ̂), the asymptotic distribution of Q̂ is given by

TQ̂ = T ḡ2T (θ̂)′Ŵ ḡ2T (θ)
A∼
N−K∑
j=1

ξjxj , (A.55)

where the xj ’s are independent χ2
1 random variables, and the ξj ’s are the N−K nonzero

eigenvalues of

W
1
2VqW

1
2 = PP ′W

1
2SW

1
2PP ′. (A.56)

Equivalently, the ξj ’s are the eigenvalues of P ′W
1
2SW

1
2P . Since Q̂0

a.s.−→ Q0 > 0, we

have:

T (ρ̂2 − 1) = −TQ̂
Q̂0

A∼ −
N−K∑
j=1

ξj
Q0

xj . (A.57)

This completes the proof of part (a).

(b) The proof uses the same notation and delta method employed in Proposition 1 to obtain

the asymptotic distribution of ρ̂2 as

√
T (ρ̂2 − ρ2)

A∼ N

0,
∞∑

j=−∞
E[ntnt+j ]

 , (A.58)

where

nt =
∂ρ2

∂ϕ′
rt(ϕ). (A.59)

Obtaining an explicit expression for nt requires computing ∂ρ2/∂ϕ′. For the known

weighting matrix case and the estimated GLS and WLS cases, we have

∂ρ2

∂µf
= 0K , (A.60)

∂ρ2

∂µR
= 2Q−1

0 W [(1− ρ2)µR − e]. (A.61)

Equation (A.60) follows because ρ2 does not depend on µf . For (A.61), using the first
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order condition β′We = 0K and letting Q0 = µ′RWµR, we have

∂Q0

∂µR
= 2WµR,

∂Q

∂µR
= 2We. (A.62)

It follows that

∂ρ2

∂µR
= −Q−1

0

∂Q

∂µR
+Q−2

0 Q
∂Q0

∂µR
= −2Q−1

0 We+ 2QQ−2
0 WµR = 2Q−1

0 W [(1− ρ2)µR− e].

(A.63)

The expression for ∂ρ2/∂vec(V )′, however, depends on whether we use a known W or

an estimate of W , say Ŵ , as the weighting matrix. We start with the known weighting

matrix W case. Differentiating Q = e′We with respect to vec(V ), we obtain:

∂Q

∂vec(V )′
= 2e′W

∂(µR − βγ)

∂vec(V )′
= −2e′W

[
(γ′ ⊗ IN )

∂vec(β)

∂vec(V )′
+ β

∂γ

∂vec(V )′

]
. (A.64)

Note that the second term vanishes because of the first order condition β′We = 0K .

Using
∂vec(β)

∂vec(V )′
= [V −1

f , 0K×N ]⊗ [−β, IN ]. (A.65)

for the first term and the fact that β′We = 0K gives

∂Q

∂vec(V )′
= −2e′W

(
[γ′V −1

f , 0′N ]⊗ [−β, IN ]
)

= −2
(

[γ′V −1
f , 0′N ]⊗ [0′K , e

′W ]
)
.

(A.66)

Since Q0 = µ′RWµR does not depend on V , we have:

∂ρ2

∂vec(V )′
= −Q−1

0

∂Q

∂vec(V )′
= 2Q−1

0

[
γ′V −1

f , 0′N

]
⊗
[
0′K , e

′W
]
. (A.67)

Therefore, for the known weighting matrix W case, nt is given by

nt =
∂ρ2

∂ϕ′
rt(ϕ)

= 2Q−1
0 [(1− ρ2)µ′R − e′]W (Rt − µR) + 2Q−1

0 e′W (Rt − µR)(ft − µf )′V −1
f γ

= 2Q−1
0 [−utyt + (1− ρ2)vt]. (A.68)

We now turn to the Ŵ = V̂ −1
R case. Differentiating Q = e′V −1

R e with respect to vec(V ),
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we obtain:

∂Q

∂vec(V )′
= 2e′V −1

R

∂(µR − βγ)

∂vec(V )′
+ (e′ ⊗ e′)

∂vec(V −1
R )

∂vec(V )′

= −2
(

[γ′V −1
f , 0′N ]⊗ [0′K , e

′V −1
R ]
)
− (e′ ⊗ e′)

(
[0N×K , V

−1
R ]⊗ [0N×K , V

−1
R ]
)

= −[2γ′V −1
f , e′V −1

R ]⊗ [0′K , e
′V −1
R ]. (A.69)

Similarly, we have:

∂Q0

∂vec(V )′
= −[0′K , µ

′
RV
−1
R ]⊗ [0′K , µ

′
RV
−1
R ]. (A.70)

It follows that

∂ρ2

∂vec(V )′
= −Q−1

0

∂Q

∂vec(V )′
+Q−2

0 Q
∂Q0

∂vec(V )′

= Q−1
0

[
2γ′V −1

f , e′V −1
R

]
⊗
[
0′K , e

′V −1
R

]
−Q−1

0 (1− ρ2)
[
0′K , µ

′
RV
−1
R

]
⊗
[
0′K , µ

′
RV
−1
R

]
. (A.71)

Therefore, we have:

nt =
∂ρ2

∂ϕ′
rt(ϕ)

= 2Q−1
0 [(1− ρ2)µ′R − e′]V −1

R (Rt − µR) +Q−1
0 e′V −1

R (Rt − µR)[2γ′V −1
f (ft − µf )

+ e′V −1
R (Rt − µR)]−Q−1

0 (1− ρ2)[µ′RV
−1
R (Rt − µR)]2 −Q−1

0 Q+Q−1
0 (1− ρ2)Q0

= Q−1
0 [u2

t − 2utyt + (1− ρ2)(2vt − v2
t )]. (A.72)

Finally, for the WLS case, we can use

∂vec(Σ−1
d )

∂vec(V )′
=
∂vec(Σ−1

d )

∂vec(Σd)′
∂vec(Σd)

∂vec(Σ)′
∂vec(Σ)

∂vec(V )′
= −(Σ−1

d ⊗ Σ−1
d )Θ([−β, IN ]⊗ [−β, IN ]).

(A.73)

and show that

∂ρ2

∂vec(V )′
= Q−1

0

{[
2γ′V −1

f , 0′N

]
⊗
[
0′K , e

′Σ−1
d

]
+
(
e′Σ−1

d ⊗ e
′Σ−1
d

)
Θ ([−β, IN ]⊗ [−β, IN ])

}
−Q−1

0 (1− ρ2)
(
µ′RΣ−1

d ⊗ µ
′
RΣ−1

d

)
Θ ([−β, IN ]⊗ [−β, IN ]) . (A.74)
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It is then straightforward to obtain

nt =
∂ρ2

∂ϕ′
rt(ϕ)

= 2Q−1
0 [(1− ρ2)vt − ut] + 2Q−1

0 utγ
′V −1
f (ft − µf ) +Q−1

0 e′Σ−1
d Diag(εtε

′
t)Σ
−1
d e

−Q−1
0 (1− ρ2)µ′RΣ−1

d Diag(εtε
′
t)Σ
−1
d µR −Q−1

0 Q+Q−1
0 (1− ρ2)Q0

= Q−1
0

[
−2utyt + e′Γte+ (1− ρ2)(2vt − µ′RΓtµR)

]
. (A.75)

This completes the proof of part (b).

(c) We start by rewriting Q0 −Q as

Q0 −Q = µ′RWVR,f (Vf,RWVR,f )−1Vf,RWµR

= λ′(Vf,RWVR,f )λ. (A.76)

The matrix in the middle is positive definite because VR,f is assumed to be of full column

rank. Therefore, the necessary and sufficient condition for Q0 = Q (that is, ρ2 = 0) is

λ = 0K . Note that (A.76) also holds for its sample counterpart. As a consequence, we

can write ρ̂2 as

ρ̂2 = 1− Q̂

Q̂0

=
Q̂0 − Q̂
Q̂0

=
λ̂′(V̂f,RŴ V̂R,f )λ̂

Q̂0

. (A.77)

Under the null hypothesis H0 : λ = 0K , we have:

√
T λ̂

A∼ N(0K , V (λ̂)), (A.78)

where V (λ̂) is the asymptotic variance of λ̂ obtained under the potentially misspecified

model. As Q̂0
a.s.−→ Q0 > 0 and

V̂f,RŴ V̂R,f
a.s.−→ Vf,RWVR,f , (A.79)

it follows that

T ρ̂2 A∼
K∑
j=1

ξj
Q0

xj , (A.80)

where the xj ’s are independent χ2
1 random variables and the ξj ’s are the eigenvalues of

(Vf,RWVR,f )V (λ̂). (A.81)

This completes the proof of part (c).
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Table VI.1
Robust Multiple Sign Restriction Tests of the Models Using the 25 Size and

Book-to-Market Portfolios as Test Assets
Zero restrictions are imposed if the state variables are not robust predictors

The table presents the results of the multiple sign restriction test of nine asset-pricing models for the case
where we impose sign restrictions only if the respective coefficient estimates from the long-horizon predictive
regressions are statistically significant; otherwise a zero restriction is imposed. This is a likelihood ratio test
of the null hypothesis that the models satisfy the sign restrictions placed by the ICAPM H0 : Qλ ≥ 0K .
The models include the ICAPM specifications proposed by Hahn and Lee (2006)(HL), Petkova (2006) (P),
Campbell and Vuolteenaho (2004) (CV), Koijen, Lustig, and Van Nieuwerburgh (2017) (KLVN), the Fama
and French (1993) three-factor model (FF3), the Carhart (1997) model (C), the Pastor and Stambaugh (2003)
model (PS), the Fama and French (1993) three-factor model augmented by TERM and DEF (FFTD), and
the Fama and French (2015) five-factor model (FF5). The models are estimated using monthly excess returns
on the 25 Fama-French size and book-to-market ranked portfolios. The data are from July 1963 to December
2018 (666 observations). We report the values of the likelihood ratio statistics and corresponding p-values
obtained using the Fama and MacBeth (1973) variances under correctly specified models (LRfm and p-
valuefm), the Shanken (1992) and the Jagannathan and Wang (1998) variances under correctly specified
models that account for the EIV problem (LRs and p-values, and LRjw and p-valuejw, respectively), and
our model misspecification-robust variances (LRpm and p-valuejw).

Panel A: OLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 0.30 2.02 0.03 0.03 0.00 0.00 0.23 0.00 13.52
p-valuefm ( 0.66) ( 0.43) ( 0.80) ( 0.82) ( 0.86) ( 0.93) ( 0.79) ( 0.98) ( 0.00)
LRs 0.10 0.49 0.01 0.01 0.00 0.00 0.18 0.00 11.94
p-valuefm ( 0.76) ( 0.76) ( 0.82) ( 0.84) ( 0.86) ( 0.92) ( 0.82) ( 0.98) ( 0.01)
LRjw 0.08 0.50 0.01 0.01 0.00 0.00 0.17 0.00 9.23
p-valuejw ( 0.78) ( 0.76) ( 0.81) ( 0.84) ( 0.85) ( 0.93) ( 0.82) ( 0.98) ( 0.02)
LRpm 0.08 0.30 0.01 0.01 0.00 0.00 0.13 0.00 5.81
p-valuepm ( 0.77) ( 0.83) ( 0.82) ( 0.84) ( 0.85) ( 0.91) ( 0.84) ( 0.99) ( 0.10)

Panel B: GLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 0.00 10.58 1.26 0.00 0.00 0.00 0.00 0.00 14.15
p-valuefm ( 0.86) ( 0.01) ( 0.45) ( 0.88) ( 0.86) ( 0.93) ( 0.93) ( 0.98) ( 0.00)
LRs 0.00 3.85 0.75 0.00 0.00 0.00 0.00 0.00 12.58
p-valuefm ( 0.86) ( 0.22) ( 0.57) ( 0.88) ( 0.86) ( 0.92) ( 0.93) ( 0.98) ( 0.01)
LRjw 0.00 3.77 0.93 0.00 0.00 0.00 0.00 0.00 8.45
p-valuejw ( 0.86) ( 0.23) ( 0.52) ( 0.88) ( 0.85) ( 0.92) ( 0.93) ( 0.98) ( 0.03)
LRpm 0.00 1.66 0.48 0.00 0.00 0.00 0.00 0.00 5.23
p-valuepm ( 0.85) ( 0.51) ( 0.63) ( 0.88) ( 0.85) ( 0.91) ( 0.93) ( 0.99) ( 0.13)

Panel C: WLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 0.00 0.18 0.02 0.00 0.00 0.00 0.00 0.00 13.17
p-valuefm ( 0.86) ( 0.85) ( 0.82) ( 0.88) ( 0.86) ( 0.92) ( 0.93) ( 0.98) ( 0.00)
LRs 0.00 0.06 0.01 0.00 0.00 0.00 0.00 0.00 11.76
p-valuefm ( 0.86) ( 0.90) ( 0.83) ( 0.88) ( 0.85) ( 0.92) ( 0.93) ( 0.98) ( 0.01)
LRjw 0.00 0.06 0.01 0.00 0.00 0.00 0.00 0.00 8.64
p-valuejw ( 0.86) ( 0.90) ( 0.82) ( 0.88) ( 0.85) ( 0.92) ( 0.93) ( 0.98) ( 0.03)
LRpm 0.00 0.05 0.01 0.00 0.00 0.00 0.00 0.00 5.50
p-valuepm ( 0.86) ( 0.91) ( 0.83) ( 0.88) ( 0.85) ( 0.91) ( 0.93) ( 0.99) ( 0.11)
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Table VI.2
Robust Multiple Sign Restriction Tests of the Models Using the 25 Size and

Momentum Portfolios as Test Assets
Zero restrictions are imposed if the state variables are not robust predictors

The table presents the results of the multiple sign restriction test of nine asset-pricing models for the case
where we impose sign restrictions only if the respective coefficient estimates from the long-horizon predictive
regressions are statistically significant; otherwise a zero restriction is imposed. This is a likelihood ratio test
of the null hypothesis that the models satisfy the sign restrictions placed by the ICAPM H0 : Qλ ≥ 0K .
The models include the ICAPM specifications proposed by Hahn and Lee (2006)(HL), Petkova (2006) (P),
Campbell and Vuolteenaho (2004) (CV), Koijen, Lustig, and Van Nieuwerburgh (2017) (KLVN), the Fama
and French (1993) three-factor model (FF3), the Carhart (1997) model (C), the Pastor and Stambaugh (2003)
model (PS), the Fama and French (1993) three-factor model augmented by TERM and DEF (FFTD), and
the Fama and French (2015) five-factor model (FF5). The models are estimated using monthly excess returns
on the 25 Fama-French size and book-to-market ranked portfolios. The data are from July 1963 to December
2018 (666 observations). We report the values of the likelihood ratio statistics and corresponding p-values
obtained using the Fama and MacBeth (1973) variances under correctly specified models (LRfm and p-
valuefm), the Shanken (1992) and the Jagannathan and Wang (1998) variances under correctly specified
models that account for the EIV problem (LRs and p-values, and LRjw and p-valuejw, respectively), and
our model misspecification-robust variances (LRpm and p-valuejw).

Panel A: OLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 2.49 25.48 20.69 0.00 6.50 0.00 30.94 35.65 11.73
p-valuefm ( 0.21) ( 0.00) ( 0.00) ( 0.88) ( 0.03) ( 0.93) ( 0.00) ( 0.00) ( 0.01)
LRs 0.79 5.21 3.59 0.00 5.98 0.00 4.65 5.49 5.20
p-valuefm ( 0.50) ( 0.12) ( 0.15) ( 0.88) ( 0.04) ( 0.93) ( 0.11) ( 0.12) ( 0.13)
LRjw 0.67 2.78 2.52 0.00 5.91 0.00 1.99 2.53 2.45
p-valuejw ( 0.52) ( 0.33) ( 0.25) ( 0.88) ( 0.04) ( 0.92) ( 0.35) ( 0.39) ( 0.39)
LRpm 0.50 2.39 4.88 0.00 3.48 0.00 3.31 4.05 1.84
p-valuepm ( 0.56) ( 0.37) ( 0.09) ( 0.88) ( 0.12) ( 0.92) ( 0.21) ( 0.21) ( 0.49)

Panel B: GLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 0.00 9.83 1.14 0.00 0.00 0.00 0.00 3.87 17.32
p-valuefm ( 0.86) ( 0.02) ( 0.48) ( 0.88) ( 0.85) ( 0.93) ( 0.92) ( 0.23) ( 0.00)
LRs 0.00 4.22 1.09 0.00 0.00 0.00 0.00 3.02 10.45
p-valuefm ( 0.86) ( 0.19) ( 0.49) ( 0.88) ( 0.85) ( 0.93) ( 0.92) ( 0.31) ( 0.01)
LRjw 0.00 3.37 1.04 0.00 0.00 0.00 0.00 2.30 6.82
p-valuejw ( 0.86) ( 0.26) ( 0.50) ( 0.88) ( 0.85) ( 0.92) ( 0.92) ( 0.42) ( 0.07)
LRpm 0.00 2.04 0.34 0.00 0.00 0.00 0.00 1.12 4.20
p-valuepm ( 0.85) ( 0.44) ( 0.68) ( 0.88) ( 0.85) ( 0.92) ( 0.92) ( 0.65) ( 0.20)

Panel C: WLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 3.37 16.82 14.52 0.00 3.40 0.00 16.71 28.67 10.42
p-valuefm ( 0.13) ( 0.00) ( 0.00) ( 0.88) ( 0.13) ( 0.93) ( 0.00) ( 0.00) ( 0.01)
LRs 1.75 4.38 4.22 0.00 3.20 0.00 5.96 6.90 5.05
p-valuefm ( 0.30) ( 0.17) ( 0.12) ( 0.88) ( 0.14) ( 0.93) ( 0.06) ( 0.06) ( 0.14)
LRjw 1.61 2.45 3.02 0.00 3.40 0.00 2.85 3.19 2.46
p-valuejw ( 0.31) ( 0.37) ( 0.20) ( 0.88) ( 0.13) ( 0.92) ( 0.25) ( 0.30) ( 0.39)
LRpm 1.11 0.96 5.22 0.00 2.74 0.00 1.98 7.40 2.06
p-valuepm ( 0.40) ( 0.62) ( 0.08) ( 0.88) ( 0.18) ( 0.92) ( 0.36) ( 0.05) ( 0.45)
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