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Abstract: The susceptibility of steel frames to global second order effects, also referred to as 

sway effects, ‘P–∆’ effects and global geometric nonlinearities, is traditionally assessed 

through the elastic buckling load amplifier αcr. For elastic analysis, EN 1993-1-1 and other 

international steel design standards state that second order effects may be neglected provided 

αcr is greater than or equal to 10. However, when plastic analysis is employed, yielding of the 

material degrades the stiffness of the structure, and hence a stricter requirement of αcr≥15 is 

prescribed in EN 1993-1-1 for second order effects to be neglected. Use of a single limit of 15 

for any structural system is however considered to be overly simplistic. A more consistent and 

accurate approach is to determine the degree of stiffness degradation and hence the increased 

susceptibility to second order effects on a frame-by-frame basis. A parametric analysis to assess 

the stability of steel frames in the plastic regime is presented herein. A series of frames with 

varying geometries and load cases has been assessed. Based on the findings, a proposal for the 

calculation of a modified elastic buckling load factor αcr,mod, which considers the reduction in 

stiffness following plasticity on a frame-by-frame basis, is presented. 
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1 INTRODUCTION 

Degradation of stiffness affects the characteristics of a structural system and the subsequent 

distribution of internal forces and moments. There are two key types of nonlinearity to consider 

in the global analysis of a structure: (i) geometric nonlinearity, and (ii) material nonlinearity. 

Fig. 1 shows typical load-lateral displacement paths determined from different types of 

structural analysis. The effects of geometric nonlinearities may be seen by comparing the first 

order (linear) elastic analysis (LA) and second order (geometrically nonlinear) elastic analysis 

(GNA) paths, while the effects of material nonlinearities may be observed by comparing the 

first order elastic (LA) and first order plastic (materially nonlinear) analysis (MNA) paths. 

Geometrical nonlinearities, also referred to as second order effects, may result either from 

global imperfections and deformations associated with frame instability, known as ‘P–∆’ 

effects, or member imperfections and deformations associated with member instability, known 

as ‘P–δ’ effects. Material nonlinearity results from the development of inelastic strains i.e. the 

onset and spread of plasticity. There are two common forms of plastic analysis: plastic hinge 

analysis, in which material nonlinearity is considered through the development of zero-length 

plastic hinges within the structure, and plastic zone analysis, in which the development and 

spread of plasticity through the depth of the cross-section as well as along the length of the 

member is captured. Both are illustrated in Figure 1. It can be seen that both forms of 

nonlinearities can have a significant influence on the global response of the structure. Second 

order plastic analysis (i.e. geometrically and materially nonlinear) with imperfections 

(GMNIA) is assumed to provide the ‘true’ equilibrium path and failure load of the frame.  

 In common with other structural steel design standards, the stability of frames and the need 

to consider global second order effects is assessed in EN 1993-1-1 [1] on the basis of the value 

of the elastic buckling load factor αcr. This represents the factor by which the applied loading 

would need to be increased to cause elastic instability of the frame in a global sway mode. 
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Second order effects are deemed sufficiently small that they may be ignored if the amplification 

of the internal forces and moments due to sway second order effects is no more than 10% of 

the original internal forces determined according to first order theory. This corresponds to a 

limit of αcr≥10 for elastic analysis. For plastic analysis, a stricter limit of αcr≥15 beyond which 

second order effects can be ignored is given in EN 1993-1-1; this increased limit for plastic 

analysis recognises the fact that frames have reduced stiffness following plasticity and therefore 

increased susceptibility to second order effects. Note that in prEN 1993-1-1 [2], new provisions 

for the assessment of second order effects in the plastic regime are included, where the limit of 

10 is used for both elastic and plastic analysis, and the effect of the reduced stiffness is instead 

accounted for by reducing the critical load factor itself. This is discussed further in Section 

3.1.2. 

1.1 Global sway behaviour 

Material yielding and the formation of plastic hinges results in a progressive deterioration of 

frame stability [3, 4], where the stiffness is progressively reduced with each hinge formed. This 

is illustrated in Fig. 2, which shows the behaviour of an idealised one-bay fixed-based frame 

considering the progressive formation of plastic hinges. It should be noted that the illustrated 

sequence of hinge formation relates to the loading conditions indicated in the figure; this 

sequence could of course differ under alternative loading conditions. Fig. 2a shows the second 

order elastic load-displacement paths for the frame with an increasing number of plastic hinges, 

from GNA0, with zero hinges, to GNA3, with 3 hinges. It can be seen that the corresponding 

elastic critical buckling load of the frame reduces as the number of hinges increases, reflecting 

the overall loss in stiffness of the frame. Fig. 2b shows the second order plastic behaviour of 

the frame. Initially the frame is fully elastic and the load displacement path remains essentially 

linear, since geometric nonlinearities are small at low load levels. As the frame starts to deflect, 

the loading induces second order forces and moments, and the frame response deviates from 
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linearity following the path of the second order elastic analysis GNA0. The internal forces and 

moments continue to increase until the most heavily loaded cross-section reaches its plastic 

moment capacity and a plastic hinge forms [5]. This is illustrated in Fig. 2b by the point marked 

1. Once a hinge forms, the frame stiffness immediately reduces further and the frame now 

follows the path from a second order elastic analysis with a hinge at the location of the formed 

plastic hinge (GNA1). As the loading increases further, another cross-section reaches its plastic 

moment capacity and a second hinge forms (point 2). The frame now follows the path of a 

second order elastic analysis with two hinges (GNA2). This continues until a sufficient number 

of hinges have formed to cause a collapse mechanism [6, 7]. It should be noted that the frame 

remains elastic except at the plastic hinges; this is shown by the GMNA path matching exactly 

with the path made up of the second order elastic paths with an increasing number of hinges. 

The assumption of zero-length plastic hinges is however an unconservative idealisation [8], 

which fails to capture the initiation and progressive spread of plasticity both through the cross-

section depth and along the member length. The latter response is captured through plastic zone 

analysis. While plastic hinge analysis is more computationally efficient in comparison to plastic 

zone analysis and therefore currently more commonly used in practical applications, 

improvements in computational power and advances in software are allowing advanced 

analysis to become more viable for widespread use in design [9]. 

In this paper, the stability of steel frames and the treatment of second order effects in the 

plastic regime are examined. In Section 2, benchmark ultimate load factors are generated for a 

series of frames using geometrically and materially nonlinear analyses with imperfections 

(GMNIA). The results from first and second order elastic and plastic analyses are then 

compared, and the influence of material nonlinearity on the stability of frames considered. 

Finally, a proposal to account for the effect of plasticity on the generation of second order 

effects on a frame-by-frame basis is made in Section 3.   
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2 BENCHMARK FRAME MODELLING 

As discussed in Section 1, there are two common types of plastic analysis – plastic hinge 

and plastic zone, and both are assessed in this study. For plastic zone analysis, beam finite 

element (FE) models were developed using the general purpose FE software ABAQUS [10]. 

Since ABAQUS does not allow for the combined influence of bending moments and axial force 

on the development of plastic hinges, the plastic hinge analyses were carried out using models 

developed in the MASTAN2 [11] structural analysis software.  

Frames constructed using hot-rolled steel I-sections were simulated; the chosen cross-section 

geometry was that of a standard European HEB 340 section, which is Class 1 under all load 

cases for the considered material. This cross-section is therefore deemed capable of reaching 

and maintaining its full plastic moment resistance, and is thus suitable for plastic design. The 

2-noded linear Timoshenko B31OS beam element, from the ABAQUS element library, was 

employed to create the models and was used in all numerical simulations in ABAQUS, while 

the 3D shear flexible quadratic beam elements were employed in MASTAN2. The frame 

geometries, boundary conditions and load cases were devised such that global instability 

featured prominently. Fig. 3 and Table 1 provide an overview of the frame configurations 

modelled in this study.  

All members were connected via fixed multi-point constraint ties at their ends providing full 

continuity. The frames were restrained out-of-plane such that only in-plane major axis 

bending/buckling was considered. For the ABAQUS models, 100 elements were used to model 

each of the members, to accurately capture the spread of plasticity, and the modified Riks 

method [10] was used to trace the full load-deformation response of the frames. The load 

factors, displacements, section forces and section moments were extracted from all analyses at 

each load increment.  
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The stability of structural frames is assessed through the elastic buckling load factor αcr. 

Throughout this study, αcr is determined under the applied loading that causes collapse of the 

frame, as determined from GMNIA. In the following two subsections, the approach to 

determining elastic buckling load factors αcr from a linear buckling analysis (LBA) and ultimate 

load factors αu from a geometrically and materially nonlinear analysis with imperfections 

(GMNIA) of the considered frames are described.  

2.1 Elastic buckling load factor αcr 

The elastic critical load factor αcr of a frame may be determined by two common methods (i) 

an approximate method, originally proposed in [12, 13] and set out in EN 1993-1-1 whereby 

the elastic critical load factor is calculated on the basis of the lateral deflections of a frame under 

applied horizontal loading or (ii) using a linear buckling analysis (LBA) and taking αcr as the 

eigenvalue corresponding to the lowest sway buckling mode. Both calculations may be 

performed under any level of applied loading and then factored by the collapse load factor αu. 

Throughout this study, αcr has been determined using linear buckling analysis of the frames 

under the loading corresponding to the ultimate load factor αu, as predicted by GMNIA and 

outlined in Section 2.2. 

2.2 Ultimate load factor αu 

In this subsection, the calculation of the ultimate load factors of the frames from 

geometrically and materially nonlinear analyses with imperfections (GMNIA) is outlined. 

These are taken as the ‘true’ failure load factors of the frames and are used in this study as 

benchmark load factors. A linear-elastic perfectly-plastic stress-strain relationship was 

employed with a yield stress fy=235 N/mm2 and a Young’s modulus E=210000 N/mm2. As 

recommended in EN 1993-1-1 [1], an initial member out-of-straightness in the form of a half-

sine wave and with a magnitude of 1/1000 of the member length was assumed while, for the 
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initial frame imperfection, an out-of-plumbness 1/200 of the frame height was assumed. The 

initial frame out-of-plumbness was applied as an equivalent horizontal force, to induce the first 

order deformations equivalent to the geometric imperfection [9], and included in all analyses. 

For each frame, the initial displacements were defined such that they provided the greatest 

destabilising effect considering the boundary conditions, frame geometry and load case. The 

ECCS residual stress distribution for hot-rolled I-sections with height-to-width ratio  1.2 [14] 

was incorporated into the finite element models, with each flange and web of the sections 

discretised into 33 section points to ensure that the residual stress distribution and subsequent 

spread of plasticity could be captured accurately [15]. The initial stress values were introduced 

at the section points through the SIGINI user subroutine [10]. For each frame and load case 

outlined in Table 1, the ultimate load factor αu was directly taken as the peak load factor from 

a GMNIA. 

3 RESULTS 

In this section, the results of first and second order analyses are compared to study the 

response of the examined frames and to assess the rules for global stability design set out in EN 

1993-1-1 [1]. In the elastic regime, Merchant [16] proposed an amplification factor kamp, which 

is included in EN 1993-1-1 and given by Eq. (1), to estimate second order sway moments from 

a first order analysis. This amplification factor is applied to the horizontal loads and may be 

used to account for second order effects when 3≤αcr<10 [1]. For very slender frames when 

αcr<3, a full second order analysis must be carried out [1].  

 𝑘amp =
1

1−
1

𝛼cr

 (1) 

where αcr is the factor by which the applied loading must be increased to cause elastic 

instability of the frame in a global sway mode, as outlined in Section 2.1. 
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As discussed in Walport et al. [17], for elastic analysis, the amplification factor kamp is 

equivalent to the ratio of internal forces from a second (GNA) to a first order (LA) analysis 

(MGNA/MLA) at any point in the frame. However, for plastic analysis, due to the redistribution 

of the internal forces and moments following material nonlinearity, kamp must be calculated by 

determining the magnitude of the amplification of the horizontal loading in a first order analysis 

(MNA+ kamp) required to align the sway deflections to those in a second order analysis (GMNA) 

at a given applied load factor, as shown in Fig. 4. At this level of amplification to the horizontal 

loading, the moments in the amplified first order analysis are equal, when sway effects are 

dominant, to the moments in the second order analysis i.e. MGMNA=MMNA+kamp. This required 

amplification factor has been determined herein at the benchmark ultimate load factor αu for 

each frame, considering both elastic and plastic analyses. 

For elastic analysis, the ratios of moments extracted from the FE frame models at αu using a 

second order elastic analysis (GNA) and a first order elastic analysis (LA) are plotted in Fig. 5, 

along with Eq. (1). As expected, the results may be seen to follow the expression for the 

amplification factor kamp accurately. At αcr=10, the required amplification from first to second 

order analysis is around 10%, which is the threshold beyond which account must be taken of 

second order effects in EN 1993-1-1 [1]. As αcr tends towards unity (i.e. as the applied loading 

FEd approaches the elastic buckling load Fcr), second order effects become increasingly 

significant. 

For plastic analysis, the amplification factors calculated using the approach illustrated in Fig. 

4, along with Eq. (1), are plotted against αcr in Fig. 6. The results from both plastic hinge analysis 

and plastic zone analysis are shown. Unlike in Fig. 5, the results no longer match well with Eq. 

(1) and lie on the unsafe side of the curve (by 2% on average and by up to almost 20% for 

particular cases). This indicates that a greater amplification factor is required to take account of 

the second order effects in the plastic regime than is predicted with Eq. (1). While for the plastic 
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analysis of frames where the sway mode is dominant, amplifying the horizontal force is accurate 

in accounting for second order effects, for frames where nonsway effects are significant, 

amplifying the horizontal loads in a first order plastic analysis does not result in the same forces 

and moments as those in a corresponding second order plastic analysis. This is in line with the 

guidance given in [18]. Similar observations were made by Demonceau et al. [19] who noted 

that amplifying a first order analysis will not always result in the same plastic mechanism as 

formed in a second order analysis due to the second order effects influencing differently the 

yielding of the structure. Therefore, it is concluded that it is only appropriate to use kamp in 

conjunction with plastic analysis in cases where sway is dominant.  

The amplification concept can alternatively be used to relate load factors for a given level of 

deflection. For elastic analysis, the relationship between load factors obtained from first order 

(αel1) and second order (αel2) analyses is given by Eq. (2) [16]. This expression applies at all 

load levels and provides a precise means of relating first and second order load factors, as 

illustrated in Fig. 7.  

 (
𝛼el2

𝛼el1
) =

𝛼cr−1

𝛼cr
 (2) 

In the plastic regime, Lim et al. [20] proposed that the same concept could be applied to 

relate first order (αpl1) and second order (αpl2) plastic collapse loads through Eq. (3).  

 (
𝛼pl2

𝛼pl1
) =

𝛼cr−1

𝛼cr
 (3) 

For plastic analysis, the ratios of the second order plastic collapse load factor, taken as the 

GMNIA ultimate load factor (i.e. αpl2=αu), to the first order plastic collapse load factor for all 

frames are plotted in Fig. 8 alongside Eq. (3), against the elastic critical load factor αcr. It can 

be seen that, in similar conclusion to Fig. 6, the FE results do not match well with Eq. (3) and 

the majority of the points lie on the unsafe side relative to the Merchant-Rankine formula, with 

an average value of (αpl2/αpl1)/((αcr-1)/αcr) of 0.97 and a minimum value of 0.85. This can be 
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explained with reference to Fig. 9, which shows the load-lateral displacement paths from the 

different types of structural analysis for an idealised frame. In the elastic regime, it can be seen 

in Fig. 9a that applying the Merchant-Rankine formula provides a precise prediction of the 

reduction in load factor due to second order effects. However, if the (elastic) amplification 

concept is applied in the plastic regime (i.e. Eq. (3)) it can be seen in Fig. 9b that the reduction 

in load factor from first order analysis αpl1 is no longer sufficient for predicting the second order 

plastic collapse load αpl2. For the amplification approach to accurately predict the second order 

plastic collapse load, it should no longer be based on the elastic critical load factor αcr (i.e. Eq. 

(3)), but on a modified (reduced) critical load factor αcr,mod as shown in Fig. 9c and described 

in Section 3.1.  It is therefore concluded that the amplification concept, as given by Eq. (3), is 

not appropriate and that a modified form is required.  

 

3.1 Proposal to account for the influence of plasticity on the development of second order 

effects 

In the previous section it was shown that material yielding and the onset of plasticity results 

in a reduction in sway stiffness of the frame and hence an increased susceptibility to second 

order effects. The ‘average’ reduction in sway stiffness at a specified load level can be estimated 

through the ratio Ks/K of the load-lateral deflection curve from a first order plastic analysis 

(MNA), where K is the initial stiffness and Ks is the secant stiffness at a specified point (i.e. the 

applied load level), as shown in Fig. 10. The ratio Ks/K may be alternatively expressed as ∆el/∆pl, 

facilitating its calculation – see Fig. 10. This ratio represents the reduced sway stiffness of the 

frame and can therefore be used to account for the increased susceptibility of the frame to global 

second order effects. However, at the same load level, the forces and moments in a frame 

obtained from a second order plastic analysis will be higher than those from a first order plastic 

analysis, so the actual degradation in stiffness will in fact be somewhat larger than that predicted 

using the method described above. This can be seen in Fig. 11, where the results of a GNA 
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performed with the Young’s modulus E reduced by factor Ks/K are shown to not fully capture 

the degradation in stiffness of the frame at αu, as given by the GMNA results. A factor Y for 

the further loss of stiffness due to the additional plastification is proposed. Based on the analyses 

performed herein, for single storey portal frames, a factor of 0.9 for Y is proposed while for all 

other frames, a factor of 0.65 for Y is proposed. This greater reduction for more complex frames 

reflects the fact that more plastic hinges can form, at a given load level, between a first order 

and second order analysis, resulting in a greater degradation in stiffness. Fig. 12 highlights the 

frames where more hinges have formed in the second order analysis than in the first order 

analysis at αu. The variability in the results is attributed to the wide range of frame geometries 

and load cases considered, resulting in different load-deformation histories, plastic hinge 

formations sequences and collapse mechanisms. The anomalous result at a value of αcr around 

15 is from the Case 3 10×10 frame with H=0.05V. This result can be explained by the nature 

of the collapse mechanism, which was a beam collapse mechanism rather than a sway 

mechanism, and therefore the influence of second order effects is small. Whether additional 

plastic hinges form at a given load level due to second order effects cannot be predicted from a 

first order analysis, and therefore the reduction based on the combination of Ks/K and the Y 

factor is proposed to provide a safe sided assessment of the loss of stiffness due to plasticity. 

For the typical portal frame shown in Fig. 11, the results of GNA with E reduced by 0.9Ks/K 

are shown to provide good agreement with the GMNA results at αu, demonstrating that the 

influence of material degradation on the sway stiffness of the frame is accurately captured. 

3.1.1 Proposed approach 

As presented in Walport et al. [17] for stainless steel, the influence of plasticity on the sway 

stiffness of frames may be considered by defining a modified elastic buckling load factor αcr,mod, 

as given by Eq. (4). The ratio Ks/K accounts for the reduction in stiffness arising in a first order 

plastic analysis due to the material yielding, while the Y factor approximates the further loss of 
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stiffness due to the additional plastification, and potential formation of additional plastic hinges, 

that occurs at the same load level when second order effects are considered. The modified 

critical load factor αcr,mod may then be used to assess whether or not second order effects are 

significant; the assessment is made against a limiting value of 10, allowing for consistency with 

elastic analysis. 

 𝛼cr,mod = Y
𝐾s

𝐾
𝛼cr (4) 

A modified reduction factor to account for the influence of plasticity can likewise be defined, 

utilising the modified elastic buckling load factor αcr,mod, as given by Eq. (5). 

 (
𝛼pl2

𝛼pl1
) =

𝛼cr,mod−1

𝛼cr,mod
 (5) 

From the study on multi-storey frames (Frame cases 4, 9, 13-15, 17 in Table 1), it was found 

that the effects of material nonlinearity on the reduction in global sway stiffness should be 

assessed on a storey-by-storey basis, with the most critical storey (i.e. the lowest value of αcr,mod) 

used to represent the overall frame. This prevents the deleterious influence of plasticity on 

frame stability from being ‘averaged out’ and ensures safe sided estimates of αcr,mod. This 

approach of assessing frame stability based on the interstorey sway of the critical storey in the 

frame is similar to the approximate method originally developed by Horne [13] and used in the 

elastic regime in EN 1993-1-1 [1]. 

3.1.2 Wood approach 

As discussed in Section 1.1, frame stiffness decreases with the formation of plastic hinges 

and the structural stability is governed by the remaining elastic parts of the frame. prEN 1993-

1-1 [2] includes a revised approach to the assessment of second order effects for plastic global 

analysis that, similarly to the proposal made in this study, retains the limiting value of 10 from 

elastic analysis and requires the calculation of αcr,mod. The approach is based on the research 

carried out by Wood [3] which investigated frame stability and plastic hinge formation, and 
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concluded that a modified critical load factor, or deteriorated critical load factor, may be 

calculated by carrying out a linear buckling analysis of a frame with hinges at the location of 

the plastic hinges. Conservatively, this approach can be applied to the frame at the point at 

which the penultimate plastic hinge, prior to the creation of a collapse mechanism, forms, since 

in practice the number of hinges formed at the design load level may be initially unknown. 

More accurately, the number of hinges formed at the load level of interest may be substituted 

into the linear buckling analysis. This method may only be carried out with plastic hinge 

analysis. 

3.1.3 Implementation using plastic hinge analysis 

The structural analysis software MASTAN2 [11] was employed to carry out the plastic hinge 

analyses as discussed in Section 2, with the geometry and loading of all frames developed in 

accordance with the ABAQUS [10] models. Fig. 13 shows a comparison of the modified critical 

load factors for a 15×10 m portal frame calculated using the different methods described above. 

As expected, as the number of hinges in the linear buckling analysis increases, the modified 

critical load factor decreases. The method of including hinges in the linear buckling analysis 

allows the influence of plasticity on sway stability to be assessed on a frame-by-frame basis, 

which is rational, but yields very conservative results when compared to Eq. (3) – this can also 

be clearly seen in Figs. 14a and 14b for all considered frames in the study. This means that the 

calculated value of αcr,mod will fall more frequently (than necessary) below the limit of 10, 

requiring a second order analysis to be performed. In addition to the proposed modified critical 

load factor in Section 3.1.1, a critical load factor based solely on the secant stiffness reduction 

has been plotted (see Fig. 14c for all frames). It can be seen that while the secant stiffness 

reduction factor Ks/K captures the majority of the influence of the plastification, the Y factor, 

in this example equal to 0.9, is also required to reflect the full degree of stiffness degradation 

(see Fig. 14d for all frames).   
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Using the Wood approach, the elastic buckling load factor of the frame is reduced 

substantially more than necessary for both considered cases for the number of hinges formed. 

This is because the Wood approach assumes that the stiffness reduction due to the formation of 

the plastic hinges begins at the onset of loading. Considering Fig. 2b, it can be seen that in 

reality, the frame initially has its full elastic stiffness and it is not until the onset of plasticity 

that the gradual degradation of stiffness begins. This is reflected in the proposed approach, 

which explains the considerably more accurate results; for the example frame shown in Fig. 13, 

αcr,mod≥10 according to the proposed approach and therefore a first order analysis is in fact 

sufficient. 

Fig. 14 shows the results from the plastic hinge analyses plotted against the modified elastic 

buckling load factor for all frames considered in this study. The modified critical load factors 

obtained from the proposed approach (Eq. (4)), as well as from the alternative approaches, as 

included in Fig. 13, are shown. The conclusions from Fig. 13 may be seen to be true for all 

frames in Fig. 14. As well as the conclusions previously made, it can be seen that applying the 

Wood proposal with the number of hinges formed at the GMNIA collapse load (see Fig. 14b) 

can result in some unsafe predictions. This is because the number of hinges is based on those 

formed in a first order plastic analysis and does not account for the increased number that may 

form when second order effects are considered. Plotting the frame results against the proposed 

modified critical load factor (see Fig. 14d) yields close agreement with the Merchant-Rankine 

formula. The average value of (αpl2/αpl1)/((αcr,mod-1)/αcr,mod) is 1.01. The requirement that for 

αcr,mod≥10, a first order analysis is sufficient, and for αcr,mod<10, second order effects are 

significant and must be considered in the analysis, is therefore considered to be suitable. Note 

that for frames failing in the elastic range, the first order secant stiffness reduction (Ks/K) would 

be equal to unity, but the Y factor would still apply.  
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3.1.4 Implementation using plastic zone analysis 

Fig. 15 shows the frame results from the plastic zone analyses plotted against the modified 

elastic buckling load factor. The modified critical load factors based solely on the secant 

stiffness reduction are shown in Fig. 15a, while the modified critical load factors obtained from 

the proposed approach (Eq. (4)) are shown in Fig. 15b. It can be seen that while the secant 

stiffness reduction factor Ks/K captures the majority of the influence of the plastification, the Y 

factor is also required, as described earlier. As for the plastic hinge analysis results, the plastic 

zone analysis results, when plotted against the proposed modified critical load factor, show 

good agreement with the modified Rankine-Merchant formula. The unsymmetrical pinned-

based two-storey moment resisting (U-P36H) Ziemian [21] frame and the six-storey Vogel [22] 

frame have also been assessed and included in Fig. 15, with both resulting in safe sided, 

although very conservative, predictions. These two frames, along with the Case 3 10×10 frame 

with H=0.05V discussed in Section 3.1, have values of αcr,mod in the range of 3 to 6, and can be 

seen to not fit the trend of results and the modified Merchant-Rankine. These frames failed with 

beam collapse mechanisms and therefore the influence of second order effects at collapse is 

small. In accounting for the reduction in stiffness due to the influence of plasticity by redefining 

the critical load factor on a frame-by-frame basis, the limit of 10 may now be used for plastic 

analysis as well as elastic analysis. As presented for plastic hinge analysis in Section 3.1.3, for 

plastic zone analysis, when αcr,mod≥10 a first order analysis is deemed sufficient, while for 

αcr,mod<10, second order effects are considered to be significant (i.e. greater than 10% of the 

first order effects) and must be considered in the analysis. A reduction to the first order plastic 

collapse load factor based on Eq (5) has been shown to provide a good approximation to the 

second order plastic collapse load factor, but it is nonetheless recommended that a full second 

order plastic analysis is carried out for αcr,mod<10.  
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4 SUMMARY OF PROPOSALS  

A summary of the existing and proposed methods for accounting for second order effects is 

given in Table 2. The key steps involved in the proposed method for assessing the stability and 

treatment of second order effects in plastically-designed steel frames is as follows: 

1. Calculate the load factor to cause elastic instability in a global sway mode αcr under 

the applied factored loading. 

2. Perform a first order plastic analysis (MNA) and extract the horizontal frame 

displacement ∆pl at this load level. 

3. Determine the secant stiffness reduction factor Ks/K=∆el/∆pl based on the minimum 

value of Ks considering both sway displacement (i.e. left or right side of the frame) 

and loading history. For multi-storey frames, Ks/K should be based on the critical 

storey. 

4. Calculate the modified critical load factor αcr,mod=Y(Ks/K)αcr, where Y is equal to 0.9 

for portal frames and 0.65 for all other frames.  

5. If αcr,mod≥10 a first order analysis (MNA) may be employed. If αcr,mod<10, a second 

order analysis (GMNA) is required. 

5 CONCLUSIONS 

The onset of plasticity results in degradation of stiffness and hence enhanced second order 

effects in steel frames. If plasticity is considered in the global analysis of a frame, greater 

deflections ensue due to the reduction in material stiffness. At present, EN 1993-1-1 [1] 

accounts for this increased degree of flexibility by applying a stricter requirement of αcr≥15 

before second order effects can be neglected. The use of a single limit of 15 for all structural 

systems no matter the degree of plastic deformation is however considered by the authors to be 

overly simplistic. Instead, a new method to account for the increased susceptibility to second 
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order effects due to plasticity, whereby the elastic buckling load factor of the frame αcr is 

reduced to αcr,mod on the basis of the secant stiffness from a first order plastic analysis has been 

proposed and shown to yield accurate results. Based on the proposed approach, for plastically-

designed frames, when αcr,mod≥10, second order effects may be neglected and a first order plastic 

analysis (MNA) can be carried out. A reduction to the first order plastic collapse load factor 

based on αcr,mod has been shown to provide a good approximation to the second order plastic 

collapse load factor, but it is nonetheless recommended that for αcr,mod<10 a full second order 

plastic analysis (GMNA) should be carried out. Assessing frame stability on a frame-by-frame 

method is deemed to be a more consistent and accurate approach for any structural system than 

the current use of a single limit for all frames. Furthermore, the proposed approach provides a 

consistent treatment of second order effects between elastic and plastic global analysis i.e. a 

limit of 10 on both αcr and αcr,mod, deeming second order effects sufficiently small to be ignored 

if the amplification of the internal forces and moments due to sway second order effects is no 

more than 10% of the original internal forces determined according to first order theory. This 

method leads to more accurate and less conservative results than carrying out a linear buckling 

analysis with hinges, as suggested in [3, 4], and included in prEN 1993-1-1 [2], because this 

assumes that the stiffness reduction due to the formation of the plastic hinges begins at the onset 

of loading. While the method is quick and convenient to carry out, it often results in overly 

pessimistic predictions. The proposed method may be used for both plastic hinge and plastic 

zone analysis and is straightforward to apply since it does not rely on knowledge of the plastic 

hinge locations or the order of their formation.  
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Figure 1: Methods of structural analysis (LA = Linear Analysis; GNA = Geometrically 

Nonlinear Analysis; MNA = Materially Nonlinear Analysis; GMNA= Geometrically and 

Materially Nonlinear Analysis; GMNIA = Geometrically and Materially Nonlinear Analysis 

with Imperfections). 

 

 

    a) Second order elastic frame response with                    b) Progressive formation of                    

          an increasing number of plastic hinges                                    plastic hinges     

Figure 2: Representative frame sway behaviour with the onset of plastic hinge formation.  
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Figure 3: Details of portal frames modelled, where α is the load factor, as discussed in 

Sections 2.1 and 2.2. 
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Figure 3 cont.: Details of portal frames modelled, where α is the load factor, as discussed in 

Sections 2.1 and 2.2. 
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Figure 3 cont.: Details of portal frames modelled, where α is the load factor, as discussed in 

Sections 2.1 and 2.2. 
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Figure 4: Determination of kamp from frame FE models. 

 

 

Figure 5: Amplification factor from first to second order elastic analyses at αu versus αcr. 
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Figure 6: Amplification factor from first to second order plastic analyses at αu versus αcr. 

 

 

Figure 7: Reduction of load factor from first to second order elastic analyses versus αcr. 

0.9

1.0

1.1

1.2

1.3

1.4

1.5

0 10 20 30 40 50 60

k a
m

p

αcr

Original Hinge

Original Zone

𝑘amp =
1

1 −
1
𝛼cr

Frames with plastic hinge analysis, 

but 𝛼cr determined assuming elastic 

behaviour

Frames with plastic zone analysis, 

but 𝛼cr determined assuming elastic 

behaviour

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

0 10 20 30 40 50 60

α
el

2
/α

el
1

αcr

Series1
Frames with elastic 

σ-ε properties

𝛼el2
𝛼el1

=
𝛼cr − 1

𝛼cr



 

26 

 

 

Figure 8: Reduction of load factor from first to second order plastic analyses at αu versus αcr. 
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  (a) Reduction in load factor from first order    (b) Reduction from first order to second order     (c) Reduction from first order to second order 

   to second order elastic analysis, showing            plastic collapse load factor based on αcr,            plastic collapse load factor based on αcr,mod,             

                       precise match.                                  showing a discrepancy in the prediction.                    showing an accurate prediction. 

Figure 9: Assessment of amplification concept for an idealised frame.  
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Figure 10: Typical load factor versus lateral displacement response of a frame showing 

reduction to sway stiffness due to material nonlinearity from first order analysis. 

 

 

Figure 11: Load-displacement paths showing the full influence of material degradation on 

the sway stiffness of a typical structural frame. 
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Figure 12: Increased number of hinges formed in second order plastic analysis (GMNA) 

to those formed in first order plastic analysis (MNA). 

 

Figure 13: Comparison of the different methods of calculation of the modified critical 

load factor αcr,mod for an example frame (15×10 m; H=0.5V). 
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(a) Frames with plastic hinge analysis, but 

αcr,mod determined from LBA with number 

of hinges corresesponding to penultimate 

plastic hinge in collapse mechanism  

(b) Frames with plastic hinge analysis, but 

αcr,mod determined from LBA of frames with 

number of hinges at GMNIA collapse load 

  

(c) Frames with plastic hinge analysis, but 

αcr,mod calculated as (𝐾s 𝐾⁄ )αcr  

(d) Frames with plastic hinge analysis, but 

αcr,mod calculated as Y(𝐾s 𝐾⁄ )αcr (Eq. (4)) 

Figure 14: Ratios of plastic collapse loads for the different methods of calculation of the 

modified critical load factor αcr,mod, accounting for influence of plasticity, from FE plastic 

hinge analyses. 
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(a) Frames with plastic zone analysis, but 

αcr,mod calculated as (𝐾s 𝐾⁄ )αcr  

(b) Frames with plastic zone analysis, but 

αcr,mod calculated as Y(𝐾s 𝐾⁄ )αcr (Eq. (4)) 

Figure 15: Ratios of plastic collapse loads for the different methods of calculation of the 

modified critical load factor αcr,mod, accounting for influence of plasticity, from FE plastic 

zone analyses. 
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Table 1: Frame cases considered. 

Frame case 

no. 

No. of 

frames 

Boundary 

conditions 

Horizontal 

loading H 

Storey height(s) 

h (m) 

Bay width(s) 

L (m) 

1 21 Fixed 
0.05V, 0.2V, 

0.5V 
5, 6, 7, 8, 9, 10, 

15 

10 

2 7 Pinned 0.2V 

3 6 

Fixed 

0.05V, 0.2V, 

0.5V 

5, 10 

4 12 5, 8, 10, 15 

5 3 

5 
6 3 

0.05V, 0.1V, 

0.2V 

7 6 
0.05V, 0.2V, 

0.5V 
5, 10 

8 7 0.2V 
5, 6, 7, 8, 9, 10, 

15 

9 3 
0.1V, 0.2V, 

0.41V 
10 

10 1 0.2V 5 

11 6 0.05V, 0.2V, 

0.5V 
5, 10 

10 5 

12 6 5 10 

13 (a) 1 0.13V 10 

10 

13 (b) 3 0.27V 5, 8, 10 

14 (a) 1 
Pinned 

0.13V 10 

14 (b) 2 0.27V 5, 10 

15 3 

Fixed 

0.13V 5, 8, 10 

16 2 0.13V, 0.27V 5 

17 1 0.2V 5 
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Table 2: Comparison of design methods 

Type of 

analysis 

Approach 

Analysis type 

Method of 

accounting for 

plasticity 
1st order 

Amplified 1st 

order or 2nd 

order 

2nd order 

Elastic 

analysis 

All 𝛼cr ≥ 10 3 ≤ 𝛼cr < 10 𝛼cr < 10 - 

Plastic 

analysis 

EN 1993-1-1 

[1] 

𝛼cr ≥ 15 - 𝛼cr < 15 

Increased limit 

on 𝛼cr 

prEN 1993-1-1 

[15] (Wood 

approach) 

𝛼cr ≥ 10 - 𝛼cr < 10 

Frame-by-frame 

basis – reduced 

critical load 

factor based on 

substituting 

hinges into LBA 

Proposal 𝛼cr,mod ≥ 10 - 𝛼cr,mod < 10 

Frame-by-frame 

basis – reduced 

critical load 

factor 𝛼cr,mod 

based on secant 

stiffness at 

design load level  

 


