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Abstract
There is an increasing likelihood that governments of major economies will act within the
next decade to reduce greenhouse gas emissions, probably by intervening in the fossil fuel
markets through taxation or cap & trade mechanisms (collectively “carbon pricing”). We
develop a model to capture the potential impact of carbon pricing on fossil fuel stocks, and
use it to inform Bayesian portfolio construction methodologies, which are then used to create
what we call Smart Carbon Portfolios. We find that investors could reduce ex-post risk by
lowering the weightings of some fossil fuel stocks with corresponding higher weightings
in lower-risk fossil fuel stocks and/or in the stocks of companies active in energy efficiency
markets. The financial costs of such de-risking strategy are found to be statistically negligible
in risk-return space. Robustness of the results is explored with alternative approaches.
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1 Introduction

In recent years the challenge posed by climate change caused by the emission of greenhouse
gases (GHGs) from human activity has risen rapidly up the agendas of policymakers world-
wide (e.g., Carney 2015; Gao 2016). From the late 1980s, some of these decisionmakers have
expressed concern over the potential consequences of significant global temperature rise and
associated climate instability. This development can be attributed to the increased robustness
of statements from the scientific community on this topic, including (i) the potential magni-
tude and timeframes of climate change, (ii) the deepening evidence base that the change is
caused by human activity rather than natural effects such as solar activity or volcanoes,1 (iii)
the scale of the potential impact on society, and (iv) the existence of tipping points leading to
runaway changes that could make human existence impossible (IPCC 2014). These factors
plus others, such as pressure from “third sector” groups and indications that some leading
corporations are able to supply the products and services to help mitigate climate change,
have spurred policy makers into action to reduce GHGs.2

There is now widespread agreement that climate change risks can be segmented into (a)
the physical risks posed for example by different weather patterns and shifting climatic belts
(Physical Risk), and (b) the transition risks arising from society’s response to adapt to phys-
ical changes and to mitigate further change (Transition Risk). Those investors with large,
complex portfolios (institutional investors) typically manage risk through well-established
mechanisms, including asset selection, diversification, insurance and liquidity (e.g., Gründl
et al. 2016). Climate change poses particular challenges for some of these investors,3 poten-
tially rendering well-established risk management mechanisms partly or fully ineffective.
On the other hand, the potential mitigating factors, including government policy responses,
changes in the behaviour of individuals, and the development and deployment of technolo-
gies that reduce impact, are poorly understood (see Field 2014; IPCC 2015). Furthermore,
the long-term availability of insurance and other risk pooling mechanisms is uncertain4 (e.g.,
IAIS 2018). These challenges are exacerbated by the rising exposure taken by many insti-
tutional investors to real assets, i.e., those for which there is typically no liquid market for
sale.

Many institutional investors who are analysing this issue are questioning whether these
risks are already discounted in current valuations (Andersson et al. 2016; Daniel et al. 2016).
There is growing empirical evidence that this is indeed not the case. For example, Hong et al.
(2016) find that trends in droughts that are exacerbated by global warming are not priced in
the valuations of food companies. Choi et al. (2018) find that, while retail investors seem to
sell high-emission firms and buy low-emissions firms in response to systematically abnormal

1 In some parts of the world, weather patterns have begun to deviate from historical trends and are only
statistically consistent with climate models that incorporate GHGs linked to human activity (see Anderson
et al. 2016; Bader et al. 2008; Shiogama et al. 2016; Stocker 2014).
2 A notable example is represented by the Paris Agreement signed on April 22, 2016.
3 Investors who care about climate change risks may do so for financial and/or non-financial reasons. The
former include straded asset risk (e.g., Caldecott et al. 2015; Simm et al. 2016), the latter reputation, ethical
considerations or fiduciary duties (e.g., Krüger et al. 2018; Röell 2019).
4 Financial innovation has been very successful in reshaping the way in which some long-term risks, such as
longevity and morbidity, can be more efficiently managed by individuals and transferred between insurance
and capital market participants (e.g., Biffis and Blake 2013, 2014), but progress in the area of climate risks
has been slow (see Biffis and Chavez 2017; Chavez et al. 2018, for some examples).
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temperatures,5 institutional investors’ portfolio decisions are instead largely unaffected. In a
survey of institutional investors6 Krüger et al. (2018) find that respondents believe that equity
valuations do not fully capture the risks of climate change, the oil sector being perceived as the
most overvalued. Surprisingly, they also find that, among investors who consider stranded
asset risk7 as being relevant for climate change risk management, only 25% believe that
stranded asset risk is very high for coal producers. This all suggests that market participants
may be relatively inexperienced in appreciating climate change risks and their management.

Institutional investors are exposed to a combination of Physical and Transition Risk via
their holdings and are deploying different strategies to manage Transition Risk in particular
(e.g., Mercer 2015; Schroders 2016). A frequently cited example is “divestment”, particu-
larly the sale of a material percentage of energy stocks with redeployment of capital across
the wider portfolio. Although reducing Transition Risk, potentially significantly, this strategy
typically raises additional issues (e.g., Litterman 2015; Bessembinder 2016), such as a reduc-
tion in dividend streams received and in the exposure of the portfolio to energy prices, which
historically have often been a positive driver of portfolio returns. A more nuanced strategy
based on relative Transition Risk across a portfolio of energy stocks uses “carbon footprints”
to inform portfolio changes (e.g., Krüger et al. 2018; Andersson et al. 2016). However, the
simple idea that a high carbon footprint implies a high level of financial risk has two material
flaws: (i) a company’s carbon footprint is generally based on current emissions data, while its
equity valuation is based on an aggregated view of the company’s future financial prospects,
for example its cash flow, and (ii) although a company’s carbon footprint may be correlated
with its exposure to rising costs linked to climate change, for example taxes on fossil fuels,
the footprint takes no account of the company’s pricing power, i.e., its ability to pass on cost
increases to its customers (e.g., Simm et al. 2016).

This paper presents an alternative approach that can be used by institutional investors to
assess and manage Transition Risk, while also taking account of changing information on
risk. A key benefit of our approach is that it uses some of the standard tools of investment
management, with a particular focus on the potential for certain risk factors to impact a
company’s financial prospects. The approach is based on fivemain premises: (i) at the present
time, institutional investors can cost-effectivelymanage Physical Risk through a combination
of diversification and asset selection (including asset level insurance), so the analysis and
recommendations are limited to Transition Risk; (ii) the modelling of Transition Risk should
focus on thepotential impact on futurefinancial returns of companies operating in sectorswith
weak pricing power, such as Energy, Utilities and BasicMaterials; (iii) an appropriatemethod
formodelling/flexing TransitionRisk is scenario analysis of the impact of Carbon Prices (e.g.,
World Bank 2017) on future corporate cash flows, translated into expected risk exposure of
individual stocks; (iv) the expected risk exposure for each stock represents a pricing anomaly
in today’s asset prices and can inform an optimisation exercise; (v) the optimised portfolio can
be updated periodically to reflect new risk data, particularly the likelihood of Carbon Prices
being implemented. We develop the portfolio construction framework within the standard
mean-variance asset allocation model, and decide to focus on companies engaged in the
exploration and production of fossil fuel assets (henceforth E&P firms). Application of the

5 A recent strand of literature links personal experience of abnormal termperatures with increased perception
of climate risk in the US (see Akerlof et al. 2013; Myers et al. 2013; Zaval et al. 2014).
6 Although the survey may arguably be biased toward investors with a high awareness of cimate risk, we find
the results particularly telling.
7 Stranded asset risk is the risk that certain assets become uneconomic (firms are unable to recover their
investment cost) due to Transition Risks such as taxation of fossil fuel supply or consumption (Caldecott et al.
2015; Krüger et al. 2018).
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framework to a broader set of firms, as per point (ii) above, is left for further research. We
use Bayesian and quasi-Bayesian approaches to build what we call Smart Carbon Portfolios
(SCPs), and show how they can allow investors to hedge against the transition to a carbon
pricing state without incurring material ex-ante efficiency costs. In particular, we show how
some of the proposed portfolio allocations are statistically indistinguishable ex-ante (in risk-
return and portfolio weight space) from relevant portfolio benchmarks. In general, we find
that naive divestment is dominated by strategies exploiting the cross-sectional heterogeneity
of the E&P sector’s exposure to carbon pricing.

The paper is organized as follows. The next section introduces the carbon pricing sce-
narios methodology and discusses it within the standard mean-variance portfolio selection
framework. Section 3 introduces the Bayesian approach to portfolio construction, providing
in turn a parameterization that can be understood in terms of an asset manager’s views, in
the spirit of the Black and Litterman (1992) approach (henceforth BL approach). Section 4
shows how the methodology can be used to build SCPs, and provides a number of examples.
In Sect. 5, we discuss further extensions and refinements to assess the robustness of our
findings. Finally, Sect. 6 concludes. An appendix provides further technical details on the
portfolio construction methodology.

2 Carbon pricing scenarios approach

Consider the stylized case of twopossible states of theworld associatedwith different efficient
frontiers (see Fig. 1 for an example). A mean-variance investor with access to a technology
forecasting the likelihood of state transitions could (i) invest according to the single frontier
obtained ex-ante by using the unconditional first two moments implied by the conditional
moments, given the probability of state transition occurrence, or (ii) time the transition to the
new state by rebalancing the portfolio only in response to a high enough probability of state
transition. It is well know that in theory approach (ii) is able to exploit an investment opportu-
nity set dominating the investment opportunity set offered by the single frontier delivered by
approach (i) (see Clarke and de Silva 1998). Ang and Bekaert (2004), for example, show how
a regime switching model can be used to rebalance an investor’s portfolio when a transition
to a bear market state is likely to occur. In a similar vein, Avramov and Wermers (2006) doc-
ument the out-of-sample performance of some predictability-based strategies. In practice,
however, implementation of any model rests on estimation of the relevant parameters from
historical data, so that considerable implementation challenges arise due to sampling error
and the possibility of model mis-specification.

Let us recast now the considerations above in the context of interest: we regard the current
state as being the “business as usual” state, the alternative state being instead characterized
by the introduction of carbon pricing and hence referred to as “carbon pricing state”. We take
the perspective of investors who think that the possibility of a switch to the carbon pricing
state is not fully priced in currrent stock market valuations,8 and that the new state realization
will likely lead to abrupt repricing of assets instead of smooth transition to a new equilibrium.
This view is supported by the limited awareness of climate change risk among institutional
investors, as documented for example in Andersson et al. (2016), as well as the empirical
evidence on the inefficient pricing of risks brought on or exacerbated by climate change (see
Hong et al. 2016) or the survey results presented in Krüger et al. (2018). Investors sharing this

8 As long as information on the new state is not revealed smoothly, the approach is also relevant when the
possibility of a switch to the carbon pricing state is fully priced.
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Fig. 1 Efficient frontiers in the current (business as usual) state and in the carbon pricing state. In addition to
the state-dependent frontiers, we plot the ex-ante frontier obtained by applying the methodology of Sect. 3

view would likely recognize the difficulty of timing the transition to the carbon pricing state,
and hence prefer approach (i) to the risk of mis-timing the rebalancing of their portfolios
and being exposed to a potentially disruptive price discovery process. We therefore explore
the implementation of approach (i), informed by a probabilistic representation of carbon
state transitions, and assess the extent of any efficiency losses, weighing them against the
expected gains frommonetization of climate change riskmispricing andmitigation of the risk
originating from a state transition. In the next section, we present a methodology to quantify
the cross-sectional impact of such a transition, conditional on our views on the timing and
magnitude of carbon pricing. We then introduce a term structure of probabilities allowing
us to build the relevant ex-ante efficient frontiers and understand the portfolios supporting
them.

2.1 Oil reserves and carbon pricing state transition

For simplicity, we assume that the expected effect of all drivers of oil supply and demand,
except climate change policy, is currently fully reflected in the forward price curves for oil,
and that climate change risk can be captured by the analysis of a few fundamental issues
illustrated in Fig. 3 (Simm et al. 2016). To fix ideas, we think of a one-off carbon tax
introduced by governments and resulting in the transition to a new equilibrium as depicted
in Fig. 3. There are three likely effects to consider: (i) an increase in the price of oil paid by
consumers; (ii) a reduction in the wholesale price of oil received by producers; and (iii) a
reduction in oil consumption, potentially rendering those assets with a high marginal cost of
production “stranded” (e.g., Caldecott et al. 2015). In line with Simm et al. (2016), given the
inherent volatility of the price of oil and the relatively strong lobbying power of oil producers,
we consider effect (iii) to be the most significant.

To determine the impact of carbon pricing on E&P stocks we analyse the forward pro-
duction curves9 of E&P companies within the MSCI World Index. An example from an
anonymized company is depicted in Fig. 2. The chart reports the oil reserves, quantified in
“barrel of oil equivalent” (BOE) terms, available to the firm at future dates. Different oil
reserves are characterized by different break-even oil prices reflecting heterogeneous pro-

9 We are grateful to Carbon Tracker for providing this information.

123



852 Annals of Operations Research (2021) 299:847–871

Fig. 2 Forward production data for an anonymized entity labelled “Company 1”. The chart depicts the oil
reserves, quantified in barrel of oil equivalent (BOE) terms, available in different future years between 2020
and 2025. Different oil reserves are characterized by different break-even oil prices. For example, deepwater
and ultra-deepwater reserves can have a significant proportion of their break-even prices above $150, whereas
tight liquids reserves can have a substantial portion of their breakeven price distribution below a level of $80.
The particular example depicted here shows that Company 1 hasmost of its oil reserves with a break-even price
below $60, and that, for example, reserves with a $15–20 break-even price bracket are expected to decrease
during the period 2020–2025

duction costs. For example, deepwater and ultra-deepwater reserves can have a significant
proportion of their break-even prices above $150, whereas tight liquids reserves can have a
substantial portion of their breakeven price distribution below the $80 level. Figure 2 shows,
for example, a company with 117m BOE reserves in the $55–60 break-even bracket in year
2020. For a benchmark oil price of (say) $60 those reserves represent 11.98% of the “prof-
itable reserves” over the time period 2020–2025.

For given forward production curve, we determine the impact of carbon pricing by using
a simple supply and demand model allowing us to quantify a company’s revenue in different
carbon pricing states, where the difference in states reflects various assumptions on the timing
and magnitude of the envisaged carbon tax. By introducing a term structure of probabilities
for the carbon pricing state occurrence, we can then quantify the ex-ante pricing implications
via the discounted cashflow approach discussed in the next section. For the examples of
Sect. 4.1, we use the 36 scenarios set out in Table 1 and assume an 85%cumulative probability
of global carbon price ranging between $10 per tonne and $60 per tonne of CO2 between
2020 and 2025. In particular, we consider the introduction of carbon pricing in any given
year between 2020 and 2025. The probability of carbon pricing not being implemented is
assumed to be 15%. The scenario probabilities, as well as the scenarios themselves, are
subjective, and can of course be readily adjusted in response to market-implied expectations
of future oil prices or any other information an investor might find valuable. We abstract
away from trying to anticipate any changes in companies’ production strategies, the rationale
being that such plans can be adjusted only slowly due to the significant scale and complexity
of operations.
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Table 1 Carbon pricing scenarios probability table: unconditional probabilities by timing of introduction
(calendar year) and magnitude ($ per ton of CO2), under the assumption that the probability of carbon pricing
not being introduced is 15%

$10 (%) $20 (%) $30 (%) $40 (%) $50 (%) $60 (%)

Year 2020 4 4 3 2 1 1

2021 3 3 3 3 1 1

2022 2 3 4 3 1 1

2023 1 2 4 4 2 1

2024 1 1 3 4 3 2

2025 1 1 2 4 4 2

Fig. 3 Simple supply-demand diagram for a fossil fuel sector (e.g., crude oil) taken from Simm et al. (2016).
The x-axis reports assets with different volumes and marginal costs of production: to fix ideas, Middle Eastern
oil is likely to be to the left of the curve, while Arctic deep sea reserves will likely be to the right. Drawing
a demand curve gives the volume consumed by the industry, V0, and the market price P0 which is both paid
by consumers and received by suppliers. Considering now one type of carbon pricing, a tax T imposed by
the government on the industry, raises the supply curve, which now intersects with the demand curve at a
new point. The volume consumed drops to V1, while consumers pay P1 but suppliers receive only P2. Assets
represented by bars between V0 and V1 become stranded. See Simm et al. (2016) for further details

2.2 A simple approach to stock price impact

Let us denote by α j the carbon tax (in $ per ton of CO2) that will be implemented at time Tj

with probability π j (with j = 1, . . . ,m), the current time being T0 = 0. Let us consider the
global oil price and production curves, as illustrated in Fig. 3. Focusing on a single future
date for simplicity, the introduction of a carbon tax would make the pre-tax equilibrium
(P∗, V ∗) switch to a post-tax equilibrium (P

∗
, V

∗
). We compute the post-tax equilibrium

point by using a first-order approximation for both the supply and the demand curve.We then
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use the company-specific forward production curves discussed in the previous section (see
Fig. 2) to determine how the transition to a new equilibrium will affect a generic company
i’s revenue. For ease of notation and analysis, we interpolate the information contained in
forward production planswith a smooth curve giving oil reserves volume and cost information
denoted by V i

h, j andCh, j , respectively, where the oil reserve index h ∈ R j lives in a compact
subset R j of R. The revenue generated by each company i’s reserve, after carbon tax α j is
introduced at time Tj , is assumed to be given by

REV
i
h, j =

{
V i
h, j (P

∗
j − α j ) for h : Ch, j ≤ P

∗
j

0 for h : Ch, j > P
∗
j ,

meaning that unprofitable reserves simply become “stranded”. Hence, the change in revenue
for any given company due to carbon pricing in year Tj is given by

�REV i
j =

∫
R j

(
REV

i
h, j − REV i

h, j

)
dh,

where we use the notation REV for pre-carbon-tax revenue. We can then consider the entire
term structure of production curves, quantify the change in revenue at different horizons, and
then compute the overall change in expected free cashflows, E[�FCFi ], by NPV-ing the
future expected changes in free cash flows at different horizons:

E[�FCFi ] =
∑
j

p j × �FCFi
j × (1 + ρi )−Tj ,

where we have used a constant weighted average cost of capital (WACC) approach, with ρi

denoting theWACCof company i (e.g., Brealey et al. 2012). Finally, wemeasure E[�FCFi ]
relative to a baseline�FCF

i
computed via aDCF approachwith constant growth rate gi , and

use the relative change, %E[�FCFi ], as a proxy for the expected change in enterprise value.
Using information on leverage, we recover the percentage change in equity value (market

capitalization) from the formula
[
(1 + %E[�FCFi ]) − DEi

] (
1 − DEi

)−1
, where DEi

denotes the debt-to-equity ratio of company i (e.g., Brealey et al. 2012).

2.3 Carbon pricing impact results

By applying the methodology outlined in the previous sections, we are able to obtain the
results illustrated in Fig. 4, which reports the extent of repricing implied by our probabilistic
scenario analysis of E&P stocks. Equivalently, it can be understood as the spreads that a
suitably constructed portfolio should be able to earn over time on themispriced stocks, should
a state transition occur. The bottom panel of Fig. 4 disaggregates the extent of mispricing
within the E&P sector. We cluster E&P stocks into eight groups (labelled from A to I),
depending on the severity of their exposure to carbon pricing. In line with our discussion
of Fig. 3, we find that companies operating assets at the higher-cost end of the production
curve are more likely to experience a material reduction in output, should carbon pricing be
implemented. Group E, corresponding to coal stocks, and group I, corresponding to oil sands,
are both significantly exposed to carbon pricing. The degree of mispricing is negligible for
group A, which is therefore not reported in the picture and ignored in the following analysis.
Table 2 provides some details on total and average market capitalization of the firms within
groups B to I. The findings suggest that there is considerable cross-sectional heterogeneity
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Fig. 4 Mispricing of EE and E&P stocks (left panel), and cross-sectional disaggregation of views within
the E&P sector (right panel). E&P stocks are clustered into eight groups, depending on the severity of their
exposure to carbon pricing. Groups are labeled from A to I. Group A is not reported as the impact of carbon
pricing is found to be negligible. Group E corresponds to coal stocks, group I to Oil Sands. Mispricing is
expressed in terms of average stock depreciation (% p.a.) across carbon pricing scenarios

Table 2 Breakdown of E&P
stocks by groups B to I. Group E
stands for Coal producers, group
I for Oil Sands

Group Total market cap
($m)

Average market
cap ($m)

Energy reserves
(BOE m)

B 1,140,097.57 190,016.26 12781.97

C 284,577.02 142,288.51 9607.33

D 535,240.68 17,265.83 1329.37

E 4, 166.60 4,166.60

F 68,940.73 68,940.73 5038.00

G 12,891.96 12,891.96 2152.00

H 224,187.63 28,023.45 1608.85

I 113,864.92 16,266.42 4001.90

Total 2,383,967.11 36519.43

Total and average market capitalization (in million USD), as well as
energy reserves (in million BOE), are as of May 8, 2019

in exposure to carbon pricing among E&P firms, which we will exploit in the portfolio
construction discussed in the next section.

3 Portfolio constructionmethodology

Weconsider portfolio constructionwithin the standardmean-variance framework.Thenatural
way to integrate views on carbon pricing into our asset allocation is via Bayesian methods
(Barry 1974; Klein and Bawa 1976). We consider a market with n risky assets with Normal
i.i.d. returns {Rt }t=1,...,S , where Rt = (R1,t , . . . , Rn,t )

T denotes the vector of random returns
at each time t ≥ 0. Let μ ∈ R

n and � ∈ R
n×n denote the vector of mean returns and

the variance-covariance matrix, respectively. Mean-variance optimization seeks portfolio
weights w∗ = (w∗

1, . . . , w
∗
n)

T solving the following problem (e.g., Meucci 2009; Lai et al.
2011; Roncalli 2014):

{
minw∈W 1

2σ
2
p := 1

2w
T�w

s.t . wTμ = μp,
(3.1)
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for fixed target level of expected portfolio return μp > 0 and admissible set of portfolio
allocationsW . The latter can include constraints such as full investment (w�1 = 1), aswell as
long-only (w ≥ 0) or capped (e.g.,wi ∈ [0, ci ], for ci > 0) allocations. The efficient frontier
can be traced by letting μp vary above μgmvp , the expected return of the global minimum
variance portfolio.10 The problem can equivalently be formulated in terms of expected return
maximization for given level of acceptable portfolio risk level σp . Alternatively, one can
address the risk-return trade-off directly and solve the minimization problem

min
w∈W α

√
wT�w − (1 − α)wTμ, (3.2)

where the coefficient α can be made vary between zero and one to trace the entire frontier.
An important challenge in solving the optimization problems above is that the parameters

μ and � are unknown and need to be estimated (see Broadie 1993, for a discussion of
true vs. estimated frontiers). An additional challenge is represented by the introduction of
an asset manager’s views on specific assets. A common problem arises in this case: it is not
immediately obvious how to formalize amanager’s views, as any changes in any stock’s input
parameters may result in dramatic variations in the overall portfolio allocation, due to the
sensitivity of the optimizer to input parameters (Best and Grauer 1991; Chopra and Ziemba
2013) and the degree of comovement channeled by the variance-covariance matrix (Black
and Litterman 1992; Satchell and Scowcroft 2000; Cheung 2010). A tractable approach to
addressing the issue of unknownparameters is Bayesian analysis, whereas the quasi-Bayesian
BL approach was designed exactly to address the problem of integrating a manager’s views
in portfolio construction. In the following, we will rely on a parameterization aligning the
two approaches and hence addressing both sets of issues simultaneously. As a by-product,
the BL approach will allow us to to translate our scenarios into expected absolute/relative
returns from trading strategies or “view portfolios”. Moreover, it will allow us to interpret the
resulting optimal allocations in terms of departures from a benchmark, such as the CAPM
equilibrium model. For robustness, we discuss refinements and extensions in Sect. 5.

Given our working assumptions on returns, in the Bayesian approach it is convenient to
assign the pair (μ, �) a prior joint distribution of Normal InverseWishart (NIW) type (e.g.,
Meucci 2009; Lai et al. 2011),

(μ, �) ∼ NIW(μ0, d0, �0, ν0). (3.3)

After taking into account the return observations {Rt }t=0,...,T , the above leads to a posterior
distribution (i.e., a time-T conditional distribution updated according to Bayes rule) which
is also of NIW type:

(μ, �)|R1, . . . , RT ∼ NIW(μ1, d1, �1, ν1),

with the parameters μ1, d1, �1, ν1 given explictly in the “Appendix”. It is then natural to
solve the optimization problem by using the expectations of the parameters μ, � under the
posterior distribution, which are given as follows (e.g., Lai et al. 2011)11:

μ̂b = βμ0 + (1 − β)μ̂, (3.4)

�̂b = γ�0 + (1 − γ )�̂ + βγ (μ0 − μ̂)(μ0 − μ̂)T, (3.5)

10 The structure of the global minimum variance portfolio can be derived explicitly and is given by wgmvp =
�−11(1T�−11); see Lai et al. (2011), for example.
11 This can be shown to be equivalent to shrinkage estimators, and hence mean-square error minimization.
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with β = d0/d1, γ = T /ν1, and where μ̂ and �̂ denote the sample return mean and
variance-covariance matrix, respectively, which under our assumptions can equivalently be
seen as maximum likelihood estimates of the relevant parameters. Theymay also be regarded
as method-of-moments estimates without Normality, but with the assumption of weak sta-
tionarity of returns. In expression (3.4), we recognize the familiar structure of shrinkage
estimators, in that the Bayesian updating procedure shrinks the sample mean, μ̂, towards the
prior estimate, μ0. Similar considerations apply to the variance-covariance matrix, with the
addition of a contribution from the uncertainty in mean returns, as captured by the last term
in expression (3.5).

The Bayesian setting offers a probabilistically coherent way of introducing our views into
the specification of market parameters via the prior distribution. However, we would like
now to express our views in terms of trading strategies capturing the gains expected to be
delivered by our views. We adopt the BL approach, and as customary in this setting, we
express our absolute or relative forecasts on individual assets via the equation

Q = Pμ + ε,

where Q ∈ R
k is the vector of expert forecasts on returns, P ∈ R

k×n is the pick matrix
listing the trading strategies implementing our views, and ε is an error term uncorrelated
with μ and distributed according to ε ∼ N (0, (1 − τ)�), with � = T−1P�̂PT (see the
“Appendix” for details). A positive value Pi, j > 0 in P , for example, represents a long
position implemented with a portfolio weight Pi, j in asset j according to strategy i . We
assume that P does not contain redundant forecasts, and in particular that it has full rank
k ≤ n. The parameter τ ∈ [0, 1] can be used to fine tune the confidence we have in our
forecasts, with τ approaching one capturing the case in which we have full confidence in
them, and τ approaching zero the case in which we have no more confidence than what
market data suggest. We note that the parameterization we used is slightly different from the
canonical BLmodel, but provides a more intuitive interpretation of the parameter τ along the
lines of the sample theoretical approach of Mankert (2006). According to the BL approach,
for given vector of forecasts q (i.e., conditionally on Q = q), the key parameters of the
optimization problem are given as follows:

μBL = μ̂ + τK (q − μ̂), �BL = �̂, (3.6)

with12 K := T−1�̂PT
(
PT−1�̂P�)−1

P and q is the vector satisfying Pq = q, and
q = PT(PPT)−1q, where we have used the fact that P has full rank. In line with the original
contribution by Black and Litterman (1992), we have used the sample variance-covariance
matrix for �BL , but clearly other choices are possible, as will be discussed below.

The next proposition provides a parameterization allowing us to translate the BL views in
terms of Bayesian priors, so as to deliver the same estimates, and hence portfolio allocations,
in the two settings (see Schöttle et al. 2010).

Proposition 3.1 Assume that carbon pricing views are captured by the parameters P, q, τ in
the BL approach. Let the prior distribution (3.3) in the Bayesian setup rely on the following
parameterisation:

d0 = τ(1 − τ)−1T (3.7)

μ0 = K q + (I − K )μ̂ (3.8)

�0 = η1�̂ − η2(μ0 − μ̂)(μ0 − μ̂)T, (3.9)

12 The matrix K is a projection matrix, in that K (I − K ) = 0 and K 2 = K .
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where η1 = (ν0−n−1)/ν0, η2 = T τ/ν0 and ν0 ≥ ν, with ν the lowest integer ensuring that
the matrix �0 is positive semidefinite. Then, the BL forecasts coincides with the Bayesian
forecasts, i.e., μ̂b = μ̂BL and �̂b = �BL = �̂.

Proof See the “Appendix”. �	
Proposition 3.1 provides some important messages. The Bayesian approach can accom-

modate the manager’s (absolute and relative) views on carbon pricing by expressing them in
terms of trading strategies. For this to be possible, the prior distribution needs to be given
by a convex combination of the baseline expected return vector μ̂ and the forecast q in the
range of K . The resulting (posterior) mean return vector has the same components as the
baseline vector in the case of securities for which we do not have any carbon pricing views.
The choice of d0 given in (3.7) supports the neat structure of expression (3.8) for μ0, as well
as for μb, as we have β = τ in Eq. (3.4). The choice of ν0 ≥ ν can accommodate different
assumptions on the prior variance-covariance matrix, the case of ν0 growing asymptotically
large yielding the sample variance-covariance matrix as prior. Other approaches are clearly
possible, given the possibility to choose (d0, ν0) differently.

We should nowmention that, although our discussion has so far considered the parameters
(μ̂, �̂) as simply being based on historical estimation, more refined choices are possible.
Given the large number of stocks considered, in our examples we use shrinkage estimators to
produce estimates of�, as in Ledoit andWolf (2003a, b).We also use market-implied returns
for μ̂, as in the traditional BL approach, which uses the CAPM as relevant equilibrium
benchmark. The optimal allocations resulting from the posterior parameters can then be
formalized and interpreted in terms of benchmark portfolio tilts (Black and Litterman 1992;
Idzorek 2005; Meucci 2009). As we seek to benefit from the transition to a new equilibrium
in which carbon pricing is (correctly) priced, it is appealing to identify explicit departures
from a current-state equilibrium benchmark in the recommended portfolio allocations.

4 Smart carbon portfolios (SCPs)

We now provide a concrete application of our approach to the construction of portfolios
incorporating the views on E&P stocks discussed in Sect. 2. We will refer to the resulting
portfolio allocations as SCPs in general, but we shall consider the following different versions
in particular:

• SCP1Graded divestment from E&P stocks in the MSCIWorld Index and optimal rebal-
ancing within the E&P sector. We express views on E&P stocks only. Gradation of
divestment is shaped by our views on E&P stocks in the carbon pricing state and our
confidence in such views. We consider two versions of this portfolio: (a) one in which
we constrain the E&P and EE sector weights to be as in the MSCI World index, in order
to better understand rebalancing within the E&P sector; (b) a second case in which only
the allocation to the rest of the MSCI World portfolio is constrained to the original level,
in order to better understand the rebalancing both within the E&P sector and across the
E&P and EE sectors.

• SCP2Graded divestment from E&P stocks in the MSCIWorld Index and optimal rebal-
ancing within the E&P and EE sectors. The portfolio extends SCP1(b) to include views
on the EE sector.

• SCP3 Capped divestment from E&P stocks in the MSCIWorld Index and optimal rebal-
ancing within the E&P sector. We express views on E&P firms only. Capped divestment
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Fig. 5 Black–Litterman (BL) expected return vector μBL for confidence levels τ = 0.25 and τ = 0.99,
with components clustered into the main E&P classes, the EE sector and the rest of the MSCI World index.
By expression (3.8), the case of τ approaching one can be understood as yielding the Bayesian prior μ0. As
confidence in the views increases, the BL adjustment becomes more material for classes Coal and Oil Sands
in particular

results from the introduction of constraints on the cross-section of E&P stocks to reflect
additional considerations, such as the requirement to maintain a certain allocation to spe-
cific E&P firms. As an example, we force the overall allocation to E&P stocks in classes
A to C to be at least as large as in the MSCI World portfolio. As we did for portfolio
SCP1, we consider further constraints on the aggregate allocations to both the EE sector
and the rest of the MSCI World portfolio (SCP3(a)), or just on the latter (SCP3(b)).

• SCP4 Capped divestment from E&P stocks in the MSCIWorld Index and optimal rebal-
ancing within the E&P and EE sectors. The portfolio extends SCP3(b) to include views
on the EE sector.

Portfolios SCP1-4 are constructed by using the market-implied equilibrium return vector.
This allows us to see how our views translate into strategic bets on the E&P and EE sectors,
tilting their allocations away from a long run equilibrium benchmark such as theMSCIWorld
portfolio in a CAPM context. Analogous portfolios can be constructed with the historical
mean vector. In constructing the SCPs, we consider the views on E&P stocks summarized in
Fig. 4, leading to the BL mean return vector components depicted in Fig. 5. The equivalent
assumptions for Bayesian analysis are derived from Proposition 3.1 and presented in the right
panel of Fig. 5. All views are implemented in terms of average stock depreciation (%) across
carbon pricing scenarios. We do not express a view on group A of E&P stocks, as the impact
of carbon pricing is found to be negligible. For simplicity, and to narrow down our focus on
the heterogeneity of carbon pricing exposures within E&P stocks, we allow for a uniform
view across the EE sector, assuming it to be undervalued by 200 or 400 basis points p.a.
over the relevant trading horizon.13 We believe these figures to provide prudent, although
indicative, baseline examples. In the robustness analysis of Sect. 5, we will complement the
allocations introduced here with simplified portfolios based on more naive divestment rules.
We remark that ours is a partial equilibrium analysis, as no consideration is given to the
impact of portfolio rebalancing on stock prices; we refer the reader to Röell (2019) for some
interesting general equilibrium considerations.

13 This amounts to saying that our views assume both that EE stocks are undervalued and that some E&P
stocks are overvalued, given the risk of transition to a carbon pricing state.
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Fig. 6 Baseline efficient frontier (plug-in estimators) and BL frontiers for portfolios SCP1(b) (left panel) and
SCP2 (right panel) in the cases of medium (τ = 0.5) and high (τ = 0.99) confidence. The case of τ = 0.25
gives a frontier very close to the baseline

4.1 Implementation

We provide a concrete example of the portfolio construction methodology discussed in the
previous section by using stock data from the MSCI index (1,649 components). Within the
index, we consider 57 E&P and 56 EE stocks onwhich we express our views. These are based
on the analysis of E&P repricing discussed in Sect. 2: the portfolio matrix P reports long and
short allocations to stocks identified as being outperforming and underperforming relative to
the benchmark, respectively, where out/under-performance is expressed in absolute terms,
by annualizing the expected appreciation/depreciation of the stock over the relevant time
horizon. In the case of EE stocks, the view is implemented via a market-value weighted
allocation to the EE sector, as in Idzorek (2005), for example (see Satchell and Scowcroft
2000, for the case of equally-weigthed allocations). Tomanage dimensionality issues, as well
as the noise inherent in the estimation of the variance-covariance matrix, we use a shrinkage
estimator as in Ledoit and Wolf (2003a, b), with a PCA-based five factor model as shrinkage
target (see also Meucci 2009). We obtain similar results with alternative targets, such as
increasing the number of factors or using the average covariance in the off-diagonal elements
of the target variance-covariance matrix.

We determine optimal portfolio weights and associated efficient frontiers for the case of
a mean-variance investor by using the market implied (CAPM) return vector. We repeat the
portfolio construction exercise with the BL model for different degrees of confidence in our
views. In the following, we will discuss some results for the cases of τ = 0.25, τ = 0.50
and the τ = 0.99, the latter capturing closely the case of full confidence in our views. We
consider long-only portfolios in all of our examples. As illustrated in Fig. 6, both portfolios
SCP1(b) and SCP2 result in marked divergence from the baseline frontier for high confidence
in the views, but the medium confidence case leads to frontiers that are closer to the baseline.
Figure 7 shows that the introduction of constraints limiting the extent of divestment from
E&P stocks reduces the divergence of BL frontiers relative to the baseline. As shown in the
right panels of Figs. 6 and 7, the introduction of our views on EE stocks, which reflects our
expectation that the EE sector will benefit the most from carbon pricing, does not result in
drastic changes in the efficient frontiers.

As is well known, closeness of portfolios in mean-standard-deviation space can be mis-
leading, as it provides no reliable indication of closeness in portfolio weight space. We
therefore now look at the composition of our optimal portfolios by fixing a target expected
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Fig. 7 Baseline efficient frontier (plug-in estimators) and BL frontiers for portfolios SCP3(b) (left panel) and
SCP4 (right panel) in the cases of medium (τ = 0.5) and high (τ = 0.99) confidence. The case of τ = 0.25
gives a frontier very close to the baseline

return coinciding with the one of the MSCI World portfolio. The top panels of Fig. 8 and
Table 3 show that portfolios SCP1(b) and SCP2 result in greater allocations to the E&P sec-
tor, which are magnified in the case of capped divestment supporting portfolios SCP3(b) and
SCP4. The bottom panels of Fig. 8 and Table 3 show that a positive view on EE stocks trans-
lates into a greater allocation to the sector only when a cap on a specific group of E&P stocks
is introduced. As illustrated in Table 4, a closer examination of the portfolio weights reveals
that most of the rebalancing takes place within the E&P sector itself. For example, portfolio
SCP1(a) shows that class D stocks are themain beneficiaries of rebalancing when the sectoral
allocations to E&P, EE and rest of the MSCI World stocks are kept fixed. SCP1(b) shows
that, as soon as rebalancing across the E&P and EE sectors is allowed for, the allocation to
E&P stocks actually increases at the expenses of the EE sector, group D being again the main
beneficiary. The effect is considerably reduced in portfolios SCP3(a,b), when divestment
from classes A to C is capped. On the other hand, imposing a cap on the allocation to group
D yields a significant rebalancing of funds toward the EE sector; see portfolios SCP1(b)
and SCP2 in panel (B) of Tables 3 and 4. These results all demonstrate the importance of
exploiting the cross-sectional heterogeneity of the E&P sector when constructing an SCP,
as simple E&P divestment or naive confidence in the outperformance of the EE sector are
dominated by the optimal portfolio allocations illustrated here.

5 Robustness and extensions

Our modelling approach has so far focused on mitigating the risk arising from a transition to
carbon pricing. We now discuss more in detail ex-ante efficiency and differences in portfolio
weight space. The results obtained for portfolios SCP1-4 demonstrate that low and medium
confidence BL portfolios result in portfolios close to the baseline efficient frontier. Portfolios
are more markedly distant from the baseline frontier in the case of full confidence in our
views. We now argue that efficiency losses can be small even in the latter case, once estima-
tion risk is explicitly taken into account. As was amply discussed earlier, the solutions to the
mean-variance optimization problem are sensitive to estimation error in the input parameters
(Best and Grauer 1991; Chopra and Ziemba 2013). A common approach to understanding
this issue and producing allocations robust to estimation error is the portfolio resampling
procedure introduced by Michaud (1998). This is essentially a form of bootstrapping pro-
ducing statistically equivalent portfolio weights, which can be averaged for different target
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Fig. 8 Portfolio weights supporting SCP1-4, as well as portfolios F-REB, G-REB, F-EE, and C-EE, for a
target expected return coinciding with the one delivered by the MSCI World Index (last three year sampling
period). Allocations are clustered into E&P stocks, the EE sector, and the rest of the MSCI World portfolio.
The top panel reports the case with an undervaluation view on the EE sector of 4% p.a., whereas the bottom
panel reports results for the same case but with the allocation to group D of E&P stocks (31 firms in total)
capped at the current MSCI World allocation level. Views on E&P stocks are as per Fig. 4. The top panel
consider the case of τ = 0.99, the bottom panel the case of τ = 0.25

expected return levels to produce a resampled frontier (e.g., Lai et al. 2011). Resampled
frontiers reduce the gap between the baseline frontier and the BL frontiers for the SCPs.
Alternatively, one can interpret portfolios on the resampled frontier as proxying for a BL
frontier resulting from an intermediate confidence level in the portfolio manager’s views (as
given by some τ ∈ (0.25, 0.99), for example). Portfolio resampling confirms that SCPs are
associated with statistically negligible efficiency losses.

A useful by-product of the resampling procedure is that we can use the resampled portfolio
weights to test for the statistical distance of different allocations in portfolio weight space
(e.g., Scherer 2002). A possible metric is given by (w − wtarget )

��̂−1(w − wtarget ), with
�̂ the variance-covariance matrix estimated from the resampled portfolio weights; under our
assumptions on returns, the resulting test statistic is χ2-distributed with degrees of freedom
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equal to the number of assets (e.g., Scherer 2002). However, in the presence of constraints
invalidating the normality assumption, the following alternative metric is more suitable and
is equivalent to the squared tracking error: (w−wtarget )

��̂(w−wtarget ), (see Scherer 2002;
Michaud andMichaud 2003). We find that portfolios SCP1-4 are statistically distinguishable
(at the 95% confidence level) from the MSCI World target, but not among themselves.

In portfolios SCP3-4, we relied on portfolio weights constraints to introduce additional
considerations to those channelled by BL views, such as the desire to limit divestment from
some E&P stocks. In mean-variance optimization, however, constraining portfolio weights
can go much further, as it can be shown to be equivalent to shrinking moment estimators and
hence to mitigate the impact of estimation error on portfolio construction (e.g., De Miguel
et al. 2009). We could therefore ask whether direct constraints on our E&P stock alloca-
tions can mimic the SCPs obtained via the full-fledged Bayesian/BL procedure. To answer
this question, we consider simple alternative approaches to portfolio construction by intro-
ducing stylized portfolio constraints. Although a wider range of implementations could be
considered, we limit ourselves to the following ones:

• F-REB Full divestment from E&P stocks and optimal rebalancing of the index targeting
the expected return on the MSCI World portfolio.

• G-REB Graded divestment from E&P stocks and optimal rebalancing of the index tar-
geting the expected return on the MSCI World portfolio. Graded divestment is obtained
by letting the optimizer invest in E&P stocks with portfolio weights allowed to range
between zero and the current benchmark allocation (MSCI World).

• F-EE Full divestment from E&P stocks and optimal reallocation toward EE firms within
the benchmark portfolio (MSCI World).

• C-EECapped divestment from E&P stocks and optimal reallocation toward EE names in
the benchmark portfolio (MSCI World). Capped divestment is implemented as follows:
the E&P stocks with lower exposure to carbon pricing (classes A, B and C) must have
allocations on aggregate at least as high as in the benchmark portfolio; the portfolio is
optimally divested from the other E&P groups without imposing further constraints.

We assess whether any of the portfolios above can be used as a reasonable approximation
for some of our SCPs. In Fig. 8 and Tables 3 and 4, we report the allocations supporting the
above portfolios and compare them with the SCPs. The results show that portfolios F-REB
and F-EE do not exploit the rich cross-sectional information on the exposure of the E&P
sector to carbon pricing risk. Portfolio G-REB does a better job of picking up group D’s
relatively lower exposure to carbon pricing. In comparison with portfolios SCP3 and SCP4,
capped divestment misleads portfolio C-EE into allocating to group B and EE stocks, while
ignoring group D. We find that portfolios F-REB and F-EE are statistically different from
our SCPs, whereas portfolios G-REB and C-EE are closer (according to the test statistics
introduced above). The results show that only a judicious choice of constraints can lead to
good proxies for some SCPs, but clearly use of the actual SCPs offers a considerably more
robust and coherent way to reflect our views on carbon pricing in portfolio construction.

6 Conclusion

In recent years, climate change caused by anthropogenic GHG emissions has risen rapidly up
the agendas of policymakers worldwide. A key factor driving this change is the development
ofmore accurate climatemodels linkingweather patterns deviation from historical trends and
anthropogenicGHG emissions. As a result, there is an increasing likelihood that governments
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of major economies will act within the next decade to reduce these GHG emissions. Carbon
pricing (e.g., taxation or cap& trademechanism) is themost likelymechanism throughwhich
governments will seek to achieve this outcome. Industries with weak pricing power and high
emission intensity are likely to experience a more significant impact from the introduction
of carbon pricing than other industries. We identified Energy, Utilities and Basic Materials
as industries with such characteristics, and decided to focus on companies engaged in the
exploration and production of fossil fuel assets (E&P stocks). The limited awareness of
climate change risk among institutional investors, as well as the empirical evidence on the
inefficient pricing of risks brought on by climate change, support the view that such risk is not
adequately priced in current stock market valuations. We proposed a methodology that can
be used by institutional investors to assess and manage this transition risk, while also taking
account of changing information on risk. A key benefit of our approach is that it uses some
of the standard tools of investment management, with a particular focus on the potential risk
factors to impact a company’s financial prospects. The approach captures the potential impact
of carbon pricing on fossil fuel stocks, and uses it to inform Bayesian and Black–Litterman
type portfolio construction methodologies, which are then used to create what we call Smart
Carbon Portfolios (SCPs). We find that investors could reduce ex-post risk by lowering the
weightings of some fossil fuel stocks with corresponding higher weightings in lower-risk
fossil fuel stocks and/or in the stocks of companies active in energy efficiency markets. For
robustness, we discussed portfolio resampling to show how the methodology reduces the risk
of a transition to a carbon pricing scenario while sacrificing virtually no ex-ante financial
gains. The use of ad hoc constraints on allocations and/or divestment was also considered
as a simpler alternative to fully fledged Bayesian analysis. The extension of our analysis to
encompass other sectors, such as Utilities and Basic Materials, is left for further research.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

Appendix

A Technical details

A.1 Bayesian approach

We characterize our joint prior distribution of return parameters μ, � as a Normal Inverse
Wishart (NIW). In particular, we assume � to have an Inverse Wishart (IW) distribution
and the conditional distribution of μ, given �, to be Normal (N ):

(μ, �) ∼ NIW (μ0, d0, �0, ν0) , μ|� ∼ N
(
μ0, d

−1
0 �

)
, � ∼ IW (ν0�0, ν0 + n + 1) ,

where we have that E [μ|�] = μ0 and cov (μ|�) = d−1
0 � (see: Meucci 2009; Schöttle

et al. 2010; Lai et al. 2011). Given market return observations R, we can compute the sample
mean return and variance-covariance as follows:

μ̂ = 1

T

T∑
t=1

Rt , �̂ = 1

T

T∑
t=1

(Rt − μ̂)(Rt − μ̂)�.
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Given our assumptions, we have that the posterior distribution is again of NIW type. In
particular, denoting by FT the information generated by the time series of returns {Rt }Tt=1,
we have μ, �|FT ∼ NIW (μ1, d1, �1, ν1), with parameters given by:

μ1 = βμ0 + (1 − β)μ̂,

�1 = γ0�̂ + (1 − γ0)�0 + βγ0(μ0 − μ̂)(μ0 − μ̂)�,

β = d0/d1, γ0 = ν0/ν1, d1 = d0 + T , ν1 = ν0 + T .

The posterior estimates for the relevant market parameters are therefore as follows (e.g.,
Meucci 2009; Schöttle et al. 2010; Lai et al. 2011):

μb = E [μ|FT ] = μ1, �̂b = ν1

ν1 − n − 1
�1,

where we note that �̂b goes to �̂ as ν0 grows asymptotically large.

A.2 Black–Litterman approach

Consider a mean return vector characterized by the distribution N (μ̃, τ �̃), for some τ ∈
[0, 1], where μ̃ can be based on the sample mean μ̂ or, as in Black and Litterman (1992),
on the expected return vector implied by an equilibrium model such as the CAPM, in which
case we set μ̃ = 2λ�wmkt , with wmkt the market capitalization weights and λ a suitable risk
aversion parameter. A useful choice for �̃ is T−1�̂ (e.g., Mankert 2006; Schöttle et al. 2010).
Given a set of views or expert forecasts on different assets, one can expect to monetize them
by defining a view portfolio matrix P yielding the return Q = Pμ+ ε, which is random not
only because of the unknown parameterμ, but also because of potential errors in the portfolio
manager’s views. The error term ε ∼ N (0, (1− τ)�) is assumed to be uncorrelated with μ,
and results in Q being distributed according toN (Pμ, (1−τ)�). We note that we have used
a slightly different parameterization from the canonical BL approach (e.g., Mankert 2006;
Schöttle et al. 2010), so that we can use τ to express our confidence in the prior information
(historical or market-implied) relative to the expert views: for τ approaching one, we have
full confidence in the views; for τ approaching zero, we have full confidence in the prior.
Finally, we set � = P�̃P� (e.g., Idzorek 2005; Mankert 2006; Schöttle et al. 2010), which
simply means that14 ε is exposed to the same uncertainty as μ. One can then show that the
conditional mean return is given by (e.g., Meucci 2009):

μBL = E
[
μ|Q] = μ̃ + τ�̃PT

(
P�̃P�)−1

(q − Pμ̃) .

A.3 Proof of Proposition 3.1

We consider the BL model of the previous section with μ̃ = μ̂. The Bayesian setting can
handle unknown variance-covariance matrices comfortably, but this is more complex in the
case of the BL methodology. We therefore assume �̃ to be known and rely on the sample
variance-covariance estimate. To prove the proposition, let us first note that for each forecast

14 As P is assumed to have full rank, we can always write ε = Pη for some η ∈ R
n . The least square choice

for η results in the representation η = P� (
PP�)−1

, from which we obtain Q = P (μ + η) and hence

� = P�P� for some matrix �. The choice � = �̃ seems natural, as long as we believe that the uncertainty
in ε is driven by the same factors affecting that of μ.
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q we can always write q = P q̄ for some q̄ ∈ R
k , or equivalently q̄ = P� (

PP�)−1
q, as P

is assumed to have full rank. We can then write μBL as follows:

μBL = μ̂ + τ�̂PT
(
P�̂P�)−1

P
(
q̄ − μ̂

)
= μ̂ + τK

(
q̄ − μ̂

) = (I − τK ) μ̂ + τK q̄,

where we have denoted by K the matrix �̂PT (P�̂P�)−1P . Setting d0 = τ(1−τ)−1T as in
(3.7), expression (3.4) becomesμb = τμ0+ (1−β)μ̃. By imposing the equalityμBL = μb,
we can solve for the vector μ0 and obtain μ0 = K q̄ + (I − K )μ̂. By imposing now the
equality �BL = �b, and using again d0 = τ(1 − τ)−1T , we can solve for �0 and obtain:

�0 = �̂ − n + 1

ν0
�̂ − Sτ

ν0
(μ0 − μ̂)(μ0 − μ̂)�.

The matrix on the left-hand side is positive semidefinite. Hence, there must be a minimum
integer value ν for ν0 such that the right-hand side is always a positive semidefinite matrix
for ν0 ≥ ν. So far we have made the BL approach use historical data as a benchmark, which
is more amenable to a straightforward comparison with the Bayesian approach. Replacing μ̃

with 2λ�wmkt instead, we could rewrite the results for the case in which the benchmark is
an equilibrium model such as the CAPM.
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