IMPORTANCE The relationship between exposure to lower low-density lipoprotein cholesterol (LDL-C) and lower systolic blood pressure (SBP) with the risk of cardiovascular disease has not been reliably quantified.

OBJECTIVE To assess the association of lifetime exposure to the combination of both lower LDL-C and lower SBP with the lifetime risk of cardiovascular disease.

DESIGN, SETTING, AND PARTICIPANTS Among 438,952 participants enrolled in the UK Biobank between 2006 and 2010 and followed up through 2018, genetic LDL-C and SBP scores were used as instruments to divide participants into groups with lifetime exposure to lower LDL-C, lower SBP, or both. Differences in plasma LDL-C, SBP, and cardiovascular event rates between the groups were compared to estimate associations with lifetime risk of cardiovascular disease.

EXPOSURES Differences in plasma LDL-C and SBP compared with participants with both genetic scores below the median. Genetic risk scores higher than the median were associated with lower LDL-C and lower SBP.

MAIN OUTCOMES AND MEASURES Odds ratio (OR) for major coronary events, defined as coronary death, nonfatal myocardial infarction, or coronary revascularization.

RESULTS The mean age of the 438,952 participants was 65.2 years (range, 40.4-80.0 years), 54.1% were women, and 24,980 experienced a first major coronary event. Compared with the reference group, participants with LDL-C genetic scores higher than the median had 14.7-mg/dL lower LDL-C levels and an OR of 0.73 for major coronary events (95% CI, 0.70-0.75; P < .001). Participants with SBP genetic scores higher than the median had 2.9-mm Hg lower SBP and an OR of 0.82 for major coronary events (95% CI, 0.79-0.85; P < .001). Participants in the group with both genetic scores higher than the median had 13.9-mg/dL lower LDL-C, 3.1-mm Hg lower SBP, and an OR of 0.61 for major coronary events (95% CI, 0.59-0.64; P < .001). In a 4 × 4 factorial analysis, exposure to increasing genetic risk scores and lower LDL-C levels and SBP was associated with dose-dependent lower risks of major coronary events. In a meta-regression analysis, combined exposure to 38.67-mg/dL lower LDL-C and 10-mm Hg lower SBP was associated with an OR of 0.22 for major coronary events (95% CI, 0.17-0.26; P < .001), and 0.32 for cardiovascular death (95% CI, 0.25-0.40; P < .001).

CONCLUSIONS AND RELEVANCE Lifelong genetic exposure to lower levels of low-density lipoprotein cholesterol and lower systolic blood pressure was associated with lower cardiovascular risk. However, these findings cannot be assumed to represent the magnitude of benefit achievable from treatment of these risk factors.

Published online September 2, 2019.

© 2019 American Medical Association. All rights reserved.
Numerous randomized trials have demonstrated that treatment for up to 5 years with therapies that reduce low-density lipoprotein cholesterol (LDL-C) and systolic blood pressure (SBP) reduce the risk of cardiovascular events. In addition, mendelian randomization studies suggest that the benefit of exposure to lower LDL-C levels and lower SBP may accumulate over time. Because the biological effects of LDL-C and SBP may be cumulative, long-term exposure to the combination of both could potentially substantially reduce the lifetime risk of cardiovascular disease. However, the association of combined lifetime exposure to both lower LDL-C and lower SBP with the risk of cardiovascular disease has not been reliably quantified.

Ideally, this question would be addressed by conducting a randomized trial to minimize the effect of confounding that can occur in observational studies. However, a randomized trial evaluating the association between maintaining prolonged exposure to both lower LDL-C levels and lower SBP with the risk of cardiovascular disease would take several decades to complete, and therefore is unlikely to ever be conducted. In an attempt to fill this evidence gap, this study used genetic variants associated with lower LDL-C levels and SBP as instruments of randomization to divide participants into groups with lifelong exposure to lower LDL-C levels, lower SBP, or both; and then compared the differences in plasma LDL-C, SBP, and cardiovascular event rates in each group to estimate the association of combined lifetime exposure with the lifetime risk of cardiovascular disease in a manner analogous to a long-term randomized clinical trial. The primary objective of this study was to assess and quantify the association of prolonged exposure to the combination of both lower LDL-C and lower SBP with the lifetime risk of cardiovascular disease.

Methods

Study Population

The study included individual-level data from participants enrolled in the UK Biobank study recruited between 2006 and 2010 from 22 assessment centers across the United Kingdom who self-identified as being of white ancestry. Participants who had missing values for either cardiovascular outcomes; 1 or more of the variants included in the LDL-C or SBP genetic scores; 1 or more of the first 5 principal components of ancestry; or both plasma LDL-C and SBP were excluded from the analysis. The KING (Kinship-based Inference for Genome-wide association studies) toolset was used to identify up to third-degree relatedness based on kinship coefficients of more than 0.044. The UK Biobank has ethical approval from the Northwest Multi-Center Research Ethics Committee, and all participants provided written informed consent.

Instruments of Randomization

To construct the genetic LDL-C score, a total of 100 exome variants were identified that have been previously shown to be associated with LDL-C at the genome-wide level of significance and were in low-linkage disequilibrium with each other ($r^2 < 0.1$). The exposure allele for each variant was defined as the allele associated with lower LDL-C. A weighted genetic LDL-C score was then calculated for each participant by summing the number of LDL-C-lowering alleles that persons inherited at each variant included in the score weighted by the association of each variant with LDL-C measured in milligrams per deciliter conditional on the association of all other variants included in the score as measured among participants in the UK Biobank without cardiovascular disease (eTable 1 in the Supplement).

Similarly, to construct the genetic SBP score, a total of 61 exome variants were identified that were previously shown to be associated with SBP at the genome-wide level of significance and that were in low-linkage disequilibrium with each other ($r^2 < 0.1$). The exposure allele for each variant was defined as the allele associated with lower SBP. A weighted genetic SBP score was then calculated for each participant by summing the number of SBP-lowering alleles that persons inherited at each variant included in the score weighted by the association of each variant with SBP measured in millimeters of mercury (mm Hg) conditional on the association of all other variants included in the score as measured among UK Biobank participants without cardiovascular disease (eTable 2 in the Supplement).

For sensitivity analyses, unweighted genetic scores and genetic scores weighted by the association of each variant with LDL-C and SBP reported in the exome consortia were also calculated for each participant.

Study Outcomes

The primary outcome was major coronary events defined as a composite of coronary death, nonfatal myocardial infarction, or coronary revascularization. The key secondary outcome was major cardiovascular events (MCVEs) defined as the occurrence of a major coronary event or ischemic stroke (eTable 3 in the Supplement).

Study Design

To conduct the 2×2 factorial analysis, each genetic score was first dichotomized as higher than or lower than the median value for that score. Because the LDL-C- or SBP-lowering allele at each variant included in either score is inherited approximately randomly at the time of conception and because each variant is inherited independently from all other variants included in either score by virtue of being in low-linkage disequilibrium with all

Key Points

Question What is the association between genetic variants related to lower low-density lipoprotein cholesterol (LDL-C) levels and lower systolic blood pressure (SBP) with lifetime risk of cardiovascular disease?

Findings In mendelian randomization analyses involving 438,952 participants, genetic variants related to lower LDL-C and lower SBP were significantly associated with independent, additive, and dose-dependent lower risk of cardiovascular disease. For example, participants with genetic variants associated with both 14-mg/dL lower LDL-C and 3-mm Hg lower SBP had an odds ratio of 0.61 for major coronary events (coronary death, myocardial infarction, or coronary revascularization).

Meaning Lifelong genetic exposure to lower levels of low-density lipoprotein cholesterol and lower systolic blood pressure was associated with lower cardiovascular risk.
other variants, the number of LDL-C lowering alleles and SBP lowering alleles, respectively, that each person inherits in either score should also be random. These genetic scores were used as instruments of randomization to divide participants into 4 groups. First, participants were divided into 2 groups based on whether their genetic LDL-C score was equal to or lower than or was higher than the median. Participants in each of these 2 groups were then divided into 2 more groups based on whether their systolic blood pressure (SBP) genetic score was equal to or lower than or was higher than the median. This process divided all participants into 1 of 4 groups: a reference group, a group with lower SBP, a group with lower LDL-C, and a group with both lower LDL-C and lower SBP. To convert LDL-cholesterol from mg/dL to mmol/L, multiply by 0.0259.

Participants were first divided into 2 groups based on whether their low-density lipoprotein cholesterol (LDL-C) genetic score was equal to or lower than or was higher than the median. Participants in each of these 2 groups were then divided into 2 more groups based on whether their systolic blood pressure (SBP) genetic score was equal to or lower than or was higher than the median. This process produced 4 groups: a reference group, a group with lower SBP, a group with lower LDL-C, and a group with both lower LDL-C and lower SBP. The success of the randomization scheme was assessed by comparing baseline characteristics among participants in each group. To assess dose-response, participants were divided into 4 groups based on the quartile values of their LDL-C and SBP scores, respectively, and a 4 × 4 factorial analysis was conducted.

Statistical Analysis

The genetic scores were used only as instruments of randomization without further assumptions. The mean differences in LDL-C, SBP, and cardiovascular event rates between each group being compared was directly measured to estimate the separate and combined associations of exposure to lower LDL-C, lower SBP, or both with the risk of cardiovascular events. The differences in LDL-C and SBP between groups was calculated as the difference in the crude means in each group, and by using linear regression adjusted for age, sex, body mass index, current smoking status, and the first 5 principal components of ancestry. The differences in the risk of cardiovascular events was measured by comparing the number of events in each group, and by using logistic regression using the same adjustments as performed in the linear regression analyses. A z test was used to assess for interactions between pairs of subgroups, and Cochran Q test was used when comparing more than 2 subgroups.

Incident and prevalent cases of disease were combined to maximize power, under the implicit assumption that all events occur incident to a genetic exposure. Because the date of occurrence for prevalent events was not known, a sensitivity analyses using generalized linear models was performed to calculate relative risks using log-binomial regression and a log link function. The relative risk estimates were then compared to the estimates of association derived from the logistic regression analyses to assess the quantitative change of combining incident and prevalent outcomes in the primary analysis.

To estimate the association of combined exposure to both 38.67 mg/dL or 1 mmol/L (to convert mg/dL to mmol/L, multiply by 0.0259) lower LDL-C and 10 mm Hg lower SBP on the...
risk of cardiovascular events, a meta-regression analysis was performed by regressing the association with major coronary events for each of the 15 groups in the \(4 \times 4\) factorial analysis by the differences in LDL-C and SBP for each group compared with the reference group (defined as the group with the lowest quartile value for both the LDL-C and SBP scores).

In a test of external replication, genetic LDL-C and SBP scores were calculated using summary data from 184,305 participants enrolled in the Coronary Artery Disease Genome-Wide Replication and Meta-analysis (CARDIOGRAM) plus the Coronary Artery Disease (C4D) genetics consortium (CARDIoGRAMplusC4D) meta-analysis of genome-wide association studies. The association between a 38.67-mg/dL lower LDL-C and a 10-mm Hg lower SBP was estimated by regressing the log odds for coronary heart disease for each variant measured in the CARDIOGRAMplusC4D study by the conditional association of that variant with both LDL-C and SBP among participants in the UK Biobank in a 2-sample multivariable mendelian randomization regression analysis forced to pass through the origin. Pleiotropy was assessed using the MR Egger method.

All analyses were performed using Stata (version 16; StataCorp), or R (version 3.2.2; R Project for Statistical Computing). A 2-tailed \(P\) value less than .05 was considered statistically significant. Because no adjustment was made for multiple testing, findings from secondary and sensitivity analyses should be interpreted as exploratory.

Additional information is provided in the Supplement.

Results

Participant Characteristics

A total of 459,322 participants self-identified as being of white ancestry. Of these, a total of 20,370 participants (4.4%) had missing data for either cardiovascular outcomes, 1 or more of the variants included in the LDL-C or SBP genetic scores, 1 or more of the first 5 principal components of ancestry, or both plasma LDL-C and SBP; and were therefore excluded from the analysis. Among the 438,952 remaining participants included in this study, the mean age was 65.2 years (range, 40.4-80.0 years), 54.1% were women, and 54.1% were currently employed. The mean age was 65.2 years (range, 40.4-80.0 years), 54.1% were women, and 54.1% were currently employed.

Table. Baseline Characteristics of Participants in a Study of Exposure to Lower LDL-C and Lower SBP and Cardiovascular Disease

<table>
<thead>
<tr>
<th>Baseline Characteristics</th>
<th>Group, Mean (SD)</th>
<th>Reference (Both Genetic Scores ≤ Median)</th>
<th>Genetically Lower SBP (SBP Genetic Score > Median; LDL-C Genetic Score ≤ Median)</th>
<th>Genetically Lower LDL-C (LDL-C Genetic Score > Median; SBP Genetic Score ≤ Median)</th>
<th>Both Genetically Lower SBP and Lower LDL-C (Both Genetic Scores > Median)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of participants</td>
<td>113,300</td>
<td>111,097</td>
<td>109,027</td>
<td>105,528</td>
<td></td>
</tr>
<tr>
<td>Age, y</td>
<td>65.2 (8.0)</td>
<td>65.2 (8.0)</td>
<td>65.3 (8.0)</td>
<td>65.3 (8.0)</td>
<td></td>
</tr>
<tr>
<td>Sex, No. (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>61,295 (54.1)</td>
<td>60,437 (54.4)</td>
<td>59,202 (54.3)</td>
<td>57,091 (54.1)</td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>52,005 (45.9)</td>
<td>50,660 (45.6)</td>
<td>49,825 (45.7)</td>
<td>48,437 (45.9)</td>
<td></td>
</tr>
<tr>
<td>Height, cm</td>
<td>168.6 (9.2)</td>
<td>168.6 (9.2)</td>
<td>168.7 (9.3)</td>
<td>168.8 (9.3)</td>
<td></td>
</tr>
<tr>
<td>Weight, kg</td>
<td>77.9 (15.8)</td>
<td>78.1 (15.9)</td>
<td>78.3 (15.9)</td>
<td>78.5 (16.0)</td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>27.3 (4.7)</td>
<td>27.4 (4.7)</td>
<td>27.4 (4.8)</td>
<td>27.5 (4.8)</td>
<td></td>
</tr>
<tr>
<td>Hip, cm</td>
<td>103.2 (9.1)</td>
<td>103.4 (9.1)</td>
<td>103.4 (9.2)</td>
<td>103.6 (9.3)</td>
<td></td>
</tr>
<tr>
<td>Waist, cm</td>
<td>90.0 (13.4)</td>
<td>90.2 (13.5)</td>
<td>90.3 (13.5)</td>
<td>90.5 (13.5)</td>
<td></td>
</tr>
<tr>
<td>Waist-to-hip ratio</td>
<td>0.87 (0.1)</td>
<td>0.87 (0.1)</td>
<td>0.87 (0.1)</td>
<td>0.87 (0.1)</td>
<td></td>
</tr>
<tr>
<td>Smoker, No. (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>80,44 (7.1)</td>
<td>78,88 (7.1)</td>
<td>80,68 (7.4)</td>
<td>74,92 (7.1)</td>
<td></td>
</tr>
<tr>
<td>Former</td>
<td>27,192 (24.0)</td>
<td>26,885 (24.2)</td>
<td>26,385 (24.2)</td>
<td>25,432 (24.1)</td>
<td></td>
</tr>
<tr>
<td>Ever</td>
<td>35,236 (31.1)</td>
<td>34,773 (31.3)</td>
<td>34,453 (31.7)</td>
<td>32,925 (31.2)</td>
<td></td>
</tr>
<tr>
<td>Creatinine, mg/dL</td>
<td>71.9 (17.8)</td>
<td>72.0 (18.8)</td>
<td>72.5 (17.4)</td>
<td>72.6 (17.6)</td>
<td></td>
</tr>
<tr>
<td>Cystatin-C, mg/L</td>
<td>0.91 (0.2)</td>
<td>0.91 (0.2)</td>
<td>0.91 (0.2)</td>
<td>0.91 (0.2)</td>
<td></td>
</tr>
<tr>
<td>Lipids, mg/dL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL-C</td>
<td>144.5 (34.4)</td>
<td>146.3 (34.5)</td>
<td>129.9 (30.9)</td>
<td>130.6 (30.8)</td>
<td></td>
</tr>
<tr>
<td>Apo B</td>
<td>108.9 (23.9)</td>
<td>110.1 (24.0)</td>
<td>96.8 (21.9)</td>
<td>97.3 (21.9)</td>
<td></td>
</tr>
<tr>
<td>Total cholesterol</td>
<td>228.3 (45.5)</td>
<td>230.5 (45.5)</td>
<td>211.5 (41.0)</td>
<td>212.4 (40.9)</td>
<td></td>
</tr>
<tr>
<td>HDL-C</td>
<td>55.8 (14.6)</td>
<td>55.8 (14.5)</td>
<td>56.6 (15.1)</td>
<td>56.6 (15.0)</td>
<td></td>
</tr>
<tr>
<td>Triglycerides, median (IQR)</td>
<td>157.2 (94.6-193.0)</td>
<td>158.8 (95.2-195.3)</td>
<td>151.8 (91.2-186.3)</td>
<td>152.7 (91.5-188.0)</td>
<td></td>
</tr>
<tr>
<td>Non-HDL-C</td>
<td>172.5 (42.4)</td>
<td>174.7 (42.6)</td>
<td>154.9 (38.6)</td>
<td>155.8 (38.6)</td>
<td></td>
</tr>
<tr>
<td>Blood pressure, mm Hg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic</td>
<td>139.2 (18.7)</td>
<td>136.3 (18.4)</td>
<td>139.2 (18.7)</td>
<td>136.2 (18.4)</td>
<td></td>
</tr>
<tr>
<td>Diastolic</td>
<td>82.6 (10.1)</td>
<td>81.2 (10.0)</td>
<td>82.8 (10.2)</td>
<td>81.4 (10.1)</td>
<td></td>
</tr>
<tr>
<td>Current treatment, No. (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current lipid-lowering therapy</td>
<td>24,532 (21.7)</td>
<td>21,921 (19.7)</td>
<td>15,796 (14.5)</td>
<td>13,799 (13.1)</td>
<td></td>
</tr>
<tr>
<td>Current BP-lowering therapy</td>
<td>27,006 (23.8)</td>
<td>19,949 (18.0)</td>
<td>25,289 (23.2)</td>
<td>18,294 (17.3)</td>
<td></td>
</tr>
<tr>
<td>Both current lipid- and BP-lowering therapy</td>
<td>15,950 (14.1)</td>
<td>12,296 (11.1)</td>
<td>11,304 (10.4)</td>
<td>8,711 (8.3)</td>
<td></td>
</tr>
</tbody>
</table>
women, and 24,980 experienced a first major coronary event. There were no significant differences in any nonlipid- or non-blood pressure–related baseline characteristics between the groups, which is consistent with random partitioning of participants into each group by the LDL-C and SBP genetic scores (Table).

Independent Associations of LDL-C and SBP

In the entire study sample, participants with LDL-C genetic scores higher than the median had 15.1 mg/dL lower LDL-C and an OR for major coronary events of 0.74 (95% CI, 0.72-0.76; \(P < .001 \)) compared with participants with LDL-C scores equal
The differences in low-density lipoprotein cholesterol (LDL-C) and systolic blood pressure (SBP) in each group are relative to the reference group. A, Presents the observed odds ratios for major coronary events compared with the reference group. B, Presents the odds ratios scaled for a difference of 38.67-mg/dL lower LDL-C.

The differences in low-density lipoprotein cholesterol (LDL-C) and systolic blood pressure (SBP) in each group are relative to the reference group. A, Presents the observed odds ratios for major coronary events compared with the reference group. B, Presents the odds ratios scaled for a difference of 38.67-mg/dL lower LDL-C (for the group allocated to lower LDL-C), 10-mm Hg lower SBP (for the group allocated to lower SBP), and the combined difference of both 38.67-mg/dL lower LDL-C and 10-mm Hg lower SBP (for the group allocated to both lower LDL-C and lower SBP). To convert mg/dL to mmol/L, multiply by 0.0259.

Associations of Combined Exposure to Lower LDL-C and SBP

In the 2 × 2 factorial analysis participants in the group with LDL-C scores higher than the median had 2.9-mm Hg lower SBP and an OR of 0.82 (95% CI, 0.79–0.85, P < .001) for major coronary events. Participants in the group with both LDL-C and SBP scores higher than the median had both 13.9-mg/dL lower LDL-C and 3.1-mm Hg lower SBP and an OR of 0.61 (95% CI, 0.59–0.64; P < .001) for major coronary events. The magnitude of the association in the combined exposure group was approximately equivalent to the logarithmic associations with the risk of major coronary events in the groups with lower LDL-C and lower SBP, respectively (0.73 × 0.82 = 0.60). When scaled, combined exposure to 38.67-mg/dL lower LDL-C and 10-mm Hg lower SBP was associated with an OR of 0.22 (95% CI, 0.21–0.24) for major coronary events (Figure 3).

The association between combined exposure to both lower LDL-C and lower SBP was quantitatively similar for multiple different composite cardiovascular outcomes, and for the individual components of the composite outcomes including cardiovascular death (Figure 4). Combined exposure to 38.67-mg/dL lower LDL-C and 10-mm Hg lower SBP was associated with an OR of 0.32 (95% CI, 0.25–0.40; P < .001) for lifetime risk of cardiovascular death.

The association between combined exposure to both lower LDL-C and lower SBP on the lifetime risk of major coronary events was quantitatively similar among men and women, and among participants with and without diabetes (all P values for interaction >.05) (Figure 5). However, this association appeared to be attenuated among current smokers (P for interaction <.001).
Lifetime Exposure to Lower LDL-C and Lower Systolic Blood Pressure and Cardiovascular Disease

Original Investigation Research

Figure 4. Association of Combined Exposure to Both Lower LDL-C and Lower SBP With Various Cardiovascular Outcomes

A. Association for the observed differences in LDL-C and SBP vs the reference group

<table>
<thead>
<tr>
<th>No. of Events</th>
<th>Difference in LDL-C Score, mg/dL</th>
<th>Difference in SBP, mm Hg</th>
<th>Odds Ratio (95% CI)</th>
<th>Favors Both Lower LDL-C and Lower SBP</th>
<th>Favors Both Higher LDL-C and Higher SBP</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary outcome</td>
<td>Major coronary events</td>
<td>24,980</td>
<td>-13.9</td>
<td>-3.1</td>
<td>0.61 (0.59-0.64)</td>
<td></td>
</tr>
<tr>
<td>Secondary outcomes</td>
<td>Major cardiovascular events</td>
<td>26,799</td>
<td>-13.9</td>
<td>-3.1</td>
<td>0.65 (0.63-0.68)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coronary death or nonfatal MI</td>
<td>19,243</td>
<td>-13.9</td>
<td>-3.1</td>
<td>0.65 (0.62-0.68)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coronary death, nonfatal MI, or ischemic stroke</td>
<td>23,796</td>
<td>-13.9</td>
<td>-3.1</td>
<td>0.68 (0.66-0.71)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nonfatal MI</td>
<td>18,093</td>
<td>-13.9</td>
<td>-3.1</td>
<td>0.64 (0.61-0.67)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coronary revascularization</td>
<td>8,388</td>
<td>-13.9</td>
<td>-3.1</td>
<td>0.53 (0.50-0.56)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ischemic stroke</td>
<td>5,565</td>
<td>-13.9</td>
<td>-3.1</td>
<td>0.80 (0.74-0.87)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coronary death</td>
<td>2,907</td>
<td>-13.9</td>
<td>-3.1</td>
<td>0.69 (0.62-0.77)</td>
<td></td>
</tr>
</tbody>
</table>

B. Associations scaled for 38.67-mg/dL lower LDL-C and 10-mm Hg lower SBP vs the reference group

<table>
<thead>
<tr>
<th>No. of Events</th>
<th>Difference in LDL-C Score, mg/dL</th>
<th>Difference in SBP, mm Hg</th>
<th>Odds Ratio (95% CI)</th>
<th>Favors Both Lower LDL-C and Lower SBP</th>
<th>Favors Both Higher LDL-C and Higher SBP</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary outcome</td>
<td>Major coronary events</td>
<td>24,980</td>
<td>-38.67</td>
<td>-10</td>
<td>0.22 (0.21-0.24)</td>
<td></td>
</tr>
<tr>
<td>Secondary outcomes</td>
<td>Major cardiovascular events</td>
<td>26,799</td>
<td>-38.67</td>
<td>-10</td>
<td>0.27 (0.25-0.29)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coronary death or nonfatal MI</td>
<td>19,243</td>
<td>-38.67</td>
<td>-10</td>
<td>0.26 (0.24-0.29)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coronary death, nonfatal MI, or ischemic stroke</td>
<td>23,796</td>
<td>-38.67</td>
<td>-10</td>
<td>0.31 (0.28-0.33)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nonfatal MI</td>
<td>18,093</td>
<td>-38.67</td>
<td>-10</td>
<td>0.25 (0.23-0.28)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coronary revascularization</td>
<td>8,388</td>
<td>-38.67</td>
<td>-10</td>
<td>0.14 (0.13-0.15)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ischemic stroke</td>
<td>5,565</td>
<td>-38.67</td>
<td>-10</td>
<td>0.51 (0.42-0.61)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coronary death</td>
<td>2,907</td>
<td>-38.67</td>
<td>-10</td>
<td>0.32 (0.25-0.40)</td>
<td></td>
</tr>
</tbody>
</table>

A. Presents differences in low-density lipoprotein cholesterol (LDL-C) levels and systolic blood pressure (SBP), and the odds ratio for various cardiovascular events for the group with both LDL-C and SBP genetic scores higher than the median compared with the reference group.

B. Presents the same associations scaled for the combined exposure to 38.67-mg/dL lower LDL-C and 10-mm Hg lower SBP.

To convert mg/dL to mmol/L, multiply by 0.0259.

Assessment of Dose-Response

In a 4 × 4 factorial analysis, exposure to any increasingly greater combination of lower LDL-C and lower SBP was associated with a correspondingly lower risk of major coronary events (Figure 6). In a meta-regression analysis of the associations between differences in LDL-C and SBP and the risk of a major coronary event in each of these 16 groups, combined exposure to 38.67-mg/dL lower and 10-mm Hg lower SBP was associated with an OR of 0.22 for major coronary events (95% CI, 0.17-0.26; P < .001), which is very similar to the scaled ORs presented above (eTable 4 in the Supplement).

Sensitivity Analyses

The results of all analyses remained essentially unchanged when repeated using unweighted LDL-C and SBP genetic scores and when using genetic scores weighted by external exome consortia associations with LDL-C and SBP, respectively (eTable 5 in the Supplement). Furthermore, in analyses using generalized linear models to estimate relative risks (RRs) using log-binomial regression and a log link function, the RR associated with lifetime exposure to 38.67-mg/dL lower LDL-C and 10-mm Hg lower SBP was very similar to the OR estimated using both logistic regression or a log-binomial regression (RR, 0.24; 95% CI, 0.19-0.29; P < .001). Because the associations of LDL-C with cardiovascular disease may be mediated by changes in the concentration of circulating LDL particles as measured by apolipoprotein B (apo B), rather than by the concentration of cholesterol carried by those particles as measured by plasma LDL-C, all analyses were repeated using directly measured changes in apo B rather than changes in LDL-C.24 In these analyses, combined exposure to 30-mg/dL lower apo B and 10-mm Hg lower SBP was associated with an OR of 0.20 for major coronary events (95% CI, 0.18-0.21; P < .001) (eTable 6 in the Supplement).

External Replication

Among 60,801 coronary artery disease cases and 123,504 controls in the CARDioGRAMplusC4D consortium studies, a 38.67-mg/dL lower LDL-C was associated with an OR of 0.48 (95% CI, 0.43-0.54; P < .001) for coronary artery disease and a 10-mm Hg lower SBP was associated with an OR of 0.57 (95% CI, 0.50-0.65, P < .001). These associations were quantitatively similar to the associations measured using individual participant data in the UK Biobank. There was no evidence of any pleiotropic effects (P = .52) (Table 7 in the Supplement).
Discussion

In this study, long-term exposure to the combination of both lower LDL-C and lower SBP was associated with independent, additive, and dose-dependent lower risks of cardiovascular events. Exposure to any combination of lower LDL-C and lower SBP was associated with a corresponding log-linear, dose-dependent lower risk of cardiovascular events. The results of this study have several potential implications. First, this study helps to support the independent associations of LDL-C and SBP with the risk of cardiovascular disease. Three separate large-scale meta-analyses of prospective cohort studies including almost 2 million participants in total have previously reported that the association of combined exposure to plasma cholesterol and SBP with the risk of...
cardiovascular disease was less than additive.\(^{25-27}\) Specifically, each of these meta-analyses reported that the association between LDL-C (or equivalently non-HDL-C) and the risk of cardiovascular disease became progressively attenuated among participants with higher baseline SBP levels. Unlike the studies included in those meta-analyses, this mendelian randomization study used genetic variants as instruments for lower LDL-C and SBP. Because genetic variants are randomly allocated at birth, this study design should be less susceptible to confounding and reverse causation compared with prospective cohort studies. Therefore, the independent and additive associations of LDL-C and SBP with the risk of cardiovascular events observed in this mendelian randomization study suggest that the less-than-additive associations observed in the prospective cohort studies may have been due to residual confounding.

Second, the log-linear, dose-dependent associations observed in this study help to clarify the shape of the association of combined exposure to lower LDL-C and SBP with the risk of cardiovascular disease. Prior meta-analyses of observational epidemiological studies, mendelian randomization studies, and randomized clinical trials have all consistently reported a dose-dependent, log-linear association between LDL-C and the risk of cardiovascular disease; and a similar dose-dependent, log-linear association with SBP.\(^{1,8,25-27}\) This study extends the results of those previous studies by demonstrating that the association between combined exposure to both lower LDL-C and lower SBP is also dose-dependent and log-linearly proportional to the combined absolute differences in LDL-C and SBP.

Third, the results of this study suggest that the magnitude of the association between combined exposure to LDL-C and SBP with lifetime risk of cardiovascular disease may depend on both the magnitude and duration of exposure to LDL-C and SBP. This conclusion is based on the observation that in this study relatively small absolute differences in combined exposure to lower LDL-C and SBP were associated with corresponding relatively large differences in risk. This finding is consistent with previous mendelian randomization studies, which have reported much larger associations with cardiovascular disease per unit change in LDL-C or SBP, respectively, compared with those reported in epidemiological studies and randomized trials.\(^{5,8-10}\) This study extends those findings to combined exposure to both LDL-C and SBP and suggests that the cumulative exposure to LDL-C and SBP (defined as an integration of the magnitude and duration of exposure) may be an important risk factor for lifetime risk of cardiovascular disease. Because trajectories of LDL-C and particularly SBP can vary between individuals, further research is needed to quantify more precisely the cumulative lifetime exposure to LDL-C and SBP that incorporates differing individual trajectories over the life course.\(^{28,29}\)

Fourth, by quantifying the magnitude and clarifying the shape of the association between long-term exposure to the combination of both lower LDL and lower SBP with the risk of cardiovascular events, the results of this study can be used to inform the design of new algorithms that estimate the lifetime risk of cardiovascular disease based on a person’s cumulative exposure to LDL-C and SBP. These new lifetime risk-estimating algorithms can in turn be used to inform the next iteration of cardiovascular medicine prevention guidelines by providing a quantitatively rigorous method to estimate and compare the potential differences in cardiovascular risk that might be achieved with various public health strategies.

For this analysis, participants were first divided into 4 groups based on quartile value of their low-density lipoprotein cholesterol (LDL-C) genetic score; and then each group was divided into another 4 groups based on the quartile value of their systolic blood pressure (SBP) genetic score. This process produced 16 groups with exposure to increasingly greater genetic risk scores and correspondingly lower LDL-C and lower SBP compared with the reference group (defined as the group with the lowest quartile of both the LDL-C and SBP genetic scores). The risk of major coronary events for each group relative to the reference group is plotted and expressed as a proportional risk reduction (calculated as \([1−\text{odds ratio}] \times 100\)). The dashed line is the multivariable meta-regression line. The tabular data for these analyses are presented in the Supplement.
Limitations
This study has several limitations. First, this study used
genetic variants associated with lower LDL-C and lower SBP, re-
spectively, as instruments of randomization to compare the as-
association between lifetime exposure to lower LDL-C and SBP with
the lifetime risk of cardiovascular disease. It did not evaluate
medications that lower LDL-C or SBP. As a result, this study
does not estimate the benefits and risks associated with the
long-term use of medications to maintain lower LDL-C and SBP.
Second, this study does not provide evidence that outcomes
associated with intrinsic physiological findings, such as natu-
urally occurring lower levels of LDL-C or SBP, are the same as
outcomes that would be associated with extrinsic drug treat-
ment or other interventions to achieve similar plasma LDL-C
or SBP levels. Therefore, the findings in this study cannot be
assumed to represent the magnitude of benefit achievable from
various treatments to lower LDL-C, SBP, or both.

Conclusions
Lifelong genetic exposure to lower levels of low-density lipo-
protein cholesterol and lower systolic blood pressure was asso-
ciated with lower cardiovascular risk. However, these find-
ings cannot be assumed to represent the magnitude of benefit
achievable from treatment of these risk factors.

ARTICLE INFORMATION
Accepted for Publication: August 16, 2019.
Published Online: September 2, 2019.

Author Affiliations: Centre for Naturally
Randomized Trials, University of Cambridge,
Cambridge, United Kingdom (B. A. Ference,
T. B. Ference, Guo, Cupido); MRC/BHF
Cardiovascular Epidemiology Unit, Department of
Public Health and Primary Care, University of
Cambridge, Cambridge, United Kingdom (B. A.
Ference, Kaptoge, Guo, Danesh); Brigham
and Women’s Hospital Heart and Vascular Center,
Harvard Medical School, Boston, Massachusetts
(Bhatt); Department of Pharmacological and
Biomolecular Sciences, University of Milan,
Multimedica IRCCS, Milano, Italy (Catapano);
Institute of Cardiovascular and Medical Sciences,
University of Glasgow, Glasgow, United Kingdom
(Packard); School of Medicine, Trinity College,
Dublin, Ireland (Graham); Department of
Cardiology, University of Leipzig, Leipzig, Germany
(Laufs); Thrombolysis in Myocardial Infarction
(TIMI) Study Group, Division of Cardiovascular
Medicine, Brigham and Women’s Hospital, Harvard
Medical School, Boston, Massachusetts (Ruff,
Sabatine); Department of Vascular Medicine,
Academic Medical Center, University of
Amsterdam, Amsterdam, the Netherlands (Cupido,
Hovingh); MRC Population Health Research Unit,
Clinical Trial Service Unit, and Epidemiological
Studies Unit, Nuffield Department of Population
Health, University of Oxford, Oxford, United
Kingdom (Holmes); MRC Integrative Epidemiology
Unit, University of Bristol, Bristol, United Kingdom
(Smith); School of Public Health, Imperial Centre for
Cardiovascular Disease Prevention, Department of
Primary Care and Public Health, Imperial College
London, London, United Kingdom (Ray); Monash
University, Melbourne, Australia (Nicholls).
Lifetime Exposure to Lower LDL-C and Lower Systolic Blood Pressure and Cardiovascular Disease

Original Investigation Research

