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We propose an approach to calculate the anharmonic part of the volumetric-strain and tempera-
ture dependent free energy of a crystal. The method strikes an effective balance between accuracy
and computational efficiency, showing a ×10 speed-up on comparable free energy approaches at
the level of density functional theory, with average errors less than 1 meV/atom. As a demonstra-
tion we make new predictions on the thermodynamics of substoichiometric ZrCx, including vacancy
concentration and heat capacity.
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I. INTRODUCTION

Thanks to recent advances in computational thermo-
dynamics, the thermal properties of metals such as alu-
minium and gold have been investigated up to the melt-
ing point, using thermodynamic integration (TI) with
Langevin dynamics1–3 based on density functional theory
(DFT). A two-step TI approach increases computational
efficiency further, making predictions possible for more
complex materials at the DFT level of theory. Examples
so far include the ultra-high-temperature ceramics ZrC
(Tm = 3700K) and HfC (Tm = 4160K),4,5 and recent
attempts at tackling the emerging class of multicompo-
nent systems.6,7 Such calculations are not yet routine,
but the course of our research and the recent method-
ological developments of others8–10 in this field is in that
direction. Here we present some new developments that
are a step towards the goal of routinely computing ac-
curate free energies for hard matter systems, including
binaries, ternaries, and high-entropy alloys, across the
range of temperatures, pressures and chemical potentials,
up to and eventually beyond the melting point.

In this work we compute the concentration of vacancies
in ZrCx and associated ambient pressure thermodynam-
ics for small deviations from stoichiometry. The ZrCx
free energy and derivatives are analyzed in terms of the
contributions11

F = E0 + Fel + Fqh + Fah + Fel-vib + Fconfig, (1)

in which E0 is the DFT energy of a static lattice at T =
0K, Fel is the Helmholtz free energy contribution from
the thermal excitations of electrons, Fqh is the quasihar-
monic vibrational contribution, Fah is the anharmonic
vibrational contribution, Fel-vib is the electron-vibration
contribution, and Fconfig is the contribution of configura-
tional entropy due to the number of distinct point-defect
distributions. For each of the five temperature-dependent
terms we have calculated the dependence on the indepen-
dent variables volume and temperature up to the melting
point. Considerable attention in this paper is given to the

method we use to compute the challenging anharmonic
term, Fah. The method described achieves effective DFT
accuracy in Fah (1 meV per bulk atom) with only an order
of magnitude greater computational cost than ordinary
quasiharmonic free energy calculations.

This paper is set out as follows. Sec. II A gives the con-
text of our approach, theoretical details are in Sec. II B,
a description of the modified embedded atom method
(MEAM) potential fitting, which reduces overall the
number of expensive DFT calculations, in Sec. II C, ther-
modynamic integration in Sec. IID, and DFT technical
details in Sec. II E. Benchmarking is described in terms of
accuracy and precision in Sec. IIIA and computational ef-
ficiency in Sec. III B. Application to ZrCx provides insight
into the nature of anharmonicity in substoichiometric bi-
nary crystals in Sec. IVA, prediction of vacancy concen-
tration in Sec. IVB, and analysis of ZrCx heat capacity
in Sec. IVC.

II. METHODS

A. Background

There are a number of approaches in the literature
to calculate the anharmonic vibrational properties of
crystals,1–4,12–22 including thermodynamic integration23
(TI), which is the method used in this work. In TI the
anharmonic part of the full Hamiltonian, E − Eqh, is
switched on with the parameter λ ∈ [0, 1], in this in-
stance linearly as Emix(λ) = Eqh +λ(E −Eqh). Classical
averages of ∂λEmix(λ) are obtained stochastically from
molecular dynamics (MD), and numerically integrated
along the coupling path to give the free energy due to
Eah:

Fah =

∫ 1

0

dλ 〈∂λEmix(λ)〉λ . (2)
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Note, ∂λEmix(λ) = E(R, V ) − Eqh(R, V ), where
E(R, V ) is the full potential energy surface and
Eqh(R, V ) the volume-dependent harmonic potential en-
ergy surface in Born-Oppenheimer nuclear coordinates
R.

The partitioning of the vibrational free energy Fvib =
Fqh + Fah divides the problem conveniently into a sim-
ple quantum mechanical part, in which the vibrations
are quantised as phonons, and an anharmonic part in
which the vibrations are treated classically. Thus Fvib
has the appropriate low-temperature quantum statis-
tics. The anharmonicity is treated classically but also
non-perturbatively, which is important at high temper-
atures as the melting point is approached. In order to
evaluate the anharmonic term, the expectation values
〈∂λEmix(λ)〉λ require between 103 . . . 107 configurations
for a typical λ-ensemble at a typical supercell size. To
produce a free energy surface Fah(V, T ) one must sam-
ple ensembles across dimensions of strain (here volume),
temperature and coupling parameter, Nλ ×NV ×NT ≈
102 . . . 103. Thus the ball-park number of total energy
calculations, between 105 . . . 1010 configurations, is pro-
hibitive at the highly-converged DFT level of accuracy
required.

In one approach to reduce computational complexity,
Fah is obtained by cumulating a sequence of thermody-
namic integrations. In an implementation of this ap-
proach referred to as TU-TILD,4 which is expressed by
Eqn. (3), much of Fah is captured using an inexpensive
MEAM potential. This results in faster convergence of
the expensive TI from MEAM to DFT, expressed in the
last term of Eqn. (3).

FTUTILD
ah =

∫ 1

0

dλ
〈
EDFT(R, V )− EDFT

qh (R, V )
〉
λ

=

∫ 1

0

dλ
〈
EMEAM(R, V )− EDFT

qh (R, V )
〉
λ

+

∫ 1

0

dλ
〈
EDFT(R, V )− EMEAM(R, V )

〉
λ
.

(3)

In practice to save computation time, the DFTMD calcu-
lations in a TU-TILD procedure were usually performed
with a low-converged expansion of the wavefunctions, us-
ing a reduced number of plane-waves, and fewer k-points
than required for maximum accuracy. The maximum
accuracy was then obtained by up-sampling, as in the
original UP-TILD method1. The methodology we intro-
duce below, inspired by these approaches, was devised in
order to make significant further savings in computation
time without sacrificing accuracy.

B. MEAM thermodynamic integration approach

The approach we propose in this work can be summa-
rized by

Fah =

∫ 1

0

dλ
〈
EMEAM(R, V )− EDFT

qh (R, V )
〉
λ
. (4)

Our approach calculates the anharmonic free energy of
a MEAM crystal referenced to a harmonic DFT crys-
tal, which is formally the first stage in Eqn. (3). In
the present method the quasiharmonic Helmholtz free
energy at each volume is still explicitly represented by
the volume-dependent dynamical matrix calculated with
DFT, which captures much of the thermal expansion, but
the anharmonic terms are now entirely described by the
MEAM potential. The success of the method depends
on being able to generate a MEAM potential of sufficient
accuracy to replace the anharmonic DFT contribution.
It is by no means obvious a priori that this is possible,
or if it is, that the process of generating the potential is
not too expensive to warrant the effort.

From the potential terms in Eqn.(4) it is clear that
Fah can be evaluated by this method to a high level of
precision using modest computational resources, but the
MEAM TI approximation introduces systematic poten-
tial errors with respect to DFT TI. Accuracy must be
carefully controlled by generating custom MEAM poten-
tials from high-quality DFT MD. Generating the train-
ing and validation data is time consuming, so fitting the
potentials becomes the primary computational cost in
predicting Fah in our TI approach. These costs incurred
before doing the MEAM TI will be shown in Sec. IIIA to
be comfortably small enough. Details of potential fitting
and error control are presented in the following section.

C. Potential fitting

Interatomic potentials have been fitted using the
reference-free modified embedded atom method (RF-
MEAM).24 The MEAM potentials fitted in this work lack
transferability and are specialized to perform for the in-
tended application. For instance, to model Fah(V, T )
we fit a separate potential at each volume considered,
which minimizes the possibility of strain-dependent er-
rors. Obtaining the correct implicit volume dependence
of a potential is important, as explicit anharmonic effects
depend sensitively on the degree of lattice expansion, as
demonstrated in Sec. IVA.

Potentials for Zr32C32 and Zr32C31 have
been fitted at the cell lattice parameters a =
{4.685, 4.730, 4.759, 4.801, 4.850} Å. In crystals of
lower than cubic symmetry, thermal expansion may
involve other modes of strain, but in our case only
volumetric strain need be considered. At each volume
the potential is fitted to configurations sampled from
DFT MD runs between T = 200K and T = 3800K.
The fitting set for each volume comprises 103 Zr32C31
configurations, which supply energies and forces to
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RMS error = 0.14 eV/Å

RMS error = 0.13 eV/Å

Hold-out set forces

Training set forces

RMS error = 3.1 meV/at

RMS error = 1.8 meV/at

Hold-out set energies

Training set energies
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Figure 1. Quality of interatomic potential: MEAM versus DFT forces and energies shown for training and hold-out Zr32C31

data sets.

the objective function, for minimizing force residuals
and energy-residual variances. Fitting to the forces
on each atom allows the potential to be specified by
fewer distinct configurations than fitting to energies, as
Nforces = 3NatomNenergies. To generate the fitting data
points efficiently, low-quality DFT can be up-sampled to
high-quality DFT to produce high-quality target forces
and total energies.

The interatomic potentials are generated using a
genetic-algorithm conjugate-gradient fitting procedure
implemented and publicly available in the MEAMFIT2
code.24–26 The code fits an RF-MEAM potential that
permits locally positive and negative density terms in
order to increase variational freedom, subject to a net
positive background. The fitted potential has 3 embed-
ding and 3 pairwise terms, within a radial cutoff of 4.8Å,
which includes interactions up to third nearest-neighbor.
These potential parameters provide a satisfactory com-
promise between accuracy and complexity, in terms of
minimizing residual variances on hold-out data using the
fewest degrees of freedom (78 parameters for the 3-3 po-
tential). The quality of fits for energy and forces is pre-
sented in Fig. 1 for Zr32C31.

In this RF-MEAM application a different potential is
fitted at each volume but we require a potential to be
transferable across composition, i.e. we want the same
potential to describe both Zr32C31 and Zr32C32, for a
given volume at any temperature. This transferability
ensures a systematic error cancellation in Fah for Zr32C31
and Zr32C32 that helps in calculating accurate fully an-
harmonic vacancy formation energies.

D. Thermodynamic integration

E

E

Figure 2. Thermodynamic integrand 〈∆E〉λ (λ) for Zr32C31

at a = 4.801 Å. Inset : Convergence of 〈∆E〉λ (t) with MD
time-step, at ensembles λi = i/10.

Fah is estimated by computing 〈∆E〉λ, with ∆E =
EMEAM − EDFT

qh , for a series of 11 ensembles at equal
increments of λ, λi = i/10. In Fig. 2 we show the de-
pendence of 〈∆E〉λ on λ across a series of temperatures.
We see that at each temperature, ∂λ〈∆E〉λ ≤ 0, a nec-
essary condition that is easy to prove, as in a derivation
of the Gibbs-Bogoliubov inequality. In Fig. 2 inset the
convergence of 〈∆E〉λ is shown for the first 60,000 time
steps of a simulation. Expectation values are generated
using Langevin MD, with a one femtosecond time-step,4
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and a friction parameter of γ = 0.05 fs-1 for Zr32C31 and
γ = 0.01 fs-1 for Zr32C32. At each pair, {Vi Ti}, the ex-
pectation value 〈∆E〉λ is fitted in λ by least squares to
the truncated power series

〈∆E〉λ (λ) =

i=5∑
i=0

aiλ
i , λ ∈ [0, 1] , (5)

for which the coefficients are alternating in sign and con-
verging. If intrinsic defects form and migrate on the
atomic vibration time-scale this series is expected to
poorly converge. In this work we exclude any system con-
figurations in which Frenkel defects have spontaneously
formed, for example at the melting point, in order to en-
sure well-converged thermodynamic integrations of the
anharmonic free energy of defect-free ZrCx.

Pred.

Figure 3. Schematic relating precision (δrand) and accuracy
(δsys) errors in our predicted Fah value to a reference Fah
value. The benchmark value is from TU-TILD4 and is con-
verged to δref = 0.1 meV/at. Precision δrand can easily be
reduced to 0.1 meV/at or less, minimizing the systematic po-
tential error. δsys is the main challenge.

Errors in predicting Fah are considered from two pri-
mary sources, namely statistical convergence and a sys-
tematic potential error. The DFT benchmark also has a
small convergence error which is accounted for, but other
sources of error, such as from DFT exchange-correlation,
electron-phonon scattering, and other quantum effects
beyond the harmonic approximation, are beyond the
scope of this paper. The three countable contributions
are shown schematically in Fig. 3, and give the total
expected error of

δ =
√
δ2
sys + δ2

rand + δ2
ref . (6)

Precision error δrand arises from evaluating an observable
from a finite number of samples in the MEAM MD, and
the systematic error δsys is due to the energy difference

between a MEAM potential and DFT. The convergence
error in the benchmark Fah value from TU-TILD is δref =
0.1 meV/at.4

The statistical convergence δrand is computed using
stratified systematic sampling.27 In the simulation the
precision error scales as28

δrand ∼

√
σ2
λ

Nλ

τ

t
, (7)

where Nλ is the number of integration path points sam-
pled (with Nλ = 11 in our case), σλ is the norm of ∆E
standard deviations, τ is the ∆E autocorrelation time
(ca. 11 fs, see Appendix), and t is the simulation time
(ca. 0.1 ns). We emphasise that the TI method described
differs from other approaches in that statistical conver-
gence is not accuracy-limiting, for example, nanosecond
simulations can comfortably be performed in a day on a
low-performance computing platform.

The systematic potential error in the anharmonic free
energy δsys can be computed by thermodynamic integra-
tion

δsys =

∫ 1

0

dλ
〈
EDFT(R, V )− EMEAM(R, V )

〉
λ
. (8)

δsys is the primary error source in the method we describe
to compute Fah. Accuracy benchmarks in Sec. III A show
δsys can be sufficiently controlled to satisfy 1 meV/at bulk
convergence across the Fah(V, T ) surface.

E. Technical details

Periodic plane-wave DFT calculations were performed
using the VASP software,29,30 with the local density ap-
proximation (LDA) exchange-correlation function.31 The
projector-augmented wave (PAW) method was used,32
with 4s- and 4p-Zr electrons included as valence states.
E0 was computed on a mesh of 11 volumes, and at

each volume the internal coordinates have been relaxed to
give residual forces under 10−6 eV/Å. Self-consistent field
(SCF) total energies and energy eigenvalues have been re-
solved to 10−9 eV. Methfessel-Paxton smearing has been
used with a width of 0.1 eV.33 The kinetic energy cutoff
has been set to 700 eV and k-point mesh 12× 12× 12 for
the 2 × 2 × 2 supercell. The E0 vacancy formation en-
ergy contribution is extrapolated to the dilute limit, using
data points from Zr32C31, Zr108C107 and Zr256C255.

For the quasiharmonic Helmholtz free energy Fqh, the
kinetic energy cutoff has been set to 700 eV and k-point
mesh to 6×6×6 for the 2×2×2 supercell. Phonons were
calculated using the small displacement supercell method
with the PHONOPY code.34 At each of the 11 2 × 2 ×
2 supercells that span the range of lattice parameters
[4.575, 4.875] Å, sets of 18 displacements were made for
Zr32C31 and sets of four displacements for Zr32C32. The
phonon q-points were sampled by a mesh of 25× 25× 25
points for the 2× 2× 2 supercells.
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The electronic Helmholtz free energy Fel(V, T ) has
been calculated using the Mermin finite-temperature
formulation of DFT,35 on a mesh of 10 temperatures
and 8 volumes sampled between Veq(T = 0K) and
Veq(Tm). Electron states are self-consistent to at least
10−7 eV/atom. We used 384 bands, which was sufficient
to span all states with partial occupation up to the melt-
ing point Tm. A kinetic cutoff energy of 700 eV was used,
with k-point sampling at 12 × 12 × 12 for the 2 × 2 × 2
supercells.

The electron-vibration Helmholtz free energy
Fel-vib(V, T ), has been calculated from low-converged
MD configurations that are subsequently up-sampled,
as in the proceedure recently performed for a number
of transition metals.36 The electronic free energy is
calculated for each MD configuration, using the Mermin
formulation at electronic temperature corresponding
to the MD ensemble temperature. At each volume-
temperature mesh point, the electronic free energies
are averaged over the ensemble configurations, and
referenced to the perfect crystal, in order to find
the electron-vibration coupling contribution to the
Helmholtz free energy.

The anharmonic Helmholtz free energy Fah(V, T ) was
determined using a mesh of six temperatures and five
volumes. Temperatures span 0K to Tm, and volumes
Veq(T = 0K) to 1.15Veq(Tm). Potentials were fitted to
MD configurations from DFT that used a 700 eV cutoff
and k-point sampling mesh of 6× 6× 6 for the 2× 2× 2
supercell.
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III. BENCHMARKS

A. Accuracy and precision

MEAM-DFT TI 
error bar

MEAM-DFT TI 
error bar

Figure 4. a) Anharmonic Helmholtz free energy Fah for per-
fect Zr32C32. b) Fah for Zr32C31. In each figure, error bars
represent the deviation of Fah from a DFT TI method refer-
ence (TU-TILD4). c) Vacancy anharmonicity, specified as an
excess Gibbs free energy at ambient pressure.

Our MEAM TI approach predicts Fah(V, T ) to within
a target accuracy of 1 meV/at compared to DFT end-
point TI. This is demonstrated in Fig. 4a. Per-
fect Zr32C32 is shown with error bars (TU-TILD refer-
ence) for 25 volumes and temperatures up to the melt-
ing point. Fah(V, T ) energies are converged to suffi-
cient precision that the error bars are in effect sys-
tematic potential error bars. The mean absolute er-
ror (MAE) is 0.5 meV/at, with a mean signed devi-
ation of 0.05 meV/at. The MAE values at the lat-
tice parameters {4.685, 4.730, 4.759, 4.801, 4.850} Å are
{0.72, 0.38, 0.35, 0.46, 0.64} meV/at. Errors resolved at
the temperatures {760, 1900, 2500, 3200, 3805} K have
the MAE values {0.39, 0.48, 0.43, 0.59, 0.66} meV/at.

On the basis of adequately small errors for bulk ZrC,
we propose using the MEAM thermodynamic integra-
tion approach for more complex systems. In this regard
Zr32C31 is a useful test case for two reasons. The carbon-
vacancy introduces complexity in terms of physical inter-
actions. It removes inversion symmetry at sites around
the vacancy, so there are terms in the energy of odd-order
in atomic displacements, previously excluded by symme-
try in perfect ZrC. Secondly, making free energy pre-
dictions per vacancy increases computational complexity
considerably due to the nature of statistical error scaling
for TI predictions on a per-vacancy basis.

For the vacancy system Zr32C31, Fah(V, T ) is shown in
Fig. 4b. Obtaining comparable DFT TI values for sys-
tems with vacancies like Zr32C31 is prohibitively expen-
sive in general but we have computed a DFT benchmark
for Zr32C31 at a = 4.801 Å and T = 3200 K. The MEAM
thermodynamic integration is found to overestimate the
DFT TI reference Fah value by 0.4 meV/at, which is com-
parable to the MAE in the perfect bulk ZrC.

B. Computational cost

In Table I timings are reported for the MEAM-based
TI in this work and TU-TILD (DFT) calculations. Both
methods compute the Fah(V, T ) surface across 25 mesh
points for a Zr32C32 test case. The MEAM approach does
not have DFT TI and DFT TI up-sampling steps, which
account for the majority of the TU-TILD Fah cost. In the
MEAM approach, the main CPU-time overhead is high-
quality DFT calculations on selected MD configurations,
which are used create data to fit the MEAM potentials.
Furthermore the time required to optimize25 the MEAM
potential with a large fitting set is substantially longer
(ca. ×10), compared to a MEAM potential used in the
intermediate TI steps in TU-TILD. Despite this the for-
mer scheme still gains a factor of at least ×10 in efficiency
overall due to having no DFT TI or DFT TI up-sample.
For anharmonic predictions where 1 meV/atom conver-
gence is sufficient, the TI method described in this work is
likely to be a cost effective choice for metals and alloys. It
would be of interest to compare the efficiency of less spe-
cialised machine learned potentials7,37,38 to the MEAM
type as applied here, in terms of parameter fitting time,
required training DFT data and potential compute time.

IV. APPLICATION OF TI METHOD TO ZRCx

A. The character of anharmonicity in ZrCx

Prior to discussing the substoichiometric crystal, con-
sider the anharmonic contribution to the Helmholtz free
energy of perfect ZrC, shown in Fig. 4a. Fah(V, T ) in
Zr32C32 tends to be positive and increase with temper-
ature. This is because the anharmonic phase space has
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Table I. Computer resources consumption for Zr32C32 test
case calculation of Fah(V, T ) on a 5×5 {Vi, Ti}mesh. Timings
listed in CPU core-hours and quasiharmonic-free-energy-job
units (1/t(Fqh)) using the reference value t(Fqh) = 4800 core-
hours.

Contributions t(Fah) (core-hrs) t(Fah)/t(Fqh)

this work TU-TILD this work TU-TILD

Fit set DFT MD 104 103 10 0.6
MEAM fitting 103 102 0.4 0.03
MEAM TI 103 102 0.4 0.1
DFT TI - 105 - 110

DFT up-sampling - 104 - 6
Total 105 106 11 117

a smaller volume within a given potential energy sur-
face, giving a positive anharmonic free energy term. A
positive anharmonic contribution is similarly observed in
other extended systems,3,39,40 and is expected to be de-
pendent on the presence of inversion symmetry.
Fah(V, T ) in Zr32C32 increases with volume expansion.

This contrasts with the result of harmonic force con-
stants, which typically become softer under tensile strain,
increasing the entropy and decreasing the free energy.
In terms of effective frequencies in perfect ZrC, quasi-
harmonicity reduces frequencies with volume expansion
whereas anharmonicity in ZrC increases frequencies.

The anharmonic free energy of the Zr32C31 crystal is
given in Fig. 4b. Fah(V, T ) for Zr32C31 naturally appears
similar to Zr32C32, since most atoms in Zr32C31 are fully
coordinated, but the anharmonic free energy is less posi-
tive, for example, Fah(V, T ) is lower by approximately 4
meV/at at a = 4.759 Å and T = 3800 K.

To directly identify vacant-site anharmonicity we com-
pute

F excess
ah = Fah (Zr32C31)− Fah (Zr32C32) , (9)

which isolates the vacancy anharmonic contribution by
cancelling common contributions in Zr32C32 and Zr32C31.
The anharmonicity of a single vacant site F excess

ah is
stronger and qualitatively different in character to the
anharmonicity per site in Fah for Zr32C32. F excess

ah for
example typically exceeds Fah by more than an order of
magnitude (approximately ×20), and F excess

ah is negative
whereas Fah is almost always positive.

As we are typically interested in ambient pressure
thermodynamics, we can consider the nature of the ex-
cess anharmonic Gibbs free energy Gexcess

ah rather than
Helmholtz F excess

ah . Gexcess
ah (T ) in Fig. 4c illustrates the

strength and sign of vacancy anharmonicity at ambient
pressure. The large negative values of Gexcess

ah at high
temperature can be simply rationalized. At high tem-
perature the change in thermal excursions, when atoms
are near a vacancy, is larger than predicted by harmonic
springs, so the entropy is greater and free energy less.
In terms of the change in the anharmonic potential, the
magnitude and sign of Gexcess

ah are attributed to terms

that start from third-order in the potential Taylor ex-
pansion, rather than fourth-order as in the perfect crystal
with inversion symmetry.

B. Vacancy volume, formation energy, and
concentration

Figure 5. Thermal expansion of ZrC, V (T ), and inset, the
vacancy formation volume vf (T ).

Figure 6. Gibbs free energy of carbon vacancy formation in
ZrC versus temperature. Inset : The onset temperature of
non-negligible anharmonicity. The error bar shown is for the
TI method used to determine Fah, from MEAM-DFT poten-
tial errors (assuming no cancellation between Zr32C32 and
Zr32C31), and statistical convergence..

The thermal expansion of the ZrC atomic volume (V )
is shown in Fig. 5, alongside the vacancy formation vol-
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Figure 7. Carbon vacancy concentration in ZrCx versus tem-
perature, up to a concentration of cvac = 1/32. Inset : Log
vacancy concentration versus Tm/T .

Table II. Concentration of vacancies (cvac) in ZrCx in carbon
atom %.

T (K) cvac (C at. %)

this work CALPHAD41

300 9× 10−13 1× 10−15

500 6× 10−7 1× 10−9

1000 0.01 0.003
1500 0.33 0.06
2000 1.87 0.33
2200 3.03 0.51

ume, vf (T ) = Ω − NV , where Ω is the volume of an
N atom defective ZrCx cell. For ZrC, predictions at the
qh+el+ah level of theory reproduce the thermal expan-
sion reported in an earlier theoretical work,4 while in-
cluding electron-vibration coupling provides a small-to-
negligible additional enhancement, evident in Fig. 5.

The volume of a vacant carbon site at T = 298 K is
vf = 13.1 Å3/vac, which is +3.2 % or +0.40 Å3/site
larger than the corresponding atomic volume V for the
perfect crystal. This means the lattice of a ZrCx crystal
initially expands for x < 1, with the lattice parameter a
increasing by +0.001 Å from x = 1 to x = 0.97 in our
298-K calculations. This is at odds with recent measure-
ments by Nakayama et al.42 who report a monotonic,
apparently linear trend, but is supported by other ex-
perimental work in which the ZrCx lattice parameter is
a concave function of carbon substoichiometry.43–46 For
example according to Sara,43 the maximum volume oc-
curs at composition ZrC0.90 with an a value some +0.004
Å greater than in ZrC0.98. To first order, the gradient is
ca. +0.0011 Ang/C at. %, compared to +0.0005 Ang/C
at. % in our work. It is important to stress that this is
quite a subtle effect, and that it is temperature depen-
dent. For T > 2200 K our computed lattice constant

decreases from x = 1 to x = 0.97.
As a final comment on thermal expansion, we note

the temperature dependence of vf is somewhat compli-
cated (Fig. 5 inset). Quasiharmonic volume-dependent
frequencies and electron-vibration coupling make the va-
cancy volume smaller generally, whereas anharmonic and
electron thermal excitations increase it. In each instance,
at high temperature such as T ≥ 0.75Tm, these effects
are comparable in size to the 0-K outward relaxation of
the Zr atoms around the vacancy; ZrC bonds normal to
the vacancy surface are squeezed by -0.08 Å compared to
bonds of length d(Zr-C) = 2.328 Å in the perfect crystal.

The energy to form a carbon vacancy in ZrC is consid-
ered in terms of a Gibbs free energy computed as follows:

Gform = G (Zr32C31) + µ(C)−G (Zr32C32) . (10)

In this expression µ(C) is the chemical potential to re-
move an atom of carbon from ZrC and place it in a carbon
reservoir. The reference state of carbon is taken to be
that of graphite, which for 0 K to 298 K, is computed by
quasiharmonic DFT for diamond, with a 0-K experimen-
tal correction to graphite. At higher temperatures, the
experimental parameterization of the graphite free en-
ergy is used, in the form of the Gustafson47 assessment.
This provides a diamond chemical potential that includes
all contributions (e.g. anharmonicity) and is consistent
with the DFT calculated free energies, while avoiding ex-
pensive calculations for graphite. Further details and an
expression for µ(C) are given in the Appendix.

The error bar in Gform(Tm), due to TI statistical
precision and MEAM systematic potential error, is 60
meV/vacancy. This value assumes no cancellation in the
systematic potential error between Zr32C32 and Zr32C31,
and is therefore an upper limit. As most sites in
Zr32C31 are fully-coordinated and bulk-like, and the same
MEAM potential is used to describe perfect Zr32C32 and
Zr32C31, partial cancellation of the systematic potential
error is expected. In the limit of anharmonicity being
a site-localised property, the systematic potential error
would only arise from the six under-coordinated nearest-
neighbours to the vacancy in Zr32C31, and the corre-
sponding non-matching seven sites in Zr32C32. In this
case the total error is less than 10 meV/vacancy.
Gform(T ) is shown in Fig. 6, including quasiharmonic,

electronic, electron-vibration, and anharmonic contribu-
tions. Above ca. 1000K (T/Tm ≈ 0.3) the anharmonic
contribution can no longer be regarded as negligible, and
above ca. 2000K (T/Tm ≈ 0.5) accounting for anhar-
monicity is critical to qualitatively describe the ZrC va-
cancy formation energy. With respect to a quasiharmonic
reference, Fig. 6 shows that electronic entropy lowers the
formation energy, and that anharmonicity substantially
lowers the Gibbs formation energy further, while the
electron-vibration contribution is much smaller. In the
final predictions, which include the quasiharmonic, elec-
tronic, electron-vibration, and anharmonic effects, Gform
is almost linear in temperature, and decreases by approx-
imately 10 meV with every increase in temperature by
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1000 K. This rate of decrease is similar to reports in other
materials such as aluminum and nickel.3,48

The vacancy concentration in contact with graphite is
computed with an ideal solution model

cvac
1− cvac

= exp
(
−Gform

kBT

)
, (11)

and is shown in Fig. 7. Anharmonicity favors vacancy
formation by making Gform smaller, increasing cvac by a
factor of two compared to predictions at the Fqh + Fel
level. The effect of electron-vibration coupling on va-
cancy concentration is marginal in this material. Specific
values of cvac(T ) are shown in Table II, up to a tempera-
ture of T = 2200 K, which is when the predicted concen-
tration reaches our operative dilute limit of one vacancy
per supercell (cvac = 1/32 for ZrCx).

In Table II the cvac values from the CALPHAD assess-
ment are consistently lower than our cvac values.41 De-
spite the power of the CALPHADmethod for ZrCx,41 un-
certainties can arise from insufficient experimental data,
and the limitations that exist due to the non-physical in-
teraction terms the methodology assumes. At T = 2000
K the CALPHAD value is cvac = 0.3 C at. %,41 com-
pared to cvac = 1.9 C at. % in this work.

Our predictions have quantum mechanical many-body
errors from the LDA exchange-correlation treatment we
use to describe ZrC. While the GGA has been shown to
be less suitable to describe ZrC at high temperature than
LDA,4 it is instructive to consider the vacancy forma-
tion energy from both exchange-correlation treatments,
in order to gauge sensitivity. At T = 0 K the GGA
vacancy formation energy is less than the LDA value by
some 0.2 eV/vacancy (without zero-point corrections and
dilute limit supercell extrapolation), indicating a GGA
predicted concentration is greater. Quantitative predic-
tions of the non-local quantum many-body error at high
temperature is beyond the scope of this work, but experi-
ence suggests that the LDA and GGA (PBE) functionals
bracket the exact result.2

In this work we confine our predictions to temperatures
at which concentrations do not exceed one vacancy per
supercell. This should minimize lattice many-body er-
rors, however we note that vacancy-vacancy interactions
are expected to be mainly repulsive,49 and that other
entities on the carbon sub-lattice such as Frenkel defects
will decrease the vacancy configuration space.50 These ef-
fects are expected to moderate cvac, to values lower than
ideal, to an extent that increases with temperature.

C. Free energy and heat capacity of ZrCx

The basic excitation mechanisms that determine the
thermal properties of ZrCx are discussed relative to a
quasiharmonic reference system. Formulae for the ref-
erenced Gibbs free energies at ambient pressure, Gel,
Gel-vib, Gah and Gvac, are listed in the Appendix. Each
is shown as a function of temperature in Fig. 8.

Figure 8. ZrCx Gibbs free energy contributions with respect
to a quasiharmonic reference. Inset : Gibbs free energy shown
from 1200 K to the dilute vacancy concentration (1/32) at
2200 K.

Figure 9. ZrCx constant-pressure heat capacity relative to
a quasiharmonic reference. Inset : heat capacity at dif-
ferent levels of theory, shown from the Debye temperature
(Cp(TDebye) = 3 kB) to the melting point (Tm = 3700 K).

At high temperature the magnitude of the electron-
vibration contribution to the Gibbs free energy is less
than the anharmonic contribution, which is in turn less
than the electronic contribution. Partial cancellation oc-
curs as Gel and Gel-vib are negative whereas Gah is pos-
itive in this material. The vacancy contribution Gvac is
the smallest of the four contributions up to 1900 K, but
beyond the dilute vacancy concentration temperature of
T = 2200 K, Gvac increases considerably. Extrapolating
to higher temperatures, the vacancy contribution appears
to become the largest of all above 3000 K. Note however
that above T = 2200 K the value of Gvac is presented
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as indicative only, and is represented in Fig. 8 with a
dashed line, as it exceeds the thermodynamic limitations
of our dilute solution model.

The different ZrCx heat capacity contributions, rela-
tive to the quasiharmonic system, are shown in Fig. 9.
The anharmonic term CP, ah is negative and the elec-
tronic one CP, el is positive, with each similar in absolute
value near Tm. It is somewhat interesting to consider the
extent to which CP, ah and CP, el cancellation is coinci-
dental in ZrCx or a manifestation of a generic feature. In
ordinary metals CP, el is a priori positive, and for ordi-
nary high-symmetry crystals, CP, ah is negative at high
temperature.39 Some cancellation of CP, ah and CP, el is
therefore regarded to be likely in conducting systems such
as the refractory ceramic ZrC. However, as the extent of
cancellation depends on the magnitude of each contri-
bution, for which we are unaware of a direct physical
relation, we conclude cancellation is mostly coincidental.

In ZrCx, CP, ah, CP, el, and CP, el-vib are all individ-
ually larger than the vacancy contribution. For exam-
ple at 2200 K, CP, vac = +0.06 kB/atom, compared to
CP, el = +0.16 kB/atom, CP, el-vib = +0.14 kB/atom and
CP, ah = −0.09 kB/atom. Extending the vacancy model
beyond the dilute limit with the dashed line in Fig. 9
indicates CP, vac is comparable to the positive contribu-
tions of CP, el, and CP, el-vib near Tm. Consequently we
suggest the physical origin of the steep increase in heat
capacity in ZrCx51 is a combination of electron thermal
excitations, electron-vibration coupling, and structural
excitations on the carbon sub-lattice, predominantly the
constitutional carbon vacancies that have been the fo-
cus of this paper, although there are also stoichiometry
conserving intrinsic carbon Frenkel defects, which are be-
yond the scope of this work but discussed elsewhere.50,51
Finally, it is interesting to note that while anharmonic-
ity is the only term that suppresses CP in Fig. 9, the
enhancing effects of the vacancy contribution are mainly
due to the indirect effect of anharmonicity, insomuch as
anharmonicity by lowering Gform enhances the popula-
tion of vacancies (e.g. by a factor of ×2 at 2200 K as
shown in Fig. 7).

V. CONCLUSIONS

Thermodynamic integration approach

We have described a thermodynamic integration
method to calculate the anharmonic free energy of a
crystal to DFT accuracy. In our benchmark system of
ZrC the approach achieves average target precision bet-
ter than 1 meV/atom and 60 meV/vacancy, compara-
ble to more expensive DFT-based thermodynamic inte-
gration schemes. The method transfers the burden of
computation from converging random statistical errors to
minimizing systematic potential errors. With sufficient
care to minimize potential errors, precise calculations can
be made to compute quantities such as the anharmonic

vacancy formation energy, with modest computing re-
sources.

Application to ZrCx

Anharmonicity increases the concentration of vacan-
cies in ZrCx. At 2000 K vacancies increase from 1.1 to
1.9Cat.% due to explicit anharmonicity. The ZrCx heat
capacity is enhanced by electron thermal excitations,
electron-vibration coupling and vacancies on the carbon
sub-lattice, and suppressed by anharmonicity. For exam-
ple, CP, el(T = 2200K) = +0.16 kB/atom, CP, el-vib(T =
2200K) = +0.14 kB/atom, CP, vac(T = 2200K) = +0.06
kB/atom, and CP, ah(T = 2200K) = −0.09 kB/atom.
The sharp increase in the heat capacity at high temper-
ature is attributed to electronic and electron-vibration
effects along with the thermal excitation of structural
defects.
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Similarly Gvac is the Gibbs free energy associated with
a concentration of vacancies (cvac) in ZrCx, again refer-
enced to the quasiharmonic system. This is defined by
writing the total Gibbs free energy of ZrCx at the full
level of theory as G = Gperf − cvackBT . In this expres-
sion Gperf = min

V
[Fah + Fel-vib + Fqh + Fel + E0 + pV ],

and cvac is the equilibrium concentration of vacancies,
which has been computed from the Arrhenius ideal solu-
tion model introduced in Eqn. (11). To compute Gvac,
the vacancy part (G − Gperf) is referenced to the quasi-
harmonic system:

Gvac =
(
G−Gperf)− (Gqh −G

perf
qh

)
= −

(
cvac − cqhvac

)
kBT ,

which is equivalent to the difference in equilibrium va-
cancy concentrations at the full and quasiharmonic lev-
els of theory. Note for completeness, the quasiharmonic
reference system terms are defined as follows: Gqh =

Gperf
qh − cqhvackBT , with G

perf
qh = min

V
[Fqh + E0 + pV ], and

cqhvac is the ideal solution model equilibrium concentra-
tion, with exponent Gform (Eqn. (10)) calculated at the
quasiharmonic level.

GRAPHITE CHEMICAL POTENTIAL

The ZrC vacancy formation energy has been calculated
with respect to a graphite chemical potential of the form

µ(C) =

{
Gdiamond(T ) + (Hgraphite −Hdiamond) 0K < T ≤ Tstn∑

−3≤i≤2 ai(T
i − T istn) + a3 [T ln (T )− Tstn ln (Tstn)] +Gdiamond(Tstn) + (Hgraphite −Hdiamond) Tstn < T ≤ Tm .

The coefficients for T > Tstn, which is the CALPHAD standard state temperature Tstn = 298.15 K, are set according
to the Gustafson experimental free energy parameterization:47

a[−3, 3] = {1.2× 1010, −2.643× 108, 2562600, −17369, 170.73, −4.723× 10−4, −24.3} .

At low temperatures (T ≤ 298.15 K) where the graphite
parameterization is unavailable, µ(C) is continued using
a DFT-calculated diamond potential, Gdiamond(T ). This
quasiharmonic diamond potential at low-temperature
is transformed to a graphite chemical potential by
a correction equal to the 0 K enthalpy difference
(Hgraphite −Hdiamond) = −0.03 eV/atom.

CORRELATION TIME

The correlation time τ , which is used to estimate error
scaling and determine statistical precision using stratified
systematic sampling, is the integrated correlation time28

τ(T, V, λ) ≡ τ∆U,int .

τ∆U,int is estimated by28

τ∆U,int =

(
1

2
+

N∑
k=1

A(k)

)
∆t ,

with time-step ∆t = 1 fs, and autocorrelation function,
A(k), given by

A(k) =
〈∆Ui∆Ui+k〉 − 〈∆Ui〉〈∆Ui〉
〈∆U2

i 〉 − 〈∆Ui〉〈∆Ui〉
.

The calculated correlation time ranges from 9 − 13 fs,
depending weakly on the arguments of τ(T, V, λ).

TI QUADRATURE ERROR

The quadrature error in Fah as a function of the num-
ber of integral sampling points (λi values) is shown in
Fig. 10. At low temperatures when the system is nearly
harmonic, the integrand 〈∂λEmix(λ)〉λ is small and al-
most independent of λ, and therefore a large number of
λi samples is unnecessary. At high temperature when
〈∂λEmix(λ)〉λ is curvier (see non-linearity in Fig. 2),
sufficient sampling of the integrand is critical to obtain
sub-meV/at numerical precision. Fah is determined in
this work by sampling 〈∂λEmix(λ)〉λ at 10 intervals or 11
points (λi = i/10). The associated error shown in Fig.
10 is less than 0.1 meV/at for T ≤ 3200 K, and ca. 0.2
meV/at at Tm.
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Figure 10. Thermodynamic integration error in Fah as func-
tion of the number of quadrature segments n in λi = i/n.
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