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Abstract. Dynamic interaction networks frequently arise in biology, commu-
nications technology and the social sciences, representing, for example, neu-

ronal connectivity in the brain, internet connections between computers and

human interactions within social networks. The evolution and strengthening
of the links in such networks can be observed through sequences of connection

events occurring between network nodes over time. In some of these appli-

cations, the identity and size of the network may be unknown a priori and
may change over time. In this article, a model for the evolution of dynamic

networks based on the Pitman-Yor process is proposed. This model explicitly

admits power-laws in the number of connections on each edge, often present
in real world networks, and, for careful choices of the parameters, power-laws

for the degree distribution of the nodes. A novel empirical method for the
estimation of the hyperparameters of the Pitman-Yor process is proposed, and

some necessary corrections for uniform discrete base distributions are carefully

addressed. The methodology is tested on synthetic data and in an anomaly de-
tection study on the enterprise computer network of the Los Alamos National

Laboratory, and successfully detects connections from a red-team penetration

test.

1. Introduction. A network can be represented as a directed graph G = (V,E),
where V is a set of nodes and E ⊆ V × V is a set of links, or edges, indicating
the pairs of nodes which have interacted. Statistical models for networks are well
studied and understood in the literature [8]. Less attention is devoted to dynamic
networks. In dynamic networks, a stochastic process is observed on V ×V . Graphs
having this structure are commonly observed in the social network literature; for
example, emails sent between employees within an enterprise network, or messages
between users on Facebook. The motivating application for this article is in cyber-
security, where the nodes are computers or Internet Protocol (IP) addresses and
the objective is to detect anomalous, potentially compromised nodes. Network-
wide modelling of large computer networks typically requires a trade-off between
mathematical complexity and computational feasibility, which is addressed in this
article by proposing a simple model for network evolution. The main advantage of
the proposed model over other approaches to dynamic network modelling suggested
in the literature [21, 17] is that the model is simpler, and allows to directly obtain
a predictive probability for a link.
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Computer network graphs have directed edges, since every connection is initiated
by a source node making a request to another destination node, so (x, y) ∈ E 6=⇒
(y, x) ∈ E. Let VS ⊆ V be the subset of nodes which are ever observed to initiate
a connection, and VD ⊆ V the set of nodes arising as a destination of one or
more connections. This article examines a joint network-wide generative model
for the sequence of links (x1, y1), (x2, y2), . . . ∈ VS × VD, based on the Bayesian
nonparametric Pitman-Yor process [23, 12]. The Pitman-Yor process, also known
as the two-parameter Poisson-Dirichlet process, provides a natural extension of the
Dirichlet process [6] where the probability of observing infrequently observed events
can be further discounted. The Pitman-Yor process has been successfully used in
natural language processing and computational linguistics applications [9, 29] to
appropriately model the frequency of words in languages, which often exhibit power-
law behaviour [2]. The power-law is explicitly modelled by the interplay between a
strength parameter α and a discount parameter d ∈ [0, 1).

Statistical modelling of categorical sequences is a well established branch of sta-
tistics and natural language processing, with relevant applications in speech recog-
nition. Common methods mainly include n-gram models, based on n-order Markov
assumptions (see the survey of [13]), neural models, in particular recurrent neural
networks [3, 18], maximum entropy or exponential models [25] and positional mod-
els [16]. The model presented in this article is much simpler, but well-suited for
an efficient network-wide implementation on networks with large numbers of nodes
and high frequency activity.

In the present article, the Pitman-Yor is shown to have interesting properties for
suitably modelling events within real-world networks. The article also proposes an
empirical procedure for estimation of the parameters within a “big data” framework.
Furthermore, approximations and corrections for parameter estimation in Pitman-
Yor processes with uniform discrete base distributions are also carefully addressed.

2. Modelling sequences using the Pitman-Yor process. Consider an infin-
itely exchangeable sequence of nodes x1, x2, . . . ∈ V . After observing n events
xn = (x1, . . . , xn), let (x?1, . . . , x

?
Kn

) be the Kn unique observations in xn. Let F0

be a base probability distribution on V . Then the distribution of observed nodes
is a Pitman-Yor process PY(α, d, F0), if the predictive distribution for the next
observed node is

p(xn+1|xn) =
α+ dKn

α+ n
F0(xn+1) +

Kn∑
j=1

Njn − d
α+ n

δx?
j
(xn+1), (1)

where d ∈ [0, 1) is a discount parameter, α > −d is a strength parameter, δv(u) = 1
if u = v, 0 otherwise, and Njn =

∑n
i=1 δxi

(x?j ) is the number of occurrences of the
value x?j in xn. Note that d = 0 corresponds to the more familiar Dirichlet process,
PY(α, 0, F0) ≡ DP(α, F0).

The dynamics of the process can be most easily understood using the Chinese
Restaurant metaphor [1], which will be extensively used in this article. Starting
from an empty restaurant with a potentially infinite number of tables, the first
customer sits at the first table and then for n = 1, 2, . . . the (n + 1)-th customer
either sits at a new table or chooses an already occupied table with the following
probabilities:

P(new table) =
α+ dKn

α+ n
, P(j-th table) =

Njn − d
α+ n

,
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Figure 1. Cartoon example of the Chinese Restaurant metaphor
for the Pitman-Yor process, where Cj represents the jth customer
and x?j is the unique dish served at table Tj . The vector xn =
(x1, . . . , xn) denotes the observed sequence of dishes eaten by each
customer. Customer Ci being seated at table Tj is denoted Ci →
Tj . Then, for example, the tenth customer will sit at T1 with
probability (3− d)/(α+ 9).

for j = 1, . . . ,Kn. In this metaphor, Njn is the number of customers sitting at the
j-th table when n customers are in the restaurant. If each table is associated with a
random dish drawn from a non-atomic base distribution F0, the sequence x1, x2, . . .
corresponding to the dishes eaten by successive customers is an exchangeable sto-
chastic process with De Finetti measure PY(α, d, F0). Figure 1 presents a cartoon
representation of this metaphor for the Pitman-Yor process.

In this article, for an observed sequence of links (x1, y1), . . . , (xN , yN ) ∈ VS×VD,
it is assumed that the joint distribution has the following hierarchical structure:

xi|yi d∼ Fx|yi , i = 1, 2 . . . , N,

yi
iid∼ G, i = 1, 2 . . . , N,

Fx|y
d∼ PY(αy, dy, F0), y ∈ VD,

G
d∼ PY(α0, d0, G0), (2)

where {Fx|y} and G are unknown probability mass functions on the node set V .
The probability of obtaining a link (x, y) is decomposed in two parts: p(x, y) =
p(x|y)p(y). The sequence of destination nodes y1, . . . , yN ∈ VD is assumed to be
exchangeable with a Pitman-Yor hierarchical distribution. Similarly, conditional
on the destination node y ∈ VD, it is assumed that the sequence of source nodes
x1, x2, . . . ∈ VS connecting to y is again exchangeable with a Pitman-Yor hierar-
chical distribution, with parameters depending on the specific value of y. For the
application to computer networks, the decomposition p(x, y) = p(x|y)p(y) is pre-
ferred over p(x, y) = p(y|x)p(x): for identifying red-team behaviour, anomalous
client computers must be selected, hence each event is first given a score measuring
how surprising the server found the connection from the corresponding client, and
then all such measures are combined for a given client.

Note that care is needed when the base distribution of the process is atomic.
In this case, using the Chinese Restaurant metaphor, it is possible that two or
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more tables serve the same dish, which means that the same draw from the base
distribution is associated with multiple tables. Hence, the predictive probability
(1) cannot be identified, since the underlying Kn, and consequently Njn, are not
determinable from xn. In contrast, with continuous base distributions, the draws
are distinct with probability 1. Attention in the literature is mostly devoted to
non-atomic base distributions. For the case of atomic F0, [4] suggest introducing
latent multiplicities and table indicators, corresponding to the number of tables
contributing to the total number of times a value x?j is observed. An efficient
sampler for this representation is derived in [5]. In this article, the node set will
be assumed to be countable, and simple adaptation techniques will be used in the
estimation of the parameters to take this problem into account.

3. Empirical estimation of the hyperparameters. Consider a Pitman-Yor
process with non-atomic base distribution and 0 ≤ d < 1, and let Kn be the
number of occupied tables after n customers have entered the restaurant. [22]
shows that E(Kn) = d−1(α+ d)n/(α+ 1)n−1 − α/d for d 6= 0, where the subscripts
represent the Pochhammer symbol. For large n, using Stirling’s approximation,
nd ≈ Γ(n+ α+ d)/Γ(n+ α), this expectation can be approximated as

E(Kn) ≈


α log(n) if d = 0,

Γ(1 + α)nd

dΓ(d+ α)
− α

d
if d > 0.

(3)

Similarly, the expectation of the number of tables of size m after observing n cus-
tomers enter, Hmn, can be approximated for large n [22, 31] as:

E(Hmn) ≈ Γ(1 + α)nd

Γ(d+ α)m!

m−1∏
j=1

(j − d). (4)

Therefore, after N observations, simple method of moments or empirical Bayes

estimates (α̂, d̂) of the hyperparameters α and d are obtained by solving the following
non-linear system of equations:

H1N =
Γ(1 + α̂)N d̂

Γ(d̂+ α̂)
, KN =

H1N − α̂
d̂

. (5)

A further estimate could be based on an alternative approximation of E(Kn),
often used in the literature [22, 31], obtained by noting that limn→∞ nd =∞ when
d > 0. Therefore, when N is large, the value of Γ(1 + α)nd/dΓ(d+ α) will dominate
α/d in (3), and hence

d̂ ≈ H1N

KN
. (6)

The estimate (6) is particularly illuminating: asymptotically, d is the long term
ratio between the tables with just one customer and the total number of tables.

Under this approximation, if d̂ = 0 then the process can be approximated by a
Dirichlet process, and from (3),

α̂ =
KN

log(N)
;
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otherwise, from (5) α̂ can be obtained numerically as a solution to the equation

KN =
Γ(1 + α̂)N d̂

d̂Γ(d̂+ α̂)
. (7)

4. A correction for discrete uniform base distributions. Under the Pitman-
Yor generative process, only the sequence of ordered dishes xn = (x1, . . . , xn) is

observed. For discrete base distriubtions, the number of unique dishes, K̃n, observed
in xn provides only a lower bound for the number of occupied tables, Kn, since the
same dish may be drawn from the base distribution multiple times. Similarly, the
number of of dishes eaten by only one customer, H̃1n, provides only a lower bound
for the number of single-customer tables, H1n.

Assuming a uniform discrete base distribution on a sufficiently large set of nodes
V , the approximations in (3) and (4) might be acceptable, but in this particular
scenario it is also possible to use a simple correction. Conditioning on the true but
unobserved number of draws from the base distribution (equivalently, the number of
tables) Kn, a uniform base distribution implies that the expectation of the number

of unique draws K̃n can be obtained as a generalisation of the birthday problem
with |V | days in a year:

E(K̃n|Kn) = |V |
{

1−
( |V | − 1

|V |

)Kn
}
.

Substituting E(K̃n|Kn) with K̃n and solving for Kn yields the approximation

K̂n = log

(
1− K̃n

|V |

)
log−1

( |V | − 1

|V |

)
. (8)

Similarly,

E(H̃1n|H1n,Kn) = H1n

( |V | − 1

|V |

)Kn−1

,

and hence the approximation

Ĥ1n = H̃1n

( |V |
|V | − 1

)K̂n−1

. (9)

The performance of (8) and (9) as rival estimates to K̃n and H̃1n will be assessed
via simulations.

5. Power-laws and Pitman-Yor dynamic graphs. In this section, some prop-
erties of the graph generated from distinct Pitman-Yor processes on each destination
node are analysed. After an observation period [0, T ), it is possible to construct an
adjacency matrix A ∈ {0, 1}|VS |×|VD|, where Aij = 1 if the source node xi connected
to the destination node yj at least once, and 0 otherwise. The row and column sums
of A correspond to the out-degree and in-degree sequences:

κouti =

|VD|∑
j=1

Aij , κinj =

|VS |∑
i=1

Aij .

Real world graphs are commonly characterised by power-law degree distributions:

κ
d∼ PL(γ) if p(κ) ∝ κ−γ , κ ≥ 1 for some γ > 1, typically 2 ≤ γ ≤ 3 [19]. The in-

degree and out-degree distributions in a graph generated from a Pitman-Yor process
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for each destination node can be controlled by the discount and strength parameters
and the base distribution.

First, note that κinj = K̃Nj
, where Nj is the total number of connections to the

destination node yj . Conditional on the parameters α and d of the process, and

for a sufficiently large number of atoms, K̃Nj ≈ KNj , hence κinj ∝ Nd
j from (3).

Therefore, if Nj
d∼ PL(γ), which holds for a suitable choice of α0 and d0 in (2), then

approximately κinj
d∼ PL{(γ − 1 + d)/d}.

The out-degree distribution is slightly more difficult to control: it is highly de-
pendent on the choice of the base distribution F0. For a discrete uniform base
distribution over VS :

E(κouti |KNj ) =

|VD|∑
j=1

{
1−

( |VS | − 1

|VS |

)KNj

}
,

which is not a power law. In order to generate a power law distribution, one can set
a non-uniform discrete base distribution F0(x) = πx1VS

(x),
∑
x∈VS

πx = 1, where

{πx} d∼ Dirichlet({θx}), and θx
iid∼ PL(γ). In this case:

E(κouti |KNj , {θi}) =

|VD|∑
j=1

{
1−

Γ(
∑
i′ θi′)Γ(KNj

+
∑
i′ 6=i θi′)

Γ(
∑
i′ 6=i θi′)Γ(KNj

+
∑
i′ θi′)

}

and a similar formula can be derived for E(κinj |KNj
, {θi}). Hence, the distribution

of κouti strongly depends on the interplay between Nj , which contributes to KNj
,

and θi, which means that it is controlled by α0, d0 and G0 in (2).

6. Calculating p-values for anomaly detection. For any given destination
node y ∈ VD, a p-value can be computed for each observed source node xn+1,
given the history xn. From the posterior predictive (1), the p-value pn+1 associated
with the (n+ 1)-th connection to the destination node y is

pn+1 =
∑
x∈VS

p(x|xn)1[0,p(xn+1|xn)]{p(x|xn)}. (10)

The p-values (10) are discrete and stochastically larger than standard uniform ran-
dom variables. For this reason, it can be preferable to consider mid p-values [15].
Defining the stochastically smaller quantity

p∗n+1 =
∑
x∈VS

p(x|xn)1[0,p(xn+1|xn)){p(x|xn)},

where the indicator function instead acts on the half-open interval [0, p(xn+1|xn))
and thus sums all possibilities strictly less probable than the event observed, the
mid p-value is given by

qn+1 =
pn+1 + p∗n+1

2
.

In many problems, mid-p-values have been shown to outperform standard p-values,
in particular in anomaly detection procedures in computer networks [26].

Similarly, the p-value for the joint event (xn+1, yn+1), conditional on (xn,yn), is∑
x∈VS ,y∈VD

p(x, y|xn,yn)1[0,p(xn+1,yn+1|xn,yn)]{p(x, y|xn,yn)}, (11)



MODELLING DYNAMIC NETWORK EVOLUTION AS A PITMAN-YOR PROCESS 7

where p(xn+1, yn+1|xn,yn) = p(xn+1|yn+1,xn)p(yn+1|yn) by conditional indepen-
dence assumptions. The calculation of (11) is intractable, but the p-value could
be suitably approximated using a p-value combiner. Given a sequence of p-values
p1, p2, . . . , p`, common choices for p-value combiners are [11]:

• Fisher’s method [7]: SF = −2
∑`
i=1 log(pi)

d∼ χ2
2`,

• Pearson’s method [20]: SP = −2
∑`
i=1 log(1− pi) d∼ χ2

2`,

• Tippett’s method [30]: ST = min{pi} d∼ Beta(1, `),

• Stouffer’s method [28]: SS =
∑`
i=1 Φ−1(pi)

d∼ N(0, `), where Φ−1(·) is the
inverse cumulative distribution function of a standard normal distribution.

For approximation of the p-value in (11), ` = 2, with p1 and p2 the corresponding
p-values for yn+1 and xn+1|yn+1.

7. Applications and results. The proposed model and estimation procedure
have been validated and tested on synthetic networks. Furthermore, the goodness-
of-fit of the Pitman-Yor process has been assessed on a real-world network released
by the Los Alamos National Laboratory [14].

7.1. Estimation of the Pitman-Yor hyperparameters. The different tech-
niques proposed for the estimation of the Pitman-Yor hyperparameters have been
extensively compared using a simulation study, constructed as follows: S = 10,000
sequences of table allocations, each of length N = 100,000, have been simulated
using the Chinese Restaurant metaphor of the Pitman-Yor process, setting α = 7
and d = 0.25. For each of the S sequences, the tables have been assigned a la-
bel drawn at random, with replacement, from a discrete uniform distribution with
|V | = 1,000 and |V | = 16,230 atoms (corresponding to the number of source ma-
chines in the Los Alamos National Laboratory enterprise network). Matching the
sequence of table allocations with the table labels gives a sample sequence from
a Pitman-Yor process with uniform discrete base distribution F0 with |V | atoms.

From the resulting sequence, the values of K̃N and H̃1N are calculated, and their
corrected counterparts in (8) and (9), K̂N and Ĥ1N . The values are compared with
the true KN and H1N , available from the simulated table allocation. The parame-

ter estimates α̂ and d̂ obtained using the pair (6) and (7) are referred to as Method
1 and (5) as Method 2; both are computed using either the uncorrected estimates

(H̃1N , K̃N ) or the corrected pair (Ĥ1N , K̂N ), producing four different estimates of
the parameters. Kernel density estimates across the simulations for each parameter
and each estimation method are plotted in Figures 2 and 3. The kernel bandwidth
choice is based on Silverman’s rule of thumb [27].

In Figure 2 and 3, the plots (a) and (b) show that parameter estimation based
on the most popular approximation for E(Kn) in the literature, Method 1, gives
biased results. On the other hand, when Method 2 is used to estimate the pair
(α, d), and the corrections (8) and (9) are used, the results are excellent, and the
proposed estimation procedure on average correctly recovers the exact values of
the parameters used to simulate the data. When the correction is not applied,
the performance of Method 2 is still fairly reliable for α, but performs poorly for
estimating d. Also, the estimates obtained from the uncorrected values KN and
H1N , in plots (c) and (d) can deviate significantly from the true values.

The plots (c) and (d) in Figure 2 and 3 show again the importance of the cor-
rection for a small number of atoms in the base distribution. For |V | = 16,230, the
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Figure 2. Kernel density estimates of the parameter estimates
from 10,000 simulations, |V | = 1,000.
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Figure 3. Kernel density estimates of the parameter estimates
from 10,000 simulations, |V | = 16,230.

observed value K̃N is on average close to the true KN . This does not happen for
|V | = 1,000, and the approximation becomes crucial.

Overall, the simulation confirms the reliability of the parameter estimation pro-
cedure based on (5) for a Pitman-Yor process. The performance of the proposed
procedure is far superior to the method based on the estimates (6) and (7), which
are obtained from the most common approximation of E(Kn) used in the literature.
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Furthermore, for discrete uniform base distributions, the corrections proposed in
equations (8) and (9) are shown to be highly beneficial for parameter estimation,
especially when the number of atoms in the base distribution |V | is not large.

7.2. Description of the LANL authentication data. The proposed model and
estimation procedure have been applied to the user-authentication data [14] released
by the Los Alamos National Laboratory1. An example entry is:

1,C567$@DOM1,C567$@DOM1,C574,C988,Kerberos,...

The entries of interest in the data-line above are the source computer C574 and
destination computer C988, and the arrival time 1 of the event. In total, the
data contain 1,051,430,459 events, involving 16,230 source computers and 15,895
destination computers, for a total of 17,684 unique machines and 419,744 unique
observed edges. Interestingly, the data also contain 48,079 records labelled as red-
team events, resulting from a simulated intrusion. The compromised source nodes
are C17693, C18025, C19932 and C22409. A reliable model must be able to identify
unusual activity associated with those source nodes and therefore associate a high
anomaly score.

7.3. Empirical assessment of the goodness-of-fit. In this section, the empiri-
cal estimation procedure of the hyperparameters and goodness-of-fit of the Pitman-
Yor process is evaluated on selected nodes in the Los Alamos National Laboratory
network. In order to assess the model fit, it is possible to examine the Q-Q plot of
the p-values, which are approximately uniformly distributed in (0, 1) under a correct
model specification. Examples of the Q-Q plots observed for six destination nodes
are plotted in Figure 4, obtained using the estimate (5) and the corrections (8) and
(9). The base distribution F0 of the Pitman-Yor process was chosen to be uniform
on the set of source computers VS : F0(x) = 1/16,230× 1VS

(x). The estimated val-
ues of the parameters of the Pitman-Yor process, and additional summary statistics,
are reported in Table 1. The Q-Q plots show, for some of the nodes, an excellent fit
on real data under the strong assumptions made in this modelling framework (see
plots for C5716, U7, C2525, and C1877). On the other hand, in some other cases
(see plots for C395 and C423) the distribution of the p-values is not uniform, but
follows the theoretical distribution only on the left tail.

It is also possible to compare the performance of the method for different choices
of α and d. A destination node C1438 is used as an example. The computer C1438
appears as destination in N = 136,743 connections, with KN = 394 unique edges

1The data set is available online at https://csr.lanl.gov/data/cyber1/.

Table 1. Estimated Pitman-Yor parameters for 6 destination nodes.

Destination N K̃n K̂n H̃1n Ĥ1n α̂ d̂

C5716 113,987 3,401 3,816.418 144 182.164 651.519 0.047

U7 138,286 2,700 2,952.989 350 419.819 302.093 0.142

C2525 204,532 1,555 1,634.571 97 107.272 183.319 0.066

C1877 342,766 5,095 6,114.758 226 329.390 866.520 0.054

C395 518,058 5,957 7,422.437 442 698.259 841.357 0.094

C423 2,426,512 2,705 2,958.988 166 199.188 230.040 0.067



10 FRANCESCO SANNA PASSINO AND NICHOLAS A. HEARD

0

0.2

0.4

0.6

0.8

1

O
bs
er
ve
d
qu

an
til
es

C5716 U7 C2525

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Theoretical quantiles

O
bs
er
ve
d
qu

an
til
es

C1877

0 0.2 0.4 0.6 0.8 1

Theoretical quantiles

C395

0 0.2 0.4 0.6 0.8 1

Theoretical quantiles

C423

p-values mid-p-values

Figure 4. Uniform Q-Q plot for the Pitman-Yor process fitted to
six destination nodes.

and H1N = 72 source computers that connected only once, resulting in α̂ = 27.434

and d̂ = 0.113 after solving (5) with corrections (8) and (9). The three plots

in Figure 5 present the sequential values of K̃n and H̃1n and their ratio H̃1n/K̃n,
corresponding corrected estimates, and average sample paths obtained from Pitman-
Yor processes with a number of different values of the parameters.

It is immediately clear from the plots that the only sample path which correctly
captures the behaviour of K̃n, H̃1n and H̃1n/K̃n simultaneously is the Pitman-Yor

process with estimates α̂ and d̂ obtained using Method 2, with or without cor-
rection for discrete F0. The fit is excellent, and the observed trajectories almost
coincides with the average estimates obtained from multiple simulations of the pro-
cess. The Dirichlet process fails to track K̃n and H̃1n individually, and gives a
slightly better performance when modelling the ratio H̃1n/K̃n. The Pitman-Yor
process with estimates obtained from Method 1 only marginally tracks the data,
reaching approximately the observed values K̃N and H̃1N only at the end of the pro-
cess (N = 136,743). On the other hand, the ratio is not modelled in a satisfactory
way.

Overall, the Pitman-Yor fit is far superior to the Dirichlet process, even without
an optimal choice of the parameters, showing that in this case adding the discount
parameter d is beneficial. The simulation empirically confirms that the Pitman-
Yor process seems to be a suitable choice, but the parameters should be estimated
carefully.

7.4. Network-wide anomaly detection. Let us suppose that p1, . . . , pN are the
p-values computed for the N events observed on a given edge (x, y) ∈ E, and
q1, . . . , qN are the corresponding mid-p-values. Those p-values can be obtained
from the sequence yn+1|yn, or from xn+1|yn+1,xn, or from a combination of the
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Figure 5. Plot of the corrected Kn (a), H1n (b) and their ratio
H1n/Kn (c) as a function of n for the connections to the destination
computer C1438, and averaged sample paths from 100 samples from
a Pitman-Yor process, obtained using different estimates of the
parameters. The grey lines correspond to 10 realised trajectories
of simulated Pitman-Yor processes, obtained using the corrected
estimate (5).

two p-values at the event level, as described in earlier sections. For this analysis,
uniform base distributions F0 and G0 were used: F0(x) = 1/16,230 × 1VS

(x), and
G0(x) = 1/17,684× 1V (x).

Given the sequence of p-values, it is possible to use combine the scores into a
single distribution for each edge. [10] suggests to use the minimum p-value method,
or Tippett’s method. Note that in this framework the distributional result is only
approximate, because of the discreteness of the p-values. Then, the lower tail area
of the Beta(1, N) distribution evaluated at min{p1, . . . , pN} gives the p-value pxy
associated with the edge (x, y).

Following [10], we define as Ex set of edges in the network graph with source node
x on which connections have been observed: Ex = {(x, y) : y ∈ VD ∩ (x, y) ∈ E}.
The p-values pxy on each edge can be combined into a single score sx for each
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Table 2. Anomaly rankings for the four red-team source computers.

Events xn+1|yn+1 only. Events xn+1|yn+1 only.

Standard p-values pn+1 Mid-p-values qn+1

Edge level combiner: Node level combiner: Node level combiner:

Tippett Fisher Pearson Stouffer Fisher Pearson Stouffer

C17693 5 2 4 2 1 5

Source C18025 138 75 78 151 74 105

computer C19932 3831 8870 8877 3571 2754 3151

C22409 3767 15773 15764 3450 6984 3756

Events yn+1 only. Event level combiner: Tippett.

Mid p-values qn+1 Mid-p-values qn+1

Edge level combiner: Node level combiner: Node level combiner:

Tippett Fisher Pearson Stouffer Fisher Pearson Stouffer

C17693 6 5 5 6 5 5

Source C18025 2806 1536 1674 142 96 107

computer C19932 5407 8882 8914 3813 2264 3232

C22409 12126 15808 15878 3803 6516 4196

Event level combiner: Fisher. Event level combiner: Fisher.

Standard p-values pn+1 Mid-p-values qn+1

Edge level combiner: Node level combiner: Node level combiner:

Tippett Fisher Pearson Stouffer Fisher Pearson Stouffer

C17693 3 5 5 5 2 5

Source C18025 151 88 101 155 90 106

computer C19932 6339 3818 4879 4937 3017 3996

C22409 6120 14799 5379 4451 6695 5236

source node using one of the combiners previously presented. For example, using
the Pearson’s combiner, under a normal behaviour of the network, the theoretical

distribution of sx is sx
d∼ χ2

2|Ex|. Therefore, a p-value px for the source computer

x is given by the left tail probability of the χ2
2|Ex| distribution, given the observed

sx. From the list {px, x ∈ VS}, where VS is the set of source nodes, it is then
possible to identify the most anomalous source computers by ranking the p-values. A
similar procedure can be carried out sequentially using the mid-p-values q1, . . . , qN ,
or different combiners at the event, edge or node level. The procedure is fully
parallelisable and particularly suitable for implementation on standard platforms
for Big Data analysis like Hadoop MapReduce, and has been applied to the Los
Alamos National Laboratory data.

For each destination computer y ∈ VD, αy and dy are estimated using (5) and
the corrections (8) and (9), and similarly for α0 and d0. Table 2 reports the results
obtained using the minimum p-value method at the edge level and a number of
different combiners at the event and node level.

Two of the compromised computers are consistently ranked among the top-1%
most anomalous nodes. In particular, C17693 is sometimes ranked as most anoma-
lous machine overall. For the two remaining nodes, associated with more sub-
tle activity within the network, impressive improvements are achieved when using
mid-p-values, but the malicious activity on these nodes is still difficult to detect.
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Overall, the results confirm the conclusions in [26] about the improved detection
performance when using mid-p-values. This is particularly evident in the case of
the two least anomalous compromised machines: using mid-p-values, the ranking
improves significantly. The activity associated with C17693 is anomalous even when
only the p-values associated with the sequence of destination nodes y1, y2, . . . is con-
sidered. For the other three machines, the rankings significantly improve when the
edge activity from the p-values for xn+1|yn+1 is used for computing the anomaly
scores. Using the combined scores at the event level does not significantly improve
the results, showing that most of the malicious activity might be due to edge-related
anomalies.

8. Conclusion. In this article, a model for events in dynamic networks is pre-
sented. The sequence of edges is modelled by using the Pitman-Yor process, a
two-parameter extension of the Dirichlet process. Empirical methods for choosing
the hyperparameters, based on large sample results, have been proposed and tested
on the Los Alamos National Laboratory authentication data, showing excellent fit
on the activity of real destination computers. Furthermore, corrections for discrete
base distributions are carefully addressed. The Pitman-Yor process allows for more
flexible and accurate modelling of the tails of the predictive distribution, which
also implies more accurate modelling of the new links in the network. The model
has been tested on synthetic data and applied to the Los Alamos National Labora-
tory authentication dataset, showing good performance in a network-wide anomaly
detection study.

The Pitman-Yor model might be used as a building block for more complex
models. For example, in computer networks, the arrival time of each event is also
available, and suitable models for arrival times on each edge have been proposed
in the literature [24]. The overall performance of the method is impressive, since
only two pieces of information are used in this article: the source and destination
node. The methodology can be potentially extended to consider any additional
information which is usually available for each event: for example, in computer
network data, authentication type and logon type.
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