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Abstract: Although most biological processes are characterized by a strong temporal asymmetry,
several popular mathematical models neglect this issue. Maximum entropy methods provide a
principled way of addressing time irreversibility, which leverages powerful results and ideas from the
literature of non-equilibrium statistical mechanics. This tutorial provides a comprehensive overview
of these issues, with a focus in the case of spike train statistics. We provide a detailed account of the
mathematical foundations and work out examples to illustrate the key concepts and results from
non-equilibrium statistical mechanics.
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1. Introduction

Being the brain one of the most complex systems within the observable universe, it is not
surprising that there is still a large number of unanswered questions related to its structure and
functions. With the aim of developing new ways of addressing such questions, there is an increasing
consensus among neuroscientists in that interdisciplinary approaches are promising. As a prominent
example of this, computational neuroscience has been greatly enriched during the last decades
by tools, ideas and methods coming from statistical physics [1,2]. Moreover, these methods are
recently being revisited with renewed interest due to the arrival of experimental techniques that
generate huge volumes of data. In particular, neuroscientists have become progressively aware of the
powerful computational techniques used by statistical physicists to analyze experimental data and
large scale simulations.

When studying the firing patterns of collections of neurons, one of the most popular principles
from statistical mechanics is the maximum entropy principle (MEP), which builds the least structured
model that is consistent with average values measured from experimental data. These average
values are usually restricted to firing rates and synchronous pairwise correlations, which gives
rise to models composed by time independent and identically distributed (i.i.d) random variables,
i.e., stochastic processes without temporal structure [3–5]. Needless to say, there exists strong
evidence in favour of memory effects playing a major role in spike train statistics, and biological
process in general [6–9]. Following this evidence, over the last years the study of complex biological
systems has started to consider time-dependent processes where the past has an influence on future
behavior [10–12]. The corresponding asymmetry between past and future is called the “arrow of time”,
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which is the unique direction associated with the irreversible flow of time that is noticeable in most
biological systems.

Interestingly, the statistical physics literature has a fertile toolkit for studying time asymmetric
processes [13]. First, one introduces the distinction between steady states that imply thermal
equilibrium, and steady states that still carry fluxes—being called non-equilibrium steady states
(NESS). Additionally, the extent to which a steady-state is not in equilibrium (i.e., the strength of its
associated currents) can be quantified by the entropy-production rate [14], which is associated with
the degree of time-irreversibility in the corresponding process [14]. Several studies have pointed out
that being out-of-equilibrium is an important characteristic of biological systems [15–17]. Therefore,
statistical characterizations consistent with the out-of-equilibrium condition should reproduce some
degree of time irreversibility. One popular method that is suitable for studying these issues is Markov
chain modeling [11,18–22].

Despite the potential of interdisciplinary pollination related to these fascinating issues, many
scientists find it hard to explore these topics because of the major entry barriers, including differences
in jargon, conventions, and notations across the various fields. To bridge this gap, this tutorial intends
to provide an accessible introduction to the non-equilibrium properties of maximum entropy Markov
chains, with an emphasis in spike train statistics. While not introducing novel material, the main
added value of this tutorial is to present results of the field of non-equilibrium statistical mechanics in
a pedagogical manner based on examples. These results have direct application to maximum entropy
Markov chains, and may shed new light on the study of spike train statistics. This tutorial is suitable
for researchers in the fields of physics or mathematics who are curious about the interesting questions
and possibilities that computational neurosciences offers. The focus on this community is motivated
by the growing community of mathematical physicists interested in computational neuroscience.

The rest of this tutorial is structured as follows. First, Section 2 introduces basic concepts of neural
spike trains and Markov processes. Then, Section 3 introduces the notion of observable, and explores
their fundamental properties. Section 4 introduces the core ideas of MEP, proposing the formal
question and exploring methods for solving it. Section 5 studies various properties of interest of
MEP models, including fluctuation-dissipation relationships, and their entropy production. Finally,
Section 6 summarizes our conclusions.

2. Preliminary Considerations

This section introduces definitions, notations, and conventions that are used throughout the
tutorial in order to give the necessary toolkit of ideas and notions to the unfamiliar reader.

2.1. Binning and Spike Trains

Consider a network of N spiking neurons, where time has been binned (i.e., discretized) in
such a way that each neuron can exhibit no more than one action potential within one time bin ∆tb.
Action potentials, or “spikes”, are “all-or-none” events, and hence, spike data can be encoded using
sequences of zeros and ones. A spiking state is denoted by xk

t = 1, and corresponds to the event in
which the k-th neuron spikes during the t-th time bin, while xk

t = 0 implies that it remains silent.
A spike pattern is defined as the spike-state of all neurons at time bin t, and is denoted by

xt :=
[
xk

t
]N

k=1. A spike block is a consecutive sequence of spike patterns, denoted by xt,r :=
[
xs
]r

s=t
(see Figure 1). While the length of the spike block xt,r is r− t + 1, it is useful to consider spike blocks
of infinite length starting from time t = 0, which are denoted by x. Finally, in this tutorial we consider
that a spike train is an infinite sequence of spiking patterns. This assumption turns out to be useful
because it allows us to put our analysis in the framework of stochastic processes, and because it also
allows us to characterize asymptotic statistical properties.
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Figure 1. Illustration of a spike train, a spiking state and spike pattern. The time bin size ∆tb determine
the binary patterns.

The set of all possible spike patters (or state space) in a network of N neurons is denoted by S,
and the set of all spike blocks of length R in a network of N neurons is denoted by SR.

Even at a single neuron level, for repetitions of the same stimulus, neurons respond randomly,
but with a certain statistical structure. This is the main reason to look for statistical characterizations
of spike trains. When trying to find a statistical representation considering a whole population of
neurons responding simultaneously to a given stimulus, the problem is the following. Consider an
experimental spike train from a network of N neurons where sequences of spike patterns are considered
time-independent. The spike patterns can take 2N values (state space). For N > 10 is not possible
to observe all possible states in real experimental data nor computer simulations (2 h of recordings
binned at 20 ms produce less than 219 spike patterns). For N = 100 the state space is 2100, therefore
the frequentist approach is useless to estimate the invariant measure. Can we learn something about
the statistics of spike patterns from data having access only to a very small fraction of the state
space? The maximum entropy principle provides an answer to this question. This principle has been
used in the context of spike train statistics mainly considering firing rates and synchronous pairwise
correlations, which gives rise to trivial stochastic processes composed by (i.i.d) random variables [3–5].
However, as mentioned in the introduction, there exists strong evidence in favour of past events
playing a role in spike train statistics, and the biological process in general [6–9,11]. This principle
can be generalized considering non-synchronous correlations, affording to build Markov chains from
data. This approach opens the way to a richer modeling framework that can afford to model time
irreversibility (highly expected in biological systems) and to a remarkable mathematical machinery
based on non-equilibrium statistical mechanics which can be used to characterize collective behavior
and to explore the capabilities of the system. We focus our tutorial on non-equilibrium steady states
in the context of maximum entropy spike trains. In the next section of this tutorial we present the
elementary properties of Markov chains (our main object of analysis) which will be used in the next
chapters to extract relevant information about the underlying neuronal network generating the data.

2.2. Elementary Properties of Markov Chains

A stochastic process is a collection of random variables Xt ∈ S indexed by t ∈ T that often
refers to time. The set S represents the phase-space of the process; in the case of stochastic processes
representing spike trains, one usually takes S = {0, 1}N . Moreover, considering the temporal binning
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discussed in Section 2.1, usually T = N (the set of natural numbers) corresponds to the so-called
discrete-parameter stochastic processes.

While spike trains can be characterized by stochastic processes dependent on an infinite past [23,24],
Markov chains are particularly well-suited for modeling data sequences with finite temporal dependencies.
In the next paragraphs we give the precise definition of a Markov process.

A stochastic process (Xt : t ∈ N) defined on a measure space Ω is said to be a P–Markov chain if
it satisfies the Markov property (with respect to the probability measure P): if, for every t ∈ N and for
each sequence of states x0, x1, . . . , xt+1 ∈ S, the following relationship holds:

P(Xt+1 = xt+1|X0 = x0, X1 = x1, . . . , Xt−1 = xt−1, Xt = xt) = P(Xt+1 = xt+1|Xt = xt) . (1)

This property is usually paraphrased as: the conditional distribution of the future given the
current state and all past events depends exclusively on the current state of the process. It is direct to
show that the Markov property is equivalent to the following condition: for every increasing sequence
of indices (i1 < i2 < . . . < in) in N, and for arbitrary states xi1 , xi2 , . . . , xin in S, we have:

P(Xin = xin |Xin−1 = xin−1 , . . . , Xi1 = xi1) = P(Xin = xin |Xin−1 = xin−1) .

To characterize the transition probabilities, define a S-indexed stochastic matrix to be a doubly
indexed array of non-negative real numbers P = (p(i, j) : i, j ∈ S) such that ∑j∈S p(i, j) = 1 for every
i ∈ S. It can be shown that a Markov chain is well-defined if the following is provided:

(i) An initial probability distribution, encoded by a vector µ := (µi : i ∈ S).
(ii) A collection of S-indexed stochastic matrices {Pt := (pt(i, j))i,j∈S : t ∈ N}.

Using these two elements, one can build probability measures Pn on Sn as follows,

Pn(i0, i1, . . . , in−1) = µ(i0)
n−2

∏
j=0

Pj(ij, ij+1) .

Furthermore, the Kolmogorov extension theorem [25] guarantees the existence of a unique
probability measure Pµ on SN such that the coordinate process satisfies:

Pµ(X0 = i0, X1 = i1, . . . , Xn = in) = Pn(i0, i1, . . . , in) ,

and with respect to which (Xt : t ∈ T) is a Markov chain. In this case Pµ is said to be the probability
law of the Markov chain (Xt : t ∈ N). This notation also remarks that Pµ is the law with initial
distribution µ.

2.3. Homogeneity, Ergodicity and Stationarity

A Markov chain is said to be homogeneous if the transition matrices do not depend on the time
parameter t, i.e., if there exists a S-indexed stochastic matrix P such that Pt = P for every t ∈ T.
Note that if (Xt : t ∈ T) is a P–homogeneous Markov chain, then for every t ∈ T:

P(Xt+1 = j|Xt = i) = p(i, j) := pij . (2)

In the rest of this paper we focus exclusively on homogeneous Markov chains, since this is the
model assumed in the maximum entropy framework.

Consider now a homogeneous Markov chain (Xt : t ∈ T) with initial distribution µ and transition
matrix P. Moreover, consider p(m)

ij to be the (i, j)-th entry of the product matrix Pm = P · P · . . . · P.
These quantities correspond to the m–steps transition probabilities. Equation (2) can be generalized to

P(Xt+m = j|Xt = i) = p(m)
ij .
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A stochastic matrix P is said to be ergodic if there exists k ∈ N such that all the k–step transition
probabilities are positive—i.e., there is a non-zero probability to go between any two states in k steps.
A homogeneous Markov chain is ergodic if it can be defined by an initial distribution µ and an
ergodic matrix.

Finally, a probability distribution π on S is called a stationary distribution for the Markov chain
specified by P if

πP = π . (3)

Equivalently, π is stationary for P if π is a left eigenvector of the transition matrix corresponding
to the eigenvalue λ = 1, and is a probability distribution on S. While it is true that 1 is always
an eigenvalue of P, it may be the case that no eigenvector associated to it can be normalized to a
probability distribution. Further conditions for existence and uniqueness will be given in the next
paragraph. Finally, if a S–indexed stochastic matrix P admits a stationary probability distribution π

and (Xt : t ∈ N) is a Markov chain with initial distribution π and transition matrix P, then for every
t ∈ N and i ∈ S:

Pπ(Xt = i) = πi .

In this case (Xt : t ∈ N) is said to be a stationary Markov chain, or that the Markov chain is started
from stationarity.

The notion of homogeneous ergodic Markov chains is relevant in the context of spike train
statistics because of the Ergodic Theorem for finite-state Markov Chains, which state that for all finite-state,
homogeneous, ergodic Markov chains (Xt : t ≥ 0) with transition matrix P the following hold:

(a) There exists a unique stationary distribution π for P that satisfies that πi > 0 for every i ∈ S.
(b) For every j ∈ S,

lim
m→+∞

p(m)
ij = πj .

Equivalently, for every distribution ν, limt→∞ Pν(Xt = j) = πj . This property guarantees the
uniqueness of the maximum entropy Markov chain.

2.4. The Reversed Markov Chain

Given a discrete ergodic Markov chain, it is mathematically possible to define its associated time
reversed Markov chain. Some Markov chains in the steady-state yield the same Markov chain (in
distribution) if the time course is inverted and others do not. It has been argued multiple times that
those Markov chains that are different from their time inverted version are better suited to represent
biological stochastic processes [6,7,9,11,12].

Let
−→
P be a stochastic matrix, and assume that it admits a stationary probability measure π.

Assume too that πi > 0 for every i ∈ S (according to (a) in the Ergodic Theorem from the previous
section, this is the case when

−→
P is ergodic). Define the S–indexed matrix

←−
P with entries:

←−
P ij =

πj

πi

−→
P ji .

A direct calculation shows that
←−
P is also a stochastic matrix. Moreover, if π is stationary for

−→
P ,

then it is for
←−
P as well.
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Using the above facts, let P→π and P←π be the laws of two stationary Markov chains, denoted by
Xt and Yt, whose stationary distribution is π and transition probabilities are

−→
P and

←−
P , respectively.

The following holds

P←π (Y0 = i0, Y1 = i1, . . . , Yn = in) = πi0
←−
P i0i1
←−
P i1i2 . . .

←−
P in−1in

= πi0
πi1
πi0

−→
P i1i0

πi2
πi1

−→
P i2i2 . . .

πin
πin−1

−→
P inin−1

= πin
−→
P inin−1

−→
P in−1in−2 . . .

−→
P i1i0

= P→π (X0 = in, X1 = in−1 . . . , Xn = i0) .

By virtue of this result, it is natural to call the chain (Yt : t ≥ 0) the reversed chain associated to
(Xt : t ≥ 0).

2.5. Reversibility and Detailed Balance

A transition matrix P is reversible with respect to π if the associated Markov chain started from π

has the same law as the reversed chain started from the same distribution. The reversibility of P with
respect to π is equivalent to the condition of detailed balance, given by

πiPij = πjPji ∀i, j ∈ S . (4)

Note that any probability measure π that satisfies detailed balance with respect to P is necessarily
stationary, since

∑
i∈S

πiPij = ∑
i∈S

πjPji = πj ∑
i∈S

Pji = πj for every j ∈ S .

The converse is, however, not true in general: a stationary distribution may not
satisfy Equation (4).

Intuitively, Equation (4) states that, in the stationary state, the fluxes between each pair of states
balance each other. In contrast, detailed balance is broken when there is a cycle of three or more states
in the state space supporting a net probability current—even in the steady state. Detailed balance
is also interpreted as “time reversibility”, as one could not distinguish the steady state dynamics
of the system when going forward or backward in time. Certainly, this property is not expected in
stochastic processes generated by biological systems. Several disciplines use the term “equilibrium”
to refer to long-term behaviour, i.e., what is not transient. In this tutorial we use the term equilibrium
state exclusively to refer to probability vectors that satisfy the detailed balance conditions—given in
Equation (4). Markov chains that satisfy the detailed balance condition are referred as equilibrium
steady states, and conversely, steady states that do not satisfy the detailed balance conditions are called
Non-Equilibrium Steady States (NESS).

How to characterize (finite state, homogeneous) reversible Markov chains? Following [26],
consider any finite graph (S, (cij)i,j∈S), with vertex set S and with the edge between vertices i and j
labelled by the non-negative edge cij = cji. The graph can be visualized as a system of points labelled
by S, and with a line segment between points whenever the corresponding conductance is positive.
Define ci = ∑j∈S cij and the S–indexed stochastic matrix given by

pij =
cij

ci
,



Entropy 2019, 884, 21 7 of 28

Now define C = ∑i∈S ci. It is straightforward to prove that P is reversible with respect to the
probability measure given by

πi =
ci
C

,

and thus it is stationary for P. The unique Markov chain started from π and transition matrix P is
called the stationary random walk on the network (S, (cij)i,j∈S). Conversely, any reversible S–valued
Markov chain can be identified with the random walk on the graph with vertex set S and edges given
by cij = cji = πi pij.

2.6. Law of Large Numbers for Ergodic Markov Chains

The Law of Large Numbers (LLN) that applies to independent and identically distributed random
variables (i.i.d.) can be extended to the realm of ergodic Markov chains. In effect, for a given ergodic
Markov chain (Xt : t ≥ 0) with stationary distribution π and transition matrix P, define the random
variables N(T)

i equal to the number of occurrences of the state i up to time T − 1, i.e.,

N(T)
i =

T−1

∑
t=0

1{Xt=i},

where 1{·} is an indicator function. Similarly, define the random variables N(T)
ij as the number of

occurrences of the consecutive pair of states (i, j) ∈ S2—in that order—up to time T − 1, i.e.,

N(T)
ij =

T−1

∑
t=1

1{Xt−1=i,Xt=j} .

With this, the Strong Law of Large Numbers for Markov chains can be stated as follows: if (Xt : t ≥ 0)
is ergodic and π is its unique stationary distribution, then

Pµ

(
lim

T→+∞

N(T)
i
T

= πi

)
= 1 and Pµ

 lim
T→+∞

N(T)
ij

T
= πi pij

 = 1,

holds for any initial distribution µ. The result, in turn, implies the Weak Law of Large Numbers for
Markov chains, which state that, following the above notation, for every ε > 0 and for every starting
distribution µ:

lim
T→+∞

Pµ

(∣∣∣∣∣N(T)
i
T
− πi

∣∣∣∣∣ > ε

)
= 0 and lim

T→+∞
Pµ

∣∣∣∣∣∣
N(T)

ij

T
− πi pij

∣∣∣∣∣∣ > ε

 = 0 .

Let’s denote by C(S) the space of real-valued functions on S. Clearly, any function of C(S) can be
written as f (x) = ∑i∈S ai1i(x) for certain constants ai, i ∈ S. Then, the above result generalizes as: for
every f ∈ C(S), ergodic chain Xt, and probability distribution µ, the following holds:

Pµ

(
lim

T→+∞

1
T

T−1

∑
t=0

f (Xt) = Eπ( f (X0))

)
= 1 .

This corresponds to a particular form of the Birkhoff Ergodic Theorem, which is briefly outlined
in the next section and is relevant to characterize spike trains of observables as from data it is possible
to accurately measure average values of firing rates and correlations. For an ergodic stationary Markov
chain with a state space relatively small with respect to the sample size, this theorem guarantees that
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from a large sample the transition probabilities and the invariant measure can be recovered. This is not
the case in spike train statistics at the population level as only a very small fraction of the state space is
sampled in experimental spike trains. However, some features of the spike trains can be sampled very
accurately from experimental data. In the next section, we present the basic elements to build from
these characteristics a statistical model of the entire population.

3. Observables of Markov Chains and Their Properties

The notion of observable plays a central role in the study of maximum entropy spike trains.
This section discusses their nature and fundamental properties.

3.1. Observables and Their Empirical Averages

Suppose a spiking neuronal network of N neurons is provided. Suppose too that measurements
of spike patterns for T time bins have been performed. The observables are real-valued functions
over the possible spike blocks, denoted here by B := ST . Let C(B) be the space of such observables,
i.e., the linear space of real-valued functions f : B 7→ R. Recall the space C(S) of observables of range
1, discussed at the end of the above section. This space can be naturally embedded into C(B); thus, it
can be considered as a linear subspace of the latter. More generally, the space of observables of range R
for R ≤ T, denoted C(SR), is just the space of real-valued functions on SR, that we identify with its
image through the natural embedding into C(B).

We are interested in the average of observables with respect to several probability measures. If µ

is a probability measure on B (i.e., µ(ω) ≥ 0 and ∑ω∈B µ(ω) = 1) and f an observable of range R ≤ T
i.e., f ∈ C(SR), we define its expectation with respect to µ as

µ( f ) = Eµ{ f } := ∑
ω∈B

f (ω)µ(ω).

Since the space of blocks of length T is finite, the above sum is always finite, and thus our
definition makes sense for every probability measure on B.

In the context of spike-trains, an important class of observable is made up of {0, 1}-valued
functions. It can be proved that any finite-range binary observable can be written as a finite sum of
finite products of functions of the form 1

{X(j)
i =1}

that represents the event that the j-th neuron fires

during the i-th bin. The average value if this observable is known as the firing rate of neuron j. This
quantity has been proposed as one of the major neural coding strategies used by the brain [27].

Consider a spike block x0,T−1, where T is the sample length. Although in most cases the probability
measure µ that characterizes the spiking activity is not known, it is meaningful to use the experimental
data to estimate the mean values of specific observables. The range of the validity of this procedure
is usually based on prior assumptions about the nature of the source that originates the sample. For
example, it can be assumed that the sample is a short piece of an infinite path that comes running from
the far past, and so it can be assumed that this piece exhibits a behavior that is close to the stationary
distribution. In this case, one can consider for any number R ≤ T the quantity:

Q(y0, y1, . . . , yR−1) =
T−R

∑
j=0

1{xj,j+R−1=(y0,y1,...,yR−1)},

that counts the number of appearances of the sequence (y0, . . . , yR−1) as a consecutive sub-sequence
of x0,T−1. Now, for any set A ⊆ SR, define:

µx0,T−1(A) :=
1

T − R + 1 ∑
y∈A

Q(y),
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µx0,T−1( f ) = AT( f ) =
1

T − R + 1

T−R

∑
i=0

f (xi,R−1+i).

When the empirical distribution is not explicitly stated, it is customary to write 〈 f 〉 to denote the
average of the observable f with respect to this probability measure.

3.2. Moments and Cumulants

Observables are random variables whose average values can be determined from experimental
data or from the explicit representation of the underlying measure characterizing the stochastic process
generating the data. Important statistical properties of random variables are encoded in the cumulants.
We will use the cumulants in Section 5 of this tutorial to characterize and infer properties of maximum
entropy Markov chains. Let us now introduce them.

The moment of order r of a real-valued random variable X is given by mr = E(Xr), for r ∈ N
(here we freely use the notation E to denote the expectation with respect to a probability measure that
should be inferred from the context). The moment generating function (or Laplace transform) of a
random variable is defined by:

M(t) = E(etX),

and provided it is a function of t with continuous derivatives of arbitrary order at 0, we have that:

mr =

(
dr

dtt M
)

t=0
.

The cumulants κr are the coefficients in the Taylor expansion of the cumulant generating function.
The cumulants are defined as the logarithm of the moment generating function, namely,

ln M(t) = ∑
r

κrtr/r! .

The relation between the moments and cumulants is obtained extracting coefficients from the
Taylor expansion, i.e.,

κr =

(
dr

dtr ln(M(t))
)

t=0
(5)

which yields the first values:

κ1 = m1 ,
κ2 = m2 −m2

1 ,
κ3 = m3 − 3m2m1 + 2m3

1 ,
κ4 = m4 − 4m3m1 − 3m2

2 + 12m2m2
1 − 6m4

1,

and so on. In particular, the first four cumulants are the mean, the variance, the skewness and
the kurtosis.

3.3. Observables and Ergodicity

Let θ : Ω 7→ Ω be the shift operator that acts on a sequence ω ∈ Ω as:

(θ(ω))i = ωi+1,
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i.e., θ shifts the sequence one position to the left. Now, assume that the Markov chain (Xt : t ≥ 0) is
ergodic. Let π be its unique stationary probability distribution. The Birkhoff Ergodic Theorem states
that under the above assumptions, for every f ∈ C(B):

Pµ

(
lim

N→+∞

1
N

N−1

∑
n=0

f ◦ θn = Eπ( f )

)
= 1,

for every initial measure µ. This equation means that under the ergodic hypothesis, the temporal
averages converge to the spatial averages. The importance of this fundamental result should not
be underestimated since this result supports the practice of regarding averages of (hopefully) large
samples of experimental data as faithful approximations of the true values of the expectations of
the observables.

3.4. Central Limit Theorem for Observables

Consider an arbitrarily large sequence of spike patterns of N neurons. Consider t ∈ N and
let x0,t−1 be the spike-block of length t. Also, let f be an arbitrary observable of fixed range R.
The asymptotic properties of At( f ) are established in the following context: the finite sample is drawn
from an ergodic Markov chain, i.e., x ∼ Pν, where Pν is the Markov probability measure of an ergodic
chain (Xt : t ≥ 0) started from an arbitrary initial distribution. Let π be the unique stationary measure
for the Markov chain. Observe that by virtue of the ergodic assumption, the empirical averages of
observables become more accurate as the sampling size grows , i.e.,

Pν (At( f )→ Eπ{ f }) = 1.

for any starting condition ν. However, the above result does not clarify the rate at which the accuracy
improves. The central limit theorem (CLT) for ergodic Markov chains provides a result to approach
this issue (for datails see [28]).

Theorem 1 (Central limit theorem for ergodic Markov chains). Under the above assumptions, and
keeping notation, define:

σ =
√
(Eπ(( f (X0, . . . , XR−1)−Eπ( f (X0, . . . , XR−1))2) .

Let Lt be the law of the random variable
√

t
σ

[
At( f )−Eπ{ f }

]
under the measure Pν of an ergodic Markov chain

started from an arbitrary distribution. Let L be the law of a standard normal random variable. Then Lt → L in
the sense of weak convergence of convergence in distribution. This is usually written as:

Pν

{√
t

σ

[
At( f )−Eπ{ f }

]
≤ x

}
→ 1√

2πσ

∫ x

−∞
e−

s2
2σ ds.

This theorem implies that “typical” fluctuations of At( f ) around its long term average Eπ{ f } are
of the order of σ/

√
t. For spike trains, this theorem quantifies the expected Gaussian fluctuations of

observables in terms of the sample size of the experimental data.

3.5. Large Deviations of Average Values of Observables

Although the CLT for ergodic Markov chains is precise in describing the typical fluctuations
around the mean, it does not characterize the probabilities of large fluctuations. While it is clear that the
probability of large fluctuations of average values vanish as the sample size increases, it is sometimes
relevant to characterize the decrease rate of this probability. That is what the large deviation principle
(LDP) does.
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Let f be a function of finite range defined on the space of sequences. In many situations, f will
be a {0, 1}–valued function. Let Pπ be the probability measure on the space of sequences induced by
an ergodic Markov chain with stationary probability π. The empirical average At( f ) satisfies a large
deviation principle (LDP) with rate function I f , defined as

I f (s) := − lim
t→∞

1
t

logPπ{At( f ) > s}, (6)

if the above limit exists. The above condition implies for large t that Pπ{At( f ) > s} ≈ e−tI f (s). In
particular, if s > Eπ{ f } the Law of Large Numbers (LLN) ensure that Pπ{At( f ) > s} goes to zero as t
increases, but the rate function quantifies the speed at which this occurs.

Calculating I f using the definition (Equation (6)), is usually impractical. However,
the Gärtner-Ellis theorem provides a clever alternative to circumvent this problem [29]. Let us introduce
the scaled cumulant generating function (SCGF) associated to the random variable f by

λ f (k) =: lim
t→∞

1
t

lnEπ

[
etkAt( f )

]
, k ∈ R, (7)

when the limit exists (details about cumulant generating functions are found in [30]). While the
empirical average At( f ) is taken over a sample (empirical measure), the expectation in (7) is computed
over the probability distribution given by Pπ{·}.

Theorem 2 (Gärtner-Ellis theorem). If λ f is differentiable, then the average At( f ) satisfies a LDP with rate
function given by the Legendre transform of λ f , that is

I f (s) = max
k∈R
{ks− λ f (k)}. (8)

Therefore, the large deviations of empirical averages At( f ) can be characterized by first computing
their SCGF and then finding their Legendre transform.

A useful application of the LDP is to estimate the likelihood that the empirical average At( f ) takes
a value far from its expected value. Let us assume that I f (s) is a positive differentiable convex function.
Then, λ f (k) is also differentiable [31] (for a comprehensive discussion about the differentiability of
λ f (k) see [30].) Then, as I f (s) is convex it has a unique global minimum. Denoting this minimum by s∗,
from the differentiability of I f (s) it follows that I f (s∗) = 0. Additionally, it follows from properties of
the Legendre transform that s∗ = λ′f (0) = Ep{ f }, which is the LLN that says that At( f ) concentrates
around s∗. Consider s 6= s∗ and that I f (s) admits a Taylor expansion around s∗

I f (s) = I f (s∗) + I′f (s
∗)(s− s∗) +

I′′f (s
∗)(s− s∗)2

2
+ O(s− s∗)3 .

As s∗ is zero and a minimum of I(s), the first two terms of this expansion are zero, and as I(s) is
convex I′′(s) > 0. For large t, it follows from (6) that

p{At( f ) > s} ≈ e−tI f (s)

≈ e
−t

(
I′′f (s
∗)(s−s∗)2

2

)
,

(9)

so the “small deviations” (we are using Taylor expansion) of At( f ) around s∗ are Gaussian
(in Equation (9) 1/I′′f (s

∗) = λ′′f (0) = σ2). In this sense, the LDP can be considered as an extension
of the CLT as it goes beyond the small deviations around s∗ (Gaussian), but additionally the large
deviations (not Gaussian) of At( f ).
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4. Building Maximum Entropy Temporal Models

This section presents the main concepts behind the construction of maximum entropy models for
temporal data. The next Section 4.1, introduces the concept of entropy, and then Section 4.2 formulates
the problem of maximizing the entropy rate. Methods for solving this problem are discussed in
Section 4.3, which are then illustrated in an example presented in Section 4.4.

4.1. The Entropy Rate of a Temporal Model

4.1.1. Basic Definitions

In order to give mathematical meaning to the rather vague notion of uncertainty, a natural
approach is to employ the well-established notion of Shannon entropy. For any probability measure p
defined over the state space E (not necessarily S), the Shannon entropy of p is given by

S[p] := − ∑
x∈E

p(x) log p(x) .

Note that this definition can be used for measures on the spaces of infinite sequences EN. However,
as in most cases of interest, the value saturates in infinite. A better suited notion in this context is given
by the entropy rate, which plays a crucial role in the rest of this tutorial.

Definition 1 (entropy rate). Let µ be a probability measure on the space of sequences SN. For n ≥ 1 let µn be
the probability measure induced by µ on the initial n coordinates, i.e., µn is the probability distribution on En

given by:

µn(x0, x1, . . . , xn − 1) = µ
(

ω ∈ SN : Xi = xi for i = 0, 1, . . . , n− 1
)

.

The entropy rate of the measure µ is defined by:

S [µ] = lim
n→∞

1
n

S[µn]. (10)

The above definition applies to any probability distribution on the space of sequences. Intuitively,
the entropy rate correspond to the entropy per time unit, and represents how much “uncertainty” is
created by the process as time moves forward.

4.1.2. The Entropy Rate of I.I.D. and Markov Models

Let us consider first a null model of spike activity, where there is complete statistical independence
between two consecutive spike patters. For this, first recall that S = {0, 1}N , where N is the fixed
number of neurons. Without loss of generality, we can enumerate the elements of S as s1, s2, . . . , s2N .
Let ν = (ν1, ν2, . . . , ν2N ) be a probability measure on S such that:

ν(sk) = νk

For a T–block x = (x0, x1, . . . , xT−1) ∈ ST and for every s ∈ S, we set:

NT
s (x) =

T−1

∑
i=0

1{xi=s}.
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On the space of infinite spike trains SN we consider the probability µ = ν⊗N, i.e., the product
measure on the space of spike trains. Observe that the induced measure is given by:

µn(x0, x1, . . . , xT−1) =
2N

∏
k=1

ν
Nt

s (x0,...,xT−1)
k .

With this, a straightforward calculation shows that

S [µ] = S[ν] = −
2N

∑
k=1

νk ln(νk) ,

and in this case we observe that the entropy rate is equal to the entropy of the probability distribution
induced by each coordinate map.

A reasonable next step in the hierarchy of models is to weaken the independence hypothesis and
assume instead that the spike activity keeps some bounded memory of the past. For this, following the
considerations of Section 2, let us consider an ergodic discrete Markov chain with transition matrix P
and invariant distribution π taking values in S. Let µ = µ(P, π) be the measure induced by this chain
on the space SN. Observe that, with the above notation:

µn(x0, x1, . . . , xn−1) = πx0

n−1

∏
j=1

Pxj−1xj .

A direct computation shows that

S[µ1] = − ∑
(x0,x1)∈S2

πx0 Px0x1 ln(πx0 Px0x1)

= − ∑
x∈S

πx ln(πx)− ∑
(x0,x1)∈S2

πx0 Px0x1 ln(Px0x1),

and induction shows that:

S[µn] = − ∑
x∈S

πx ln(πx)− n ∑
(x0,x1)∈S2

πx0 Px0x1 ln(Px0x1).

Thus dividing by n and taking the limit in Equation (10), one finds that

S [µ] = − ∑
(x0,x1)∈S2

πx0 Px0x1 ln(Px0x1).

4.2. Entropy Rate Maximization under Constraints

Now we introduce the central problem of this tutorial. Assume we have empirical data from
spiking activity. Consider the empirical averages of K observables, 〈 fk〉, for fk, k = 1, . . . , K. We need
to characterize the Markov chains that are consistent with these average values. Except for trivial
and uninteresting situations, there is no finite set of empirical averages that uniquely determines a
distribution µ on SN that fits the averages, in the sense that

µ( fk) = 〈 fk〉 for k = 1, . . . , K.

Consequently, we need to impose further restrictions in order to guarantee uniqueness. A useful
and meaningful approach is the so-called Maximum Entropy Markov Chain model (MEMC), which fit
the unique probability measure µ among all the stationary Markov measures ν on SN that match the
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expected values of a given set of observables and that maximizes the entropy rate. Mathematically,
it is written in the following form:

max
ν∈Minv

S [ν]

subject to ν( fk) = 〈 fk〉e = Ck, ∀k ∈ {1, . . . , K},

whereMinv is a shorthand for the sets of stationary Markov measures on SN. Formally:

Minv := {(π, P) : π is a probability on S, P is stochastic, πP = π}.

It is to be noted that the maximum entropy principle can be derived in some scenarios from more
general principles based on large deviation theory [30]. In this framework, entropy maximization
corresponds to Kullback-Leiber divergence minimization. This approach can be useful for accounting
additional information that is not in the form of functional constraints, but as a Bayesian prior. A major
drawback of this approach to be applied to spike trains, is that it assumes stationarity in the data.
While this condition is not to be naturally expected in biological systems, controlled experiments can
be carried out in the context of spike train analysis in order to maintain these conditions [3,8,32,33].
The maximum entropy principle as presented here is useful only in the stationary case. However,
some extensions have been proposed [34,35]. Note also that there are alternative variational principles
which can be used to find distributions that extremize the value of quantities such as the maximum
entropy production principle [36–38], or the Prigogine minimum entropy production principle [39,40].
To the best of our knowledge, these alternatives have not yet been explored in the context of spike
train statistics.

4.3. Solving the Optimization Problem

We now discuss techniques for finding models that maximize the entropy rate.

4.3.1. Lagrange Multipliers and the Variational Principle

To solve the above optimization problem, let us introduce the set of Lagrange multipliers hk ∈ R
and an energy function H = ∑K

k=1 hk fk, which is a linear combination of observables. Consider the
following unconstrained optimization problem, which can be framed in the context of the variational
principle of the thermodynamic formalism [41]:

F [H] = sup
ν∈Minv

{
S [ν] + ν(H)

}
= S [µ] + µ(H), (11)

where F [H] is called the free energy and ν(H) = ∑K
k=1 hk ν( fk) is the average value ofH with respect

to the measure ν. The following holds:

∂F [Hh]

∂hk
= Ep{ fk} = Ck, ∀k ∈ {1, ..., K},

where Ep{ f } is the average of fk with respect to p (maximum entropy measure), which is equal
(by restriction) to the average value of fk with respect to the empirical measure from the data.

The maximum-entropy (ME) principle [42] has been successfully applied to spike data from the
cortex and the retina [3,8,9,11,12,43]. The approach starts by fixing the set of constraints determined by
the empirical average of observables measured from spiking data. Maximizing the entropy (concave
functional) under constraints, gives a unique distribution. The choice of observables to measure in the
empirical data (constraints) determines the statistical model. The approach of Lagrange multipliers
may not be practical when trying to fit a MEMC. In the next section we introduce an alternative
optimization based on spectral properties.
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4.3.2. Transfer Matrix Method

In order to illustrate the transfer matrix method, we start with a classical example that allow us to
introduce a fundamental definition. Let A be a adjacency matrix i.e., a {0, 1}-valued square matrix
with rows and columns indexed by the elements of S. If there exists an n ≥ 0 such that

An
ij > 0

for every i, j ∈ S, we say that A is primitive. The next well-known theorem of Linear Algebra is
crucial [44] for the uniqueness of the MEMC.

Theorem 3 (Perron-Frobenius theorem). Let A be a primitive matrix. Then,

• There is a positive maximal eigenvalue ρ > 0 such that all other eigenvalues satisfy | ρ′ |< ρ. Moreover ρ

is simple;
• There are positive left- and right-eigenvectors u = (u1, . . . , uk), v = (v1, . . . , vk) s.t.

uA = ρ u, Av = ρv.

Apply the above theorem to a primitive matrix A, and define:

Pij =
Aijvj

ρvi
; πi =

uivi
〈u, v〉 ,

where 〈u, v〉 is the standard inner product in R2N
(we refer the reader to [44] for details). The matrix P

built above is stochastic. Moreover, π is its unique stationary measure. Define the Parry measure to be
the Markov measure:

µ(i0, i1, . . . , in) = πi0 Pi0i1 , . . . , Pin−1in .

It is well known that the Parry measure is the unique measure of maximal entropy consistent
with the adjacency matrix A [45,46].

Inspired by this result, we consider now the general case. Consider constraints given by a set of
empirical averages of observables, as explained in the previous section. The above example certainly
fits this setting: just consider binary observables associated to each pair of states (i, j) that evaluates
to 1 when a transition from state i to state j has been observed in the data. In our general setting,
we assume that the chosen observables have a finite maximum range R. From these observables the
energy function H of finite range R is built as a linear combination of these observables. Using this
energy function we build a matrix denoted by LH, so that for every y, w ∈ SR its entries are given
as follows:

LH(y, w) =

{
eH(y1w1,R−1) if y1,R−1 = w0,R−2

0, otherwise.
(12)

where y1wR−1 is the concatenated block built from y1 and w1,R−1. For observables of range one,
the matrix above is defined as LH(y, w) = eH(y). Assuming H > −∞, the elements of the matrix
LH are non-negative. Furthermore, in every non trivial case, the matrix is primitive and satisfies
the Perron-Frobenius theorem [44]. Denote by ρ the unique largest eigenvalue of LH. Just as above,
we denote by u and v the left and right eigenvectors of LH associated to ρ. Notice that ui > 0 and
vi > 0, for all i ∈ S. The free energy associated to a transfer matrix is the logarithm of the unique
maximum eigenvalue.

The matrix LH can be turned into a Markov matrix of maximum entropy. For a primitive matrix
M with spectral radius ρ, and positive right eigenvector v associated to ρ, the stochastic matrix built
from M is computed as follows:
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S(M) =
1
ρ

D−1MD ,

where D is the diagonal matrix with entries Dii = vi. The MEMC transition matrix P and unique
stationary probability measure π are explicitly given by

P = S(LH); πi :=
ui vi
〈u, v〉 , ∀i ∈ S. (13)

Note that when H = 0, the MEMC is characterized by the Markov transition matrix with
components [47]:

Pij =
Aijvj

ρvi
,

where A is the adjacency matrix.

4.3.3. Finite Range Gibbs Measures

For a fixed energy functionH of range R ≥ 2, there is a unique stationary Markov measure µ for
which there exist a constant γ ≥ 1 such that [46],

γ−1 ≤ µ[x1,n]

exp(∑n−R+1
k=1 H(xk,k+R−1)− (n + R− 1)F [H])

≤ γ, (14)

that attains the supremum (11). The measure µ, as defined by (14), is known in the symbolic dynamics
literature as Gibbs measure in the sense of Bowen [48]. All MEMCs belong to this class of measures.
Moreover, the classical Gibbs measures in statistical mechanics are particular cases of (14), when
γ = 1, F [H] = log Z andH is an energy function of range one, leading to an i.i.d stochastic process
characterized by the product measure µ. In this case the following holds:

µ(x) =
eH(x)

Z
∀x ∈ S; Z = ∑

x∈S
eH(x).

The free energy that is defined here has a deep relationship with the free energy in
thermodynamics. Consider a thermodynamic system in equilibrium. The Helmholtz free energy
derived from the partition function as follows:

F(β) = −β−1 log Z

where β = 1/(kT) and k is Boltzmann’s constant and T is the temperature.
This quantity is related to the cumulant generating function for the energy. In the context of the

maximum entropy principle, the physical temperature and the Boltzmann’s constant play no role, so
usually both are considered equal to 1. From the free energy, all of the thermodynamic properties
of the system can be obtained via its derivatives, examples are the internal energy, specific heat, and
entropy. It is to be noted that the definition used in this tutorial for the free energy (11) follows from
the conventions used in the field of thermodynamic formalism [41,45,46] and changes its sign with the
usual convention in the field of statistical mechanics.

4.4. Example

We present here the toy example that we will use to explore statistical properties of spike trains
using the non-equilibrium statistical physics approach. We present the transfer matrix technique to
compute the Markov transition matrix, its invariant measure and free energy from a potentialH.

Consider a range-2 potential with two neurons (N = 2). We use the notation introduced in
Section 2.1:
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H(x0,1) = h1x1
0x2

1 + h2x2
0x1

1.

The state space of this problem is given by:(
0
0

)
,

(
0
1

)
,

(
1
0

)
,

(
1
1

)
.

The transfer matrix (12) associated toH is, in this case, a 4× 4 matrix

Lxx’ =


1 1 1 1
1 1 eh2 eh2

1 eh1 1 eh1

1 eh1 eh2 eh1+h2

.


This matrix satisfies the hypothesis of the Perron-Frobenius theorem. The maximum eigenvalue is

ρ =
1
2
(3 + e(h1+h2) +

√
5 + 4eh1 + 4eh2 + 2e(h1+h2) + e(2h1+2h2) ,

and the free energy
F [H] = log(ρ) . (15)

5. Statistical Properties of Markov Maximum Entropy Measures

The procedure of finding a maximum entropy model gives us a full statistical model of the system
of interest. In this section we discuss the added value that having such a model can provide.

5.1. Cumulants from Free Energy

All the statistical properties of the observables and their correlations can be obtained by taking
the successive derivatives of the free energy with respect to the Lagrange Multipliers. This property
explains the important role played by the free energy in the framework of MEMC. In general,

∂nF [H]

∂hn
k

= κn ∀k ∈ {1, ..., K},

where κn is the cumulant of order n (Equation (5)). In particular, taking the first derivative:

∂F [H]

∂hk
= Ep{ fk} ∀k ∈ {1, ..., K}, (16)

where Ep{ fk} is the average with respect to the maximum entropy distribution p, which is equal to
the average value of fk with respect to the empirical measure. With Equation (16) the parameters of
the MEMC can be fitted to be consistent with fixed average values of observables.

Suppose that we compute from data the average values of the following observables
〈x1

0x2
1〉 = 0.1 and 〈x2

0x1
1〉 = 0.3. We solve (16) (two equations and two unknowns) and obtain

h1 = −1.98306 and h2 = 1.48406. With these parameters, the following Markov transition matrix and
invariant measure are obtained from (13):

Px x’ =


0.232971 0.469441 0.0987018 0.198886
0.115617 0.232971 0.216056 0.435357
0.549892 0.15252 0.232971 0.0646176
0.272896 0.0756914 0.509966 0.141446

 π(x) =


0.29102

0.248443
0.248443
0.212095

 .
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5.2. Fluctuation-Dissipation Relations

For a first-order stationary Markov chain, since each Xn, n ≥ 1 depends on its predecessor, this
induces a non-zero time-correlation between Xn and Xn+r, even when the distance r is greater than 1.
This correlation, and more generally, time correlations between observables can be directly derived
from the free energy. This relationship is usually referred to as Fluctuation-dissipation, and is also
related to the linear response function that is presented in Section 5.7.

Let P be an ergodic matrix and indexed by the states in some finite set E, and π be its unique
stationary measure. In this general context, for two real-valued functions that depend on a fixed finite
number of components, we define the n–step correlation as

C f ,g(n) = Eπ( f (X0)g(Xn))−Eπ( f (X0))Eπ(g(X0)) .

In the particular case of MEMC with potentials of range R > 1 there is a positive time correlation
between pairs of observables f (xn) and g(xn+r). Suppose the correlations decay fast enough so that
(at least)

∞

∑
n=0
|C f ,g(n)| < ∞ .

Then the following sum (known as the Green-Kubo formula [49]) converges and is non-negative:

σ2
fk , f j

= C fk , f j
(0) +

∞

∑
r=1

C fk , f j
(r) +

∞

∑
r=1

C f j , fk
(r). (17)

Additionally, it can be shown that the energy function and the free energy depends smoothly
upon maximum entropy parameters. Moreover, the correlations between observables can be obtained
from the free energy through:

σ2
fk , f j

=
∂2F [H]

∂hk ∂hj
=

∂µ( f j)

∂hk
.

The relationship between a correlation and a derivative of the free energy is called the
fluctuation-dissipation theorem [50]. For a MEMC characterized by µ(P, π), the fluctuation-dissipation
relationships can be obtained explicitly:

∂2F [H]

∂hk ∂hj
=Eµ[ fk f j]−Eµ[ fk]Eµ[ f j] +

∞

∑
r=1

∑
x,x’∈S

(
fk(x) f j(x’)πxPr

xx’ −Eµ[ fk]Eµ[ f j]
)

+
∞

∑
r=1

∑
x,x’∈S

(
f j(x) fk(x’)πxPr

xx’ −Eµ[ fk]Eµ[ f j]
)

.
(18)

For MEMC built from K observables, the correlations can be conveniently arranged in a K× K
symmetric matrix denoted by χ (the symmetry refers to the Onsager reciprocity relations [51]).

χjk =
∂2F [H]

∂hk ∂hj
=

∂µ( f j)

∂hk
=

∂µ( fk)

∂hj
= χkj. (19)

For the example Section 4.4, we obtain the matrix χ by taking the second derivatives of (15) and
evaluate at the parameters found previously,

χkj =

(
0.0971481 0.0606071
0.0606071 0.127964

)
.
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In Figure 2, we plot the right hand side of Equation (18) for the MEMC built from the
example Section 4.4 consistent with constraints considered in the example of Section 5.1, for the
auto-correlation of the observable x2

0x1
1.

Figure 2. Plot of the auto-correlation of the observable x2
0x1

1 with respect to the MEMC consistent with
constraints 〈x1

0x2
1〉 = 0.1 and 〈x2

0x1
1〉 = 0.3. The plot show the sum of Equation (18) from r = 1 up to

the number in the abscissa. Note the fast convergence towards χ22.

5.3. Resonances and Decay of Correlations

We now turn back to the general setting of an arbitrary ergodic matrix P with stationary measure
π associated to a Markov chain taking values on a finite state space (not necessarily the space of
spike-patterns). Without loss of generality, assume that P is indexed by the states in E = {1, 2, . . . , M}.
It can be proved that in this case there exists (li : i = 1, 2, . . . , M) and (ri : i = 1, 2, . . . , M), sets of left
and right eigenvectors respectively, associated to the eigenvalues (ρi : i = 1, . . . , M). We can assume
that the eigenvectors and left and right eigenvalues have been sorted and normalized in such a way
that ρ1 = 1, l1 is the unique P–stationary probability vector π, r1 = (111 . . . 1)T , and

〈li|rj〉 = δi,j,

where δi,j is the Kronecker delta, and 〈uv〉 = 〈u, v〉 corresponds to the Dirac’s bra-ket, |u〉〈v| = uvT .
With the same notation, the spectral decomposition of P is written:

P =
M

∑
i=1

ρi|ri [ li ] .

Hence:

Pn =
M

∑
i=1

ρn
i |ri [ li ] . (20)

Given two functions f : E 7→ R and g : E 7→ R the following holds,

C f ,g(n) := Eπ( f (X0)g(Xn))−Eπ( f (X0))Eπ(g(X0)) (21)

= 〈π f ◦ Png〉 − 〈π f 〉〈πg〉.

Recall the discussion in previous sections regarding the reverse chain Section 2.4. Writing E←π for
the expectation operator associated to the reverse Markov measure, i.e., to the measure µ = µ(π,

←−
P ),

one can see that

Eπ( f (X0)g(Xn)) = E←π ( f (Xn)g(X0)) ,
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and hence (21) becomes

〈π|g ◦←−P n f 〉 − 〈π| f 〉〈π|g〉.

From (20)

f ◦ Png =
M

∑
i=1
〈li|g〉| f ◦ ri〉

and thus (21) becomes

C f ,g(n) =
M

∑
i=1

ρn
i 〈li|g〉〈π| f ◦ ri〉 − 〈π| f 〉〈π|g〉

=
M

∑
i=2

ρn
i 〈li|g〉〈π| f ◦ ri〉. (22)

In Figure 3, we show the auto-correlations of the same observable considered in Figure 1, for the
same MEMC. We observe modulations in the decay of the auto-correlations due to the complex
eigenvalues in Equation (22), which arise in the non-symmetric transition matrix induced by the
irreversibility of the MEMC.

Figure 3. Auto-correlations of the observable x2
0x1

1 for the MEMC with the same parameters as in
Figure 1. Modulations in the decay of correlations are due to the complex eigenvalues of the MEMC.

We have found in Equation (22) an explicit expression for the decay of correlation for observables
from the set of eigenvalues and eigenvectors of the transition matrix P. This is relevant in the context
of spike train statistics because as the matrix P characterizing the spike trains is not expected to be
symmetric, its eigenvalues are not necessarily real and modulations in the decay of correlations
are expected (resonances). When measuring correlations between observables from data, one
may observe this oscillatory situation that resembles resonances. This may be a symptom of a
non-equilibrium situation.

5.4. Large Deviations for Average Values of Observables in MEMC

Obtaining the probability of “rare” average values of firing rates, pairwise correlations, triplets or
non-synchronous observables is relevant in spike train statistics as these observables are likely to play
an important role in neuronal information processing, and rare values may convey crucial information
or be a symptom that the system in not working properly.

Here, we build from a previous article [52] where it is shown that the SCGF (7) can be obtained
directly from the inferred Markov transition matrix P through the Gärtner-Ellis theorem (8). Consider
a MEMC with transition matrix P. Let f be an observable of finite range and k ∈ R. We introduce the
tilted transition matrix by f of P, parametrized by k and denoted by P̃( f )(k) [53] as follows:
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P̃( f )
ij (k) = Pijek f (ij) i, j ∈ S. (23)

The tilted transition matrix can be directly obtained from the spectral properties of the transfer
matrix (12),

P̃( f )
ij (k) =

eHij vj

vi ρ
ek f (ij)

=
e[Hij+k f (ij)]vj

vi ρ
i, j ∈ S.

Recall that v is the right eigenvector associated to its maximum eigenvalue ρ of the transfer matrix
L. Here we use the notationHij to specify that the energy function is built from the elements of the
state space i and j. Remarkably, this result is valid not only for the observables in the energy function,
i.e., from here the LDP of more general observables can be computed.

To obtain an explicit expressions for the SCGF λ f (k), it is possible to take advantage of the
structure of the underlying stochastic process. For instance, for i.i.d. random process Xt where Xi ∼ X
from Definition 7, one can obtain that

λ(k) = lim
t→∞

1
t

lnE[etkAt( f )]t = lnE[ek f (X)],

which is the case of range one observables. Using the Equation (23), we obtain that the maximum
eigenvalue of the tilted matrix ρ(P̃f (k)) is,

ρ
(

P̃f (k)
)
= ∑

j
πjek f (j) j ∈ S.

As P̃f is a primitive matrix, the uniqueness of ρ
(
P̃f (k)

)
is ensured from the Perron-Frobenius theorem.

For additive observables of ergodic Markov chains, a direct calculation (see [54]) leads us to

λ f (k) = ln
(
ρ
(

P̃( f ))).
It can also be proved that λ f (k), in this case, is differentiable [54], setting up the scene to use the

Gärtner-Ellis theorem to obtain I f (s) as shown in Figure 4.

Figure 4. Rate functions of observables x1
0x2

1 in red, and x2
0x1

1 in blue for the MEMC consistent with
constraints 〈x1

0x2
1〉 = 0.1 and 〈x2

0x1
1〉 = 0.3. The minimum value of both functions coincide with their

expected values with respect to the MEMC. Around the minimum Gaussian fluctuations are expected
(9). Far from the expected values are the large deviations.
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5.5. Information Entropy Production

Given a Markov chain (Xt : t ≥ 0) on a general finite state space E with transition matrix P started
from the distribution ν, denoted ν(n) the distribution of Xn, namely, for i ∈ E:

ν(n)(i) = Pν(Xn = i) .

Obviously, ν(0) = ν, and

ν
(n+1)
j = ∑

i∈E
ν
(n)
i Pij .

The information-theoretic entropy of the probability distribution ν at time n is given by

Sn(ν) := −∑
i∈E

ν
(n)
i log ν

(n)
i ,

and the change of entropy over one time step is defined as

∆Sn := Sn+1(ν)− Sn(ν).

A bit of algebra yields

∆Sn = − ∑
i,j∈E

ν
(n)
j Pji log

ν
(n+1)
j Pji

ν
(n)
i Pij

+
1
2 ∑

i,j∈E

[
ν
(n)
j Pji − ν

(n)
i Pij

]
log

ν
(n)
j Pji

ν
(n)
i Pij

.

The first term on the right hand side above is called information entropy flow and the second term
information entropy production [12].

In the stationary case, i.e., when P admits a stationary measure π and the chain is started from that
distribution, one has that ν(n) = π for every n ≥ 0; thus, in this case, the change of entropy rate is zero,
i.e., for stationary chains, the information entropy flow equals (minus) information entropy production.
This case is the focus of this work. The chain is associated to spike train activity for transitions between
L–blocks. Starting from stationarity the entropy production rate is explicitly given by

IEP(P, π) :=
1
2 ∑

x,x′∈SL

[
π(x′)Px′x − π(x)Pxx′

]
log

π(x′)Px′x
π(x)Pxx′

≥ 0. (24)

The non-negativity implies that information entropy is positive as long as the process violates the
detailed balance conditions (4). This is analogous to the second law of thermodynamics [55]. From
this equation it is easy to realize that if the Markov chain satisfies the detailed balance condition, the
information entropy production is zero.

In Figure 5, we compute the information entropy production from Equation (24), for the MEMC
of the example (Section 4.4) for different values of the parameters h1, h2.

It may seem contradictory that in stationary state the entropy is constant, while there is a positive
“production” of entropy. The information entropy production in stationary state always compensate the
information entropy flow, which leaves the information entropy rate constant. In this case we refer to
non-equilibrium steady states (NESS).
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Figure 5. IEP for the MEMC of the example (Section 4.4) for different values of parameters h1, h2.
Observe that IEP(P, π) = 0 when h1 = h2 and that increases as the parameters become more different
(more asymmetry in P).

5.6. Gallavotti-Cohen Fluctuation Theorem

To characterize the fluctuations of the IEP, consider the MEMC µ(P, π) and the
following observable:

Wn(x0,n) =
1
n

ln
(

µ(x0,n)

µ(xn,0)

)
,

It can be shown that lim 1
n Wn → IEP(π, P) . The Gallavotti-Cohen fluctuation theorem is as a

statement about properties of the SCGF and rate function of the IEP [14].

λW(k) = λW(−k− 1), IW(s) = IW(−s)− s. (25)

This symmetry holds for a general class of stochastic processes including NESS from Markov
chains [56], and is a universal property of the IEP, i.e., it is independent of the parameters of the MEMC.

To compute λW(k) and IW(s), define A(k)ij = Pij

[
πi Pij
πjPji

]k
. If ρ(k) is the largest eigenvalue of A(k), then

limn→∞ lnE(enλWn) = ln ρ(k).
In Figure 6, we illustrate the Gallavotti-Cohen symmetry property of the large deviation functions

associated to the IEP (Equation (25)).
These properties are relevant to the large deviations of the averaged entropy production denoted

Wt
t over a trajectory x0,t−1 of the Markov chain p(π, P). The following relationship holds,

p
{

Wt
t ≈ s

}
p
{

Wt
t ≈ −s

} � ets.

This means that the positive fluctuations of Wt
t are exponentially more probable than negative

fluctuations of equal magnitude.
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Figure 6. Gallavotti-Cohen symmetry property for the SCGF and rate function of the IEP (Equation (25)).
Left: SCGF of the IEP of the MEMC with the same parameters considered in the previous examples.
Right: Rate function of the observable W, the minimum is attained at the expected value of IEP.

5.7. Linear Response

The linear response serves to quantify how a small perturbation δh of a set of the maximum
entropy parameters affects the average values of observables in terms of the unperturbed measure.
This is relevant in the context of spike trains statistics to identify stiff and sloppy directions in the
space of parameters. A small change in a sloppy parameter produces very little impact in the statistical
model. In contrast, a small change in a stiff parameter produces a significant change. For a MEMC
characterized by µ = (P, π) corresponding to an energy function with fixed parameters h denoted by
Hh, one can obtain the average value of a given observable fk from (16).

Now, consider a perturbed energy denoted by H̃ = Hh+δh. Using a Taylor expansion, the average
value of an arbitrary observable fk with respect to the MEMC can be obtained µ̃ = (P̃, π̃) associated to
the perturbed energy. Considering the Taylor expansion of F [Hh+δh] aboutHh

∂F [Hh+δh]

∂hk
=

∂F [Hh]

hk
+ ∑

j

∂2F [Hh]

∂hkhj
δhj + O(δhj)

2 , (26)

Eµ̃[ fk] = Eµ[ fk] + ∑
j

∂2F [Hh]

∂hkhj
δhj + O(δhj)

2 , (27)

∆E[ f ] ≈ χ · δh . (28)

We use (16) to go from (26) to (27). Observe from (27) that a small perturbation of a parameter
hj influences the average value of all other observables in the energy function (as fk is arbitrary).
The perturbation is modulated by the second derivatives of the free energy corresponding to the
unperturbed regime F [Hh] (see Figure 7).
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Figure 7. Linear response for the MEMC of the example (Section 4.4) for different values of
perturbations δh1 and δh2. The colors represent ‖Eµ̃[ fk] − Eµ[ fk]‖ computed using two methods.
The “forward” method consists in computing Eµ̃[ fk] from µ̃ and Eµ[ fk] from µ. The figure in the
middle is obtained by computing ‖Eµ̃[ fk]−Eµ[ fk]‖ from χ using Equation (28). (Right) The difference
between both methods illustrated in a scatter plot in logarithmic scale.

6. Discussion and Future Work

This tutorial explores how one can use maximum entropy methods to capture asymmetric
temporal aspects of spike trains from experimental data. In particular, we showed how spatio-temporal
constraints can produce homogeneous irreducible Markov chains whose unique steady state is,
in general, non-equilibrium (NESS)—thus, detailed balance condition is not satisfied causing strictly
positive entropy production. This fact highlights that only non-synchronous maximum entropy models
induce time irreversible processes, which is one of the key hallmarks of biological systems.

We have presented a survey of diverse techniques from mathematics and statistical mechanics to
study these NESS, which correspond to a rich toolkit that can be employed to study unexplored aspects
of spike train statistics. We emphasise that many of these concepts, including entropy production
and fluctuation-dissipation relationships, have not been explored much in the context of spike train
analysis. However, the fact that time irreversibility is such an important feature of living systems
suggest that these notions might play an important role in neural dynamics.

Possible extensions include measuring the entropy production for different choices of
spatio-temporal constraints using the maximum entropy method on biological spike train recordings.
A more ambitious extension is to explore the relationship between entropy production computed
from experimental data obtained from different physiological processes and relate them to features
such as adaptation or learning. Concerning time-dependent neuronal network models, future studies
might lead to a better understanding of the impact of particular synaptic topologies of neuronal
network models on the corresponding entropy production, decay of correlations, resonances and other
sophisticated statistical properties.

Other possible extensions are related to the drawbacks of current approaches. This can include
limitations of the maximum entropy method related to the requirement of stationarity in the data,
which is not a natural condition for some biological scenarios. However, several of the techniques
presented in this tutorial naturally extend to the non-stationary case, including the information entropy
production, which can still be defined along non-stationary trajectories [14]. Related to this issue is
that the approach presented in this tutorial does not make any reference to the stimulus. While this
issue has been addressed in the synchronous framework [34], there is still an open field to explore
the Markovian extension of these ideas. Another interesting topic to explore in future studies is the
inclusion of the non-stationary approach such as the state space analysis proposed in [35]. Also,
another open problem is related to the efficient implementation of the transfer matrix technique, which
currently requires an important computational effort in the case of large neural networks. Recently,
some improvements of this approach have been proposed based in Monte Carlo methods [57].
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In summary, we believe that these topics are fertile ground for multi-disciplinary exploration
by teams composed of mathematicians, physicists, and neuroscientists. It is our hope that this work
may foster future collaborative research among disciplines, which might bring new breakthroughs to
advance our fundamental understanding of how the brain works.
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Abbreviations

The following abbreviations are used in this manuscript:

MEP Maximum entropy principle
MEMC Maximum entropy Markov chain
SCGF Scaled cumulant generating function
CLT Central limit theorem
LLN Law of large numbers
LDP Large deviation principle
IEP Information entropy production
KSE Kolmogorov-Sinai entropy
NESS Non-equilibrium steady states

Symbol list

S {0, 1}N the state space of spike patterns of N neuron
Ω The set of infinite sequences of spike patterns
xk

n Spiking state of neuron k at time n
xn Spike pattern at time n
xt1,t2 Spike block from time t1 to t2

ν( f ) Expectation of the observable f w.r.t. the probability measure ν

AT( f ) Empirical Average value of the observable f considering T spike patterns
SR Space of spike blocks of N neurons and length R
S [µ] Entropy of the probability measure µ

H Energy function
F [H] Free energy
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