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S U M M A R Y
When seismic waves propagate through viscoelastic media, the viscoelastic response can be
presented as a fractional-order derivative of the strain. This fractional order β controlling
the degree of viscoelasticity of subsurface media is referred to as the viscoelastic parameter.
However, the viscoelasticity is conventionally quantified by the quality factor Q, and there
is a gap between the viscoelastic parameter β and the Q factor. Here this paper bridges the
gap by establishing a relationship between these two parameters. An exact Q model is derived
analytically based on the viscoelastic parameter β. Since the exact Q model is frequency
dependent, a constant-Q model which is frequency independent is proposed under a small-
dissipation assumption. This constant-Q model is applicable to seismic data with a narrow
frequency band and is consistent with Kolsky’s attenuation model. Furthermore, an inverse
function of the constant-Q model is presented for evaluating the viscoelastic parameter β from
any given Q factor. Thus, the viscoelastic parameter β has an intuitive physical meaning that
is directly linked to the Q factor.
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I N T RO D U C T I O N

When seismic waves propagate through subsurface media, their
energy gradually attenuates, because of the absorption effect at-
tributable to the viscoelastic response of the Earth’s interior. This
wave attenuation or Earth absorption effect is conventionally quan-
tified by the quality factor Q of the subsurface media. The quality
factor is generally wave frequency dependent and is denoted as
Q(ω), where ω signifies the angular frequency.

The viscoelasticity of a subsurface medium can be generalized
in a compact form presented as a fractional-order derivative of the
strain (Wang 2016). For an ideal viscous (Newtonian) medium, the
stress is linearly related to the strain rate, the first-order derivative
of the strain. However, in its general form, the stress is related to
the fractional-order derivative rather than an integer-order deriva-
tive of the strain. Consequently, the generalized viscoelastic wave
equation is formed by the fractional-order derivative of the parti-
cle displacement. The fractional parameter β controls the degree
of viscoelasticity; equivalently, β controls the degree of wave at-
tenuation. Thereafter, this fractional parameter is referred to as the
viscoelastic parameter.

Although the generalized viscoelastic wave equation unifies the
purely elastic wave equation and the viscoelastic wave equation into
a single form, there is a gap between the viscoelastic parameter β

and the conventional quality factor Q. Thus, the primary objective
of this paper is to establish an intuitive relationship between these
two parameters.

The quality factor Q(ω) is fundamentally frequency dependent.
In practice, it can also be assumed to be frequency independent
when seismic waves exhibit a relatively narrow frequency band.
This frequency-independent Q factor is referred to as a constant-Q
model (Kjartansson 1979). Therefore, a simple formula for directly
evaluating the constant-Q value from the fractional parameter β

or vice versa would be greatly useful for practical applications
in reflection seismology. In this way, the physical meaning of the
viscoelastic parameter β is intuitively related to the commonly used
constant-Q factor.

Sun et al. (2019) presented approximate Q models for different
ranges of the viscoelastic parameter. They used a constant-Q model,
when the viscoelastic parameter is small, and a frequency-dependent
Q model, when the viscoelastic parameter is large. They made the
approximation based on Kolsky’s linear Q model, in which the
attenuation coefficient depends linearly on the frequency (Kolsky
1953; Wang & Guo 2004).

In this paper, the exact and analytic expression of Q(ω) is de-
fined in terms of the viscoelastic parameter β. The derivation of the
analytic expression is carried out first based on the complex modu-
lus and subsequently through the complex wavenumber defined by
the attenuation coefficient and the phase velocity. Then, a genuine
rather than range-dependent constant-Q model is proposed based
on a small-dissipation assumption. This constant-Q model depends
upon only the viscoelastic parameter β and is thus independent of
the wave frequency. Finally, for a given Q factor, a formula for
constructing β(Q) is presented. The viscoelastic parameter β can
be applied directly to the viscoelastic wave equation.
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T H E A NA LY T I C Q F U N C T I O N

This section defines the exact expression of Q(ω) in an analytic
function. The derivation is carried out first through the complex
modulus and subsequently based on the complex wavenumber.

Seismic waves propagate through subsurface media in a general-
ized form (Wang 2016). To reflect this generalized characteristic, the
stress–strain relationship is described by a fractional-order instead
of a first-order temporal derivative:

σ (t) = E

(
ε(t) + βτβ dβε(t)

dtβ

)
, (1)

where σ (t) is the time-dependent tensile stress, ε(t) denotes the
corresponding strain, E is Young’s modulus describing the elasticity
of the media and τ is the retardation time describing the delay of
the elastic response.

The compact form of a fractional derivative is used to describe
the frequency and time dependencies of a viscoelastic system (Nut-
ting 1921; Gemant 1936; Scott-Blair 1947; Smit & de Vries 1970;
Bagley & Torvik 1983; Mainardi 2010; Wang 2016). The range
of the viscoelastic parameter is β ∈ [0, 1]. When β = 0, eq. (1) is
Hooke’s law for purely elastic media, in which the stress–strain re-
lationship is linear. When β = 1, eq. (1) is a viscoelastic case that
combines the purely elastic case with the ideal viscous (Newtonian)
case defined by a linear relationship between the stress and the strain
rate.

In the frequency domain, eq. (1) may be written as

σ (ω) = E
(
1 + βτβ (iω)β

)
ε(ω), (2)

where ω is the angular frequency and i = √−1. Eq. (2) defines the
complex modulus as

M(ω) = E(1 + iββτβωβ ). (3)

Substituting iβ = cos(βπ/2) + i sin(βπ/2) into eq. (3), the complex
modulus may be rewritten as

M(ω) = E

[
1 + β

(
ω

ω0

)β

cos
βπ

2
+ iβ

(
ω

ω0

)β

sin
βπ

2

]
, (4)

where ω0 = τ−1. Given this complex modulus, the dissipation factor
that describes the phase lag of the strain behind the stress may be
defined as ξ (ω) ≡ MIm(ω)/MRe(ω) (White 1965). This dissipation
factor ξ (ω) is the inverse of the quality factor Q(β, ω):

Q−1(β, ω) =
β
(

ω

ω0

)β

sin βπ

2

1 + β
(

ω

ω0

)β

cos βπ

2

. (5)

This constitutes the analytical definition of the Q factor and is
defined in terms of the viscoelastic parameter β and the frequency
ω.

Based on eq. (1), which represents the generalized form of the
viscoelastic property, a generalized viscoelastic wave equation was
developed (Wang 2016). The analytical solutions for the attenua-
tion coefficient α(β, ω) and the phase velocity v(β, ω) were also
obtained by solving the generalized wave equation in the frequency
domain.

The attenuation coefficient is expressed as

α(β, ω) = ω√
2c

√
A − B

A
, (6)

and the phase velocity is

ω

v(β, ω)
= ω√

2c

√
A + B

A
, (7)

where

A =
[

1 + 2β

(
ω

ω0

)β

cos
βπ

2
+ β2

(
ω

ω0

)2β
]1/2

, (8)

B = 1 + β

(
ω

ω0

)β

cos
βπ

2
, (9)

and c = √
E/ρ is the elastic velocity, which is expressed in terms of

Young’s modulus E and the bulk density ρ. The attenuation coeffi-
cient and the phase velocity together define the complex wavenum-
ber.

Eq. (7) clearly indicates that the elastic velocity c is the limit
of the phase velocity when ω → 0, c = lim

ω→0
v(ω). This velocity

should be distinguished from the infinite limit of the phase velocity
expressed as

v∞ ≡ lim
ω→∞

v(ω) = lim
ω→∞

√
MRe(ω)

ρ
. (10)

The latter is used in various Q models to define the phase velocity
(Wang 2008).

Given the attenuation coefficient and the phase velocity, the qual-
ity factor Q is defined as (Wang 2008)

Q−1(ω) = 2

(
ω

α(ω)v(ω)
− α(ω)v(ω)

ω

)−1

. (11)

According to eqs. (6) and (7), the Q factor may be expressed as
follows:

Q−1(β, ω) =
√

A2 − B2

B
. (12)

Substituting A (eq. 8) and B (eq. 9) into eq. (12) leads to an ex-
pression for Q−1(β, ω) which is identical to that presented in eq.
(5). Note here that Q−1(β, ω) is independent of the elastic velocity
c and that the frequency-dependent Q factor depends only on the
fractional parameter β.

Fig. 1 displays the analytic function of Q−1(β, ω) derived from
the generalized viscoelastic model. The frequency (the horizontal
axis) is normalized by the reference frequency ω0, and the vis-
coelastic parameter β varies from 0 to 1. When β = 0, there is no
attenuation; when β = 1, there is a linear dependency on the fre-
quency. Both these cases are represented by straight lines in Fig. 1.

The monotonically increasing feature of curves suggests that the
analytic function of Q−1(β, ω) is applicable in practice, for instance,
for estimating an average value of Q−1(β) within a short frequency
band, for any given β parameter. For any given frequency, Q−1(β)
for various β values can be calculated directly using the analytic
function (5).

T H E C O N S TA N T - Q M O D E L

For practical applications, it is necessary to establish the relation-
ship between the constant-Q factor and the viscoelastic parameter
β. The constant-Q or frequency-independent Q factor is valid within
a narrow frequency band (Kjartansson 1979). For instance, the fre-
quency band in reflection seismology is approximately on the order
of hundreds of Hz. Once the relationship Q(β) is established, the
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Figure 1. The analytic function of the Q(β, ω) factor varying with the viscoelastic parameter β and the frequency ω. The frequency (the horizontal axis) is
normalized by the reference frequency ω0.

viscoelastic parameter β, which is expressed in terms of the com-
monly used factor Q, will be represented intuitively. Meanwhile, the
inverse relationship β(Q) will be useful for wave simulations using
the generalized wave equation.

Fig. 2 plots the analytic function Q(β, ω) where the horizontal
axis is the viscoelastic parameter β and is different form that in
Fig. 1. The topmost solid curve is the limit of Q when ω/ω0 → ∞:

Q−1(β; ω → ∞) = tan
βπ

2
. (13)

When ω/ω0 = 1, eq. (5) becomes

Q−1(β; ω0) = β sin βπ

2

1 + β cos βπ

2

. (14)

This function represents one of the solid red curves (ω/ω0 = 1).
According to the definition ω0 ≡ τ−1 = (η/E)−1, where η repre-

sents the viscous coefficient, the reference frequency is proportional
to the inverse of the viscosity. Therefore, normalizing the frequency
for the various curves in Fig. 2 removes the influence of the viscos-
ity η and differentiates the influence of the fractional parameter β

on the Q model.
An inspection of eq. (14) indicates that Q−1(β; ω0) ≤ 1, which

signifies the upper limit of the constant-Q model. Fig. 2 shows that
Q−1(β; ω0) is the central curve between the two limits Q−1(β; ω →
∞) and Q−1(β; 0) = 0 if a width between two limits is measured
along the direction (the blue dashed straight line) perpendicular to
this central curve Q−1(β; ω0).

In this paper, I propose to set Q−1(β; ω0)/
√

2 as the constant-Q
model for practical applications in reflection seismology:

Q−1(β) =
β√
2

sin βπ

2

1 + β cos βπ

2

. (15)

I make this proposal based on the following two justifications.

1) Q−1(β; ω0)/
√

2 represents the central curve between
Q−1(β; ω0) and Q−1(β; 0), which are the upper and lower limits,
respectively, of any acceptable constant-Q model.

2) An inspection of eq. (15) indicates that it satisfies
the small-dissipation assumption Q−1(β) 	 1 since Q−1(β) =

1√
2

Q−1(β; ω0) ≤ 1√
2
. This small-dissipation assumption is valid un-

der most conditions of interest in geophysics, for instance, Kolsky
(1953), Mason (1958) and Futterman (1962).

The abovementioned observation that all existing constant-Q
models have an upper limit when ω = ω0 is also consistent with
the analysis in Wang & Guo (2004), who suggested modifying the
Kolsky model by using the highest frequency of the available fre-
quency band as the reference frequency ω0 (denoted as ωh). There-
fore, the Kolsky model is comparable to other mathematical models
presented in the literature.

Fig. 2 also indicates that the proposed constant-Q model is sim-
ilar to the Q factor at one-half of the reference frequency. This
observation endows an intuitive physical meaning to the constant-
Q model.

Various constant-Q models Qr (β)correspond to a variety of given
β parameters. Applying these constant-Q models to Kolsky’s model
produces various attenuation coefficients. Let us now compare Kol-
sky’s model with the generalized viscoelastic model.

Fig. 3(a) displays plots of the attenuation coefficient of the gener-
alized viscoelastic model. The attenuation coefficient is normalized
by ω0/c:

α(ω)

ω0/c
= ω√

2ω0

√
A − B

A
, (16)

where A and B are given by eqs. (8) and (9), respectively. The
frequency (the horizontal axis) is again normalized by the reference
frequency ω0.

The conventional Kolsky attenuation model is a linear function
of the frequency for ω ≥ 0:

α(ω) = ω

2cQr
, (17)

where Qr is the constant-Q model given by eq. (15).
Fig. 3(b) demonstrates that Kolsky’s attenuation model (dashed

black curves) is comparable to the generalized attenuation model
(solid red curves), which is defined in terms of the viscoelastic
parameter β, if the proposed constant-Q model is employed. This
comparison reveals the self-consistency of the proposed constant-Q
model, despite there is a certain degree of difference when β is
large, because the Kolsky’s model is a linear function of frequency.
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Figure 2. The analytic function of Q(β, ω) with the viscoelastic parameter as the horizontal axis. The topmost solid black curve is Q−1(β; ω → ∞). The two
solid red curves are the upper limit Q−1(β; ω0) and the lower limit Q−1(β; 0), respectively, of any possible constant-Q model. The dashed red curve is the
proposed constant-Q model Q−1(β) for practical applications in exploration seismology.

Figure 3. Different attenuation models. (a) Plots of the attenuation coefficient of the generalized viscoelastic model. (b) Comparison between Kolsky’s
attenuation model (dashed red curves) and the generalized viscoelastic model (solid black curves). The attenuation coefficient is normalized by ω0/c, where
ω0 is the reference frequency and c is the elastic velocity. The frequency axis is also normalized by the reference frequency ω0. The fractional parameter β

varies within the range between 0 and 1.
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Figure 4. The viscoelastic parameter β(Q) constructed from any given Q value. The solid red curve is the analytic function (the red equation), and the overlain
dashed black curve is the numerical construction (the black equation).

T H E V I S C O E L A S T I C PA R A M E T E R
V E R S U S Q

The constant-Q model Q(β) in eq. (15) is defined in terms of the
viscoelastic parameter β. However, an inverse function β(Q) will
be useful in practical applications. For example, for a given Q value,
explicitly derived fractional parameter can be used in the generalized
wave equation for seismic wave simulation. However, it is difficult
to analytically construct the inverse function β(Q) from Q(β) in eq.
(15). Therefore, I construct β(Q) numerically and present β(Q) as
a polynomial function:

β(Q) =
∑

n

λn

Qn/2
, (18)

where n = {1, 2, 3, 4, 5, 6, 7} and λn are coefficients to be deter-
mined. These seven coefficients are obtained numerically as

{λn} = {0.947635, 0.486628, −0.071021,

1.34597, −3.36047, 1.95544,

−0.168509}.
(19)

Fig. 4 demonstrates a perfect fitting in a least-squares sense.
Note that eq. (18) is a polynomial function of

√
Q−1. In eq. (15),

the numerator of the fraction on the right-hand side is β sin βπ

2 ∝ β2,
which indicates that the fractional parameter β is proportional to
the square root

√
Q−1 rather than to Q−1 directly.

C O N C LU S I O N

When seismic waves propagate through viscoelastic media, their
energy gradually attenuates. Seismic wave propagation and attenu-
ation may be described by a generalized viscoelastic wave equation
in which the degree of viscoelasticity is controlled by the viscoelas-
tic parameter β. This paper has established the relationship between
the viscoelastic parameter β and the conventional Q factor.

1) This paper has derived analytically the exact Q(β, ω) model
for generalized viscoelastic media. This analytical Q model is de-
scribed by the viscoelastic parameter but is also frequency depen-
dent.

2) For practical applications in reflection seismology using data
with a narrow frequency band, this paper has proposed a constant-Q
model presented in terms of the viscoelastic parameter but not the
frequency.

3) The result of applying this constant-Q model to the conven-
tional Kolsky model has shown self-consistency when comparing
the Kolsky’s attenuation model with the generalized attenuation
model.

4) This paper has proposed also an explicit β(Q) function for
any given Q factor. Therefore, one can evaluate the β parameter and
apply it directly to the generalized wave equation.

For Q model establishment, a practical procedure can be summa-
rized into two steps: first, applying seismic waveform tomography to
invert for the velocity model and the viscoelastic parameter model
either sequentially or simultaneously, and then, converting the vis-
coelastic parameter model to a conventional Q model for seismic
data processing and reservoir characterization.
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