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Abstract

We translate a coagulation-framentation model, describing the dynamics of animal group size distri-
butions, into a model for the population distribution and associate the nonlinear evolution equation with
a Markov jump process of a type introduced in classic work of H. McKean. In particular this formalizes
a model suggested by H.-S. Niwa [J. Theo. Biol. 224 (2003)] with simple coagulation and fragmentation
rates. Based on the jump process, we develop a numerical scheme that allows us to approximate the equi-
librium for the Niwa model, validated by comparison to analytical results by Degond et al. [J. Nonlinear
Sci. 27 (2017)], and study the population and size distributions for more complicated rates. Furthermore,
the simulations are used to describe statistical properties of the underlying jump process. We addition-
ally discuss the relation of the jump process to models expressed in stochastic differential equations and
demonstrate that such a connection is justified in the case of nearest-neighbour interactions, as opposed
to global interactions as in the Niwa model.
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1 Introduction

The aggregation of animals into groups of different sizes involves a range of stimulating mathematical prob-
lems. On the one hand, the changes in size of the group a certain individual belongs to can be described, on
the microscopic level, as a (stochastic) process. On the other hand, this process can be associated, on the
macroscopic level, to the distribution of group sizes and the probability of individuals to belong to a group
of a certain size (referred to below as the population distribution), and the evolution of such distributions
in time. In particular, the existence and uniqueness of and convergence to an equilibrium distribution is a
central object of interest.

Various models of describing the coagulation and fragmentation of groups of animals have been suggested
and analysed in the past (cf. e.g. [3, 4, 22, 23, 41]). The model this work rests upon was introduced by
Hiro-Sato Niwa in 2003 [38] related to studies in [36, 37, 39] and has turned out to hold for data from pelagic
fish and mammalian herbivores in the wild. Niwa simulated a very simple merge and split process for a fixed
population but he did not analyze the actual process he simulated. Instead, he used kinetic Monte-Carlo
simulations to fit the noise in a stochastic differential equation (SDE) model for the size of the group that
an individual animal belongs to. Due to its fairly simple form, he was able to find a closed formula for the
stationary density of this SDE in a form similar to an exponential law (modified by a double-exponential
factor), interpreting it as the equilibrium population distribution. Since the population distribution is related
to the group-size distribution by a simple algebraic relation, he was able to find the equilibrium group-size
distribution in a form close to an inverse power law with an exponential cutoff, namely

Φ?(x) ∝ x−1 exp

(
−x+

1

2
xe−x

)
. (1.1)
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In [38], Niwa showed that this expression provided a good fit to a large amount of empirical data with no
fitting parameters.

In [9], we have pursued Niwa’s model based on a coagulation-fragmentation formulation for the distribu-
tion of group sizes and given a rigorous description of the equilibria for continuous and discrete cluster sizes.
The lack of a detailed balanced condition presented a true mathematical challenge. However, by introduc-
ing the so-called Bernstein transformation, we have shown that there exists a unique equilibrium, under a
suitable normalization condition, for both the discrete and the continuous cluster size cases. Furthermore,
we provided numerical investigations of the model in [8].

In the present paper we develop Niwa’s original idea for modelling the population distribution through
the group-size history of a fixed individual. We derive and study the naturally associated jump process rather
than using the SDE framework, however. The jump process is described through a self-consistent Markovian
approach as introduced in classic work of H. McKean [35], in which the rates of jumps for a (tagged)
individual’s group size depend upon the (macroscopic) group-size distribution for the whole population. To
be a self-consistent description of the dynamics, this macroscopic group-size distribution should coincide
with the probability distribution that evolves under the jump process for the tagged individual.

This feedback makes it difficult to handle such a jump process analytically in the cases we wish to
consider. (Some of the earliest analytic work on a general class of jump processes that follow McKean’s
framework was carried out by Ueno [48] and Tanaka [46, 45]. Processes of this type have been constructed in
the context of coagulation and coagulation-fragmentation models in [7, 20, 25, 21].) Therefore we develop an
algorithm that approximates the jump process and which we can use to study the dynamics of the process
and the equilibrium group-size distribution for variations of the Niwa model. The idea is to estimate the
macroscopic group-size distribution for a large population of total size N by the empirical distribution of a
sample of Ñ tagged individuals with Ñ � N . This effectively results in a Markov jump process for the group
sizes of a fixed number Ñ of tagged individuals, with transition rates driven by the population distribution
of these individuals. A closely related time-continuous Markovian interacting particle system was studied
by Eibeck and Wagner in [10] and [11] where they proved convergence of the empirical distribution to a
solution of coagulation models which was extended to coagulation-fragmentation models, among others [12].
In this paper we will pay particular attention, however, not only to the estimated macroscopic group-size
distribution, but to statistical and dynamical properties of the jump process for a tagged individual.

We refer to [2] for an early review of open problems relating Smoluchowski’s coagulation equations to
stochastic models, including the standard Marcus-Lushnikov process [32, 29] for the size distribution of all
groups in a fixed finite population. Our approach and the one in [11] deal with somewhat simpler jump-
process models for the population distribution for a fixed number of groups (which can be regarded as those
containing tagged individuals). A different approach, which provides an exact simulation of a self-consistent
Markov process through a recursive algorithm, was developed for theoretical purposes by Fournier and Giet
[21] and shown to be effective for short times and small cluster sizes.

There is an abundant amount of literature about discretizations of coagulation (and fragmentation)
integral equations, using for example successive approximations [43], finite element schemes (e.g. [31, 44])
or, most notably, finite volume methods (e.g. [5, 19, 27]) where mass conservation is given automatically.
Recently, Liu et al. [28] introduced a discontinuous Galerkin method as an extension of these finite volume
schemes. In [8], we approached the coagulation-fragmentation form of the Niwa model with three different
numerical methods. One of them is a recursive algorithm derived from the discrete model in [30] which allows
to compute the equilibrium precisely but only for fixed coagulation and fragmentation rates being constant
over time and group sizes. It further does not give insight into the time-evolution. The second method is a
Newton-like method which also only allows to approximate the equilibrium, but with the advantage of being
adaptable to size-dependent merge and split rates. The third method is a time-dependent Euler method
which is flexible towards arbitrary modifications of the model but numerically not efficient.

We will show in the current paper that our numerical scheme based on a Markov chain can be used
to approximate the equilibrium for all different kinds of coagulation and fragmentation rates, allows for
insights into the time evolution of the population distribution and also enables us to study properties of the
process such as the statistics of occupation times in cluster sizes and the decay of correlations of trajectories.
The method is accurate, efficient (in particular in equilibrium where it is sufficient to simulate only one
trajectory), versatile, and gives insights into the dynamics on the individual level.

Furthermore, we will also discuss some shortcomings of Niwa’s SDE model for the temporal behavior of
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the size of the group containing a given individual. As merging and splitting occurs, involving interactions
of groups of all different sizes, an individual’s group size can be expected to experience frequent large jumps.
Yet the SDE model is an Ornstein-Uhlenbeck-type (OU-type) process that has continuous paths in time.
One way this could be a reasonable approximation is if the jump process has mostly small jumps, for then
there is a natural SDE approximation found through a second-order Taylor expansion. We find, though, that
for the jump process in question, the equilibrium of the second-order SDE approximation is not consistent
with the rigorously derived equilibrium in [9].

Another modeling issue is that the OU-type process will naturally produce unphysical (negative) group
sizes. Some kind of reflection or symmetrization is needed to maintain positive sizes, but the natural choice
leaves a free parameter in the model and is not motivated well by merging/splitting mechanisms. Niwa’s
model also involves an exponentially growing variance which makes accurate numerical simulation difficult.

Lastly, we will point out that there is a kind of group-size dynamics, distinctly different from what Niwa
simulated, that admits an SDE model whose equilibria are quite similar to the equilibria found in [38] and
[9], but even simpler. The equilibria take exactly the form of a simple power law with exponential cutoff—a
logarthimic or gamma distribution. This alternative SDE model for such distributions goes back to [33]
and [42], and corresponds to a process with continuous sample paths guaranteed to stay in (0,∞) without
hitting 0. We show formally the convergence of a nearest-neighbour model for jumps in group sizes to the
equilibrium of this SDE.

The remainder of this paper is structured as follows. In Section 2, we derive the evolution equation
of the population distribution for a coagulation-fragmentation model of size distributions, in general, and
the Niwa model, in particular. Furthermore, this nonlinear evolution equation is shown to coincide with
the master equation for a Markov jump process whose jump rates are determined self-consistently by the
population distribution itself. Section 3.1 introduces the numerical scheme which is then used in Section 4
to simulate the process for different choices of coagulation and fragmentation rates. We validate the method
by observing fast and accurate approach of the (known) equilibrium for the Niwa model and further use
the algorithm to generate the size distributions for random and polynomial rates. In Section 5, we use the
numerical method to estimate the decay of correlations of the Niwa jump process and, additionally, describe
the statistics of ocuupation times for different kinds of rates. Finally, Section 6 is dedicated to the role of
stochastic differential equations in the context of the aggregation models.

2 Description of the (self-consistent) Markov jump process for the
population distribution

2.1 Evolution equation for the population distribution

The continuous version of a coagulation-fragmentation equation, called also Smoluchowski equation, describes
the evolution of the number density f(x, t) of continuous sizes x ≥ 0 at time t. In weak form it reads, for all
test functions ϕ ∈ C((0,∞)):

d

dt

∫
R+

ϕ(s)f(s, t)ds =
1

2

∫
(R+)2

(ϕ(s+ ŝ)− ϕ(s)− ϕ(ŝ))a(s, ŝ)f(s, t)f(ŝ, t)dsdŝ

−1

2

∫
(R+)2

(ϕ(s+ ŝ)− ϕ(s)− ϕ(ŝ))b(s, ŝ)f(s+ ŝ, t)dsdŝ.

(2.1)

The coagulation rate a(s, ŝ) and fragmentation rate b(s, ŝ) are both nonnegative and symmetric. The coag-
ulation and fragmentation reactions can be written schematically

(s) + (ŝ)
a(s,ŝ)−−−−→ (s+ ŝ) (binary coagulation),

(s) + (ŝ)
b(s,ŝ)←−−− (s+ ŝ) (binary fragmentation).
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By a change of variables, (2.1) can be transformed into

d

dt

∫
R+

ϕ(s)f(s, t)ds =
1

2

∫
(R+)2

(ϕ(s+ ŝ)− ϕ(s)− ϕ(s))a(s, ŝ)f(s, t)f(ŝ, t)dsdŝ

−1

2

∫
(R+)

(∫ s

0

(ϕ(s)− ϕ(ŝ)− ϕ(s− ŝ))b(ŝ, s− ŝ) dŝ

)
f(s, t) ds.

(2.2)

Note that by taking ϕ(s) = s, one obtains the conservation of mass

d

dt

∫
R+

sf(s, t) ds = 0. (2.3)

Starting from the group size distrbution f(s, t) satisfying equation (2.2), we introduce the population distri-
bution

ρ(s, t) =
s f(s, t)∫

R+
s f(s, t) ds

. (2.4)

From (2.3) we observe that ∫
R+

s f(s, t) ds =: N

is conserved and corresponds to the total number of individuals N .
In Niwa’s model [38], the coagulation and fragmentation rates are constant. The setting of the model

assumes different zones of space on which N individuals move, where N is conserved through time. At each
time step every group, whose size is a natural number i ∈ N, moves towards a randomly selected site with
equal probability. When i- and j-sized groups meet at the same site, they aggregate to a group of size i+ j.
So the coagulation rate is independent from the group sizes and can be written as ai,j = 2q̃ for any i, j > 0
where q̃ > 0 is the fixed coagulation parameter. The fragmentation rate bi,j expresses the fact that at each
time step each group with size k ≥ 2 splits with probability p̃ independent of k, and that if it does split,
it breaks into one of the pairs with sizes (1, k − 1), (2, k − 2), . . . , (k − 1, 1) with equal probability. As the
actually distinct pairs are counted twice in such an enumeration, one gets for all 1 ≤ i, j < k with i+ j = k:
bi,j = p̃

(i+j−1)/2 = 2p̃
i+j−1 .

The formulation for continuous cluster sizes gives

a(s, ŝ) = q, b(s, ŝ) =
p

s+ ŝ
, (2.5)

where q = 2q̃ and p = 2p̃ for q̃ and p̃ being the constants in Niwa’s model. In this case the group size
distribution f(s, t) satisfies the following equation [9]

d

dt

∫
R+

ϕ(s) f(s, t) ds =
q

2

∫
(R+)2

(
ϕ(s+ ŝ)− ϕ(s)− ϕ(ŝ)

)
f(s, t) f(ŝ, t) dsdŝ

−p
2

∫
(R+)2

(
ϕ(s)− ϕ(ŝ)− ϕ(s− ŝ)

) f(s, t)

s
χ[0,s)(ŝ) dsdŝ . (2.6)

In [9, Theorem 5.1], the existence of a unique scaling profile f∗ for the equilibrium of (2.6) is proven, where

f∗(x) = γ∗(x)e−
4
27x for all x ∈ (0,∞) and γ∗ is a completely monotone function (infinitely differentiable with

derivatives that alternate in sign) with asymptotic power laws.
We derive the general strong form for the population density corresponding with model (2.1), presented

in the following Proposition, and thereby in particular for the Niwa model, as stated in the subsequent
Corollary.

Proposition 2.1. In strong form the evolution equation of the population density ρ(·, t) at any time t ∈ R+,
corresponding with (2.1), is given by

∂tρ(s, t) = N

∫ ∞
0

(
a(ŝ, s− ŝ)ρ(ŝ, t) ρ(s− ŝ, t)

s− ŝ
χ[0,s)(ŝ)− a(s, ŝ)

ρ(s, t) ρ(ŝ, t)

ŝ

)
dŝ

+ s

∫ ∞
s

b(s, ŝ− s)
ŝ

ρ(ŝ, t) dŝ− ρ(s, t)

∫ ∞
0

b(ŝ, s− ŝ)χ[0,s/2](ŝ) dŝ. (2.7)

4



Proof. By testing (2.2) against sϕ(s)/N we obtain:

d

dt

∫
R+

ϕ(s) ρ(s, t) ds =

∫
(R+)2

a(s, ŝ)

2N

(
(s+ ŝ)ϕ(s+ ŝ)− sϕ(s)− ŝϕ(ŝ)

)
f(s, t) f(ŝ, t) dsdŝ

−
∫

(R+)2

b(ŝ, s− ŝ)
2N

(
sϕ(s)− ŝϕ(ŝ)− (s− ŝ)ϕ(s− ŝ)

)
f(s, t)χ[0,s)(ŝ) dsdŝ

=

∫
(R+)2

Na(s, ŝ)

2

(
(s+ ŝ)ϕ(s+ ŝ)− sϕ(s)− ŝϕ(ŝ)

) ρ(s, t) ρ(ŝ, t)

sŝ
dsdŝ

−
∫

(R+)2

b(ŝ, s− ŝ)
2

(
sϕ(s)− ŝϕ(ŝ)− (s− ŝ)ϕ(s− ŝ)

) ρ(s, t)

s
χ[0,s)(ŝ) dsdŝ.

We remark that

(s+ ŝ)ϕ(s+ ŝ)− sϕ(s)− ŝϕ(ŝ) = s(ϕ(s+ ŝ)− ϕ(s)) + ŝ(ϕ(s+ ŝ)− ϕ(ŝ)) ,

and by symmetry under exchanges of s and ŝ, the first integral becomes∫
(R+)2

(ϕ(s+ ŝ)− ϕ(s)) ρ(s, t)
(
a(s, ŝ)N

ρ(ŝ, t)

ŝ

)
dsdŝ. (2.8)

Noting that the change of variables ŝ→ s− ŝ leaves the second integral invariant, we can restrict the interval
of integration in ŝ to the interval [0, s/2] upon multiplying the result by 2. So, the second integral equals:∫

(R+)2

( ŝ
s
ϕ(ŝ) +

s− ŝ
s

ϕ(s− ŝ)− ϕ(s)
)
b(ŝ, s− ŝ)χ[0,s/2](ŝ)ρ(s, t) dsdŝ.

The resulting equation is thus

d

dt

∫
R+

ϕ(s)ρ(s, t)ds =

∫
(R+)2

(ϕ(s+ ŝ)− ϕ(s)) ρ(s, t)
(
a(s, ŝ)N

ρ(ŝ, t)

ŝ

)
dsdŝ

+

∫
(R+)2

( ŝ
s
ϕ(ŝ) +

s− ŝ
s

ϕ(s− ŝ)− ϕ(s)
) (
b(ŝ, s− ŝ)χ[0,s/2](ŝ)

)
ρ(s, t) dsdŝ. (2.9)

To derive the strong form for the first integral in (2.9) we only need to conduct a change of variables for the
term involving ϕ(s+ ŝ), namely ŝ→ ŝ− s:∫

(R+)2
ϕ(s+ ŝ)a(s, ŝ)ρ(s, t)N

ρ(ŝ, t)

ŝ
dsdŝ =

∫ ∞
0

∫ ŝ

0

a(s, ŝ− s)N ρ(s, t)ρ(ŝ− s, t)
ŝ− s

dsϕ(ŝ) dŝ .

For the second integral, again by symmetry between ŝ and s− ŝ, it is enough to observe that∫
(R+)2

ŝ

s
ϕ(ŝ)b(ŝ, s− ŝ)χ[0,s/2](ŝ)ρ(s, t) dsdŝ =

1

2

∫ ∞
0

ŝ

∫ ∞
ŝ

b(ŝ, s− ŝ)
s

ρ(s, t) dsϕ(ŝ)dŝ .

This finishes the proof.

Note from the weak form (2.9) in the proof that the merge process is done with rate a(s, ŝ)N ρ(ŝ,t)
ŝ while

the split process is done with rate b(ŝ, s− ŝ). Due to its dependence on ρ, the merge process is characterized
by a nonlinear term which turns out to be a challenging feature of the following analysis. First note that we
obtain the following equation for the Niwa model:

Corollary 2.2. In strong form the evolution equation of the population density ρ(·, t) at any time t ∈ R+,
corresponding with (2.6), is given by

∂tρ(s, t) = qN

∫ ∞
0

(ρ(ŝ, t) ρ(s− ŝ, t)
s− ŝ

χ[0,s)(ŝ)−
ρ(s, t) ρ(ŝ, t)

ŝ

)
dŝ

+ p
(
s

∫ ∞
s

ρ(ŝ, t)

ŝ2
dŝ− 1

2
ρ(s, t)

)
. (2.10)
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Proof. From (2.9) we infer immediately that

d

dt

∫
R+

ϕ(s)ρ(s, t)ds =

∫
(R+)2

(ϕ(s+ ŝ)− ϕ(s)) ρ(s, t)

(
qN

ρ(ŝ, t)

ŝ

)
dsdŝ

+

∫
(R+)2

(
ŝ

s
ϕ(ŝ) +

s− ŝ
s

ϕ(s− ŝ)− ϕ(s)

)
p
ρ(s, t)

s
χ[0,s/2](ŝ) dsdŝ. (2.11)

Again, the claim follows by an easy calculation.

In this case we notice that the merge process is done with rate qNρ(ŝ, t)/ŝ while the split process is done
with rate p/s for every ŝ ∈ [0, 1

2s].

2.2 Derivation of stochastic process

The key point of our approach is to regard the evolution equations (2.7) and (2.10) as master equations for
a stochastic process that can be simulated, if the population density ρ(·, t) is already known. This stochastic
process is essentially of the type whose study was initiated in McKean’s seminal work [35].

2.2.1 Reformulation of deterministic dynamics

For that purpose, we rewrite the equations as follows.

Lemma 2.3. The evolution law in strong form (2.7) can also be written as

∂tρ(s, t) =

∫
R+

(
Kc
ρ(·,t)(ŝ→ s)ρ(ŝ, t)−Kc

ρ(·,t)(s→ ŝ)ρ(s, t)
)

dŝ

+

∫
R+

(
Kf (ŝ→ s)ρ(ŝ, t)−Kf (s→ ŝ)ρ(s, t)

)
dŝ, (2.12)

where

Kc
ρ(·,t)(ŝ→ s) = Na(ŝ, s− ŝ)ρ(s− ŝ, t)

s− ŝ
χ[0,s)(ŝ), Kf (ŝ→ s) =

s

ŝ
b(s, ŝ− s)χ[s,∞)(ŝ) (2.13)

are the coagulation and fragmentation factors. In particular, in the Niwa model these factors are

Kc
ρ(·,t)(ŝ→ s) = qN

ρ(s− ŝ, t)
s− ŝ

χ[0,s)(ŝ), Kf (ŝ→ s) = p
s

ŝ2
χ[s,∞)(ŝ) . (2.14)

Proof. The coagulation part follows immediately from (2.7). For the fragmentation part, we observe by using
the symmetry between ŝ and s− ŝ that

1

s

∫ s

0

ŝb(ŝ, s− ŝ) dŝ =
1

2

∫ s

0

(
ŝ

s
+
s− ŝ
s

)
b(ŝ, s− ŝ)dŝ =

1

2

∫ s

0

b(ŝ, s− ŝ)dŝ =

∫ s/2

0

b(ŝ, s− ŝ)dŝ .

The factors for the Niwa model follow immediately from (2.5).

We can summarize these terms, using that Nρ(s, t) = sf(s, t) from (2.4), into

Kρ(·,t)(ŝ→ s) = Kc
ρ(·,t)(ŝ→ s) +Kf (ŝ→ s), λρ(·,t)(s) = λcρ(·,t)(s) + λf (s) ,

λcρ(·,t)(s) =

∫
R+

Kc
ρ(·,t)(s→ ŝ) dŝ =

∫ ∞
0

a(s, r)f(r, t) dr ,

λf (s) =

∫
R+

Kf (s→ ŝ) dŝ =

∫ s

0

r

s
b(r, s− r) dr .
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Here, λρ(·,t)(s) is the rate of change from s to anything else, and λf (s), λcρ(·,t)(s) have an analogous inter-

pretation specified to fragmentation and coagulation respectively. Eq. (2.12) can then be written as

∂tρ(s, t) =

∫
R+

λρ(·,t)(ŝ) µ̂t(ŝ→ s) ρ(ŝ, t) dŝ− λρ(·,t)(s) ρ(s, t) , (2.15)

where

µ̂t(ŝ→ s) :=
Kρ(·,t)(ŝ→ s)

λρ(·,t)(ŝ)
(2.16)

is the corresponding probability of change from s to some fixed ŝ. Formula (2.15) recalls the classical form
of the forward equation for an associated jump process, as for example outlined in [18, Section X.3] or [13,
Chapter 4.2]. However, the transition rates here depend on the density ρ(·, t) itself, and this makes the
equation nonlinear.

Observe that formulas (2.15) and thereby (2.12) are consistent with the assumption of mass conservation,
easily derived as follows:

d

dt

∫
R+

ρ(s, t) ds =

∫
R+

ρ(ŝ, t)

∫
R+

Kρ(·,t)(ŝ→ s) dsdŝ−
∫
R+

λρ(·,t)(s)ρ(s, t)ds

=

∫
R+

ρ(ŝ, t)λρ(·,t)(ŝ) dŝ−
∫
R+

λρ(·,t)(s)ρ(s, t)ds = 0 .

In the Niwa model,

λf (s) = p

∫ s

0

1

s2
ŝdŝ =

p

2
, λcρ(·,t)(s) = q

∫ ∞
0

f(ŝ, t) dŝ = q m0(t), (2.17)

where m0(t) is the zeroth moment of the group size distribution f(·, t). Hence, the rate λρ(·,t) is finite as long
as f(·, t) ∈ L1((0,∞)). Generally, according to [9, Theorem 6.1], there exists a unique global in time solution
to (2.6) in terms of finite non-negative measures on (0,∞) for any finite non-negative initial measure. In
particular, the solution was proved to have a smooth density f(·, t) if the initial group-size distribution has
a density fin that is completely monotone.

Proposition 2.4. [9, Theorem 6.1] In the Niwa model, i.e., with rates (2.14), equation (2.15) has a unique

global (in time) solution ρ such that f(·, t) = N ρ(·,t)
· is completely monotone, if f(·, 0) = fin is completely

monotone with finite zeroth and first moments. In this case, the zeroth moment m0(t) in (2.17) satisfies

m′0(t) =
1

2
(pm0 − q m2

0),

and remains bounded for all t > 0.

Further, we recall that in [9] the existence of a unique scaling profile f∗ for the equilibrium feq of (2.6),
depending on p, q and N , is proven. The profile f∗ is completely monotone, with exponential decay as
s → ∞, and f∗(s) = O(s−2/3) as s → 0, so f∗ ∈ L1((0,∞)). Hence, in the case of the Niwa model (2.10)
we immediately obtain an explicit formula for equilibrium solutions ρeq of (2.15) which we will use for our
numerical studies later: for p = q = 2 (to which all parameter choices can be reduced), we conclude from [9,
Theorem 5.1] via (2.4) that the unique equilibrium profile ρ∗(x) = xf∗(x) satisfies

ρ∗(x) = γ̃∗(x)e−
4
27x , (2.18)

where γ̃∗ is a smooth function with

γ̃∗(x) ∼ x1/3

Γ(1/3)
, when x→ 0, γ̃∗(x) ∼ 9

8

x−1/2

Γ(1/2)
, when x→∞ .

For mass N > 0, the equilibrium density ρeq is given by

ρeq(x) =
xfeq(x)∫∞

0
xfeq(x) dx

=
x
N f∗

(
x
N

)∫∞
0

x
N f∗

(
x
N

)
dx

=
x
N f∗

(
x
N

)
N
∫∞

0
yf∗ (y) dy

=
1

N
ρ∗

( x
N

)
. (2.19)

For general coagulation and fragmentation rates, one has to be careful in order to make sure that λρ(·,t)
is finite, either by restricting the class of admissible ρ or by truncating the domain to some compact set
E ⊂ (0,∞).

7



2.2.2 Jump process

We introduce a jump process (Xt)t≥0 in the following way: Denote the set of probability densities on (0,∞)
by

P((0,∞)) := {f ∈ L1((0,∞)) : f ≥ 0, |f |L1 = 1}.

Assume ρ : (0,∞)× (0,∞) → R is Borel-measurable with ρ(·, t) ∈ P((0,∞)) for all t ≥ 0. For every t ≥ 0,
s > 0, we define a probability measure µt(s, ·) by setting, for each Borel-measurable subset Γ ⊂ (0,∞),

µt(s,Γ) :=

∫
Γ

µ̂t(s→ ŝ) dŝ =

∫
Γ
Kρ(·,t)(s→ ŝ) dŝ

λ(t, s)
, λ(t, s) := λρ(·,t)(s). (2.20)

We assume that λ(t, s) is uniformly bounded, and that λ(t, s) and µt(s,Γ) are continuous in t for each s
and Γ. Then, by classical results of Feller [15] (see also [18, section X.3]) there is a unique solution of the
backward equation

P (r, t, s,Γ) = δs(Γ) +

∫ t

r

λ(u, s)

∫
(P (u, t, ŝ,Γ)− P (u, t, s,Γ))µu(s,dŝ)du , (2.21)

for the transition function of a Markov process. (For generalizations of Feller’s results without continuity,
see [13, Lemma 4.7.2] and [14].) Given any initial distribution ν ∈ P((0,∞)), there exists a corresponding
Markov (jump) process (Xt)t≥0 with initial density ν and transition function P (r, t, s,Γ) (see [13, Theo-
rem 4.1.1] and also [26, Theorem 8.4]). This process Xt solves the (time-dependent) martingale problem
associated to the family of generators (At)t≥0 given by

Atf(s) = λ(t, s)

∫
R+

(f(ŝ)− f(s))µt(s,dŝ) , (2.22)

for all measurable and bounded functions f : (0,∞)→ R. Moreover, the law of Xt is given by

νt(Γ) := P{Xt ∈ Γ} =

∫ ∞
0

ν(ds)P (0, t, s,Γ).

Due to the assumption that λ(t, s) is bounded (see [15]), the transition function also satisfies the forward
equation

∂P (r, t, s,Γ)

∂t
=

∫
R+

λ(t, ŝ)µt(ŝ,Γ)P (r, t, s, dŝ)−
∫

Γ

λ(t, ŝ)P (r, t, s, dŝ) (2.23)

and consequently, integration against ν(ds) shows that the law of Xt also satisfies the forward equation

∂νt(Γ)

∂t
=

∫
R+

λ(t, ŝ)µt(ŝ,Γ)νt(dŝ)−
∫

Γ

λ(t, ŝ)νt(dŝ). (2.24)

In the stationary case when ρ(s, t) = ρ(s) is constant in time, the Markov process (Xt)t≥0 can be
constructed in a standard way [13, Section 4.2], from a Markov chain corresponding to time-independent rates
λ(s) = λρeq(·)(s) and transition probabilities µ(s,Γ) = µt(s,Γ) from (2.20), and a sequence of independently
and exponentially distributed random variables.

Remark 2.5. Considering Proposition 2.4, if ρ is taken to be any solution of the Niwa model corresponding
with a completely monotone initial group-size distribution fin, the boundedness and continuity assumptions
indeed hold, and the Markov process Xt is well defined. For general coagulation-fragmentation rate kernels
a(s, ŝ) and b(s, ŝ), however, we do not address the technical issue of what hypotheses on the kernels and on
the initial data are sufficient to ensure that the boundedness and continuity assumptions hold.
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2.3 Self-consistency

In order to guarantee self-consistency of this construction, we need to verify that if the function ρ(·, t) that
is used in the definition of µt and λ(t, ·) is additionally assumed to be a solution of (2.7) (and hence (2.15)),
then the law of the process Xt is given by

νt(Γ) =

∫
Γ

ρ(s, t) ds. (2.25)

That is, we need to show that Xt is distributed according to ρ(·, t) for all t ≥ 0.
Let ν̂t(Γ) denote the right-hand side of (2.25). Then, upon integrating (2.15) over Γ and using the

definitions (2.20), we find that

∂ν̂t(Γ)

∂t
=

∫
R+

λ(t, ŝ)µt(ŝ,Γ)ν̂t(dŝ)−
∫

Γ

λ(t, ŝ)ν̂t(dŝ). (2.26)

We have that ν̂0 = ν0 = ν. Thus to infer ν̂t = νt for all t ≥ 0 we need the initial-value problem for the
forward equation (2.24) to have a unique solution with the properties enjoyed by both νt and ν̂t.

That the requisite uniqueness holds is ultimately a consequence of our assumption on the boundedness of
the transition rates λ(t, s). This assumption ensures that the solution P of (2.23) is a conservative transition
function, by which we mean that P (r, t, s,R+) = 1 for all 0 ≤ r ≤ t and s > 0.

Proposition 2.6. Let ρ(s, t), λ(t, s) and µt(s, ·) satisfy the hypotheses stated in the previous subsection.
Assume ρ(·, t) is a solution of (2.7) and ρ(·, 0) = ν. Then Xt is distributed according to ρ(·, t) for all t ≥ 0.

Proof. We recall that the proof that P (r, t, s,R+) ≡ 1 follows an iteration argument (see [15, Theorem 1])
which is also sketched in [18, Appendix to X.3] in the time-homogeneous case. (The same result is established
without continuity conditions in [14, Theorem 4.3].) By repeating the proof after integration against ν(ds), it
follows that νt(Γ) is the minimal non-negative solution of (2.24) with ν0 = ν that yields a measure satisfying
0 ≤ νt(Γ) ≤ 1 for each t ≥ 0. By consequence, νt(Γ) ≤ ν̂t(Γ) for all t and all Γ. Because P is conservative,
it follows νt(R+) = 1. Hence, for all Γ,

1 ≥ ν̂t(R+) = ν̂t(Γ) + ν̂t(R+ \ Γ) ≥ νt(Γ) + νt(R+ \ Γ) = ν(R+) = 1,

and from this it follows ν̂t(Γ) = νt(Γ).

Remark 2.7. As illustrated by Feller in [15], with unbounded jump rates λ(t, s) it is possible for the natural
solution P (r, t, s,Γ) of the backward equation (2.21) to fail to conserve total probability. We remark that it
would be interesting to investigate how this may be related to the phenomena of gelation and shattering in
solutions of the general coagulation-fragmentation equation (2.1).

3 Approximation of the stochastic process by a numerical scheme

3.1 The algorithmic scheme used in this paper

We approximate the jump process (Xt)t≥0 defined in Section 2.2.2 in and out of equilibrium by the following
numerical scheme. Recall that kernels Kρ depend on the probability density ρ. Hence, if the process is not
stationary, i.e. in equilibrium, we need to estimate ρ at every time step of the numerical scheme. Assuming
ρ = ρeq where ρeq can be computed or at least approximated, we can study the dynamics in equilibrium.
We will make use of our knowledge of the equilibrium profile ρ∗ in the case of the Niwa model.

In the following we explain the algorithm for the case in which the initial distribution is not the equilibrium
distribution, and therefore we have to estimate ρ(·, tn) at every time tn. It will become clear how the
algorithm is conducted for fixed ρeq.

At the beginning, we fix the following quantities:

• an initial distribution ρ0 on an interval (0, L) for some (large) L > 0,

• the coagulation coefficient a(s, ŝ) and fragmentation coefficient b(s, ŝ),
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• the total number of individuals, i.e. the mass N ,

• the number of sample individuals/particles Ñ (not to confuse with the total mass),

• the time step size dt,

• the bin size h for a partition of the domain .

We simulate the jump process for the individuals 1, . . . , Ñ by computing, for each time step i, the entries
of the vector S(i) = (S1(i), . . . , SÑ (i)) where the entry Sk(i) equals the group size of the kth individual.
In other words, S(i) denotes the vector which contains all the obtained cluster sizes at time (i− 1)dt. The
initial vector S(1) is chosen according to ρ0, for example a uniform distribution. We divide the interval (0, L)
into M := Lh bins of length h, denoted by B1, . . . , BM .

At every time step i ≥ 1, we proceed as follows:

1. We estimate the coagulation and fragmentation probabilities for the centres (bl)l=1,...,M of the bins
(Bl)l=1,...,M :

• We approximate the density ρ(s, (i− 1)dt) by

ρ̂(s, i) =

M∑
l=1

nl

hÑ
χBl(s), (3.1)

where nl is the number of entries of S(i) in Bl.

• Now we calculate the following quantities for all bin centres bk, bl:

Kρ̂(·,i)(bl → bk) = a(bl, bk − bl)N
ρ̂(bk − bl, i)
bk − bl

χ[0,bk](bl) + b(bk, bl − bk)
bk
bl
χ[bk,∞)(bl)

= Kc
ρ̂(·,i)(bl → bk) +Kf (bl → bk),

λρ̂(·,i)(bl) =

M∑
k=1

Kc
ρ̂(·,i)(bl → bk)h+

M∑
k=1

Kf (bl → bk)h

= λcρ̂(·,i)(bl) + λf (bl) .

2. We decide for each entry Sk(i) of S(i) if a jump happens, and if yes, where the jump goes to, in the
following way:

• For each Sk(i) , we determine the bin Blk in which it is contained. Furthermore, we generate a
random number r ∈ [0, 1] from the uniform distribution on the unit interval.

• If r > 1 − exp
(
−λρ̂(·,i)(blk)dt

)
, nothing happens and Sk(i) stays in the same bin. Otherwise a

jump happens.

• If a jump happens, we generate another random number r1 ∈ [0, 1] from the uniform distribution:

– If r1 ≤
λcρ̂(·,i)(blk )

λρ̂(·,i)(blk ) , coagulation happens:

in this case we generate another random number r2 ∈ [0, 1] from the uniform distribution and
calculate for 1 ≤ m ≤M the sum

P (m) := h

m∑
r=1

Kc
ρ̂(·,i)(blk → br)

λcρ̂(·,i)(blk)

until P (m∗) > r2. Then we set Sk(i+ 1) ∈ Bm∗ .

– If r1 >
λcρ̂(·,i)(blk )

λρ̂(·,i)(blk ) , fragmentation happens:

in this case we generate another random number r3 ∈ [0, 1] from the uniform distribution and
calculate the sum

P (m) := h

m∑
r=1

Kf (blk → br)

λf (blk)

until P (m∗) > r3. Then we set Sk(i+ 1) ∈ Bm∗ .
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3. In this way, we obtain the vector S(i+ 1), which contains all the cluster sizes corresponding with the
Ñ individuals at time idt. For time (i+ 1)dt, the procedure starts again with the first step.

Approximating the exponential distribution with time discretization step size dt, the algorithm induces a
Markov chain, simulating Ñ trajectories of the jump process (X̃t)t≥0 corresponding with the generators

Aρ̂f(s) = h

M∑
l,k=1

χBl(s) (f(bk)− f(bl))Kρ̂(bl, bk) , (3.2)

acting on the bounded and measurable functions f : (0,∞) → R. The process (X̃t)t≥0 approximates the
jump process from Section 2.2.2 with generator (2.22) for M → ∞, L → ∞, and, for dt small enough, the
simulations give accurate results, as we will demonstrate in Section 4.

Remark 3.1. If we assume that the population distribution is in equilibrium ρ = ρeq and we can compute
or at least approximate ρeq with high accuracy, we can use the algorithm above to simulate the jump process
by simply replacing ρ̂(s, i) as in (3.1) by ρeq(s) at each time step i. In this case, it is also sufficient to only
track one individual for analyzing typical paths; that means that the vector S only has one entry. The
approximated process (Xt)≥0 is a Markov process, as indicated in subsection 2.2.2 above.

Remark 3.2. Note that we could also adopt the domain for each step by considering (0,max1≤k≤Ñ Sk(i) +
mh) for some m ∈ N, instead of (0, L). However, if L is large enough, the effect of such a measure is
vanishingly small due to the fast decay in our models and, therefore, not necessary to obtain an accurate
scheme.

3.2 Comparison to scheme by Eibeck and Wagner

As mentioned in the Introduction, there is a long history of stochastic particle methods for coagulation
(and fragmentation) equations. Since the nonlinearity is contained in the coagulation terms, works on pure
coagulation equations are highly relevant for our class of equations. For pure coagulation, the standard
stochastic model, often referred to as a Marcus-Lushnikov process [32, 29], describes a Markov jump process
that models the coagulation of clusters of size s and ŝ to form a single cluster of size s+ ŝ with rate kernel
a(s, ŝ). In quite a number of studies (to be brief, we mention only [24, 40, 12]), the empirical measure for the
group-size distribution has been related directly to the coagulation part of the Smoluchowski equation (2.1),
in the so-called hydrodynamic limit as the number of particles becomes large.

In work more closely related to the present study, Eibeck and Wagner [11] developed a different ap-
proximation scheme to study the following mass flow equation for t ≥ 0 and ϕ continuous and compactly
supported:∫ ∞

0

ϕ(s)Q(ds, t) =

∫ ∞
0

Q0(ds) +

∫ t

0

∫
(R+)2

(ϕ(s+ ŝ)− ϕ(s))
a(s, ŝ)

ŝ
Q(ds, r)Q(dŝ, r)dr . (3.3)

This is the weak form of (2.7) (cf. also (2.8)), which we have referred to as evolution equation of the
population density, in the case of pure coagulation. A solution Q of (3.3) is required to be in the set of all
continuous paths with values in the set of non-negative Borel measures, i.e. Q ∈ C([0,∞),M(0,∞)).

The solution of (3.3) is approximated by a jump process for the empirical measure of an interacting
particle system, formalized as a càdlàg process with values in a subset of M(0,∞). This jump process
models the interaction of clusters of size s and ŝ to result in a pair of clusters having sizes s + ŝ and ŝ. In
this way, the distribution of cluster sizes in the particle system is used to estimate particle coagulation rates
that determine jump rates for a fixed number of particles, in a way similar to the algorithm described in the
previous subsection.

In more detail, suppose that a(s, ŝ) ≤ h(s)h(ŝ) for some continuous function h where h(s)
s is non-

increasing. For N ∈ N, bN > 0 and fixed β > 0, they define the set of measures

MN
β =

{
p =

1

N

N∑
i=1

δsi ∈M((0,∞)) : si ∈ (0, bN ],

∫ ∞
0

h(s)

s
p(ds) ≤ β

}
. (3.4)
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Defining the map

J(p, s, ŝ) =

{
p− 1

N δs + 1
N δs+ŝ, s+ ŝ ≤ bN ,

p− 1
N δs, s+ ŝ > bN ,

they introduce the generator on continuous and bounded functions Φ :MN
β → R

GNΦ(p) =
1

N

N∑
1=i,j

[Φ(J(p, s, ŝ))− Φ(p)]
a(s, ŝ)

ŝ
, (3.5)

which is shown to correspond with a jump process UN . Introducing the set

Mβ =

{
p ∈M((0,∞)) :

∫ ∞
0

h(s)

s
p(ds) ≤ β

}
⊃MN

β , (3.6)

one can view UN as a càdlàg process on Mβ , i.e. UN ∈ D([0,∞),M(0,∞)).
Under these assumptions, Eibeck and Wagner [11] prove weak convergence of UN to the solution Q

of (3.3) for UN0 → Q0 ∈ Mβ , as N → ∞, bN → ∞, and in [12] they provide a similar result for the
case where fragmentation is added. In the corresponding algorithm, the coagulation kernel is replaced by
the majorant product kernel h(s)h(ŝ) which leads to a simple computation of the exponentially distributed
waiting time for the collision and an independent generation of collision partners (cf. also [10] for the use of
majorant kernels). When the collision partners si and sj have been chosen according to the probabilities

h(si)∑N
k=1 h(xk)

and
h(sj)/sj∑N
k=1 h(xk)/xk

,

the jump happens with acceptance probability

a(si, sj)

h(si)h(sj)
,

and, in this case, si is removed and, if si + sj ≤ bN , si + sj is added to the points of the empirical measure.
Note that the essential difference between our scheme and such a method concerns the fact that we

simulate single trajectories of individuals jumping between groups of different sizes, while the Eibeck-Wagner
algorithm simulates the evolution of the population distribution as a whole as represented by the empirical
measure. We track individual trajectories on the state space and therefore we can analyze the statistical
properties of such trajectories, as we will see in Section 5.

4 Numerical simulations

In the following, we are using the algorithm developed in Section 3.1 to simulate the population dynamics
for the coagulation-fragmentation model (2.1), or (2.7) in terms of the population density, with coagulation
rates a(s, ŝ) and fragmentation rates b(s, ŝ). Firstly, we validate the algorithm by working in the Niwa
model (constant rates, see (2.5)) where the simulation results can be compared to a known equilibrium
distribution. Furthermore, we use the algorithm to study the equilibrium and convergence to equilibrium
in the cases of random and polynomial rates which demonstrates the flexibilty of our numerical scheme as
opposed to previous ones, see [8].

4.1 Constant coagulation and fragmentation rates

First we work with the Niwa model (2.6), or (2.10) in terms of the population density, and compare our
computation with analytical results. We conduct the numerical scheme described in Section 3.1 until a certain
time T > 0, determining ρ̂(·, T/dt) as in (3.1). Using the definition of the population distribution (2.4), we
can determine

f̂(s, T/dt) :=
N ρ̂(s, T/dt))

s
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as an approximation of the size distribution f(·, T ) and compare the results with the analytic predictions.
For doing so we choose total mass N = 1 and p̃ = q̃ = 1. Recall from [9] that any other combination of

parameters can be reduced to this case by rescaling. According to [9], the equilibrium size distribution feq

for (2.6) can be expanded as a series in the following way:

feq(x) =
x−2/3

3

∞∑
n=0

(−1)n

Γ( 4
3 −

2
3n)

xn/3

n!
, (4.1)

where Γ denotes the gamma function. We denote the partial sums by

fK(x) =
x−2/3

3

K∑
n=0

(−1)n

Γ( 4
3 −

2
3n)

xn/3

n!
. (4.2)

4.1.1 Jump process out of equilibrium

We compute f̂(·, T/dt) according to the algorithm introduced above for L = 30, T = 20, dt = 0.01, bin
size h = 0.05 and Ñ = 10000 sample individuals which are initially distributed according to the uniform
distribution ρ0 on [0, L]. As for most simulations in the following, the mass is normalized to N = 1. In

Figure 1, we have averaged f̂(·, T/dt) over larger bin sizes h1 = 1 in order to obtain a smoother picture and
used linear interpolation to create a continuous plot. The figure compares the computed density according
to the algorithm with the analytical approximation, using f50 (4.2). We show the results on a log-log and a
semi-log scale, where log denotes the decadic logarithm in the following, unless stated otherwise. We observe
that the algorithm produces convergence to a distribution that approximates the analytical expansion very
well. For larger sizes, there are small deviations from the equilibrium due to the extremely small number of
observations in this part of the domain. Overall, the stochastic method can be seen to be highly accurate.

(a) Distributions on log-log scale (b) Distributions on semi-log scale

Figure 1: Equilibrium solution of the Niwa model obtained by the Markov jump process out of equilibrium. For mass
N = 1, bin size h = 0.05 and Ñ = 10000 sample individuals, we compute the size distribution f̂(·, T/dt) up to time
T = 20 following the algorithm introduced in Section 3.1 for the Niwa model (2.6), starting with a uniform distribution
ρ0. We average f̂(·, T/dt) over larger bin sizes h1 = 1 and display the interpolated plot together with f50 as given in
(4.2).

4.1.2 Jump process in equilibrium

The simulation in equilibrium works with the same algorithm as in Section 3.1 but replaces ρ̂(·, i) at each time
step i by the approximation of the equilibrium density ρeq(·), obtained from f50 as given in (4.2), via (2.4),
see Remark 3.1. In this situation, it is sufficient to approximate the Markov process Xt by simulating the
trajectory of a single individual, deploying a simple Monte-Carlo algorithm.

For L = 30, T = 10000, dt = 0.01 and bin size h = 0.05, we approximate the stationary population
distribution ρeq by measuring time averages of a single trajectory on the interval (0, L) according to the
modified algorithm (Remark 3.1), and, in Figure 2, we compare the corresponding stationary size distribution
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with the analytical prediction given by f50. We again average over the larger bin size h1 = 1 and show
continuous plots. As in Figure 1, we show the results on a log-log and a semi-log scale and observe exactly
the same as in Section 4.1.1. The method is highly accurate except for small deviations from the equilibrium
for large group sizes due to the extremely small number of observations in this part of the domain. Hence,
we observe that the numerical scheme for simulating the Markov jump process in equilibrium is consistent
with the analytical results.

(a) Distributions on log-log scale (b) Distributions on semi-log scale

Figure 2: Equilibrium solution of the Niwa model obtained by the Markov jump process in equilibrium. For mass N = 1
and bin size h = 0.05, we evaluate the time averages of one path in equilibrium up to time T = 10000 according to
the algorithm introduced in Section 3.1 (see Remark 3.1) for the Niwa model (2.6), using the equilibrium population
density approximated by f50 (4.2) via (2.4). As in Fig. 1, we compare the distribution obtained from measuring the
time averages on the interval (0, 30) to the analytical approximation of the equilibrium density of size distributions,
feq, again taking f50.

4.2 Non-constant coagulation and fragmentation rates

As opposed to the analysis in [9] and most numerical methods presented in [8], the jump process approach
and the associated algorithm do not rely on constant coagulation and fragmentation rates q and p. Hence, we
use the flexibility of the algorithm to investigate non-constant choices for a(s, ŝ) and b(s, ŝ)(s+ ŝ). Hereby,
we test the sensitivity of the results to changes in the model. We observe that random rates produce a
clearly different outcome if the variance is high. Similarly, the equilibrium corresponding with polynomial
rates separates from the Niwa equilibrium with increasing order of the polynomials. Furthermore, we study
random and polynomial variations of the Aizenman Bak model [1] where a(s, ŝ) and b(s, ŝ) are constant and
the equilibrium size distribution fABeq satsifies the detailed balance condition

a(s, ŝ)fABeq (s)fABeq (ŝ) = b(s, ŝ)fABeq (s+ ŝ) .

4.2.1 Random rates

In this section, we consider the coagulation and fragmentation rates at(s, ŝ) and bt(s, ŝ)(s+ ŝ) in model (2.1),
and thereby (2.12), to be time-dependent. Furthermore, for all t ≥ 0 and (s, ŝ) ∈ R2

+, under preservation
of symmetry, they are assumed to be log-normally distributed δ-correlated random variables with mean q
or p respectively and standard deviation σ. This means that for all t ≥ 0, s, ŝ ∈ R+ the rates are sampled
according to

ln(at(s, ŝ)) = ln(at(ŝ, s)) ∼ N (ln q, σ2) , ln(bt(s, ŝ)(s+ ŝ)) = ln(bt(ŝ, s)(s+ ŝ)) ∼ N (ln p, σ2) , (4.3)

and the correlations are given by

E [ln(at1(s1, ŝ1)) ln(at2(s2, ŝ2))] = σ2δ(t1 − t2) δ (min{|s1 − s2|+ |ŝ1 − ŝ2| , |s1 − ŝ2|+ |ŝ1 − s2|}) , (4.4)

and analogously for bt(s, ŝ)(s+ ŝ). If σ = 0, the model coincides with the Niwa model (2.6).
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Setting again p̃ = q̃ = 1 and thereby p = q = 2, we compute f̂Nh (·, T/dt) according to the algorithm
introduced in Section 3.1, now sampling at(s, ŝ) and bt(s, ŝ)(s+ ŝ) according to (4.3) independently for every
bin and at every time step. For the simulations displayed in Figure 3, we have chosen bin size h = 0.05,
Ñ = 20000 sample individuals and time length T = 20, starting with a uniform distribution ρ0 and comparing
the results for different values of the standard deviation σ. We use the time step size dt = 0.01 for σ ≤ 3 and

dt = 0.001 for σ = 5 to account for possible higher jump rates. As before, we average f̂ Ñh (·, T/dt) over larger
bin sizes h1 = 1, use linear interpolation to create a continuous plot and compare the computed distribution
to the analytical approximation f50 in a log-log scale.

(a) σ = 1 (b) σ = 3 (c) σ = 5

Figure 3: Niwa model with fluctuating coagulation and fragmentation rates. For bin size h = 0.05, Ñ = 20000
sample individuals and uniform initial distribution ρ0, we compute the size distribution f̂(·, T/dt) up to time T = 20
following the algorithm introduced in Section 3.1, with coagulation and fragmentation rates given randomly as in (4.3),
for p = q = 2 and standard deviation σ = 1, 3, 5. We average f̂(·, T/dt) over larger bin sizes h1 = 1 and display the
interpolated plot together with f50 as given in (4.2) in a log-log scale.

For σ ≤ 1 the results are almost identical to the ones before, showing almost perfect accordance with
the analytical expansion. Hence, the equilibrium appears to be robust under small random fluctuations.
However, for σ = 3 we already observe a small discrepancy and for σ = 5 a clear discrepancy to the
model with constant rates. The fact that mass is typically shifted to larger sizes suggests that high random
fluctuations favour in average coagulation over fragmentation, even though the fluctuations are equally
distributed for both rates. Due to the time-dependent and thereby non-autonomous nature of the random
rates, the size distribution cannot reach an equilibrium but a state one could describe as almost steady,
characterized by small fluctuations around an expected distribution. Making sure such a state is reached
here, we have compared the simulation results at T = 20, T = 30 and at T = 40 and observed almost
identical behaviour of the size distribution.

Moreover, we consider random fluctuations around the Aizenman-Bak model [1]. This means that for all
t ≥ 0, s, ŝ ∈ R+ the coagulation and fragmentation rates are distributed according to

ln(at(s, ŝ)) = ln(at(ŝ, s)) ∼ N (ln q, σ2) , ln(bt(s, ŝ)) = ln(bt(ŝ, s)) ∼ N (ln p, σ2) , (4.5)

where the correlations are given as in (4.4). Analagously to before, the case σ = 0 coincides with the
Aizenman-Bak model with a(s, ŝ) = q and b(s, ŝ) = p. Setting p = q = 2, the stationary size distribution
is known to be a simple exponential distribution with parameter 1, i.e. the stationary density of the size
distribution is given by

fABeq (s) = e−s.

We use the jump algorithm as before to approximate the equilibrium distribution and compare it to
the equilibrium of the Niwa model according to the series expansion as well as the equilibrium density
fABeq (s) = e−s , as shown in Figure 4. First, we set σ = 0 to compare the distributions without random
fluctuations. We observe that the higher fragmentation rates in the Aizenman-Bak model lead to a shift of
mass to smaller group sizes for fABeq compared with feq and that the algorithm approximates fABeq very well.
Furthermore, we choose σ = 1 and σ = 5 to observe that, for small noise, the curves are again similar to
the case σ = 0, whereas, for larger noise, the equilibrium for (4.5) loses mass in the range of small group
sizes and gets closer to the equilibrium feq (4.1) for model (2.6). In both the Niwa and the Aizenman-Bak
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model we observe that random rates with large noise drive the size distributions away from the deterministic
equilibrium in the direction of a uniform distribution.

(a) σ = 0 (b) σ = 1 (c) σ = 5

Figure 4: Aizenman-Bak model with fluctuating coagulation and fragmentation rates. Given the same parameters as
in Figure 3, the results of the analogous simulation, following the algorithm with coagulation and fragmentation rates
given randomly as in (4.5) with p = q = 2, are displayed for σ = 0, 1, 5 and compared to the expansion f50 from the
Niwa model and the stationary density fAB

eq (s) = e−s of the Aizenman-Bak model. The case σ = 0 corresponds to the
Aizenman-Bak model where the equilibrium satisfies the detailed balance condition.

4.2.2 Polynomial rates

Furthermore, we consider polynomial coagulation and fragmentation rates. In terms of the physical model
describing the dynamics of animal group aggregation, it seems plausible that the fragmentation probability
increases with the group size. In addition, larger groups should also have a larger probability to be the result
of a coagulation process. The easiest way to implement this reasoning in terms of polynomial rates is given
by

a(s, ŝ) = q(s+ ŝ)α , b(s, ŝ) = p(s+ ŝ)β−1 , (4.6)

where α, β ≥ 0, such that for α = β = 0 we obtain the Niwa model with a(s, ŝ) = q, b(s, ŝ)(s + ŝ) = p.
Inserting the rates from (4.6) into (2.13) gives

Kc
ρ(·,t)(ŝ→ s) = Nqsα

ρ(s− ŝ, t)
s− ŝ

χ[0,s)(ŝ), Kf (ŝ→ s) = psŝβ−2χ[s,∞)(ŝ) .

We use the jump algorithm from Section 3.1 with rates (4.6) to approximate the equilibrium and compare
the result to the equilibrium of the Niwa model, estimated by the series expansion. We set p = q = 2,
choose α = β = 0.1, 1, 3 and use time step size dt = 0.01 for α = β ≤ 1 and dt = 0.0001 for α = β = 3
to account for the higher jump rates. We observe in Figure 5 that with increasing α = β the distribution
separates from the equilibrium profile with constant rates. While for α = β = 0.1 the computed distribution
coincides with feq and for α = β = 1 the computed distribution is still very close to feq, we note that for
α = β = 3 the group sizes are closer to a uniform distribution. Similarly to the situation with random rates,
we have compared the simulation results at T = 20 and at T = 40 and observed the same behaviour of the
size distribution, making sure that the stronger vicinity to the uniform distribution is not caused by a slower
convergence process.

The finding that increasing α = β imply a divergence from the equilibrium profile with constant rates
towards a uniform distribution can be accounted for by the fact that the rate of coagulation to large sizes s in-
creases with α. This effect is apparently disproportionate to the impact of an increased rate of fragmentation
from large sizes s for increasing β.
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(a) α = β = 0.1 (b) α = β = 1 (c) α = β = 3

Figure 5: Niwa model with polynomial coagulation and fragmentation rates. For bin size h = 0.05, Ñ = 20000 sample
individuals and uniform initial distribution ρ0, we compute the size distribution f̂(·, T/dt) up to time T = 20 following
the algorithm introduced in Section 3.1, with coagulation and fragmentation rates given as in (4.6), for p = q = 2 and
α = β = 0.1, 1, 3. We average f̂(·, T/dt) over larger bin sizes h1 = 1 and display the interpolated plot together with
f50 as given in (4.2) in a log-log scale.

Similarly to the previous section, we additionally consider the coagulation and fragmentation rates

a(s, ŝ) = q(s+ ŝ)α , b(s, ŝ) = p(s+ ŝ)β , (4.7)

where α, β ≥ 0. In this case, the situation for α = β = 0 coincides with the Aizenman-Bak model [1] where
b(s, ŝ) = p.

As before, for p = q = 2, we use the jump algorithm to simulate the dynamics with rates (4.7) and approx-
imate the stationary density which we compare to the equilibrium of the Aizenman-Bak model fABeq (s) = e−s

and the equilibrium of the Niwa model. Recall from Figure 4 that the higher fragmentation rates in the
Aizenman-Bak model lead to a shift of mass to smaller group sizes, compared with the Niwa equilibrium. We
choose the same parameter values as for Figure 5 and observe in Figure 6 that, similarly to the model with
rates (4.6) as shown in Figure 5, the equilibrium distribution seems to be driven away towards a uniform
distribution under sufficiently increased exponents α = β. Similarly to random rates with large variance, the
increased coagulation and fragmentation probabilities of large sizes apparently tend to balancing each other
out as opposed to the case with constant rates.

(a) α = β = 0.1 (b) α = β = 1 (c) α = β = 3

Figure 6: Aizenman-Bak model with polynomial coagulation and fragmentation rates. Given the same parameters as
in Figure 5, the results of the analogous simulation, following the algorithm with coagulation and fragmentation rates
given as in (4.7), are displayed for p = q = 2 and α = β = 0, 1, 3 and compared to the expansion f50 from the Niwa
model and the stationary density fAB

eq (s) = e−s of the Aizenman-Bak model.

5 Statistical analysis of the jump process

The stochastic algorithm introduced in Section 3.1 can be used to study statistical properties of the jump
process (Xt)t≥0 from Section 2.2.2. In the following, we estimate the decay of correlations for the process in
equilibrium and starting out of equilibrium. Furthermore, we approximate the typical occupation times of
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individuals at cluster sizes for the different types of coagulation and fragmentation rates used in the previous
chapter.

5.1 Autocorrelation function

The autocorrelation function gives an essential characterization of a stochastic process (Xt)t≥0, by measuring
the amount of memory the process keeps over times t−s. In more detail, let µt := E[Xt] denote the expected
value and σ2

t := E[(Xt − µt)2] denote the variance of the process at time t ≥ 0. Then the autocorrelation
function is given by

Ã(t, s) =
E[(Xt − µt)(Xs − µs)]

σtσs
.

Fixing a time t ≥ 0, we define the autocorrelation function in one time variable by

A(τ) = Ã(t, t+ τ).

We investigate numerically the autocorrelation function of the process (Xt)t≥0, as in Section 2.2.2, for the
Niwa model (2.10) with coagulation and fragmentation parameters p̃ = q̃ = 1, i.e. p = q = 2. We use the
jump algorithm described in Section 3.1 to make a numerical estimate on the behaviour of A(τ), given that
(a) the stationary density ρeq is reached, i.e. ρ0 = ρeq (see Remark 3.1), and (b) the equilibrium density
is not reached yet but starting from a uniform distribution ρ0. In Fig. 7, we observe a rapid decrease of
the autocorrelation A(τ), i.e. fast decay of correlations, in both cases. The findings suggest an exponential
decay of correlations with a rate close to 0.25 in equilibrium and a rate close to 0.3 starting from a uniform
distribution.

The numerical results indicate that, in the Niwa model, the size of the group an individual belongs to at
a certain point of time is correlated significantly only to the sizes of the groups the individual belonged to
in the close past. This is consistent with the underlying assumption that groups of all sizes can be involved
in particular coagulations and fragmentations with equal probability.

(a) In equilibrium (b) Out of equilibrium

Figure 7: Autocorrelation functions in the Niwa model. We estimate A(τ) for τ ∈ (0, 10] following 105 paths. In
(a), the paths are distributed according to the stationary population density ρeq, evolving according to the algorithm
introduced in Section 3.1 (Remark 3.1), with ρeq estimated by f50 (4.2) via (2.4). In (b), the paths are changing the
distribution in approach of the equilibrium distribution according to (3.1). We observe exponential decay of correlations
in both cases.

5.2 Statistics of the occupation time

The second numerical investigation of the process’ statistical properties concerns the time individuals spend
in average at a given cluster size before performing a jump to a new cluster size. We call this time length the
average occupation time of each group size. We approximate this magnitude by conducting the algorithm
from Section 3.1 with the four different types of coagulation and fragmentation rates, presented in Section 4:
constant rates p̃ = q̃ = 1 (p = q = 2), as in the original Niwa model, in equilibrium (Figure 8 (a)) and out of
equilibrium (Figure 8 (b)), random rates as given in (4.3) (Figure 9 (a)-(c)) and polynomial rates as in (4.6)
(Figure 9 (d)-(f)). For the random rates we compare σ = 1, 2, 3 and for the polynomial rates α = β = 1, 2, 3.
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(a) In equilibrium (b) Out of equilibrium

Figure 8: Statistics of average occupation time for the Niwa model in equilibrium (left) and out of equilibrium (right).
For p = q = 2, we deploy the algorithm, introduced in Section 3.1, to simulate 103 paths of the jump process (Xt)t≥0

until time T = 105, using a time step size of dt = 0.1. The average occupation time of individuals at each cluster size
is measured for coagulation and fragmentation rates (2.5). The density ρeq for the equilibrium case (a) is estimated
by the expansion (4.2) with K = 50 and the calculations for (b) are conducted with uniform initial distribution.

(a) σ = 1 (b) σ = 2 (c) σ = 3

(d) α = β = 1 (e) α = β = 2 (f) α = β = 3

Figure 9: Statistics of average occupation time for the Niwa model with fluctuating coefficients (top) and with polyno-
mial rates (bottom). Starting from a uniform initial distribution, the same simulations as in Figure 8 are conducted
for random rates (4.3) (with time step size dt = 0.01) and polynomial rates (4.6) (dt = 0.0005), again measuring
the average occupation time of individuals at each cluster size. The average occupation times can be seen to decrease
strongly for increasing standard deviation σ in the case of random rates ((a)-(c)) and increasing polynomial exponents
α = β in the situation of polynomial rates ((d)-(f)), due to the increased jump rates.

In Figure 8 and Figure 9, we display the approximated occupation times, averaging over bin sizes h1 = 0.1,
for different choices of coagulation and fragmentation rates. We observe that the occupation times roughly
reflect the corresponding equilibrium size distributions (or almost steady size distributions in the random
case respectively), as seen in Section 4. In the case of coagulation and fragmentation rates (2.5) from the
Niwa model, as shown in Figure 8, the occupation times show a sharp increase for smaller group sizes. We
observe similar behaviour for small perturbations of the model, represented by the random case with σ = 1
(Figure 9 (a)) and the polynomial case with α = β = 1 (Figure 9 (d)). Note that for random rates with
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σ = 1 and constant rates in equilibrium and out of equilibrium, the decay of occupation times stops at
small sizes such that the occupation times fluctuate around a constant level for all larger sizes. In the case
of polynomial rates, we observe smooth decay of occupation times mirroring the group size distribution in
equilibrium more accurately.

The larger the random or polynomial perturbations of the Niwa model become, the more we see the peak
at smaller sizes vanish. In fact, the average occupation times can be seen to decrease to a much smaller
scale for increasing standard deviation σ in the case of random rates (Figure 9 (a)-(c)) and increasing
polynomial exponents α = β in the situation of polynomial rates (Figure 9 (d)-(f)), which can be explained
by the increased coagulation and fragmentation rates and, thereby, increased jump rates. The decrease of
occupation times to a similarly low level for all sizes is in accordance with the equilibrium density tending
to a more uniform distribution for increasing random rates and increasing polynomial exponents, as seen in
Figures 3 and 5.

6 SDE approximation to the jump-process model

Motivated by Niwa’s approach to use a stochastic differential equation (SDE) for modeling the dynamics and
equilibrium distribution of group sizes [38], we discuss the role of SDEs for modeling the merging-splitting
dynamics that correspond to the coagulation-fragmentation equation (2.1) or (2.7). First, we discuss Niwa’s
SDE model and describe some of its problematic aspects. Next we derive a natural diffusion approximation to
the group-size jump process of section 2.2, and demonstrate the inconsistency of this approach for modeling
the jump process. Finally, we discuss an alternative SDE model for the dynamics of group sizes — a
stochastic logistic equation — which, although it involves very different mechanisms for group-size changes,
yields equilibrium group-size distributions that also have the form of a power-law with an exponential cutoff
(gamma distribution).

6.1 Niwa’s SDE model

In order to find an expression for the equilibrium group-size distribution, Niwa [38] models the process
(Xt)t≥0 of the size of the group containing a given individual via an SDE having the form

dXt = − p̃
2

(Xt − x̄) dt+ σ(Xt) dWt , (6.1)

when Xt > 0, where the parameter p̃ is related to the rate of group splitting per time step, the constant x̄ =
〈Xt〉p represents the population-weighted mean group size, and Wt denotes standard Brownian motion. The
drift is chosen linearly around the average, which roughly models the notion that, on average, fragmentation
decreases group size by half, while coagulation increases it by a constant. Niwa modeled the noise coefficient
σ(Xt) using data from site-based merging-splitting simulations, coming to the conclusion that

σ(x)2 = 2D exp
(x
x̄

)
, (6.2)

where D is a constant. Ultimately though, there is no rigorous, or even formal, derivation of (6.1).
The stationary Fokker-Planck equation associated with the SDE (6.1) states that dJ/dx = 0 where J is

the probability flux

J(x) = − p̃
2

(x− x̄)ρ(x)− d

dx

(
D exp

(x
x̄

)
ρ(x)

)
. (6.3)

Taking J ≡ 0 to ensure there is no flux at ∞, one can solve this equation to find that the equilibrium
population distribution takes the form

ρ(x) =
1

Z
exp

[
−x
x̄

(
1− γe−x/x̄

)]
, γ =

p̃x̄2

2D
, (6.4)

where Z > 0 is a normalization constant. Correspondingly, the stationary group-size distribution is given as

Φ(x) =
ρ(x)

x
=

1

xZ
exp

[
−x
x̄

(
1− γe−x/x̄

)]
. (6.5)
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One problem in using (6.1) to model group-size evolution is that the process (Xt) will hit 0, and one
needs to specify how group size will be kept positive. Niwa appears to model this using symmetrization after
a change of variables, and is led to impose the condition

D = p̃x̄2 , (6.6)

corresponding to γ = 1
2 (apparently in order to make a symmetrized drift potential continuously differentiable

at 0). It seems more natural mathematically, instead, to simply require the stochastic process Xt to reflect
at 0. As described in [34, 47], e.g., this means that a term dLt is added to the right-hand side of (6.1), where
Lt is the local time of the process Xt at 0, determined by the formula

Lt = lim
δ→0+

1

2δ

∫ t

0

1{Xs<δ} ds . (6.7)

The equilibrium density of this reflected process still has the form in (6.4) with J ≡ 0, with normalization
constant Z simply chosen to make ρ a probability density on (0,∞).

This leaves γ as a free parameter in the model, which one ought to specify in some further way. In terms
of the quality of fitting (6.5) to the empirical data shown in [38, Fig. 5], it does not matter much what the
precise value of γ is, as long as it is small. On the scale of [38, Fig. 5], the value γ = 0 provides a very
acceptable fit, as was mentioned by Niwa himself [30] and was shown in [9, Fig. 2]. The simulation data
Niwa generated in [38, Fig. 2] seem to be consistent with a much larger value of γ, however, that would not
lead to a good fit with the data of [38, Fig. 5].

Since the stationary distribution (6.5) reasonably fits empirical data, one can consider whether the SDE
(6.1) is a suitable basis for numerical simulation of the individual group-size process. We perform simulations
using a simple Monte-Carlo scheme for an Euler-Maruyama integration of (6.1) with reflection and with step

size dt = 10−4, taking p̃ = 1 = x̄ and imposing (6.6). (This means that the corresponding f̂eq with x̄ = 1,

N = 1 has to be rescaled as f̂eq = 36feq(6x), see [9, Remark 5.1].) Following one trajectory up to time
length T = 106, we approximate the stationary size distribution (6.5) on (0,∞). In Fig. 10(a), we compare

the result of the simulation, the density (6.5) and the rigorously derived equilibrium f̂eq with x̄ = 1, N = 1,
estimated by the rescaled expansion f50. We observe that for small group sizes the approximation is relatively
close to the other two densities, but for larger group sizes trajectories are lost although the time step size is
already extremely small. This has to do with the highly unstable diffusion coefficient which is an exponential
function. We actually can’t compute the distribution for sizes x > 10 due to the unstable diffusion coefficient.

In order to avoid the exponentially unstable diffusion coefficient, we apply the following change of vari-
ables. Recall we take p̃ = 1 = x̄, γ = 1

2 . Similarly to Niwa [38], for Xt > 0 we introduce Yt ∈ (0, 1)
by

Yt = 1− exp(−Xt/2) . (6.8)

We formally use Itô’s formula to obtain, for Yt > 0,

dYt =
1

4

[
(2 ln(1− Yt) + 1)(1− Yt)−

1

1− Yt

]
dt+

1√
2

dWt . (6.9)

Again we require the process Yt to be reflected at 0, so this equation should be modified by a local time
term. The strong negative drift near 1 prevents the exact process Yt from hitting 1 (as one can check using
the criterion from [17, Theorem 3], see Section 6.3.1 below). In a Monte-Carlo simulation, however, we have
to prevent trajectories from leaving the domain at 1, by simply letting them stay at the same position in
case the absolute value would become larger than 1. This Monte-Carlo algorithm, based on (6.9), yields
Fig. 10 (b), where again the result of the simulation (with dt = 10−3, T = 106) is compared to the stationary

density (6.5) and the rigorously derived equilibrium f̂eq with x̄ = 1, N = 1, estimated by the rescaled
expansion f50. We observe that the distribution obtained by the simulation lies close to both densities but
does not coincide with either of them which can be seen in particular for larger sizes.
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(a) Simulation of (6.1) (b) Simulation of (6.9)

Figure 10: Semi-log plot of group-size distribution of trajectories of (a) Niwa’s SDE (6.1) and (b) the transformed
SDE (6.9), obtained by Euler-Maruyama integration (using time length T = 106 and step size dt = 10−4 in (a),
dt = 10−3 in (b)), compared to the equilibrium density (6.5) and the equilibrium f̂eq for model (2.6) with x̄ = 1,
N = 1, estimated by the rescaled expansion f50. In (b), inset log-linear plot of ratio between the respective distributions
and f50, similarly to [9, Figure 2] where the normailzation factor 1/Z = 0.881237 for the Niwa SDE equilibrium was
not taken into account.

Summarizing, modeling the dynamics via (6.1) or (6.9) lacks rigorous justification. The uniformly elliptic
noise pushes the process to hit the origin and one must invoke ad hoc a means to keep it positive, unjustified
in terms of the underlying population dynamics as originally outlined by Niwa.

Even though the simulated processes seem to reach an equilibrium close to the analytical prediction (see
Figure 10), another serious modeling issue is that SDE sample paths are always continuous in time, and do
not make large jumps in the way the merging/splitting mechanism would suggest. It is not clear whether the
solution process of such an SDE can be related to the Markov jump process which is derived in Section 2.2
and simulated successfully in Section 4. The next section explores the possibility of such a connection.

6.2 SDE and the jump process

In the following, we investigate the suitability of a natural drift-diffusion approximation to the jump pro-
cess constructed in Section 2.2.2, in the situation of the Niwa model with coagulation and fragmentation
factors (2.5). Recall from (2.22) the family of generators (At)t≥0

(Atf)(x) = λ(t, x)

∫
(f(y)− f(x))µt(x, dy) ,

where µt and λ(t, x) are given by (2.20). Writing, similarly to before, µt(x, dy) = µ̂t(x, y)dy, the forward
equation for the jump process is the Fokker-Planck equation

∂tρ(x, t) = A∗t ρ =

∫
λ(t, y)µ̂t(y, x)ρ(y, t) dy − λ(t, x)ρ(x, t) ,

as given in (2.15). Matching [9], as before, we take N = 1 and p = q = 2 and assume that we are in
equilibrium, i.e. ρ(x, t) = ρeq(x) for all t ≥ 0, such that λ(x) = λρeq(·)(x) = λ(t, x), µ̂(y, x) = µ̂t(y, x) and
A = At are time-independent. In equilibrium, we observe that

λ(y)µ̂(y, x) = Kρeq(·)(y → x) = 2feq(x− y)1x>y + 2
x

y2
1x<y .

Using the moment relations in [9, Eq. (5.6)] yields

λ(y) =

∫ ∞
0

Kρeq(·)(y → x) dx = 2m0(feq) + 1 = 3 ,
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where mk(f) :=
∫
R+
xkf(x) dx. This means constant event rates, which is consistent with the fact that the

system is in equilibrium. We obtain

µ̂(y, x) =
2

3

(
feq(x− y)1x>y +

x

y2
1x<y

)
. (6.10)

Now, supposing that the jumps go typically to a close range of sizes, we use the Taylor approximation

f(y) = f(x) + f ′(x)(y − x) +
f ′′(x)

2
(y − x)2 + o((y − x)2),

to get Af ≈ Addf , where the drift-diffusion approximation Add to the jump-process generator A is given by

(Addf)(x) = b(x)f ′(x) +
1

2
c(x)f ′′(x) , (6.11)

with

b(x) = λ(x)

∫
(y − x)µ̂(x, y) dy, c(x) = λ(x)

∫
(y − x)2µ̂(x, y) dy.

Note that b represents the drift and c the diffusion coefficient. We can conclude from (6.10) that in equilibrium
these coefficients are as follows: using m1(feq) = N = 1, the drift is given as

b(y) = 2

∫ ∞
0

(x− y)feq(x− y)1x>y dx+
2

y2

∫ y

0

(x− y)x dx

= 2 + 2y

(
1

3
− 1

2

)
= 2

(
1− y

6

)
. (6.12)

Note that the signs are consistent with the model since the drift pushes to the right at small y and the left
at large y, as expected. Using that m2(feq) = 6 from [9, Eq. (5.6)], the diffusion coefficient reads

c(y) = 2

∫ ∞
0

(x− y)2feq(x− y)1x>y dx+
2

y2

∫ y

0

(y − x)2xdx

= 12 + 2y2

(
1

3
− 1

4

)
= 12 +

1

6
y2. (6.13)

For the SDE with drift b and diffusion c, the Fokker-Planck equation corresponding with (6.11) is

∂tρ+ (bρ)x =
1

2
(cρ)xx.

The stationary solution ρdd of this equation satisfies

ρ′dd

ρdd
=

2b

c
− c′

c
=

6(4− x)

72 + x2
.

After integration, we can determine

ρdd(x) = ρdd(0)
723A(x)

(72 + x2)3
, A(x) = exp(2

√
2 tan−1(x/

√
72)). (6.14)

The stationary density ρdd for the approximating SDE with generator (6.11) differs rather substantially
from the stationary solution of (2.10) for p = q = 2, N = 1 which is given by ρeq = ρ∗ (2.18). See the
comparison of group size distributions in Figure 11a, and note that each tick mark on the vertical scale
corresponds to 2 orders of magnitude. For small group size, we have ρdd(x) ∼ const, while ρ∗(x) ∝ x1/3 from
(2.18). Furthermore, while ρ∗(x) decays exponentially, ρdd decays only algebraically fast with ρdd(x) ∝ x−6

as x→∞. One trouble is that for large sizes, the drift and diffusion rates are dominated by the (uniform)
fragmentation mechanism, which is not well-described by small jumps.

Recall that Niwa estimates the diffusion coefficient for the SDE (6.1) by fitting it into a semi-log plot of
the variance of size changes in finite time intervals, based on data obtained from site-based simulations of
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merging and splitting [38, Figure 2]. We can deploy the algorithm for the Markov jump process in equilibrium
to approximate the variance of size changes and compare the computations to the diffusion coefficient c. In
Figure 11b we observe that size changes exhibited by the simulated jump process differ noticeably from the
function c (scaled by dt = 0.05 as appropriate), but not by a large percentage. By fitting on a semi-log scale
as indicated in Figure 12a we find a good fit with a similar exponential form as Niwa had, namely with

c1(y) = exp(2.19 + 0.1y). (6.15)

(a) Comparison of ρdd(x)/x with feq(x) (b) Variance comparison to c

Figure 11: Validity of the SDE approximation with drift b (6.12) and diffusion coefficient c (6.13). For mass N = 1 and
p = q = 2: (a) We compare the equilibrium group size distributions fdd(x) = ρdd(x)/x and feq; (b) We simulate the
jump process in equilibrium (see Section 3.1) and estimate the variance of size change by averaging along trajectories
with time increment dt = 0.05. We compare the computations to the diffusion coefficient c (scaled by dt), as calculated
from the second order approximation (6.13).

(a) Variance comparison to c1, semi-log plot (b) Variance comparison to c1, linear plot

Figure 12: Fitting of exponential diffusion coefficient (6.15). For mass N = 1 and p = q = 2, we simulate the jump
process in equilibrium (see Section 3.1) and estimate the variance of size change by averaging along trajectories. We
compare the computations to the fitted coefficient c1 in (6.15).

6.3 Model with degenerate noise

So far, we have ascertained that the adequate stochastic method for studying the coagulation-fragmentation
model (2.1) with non-local rates in general and the Niwa model (2.6) in particular is given by a jump process,
as derived in Section 2.2. Finding a stochastic differential equation whose solution is closely related to the
underlying jump process has turned out to be analytically (Section 6.2) and numerically (Section 6.1) cum-
bersome. However, one can still try to find an SDE which models coagulation and fragmentation dynamics
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differently and displays the same or a similar equilibrium distribution as the evolution equation (2.15). In
the following, we consider a stochastic logistic equation and its relation to a nearest-neighbour random walk.

6.3.1 Stochastic logistic equation and gamma distribution

From data plotted in [9, Figure 2] and [30], one can see that both the equilibrium profile (4.1) for the
coagulation and fragmentation model (2.6) and the equilibrium profile (6.5) for Niwa’s SDE (6.1) model
with x̄ = 1 and γ = 1

2 are close to the simple logarithmic size distribution profile

Φ(x) = x−1 exp(−x),

in the range containing most of the empirical data plotted in [38, Figure 5]. Hence, we can also try to find
an SDE, derived from a coagulation-fragmentation model for particles, such that the population distribution

ρ(x) = exp(−x) (6.16)

is the stationary solution of the corresponding Fokker-Planck equation. Pursuing this objective, we consider
the stochastic logistic equation

dXt = rXt

(
1− Xt

k

)
dt+

√
2σXt dWt , X0 > 0 , (6.17)

as suggested by Robert May in [33], and studied in [42]. If an invariant distribution exists, its density ρ is
the solution of the stationary Fokker-Planck equation

0 =
d2

dx2
(σ2x2ρ)− d

dx

(
rx
(

1− x

k

)
ρ
)
. (6.18)

The density must take exactly the form of a power law with exponential cutoff — a gamma distribution,

ρ(x) = f(x;α, β) =
βαxα−1e−βx

Γ(α)
, α =

r

σ2
− 1, β =

rσ2

k
. (6.19)

When r > σ2, ρ is integrable on (0,∞) and βa

Γ(α) is exactly the normalization constant. Note that we recover

the exponential distribution (6.16) by choosing σ = 1, r = 2 and k = 2. When r ≤ σ2, no invariant
distribution exists — instead one expects the process to spread out indefinitely as in the case when r = 0.

In equation (6.17), the degenerate diffusivity proportional to Xt prevents the stochastic process from
hitting 0 — this is a well-known phenomenon orginating with work of Feller [16]. In particular, the criterion
of Theorem 3 of [17] states that the solution Xt of (6.17) can hit 0 if and only if for all λ > 0, all solutions
z(x) of the ODE

Az = λz , A = σ2x2 d2

dx2
+ rx

(
1− x

k

) d

dx
, (6.20)

on (0,∞) are bounded in a neighborhood of 0. To determine whether this is the case, one can change
variables via y = log x and note that the theory of asymptotic behavior of ODEs [6, Section 3.8] allows us
to neglect the term ey(dz/dy) in the limit y → −∞. Since the equation

σ2 d2z

dy2
+ (r − σ)

dz

dy
− λz = 0

has unbounded solutions, we conclude that the solution process Xt for (6.17) naturally stays in (0,∞) and
no further assumption needs to be made about what happens at 0.

We note that the degenerate nature of the diffusion does neither reflect Niwa’s simulation results, which
he used to estimate diffusivity for the SDE model (6.1) of the merging-splitting dynamics [38, Figure 2], nor
the diffusion coefficient c (6.13) for the second order approximation of the jump process. Recall that neither
of these approaches delivered results that justifiably model the merging-splitting dynamics described by the
jump process. In contrast, the logistic SDE model (6.17) consistently describes group-size fluctuations that
occur due to a different mechanism, namely a geometric Brownian motion with logistic drift. Consequently,
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(6.17) is capable of providing a rationale for the appearance of the gamma distribution if the group-size
dynamics are governed by a suitable mechanism.

In order to understand better what kind of mechanism could lead to (6.17), we note that some basic
features observed in merging-splitting dynamics resemble principles expressed in (6.17): The linear multi-
plicative noise term can be interpreted to correspond with fluctuations increasing with the cluster size due
to an increase in “coagulation and fragmentation interactions”. The logistic drift term expresses the domi-
nance of fragmentation for larger sizes and dominance of coagulation for smaller sizes. In the following, we
make these notions more precise by describing how a classical nearest-neighbor random walk on the lattice
(corresponding to small jumps in group size among a discrete set) formally corresponds in the continuum
limit to the stochastic logistic SDE model (6.17).

6.3.2 A lattice random walk approximating the stochastic logistic model

Consider a stochastic process determined exclusively by jumps to the nearest neighbours on the lattice hN
with small grid size h on R+. We let uj(t) denote the probability of an individual to be in a group of size jh
at time t, and suppose that the group size can change only by jumps from jh to jh ± h. We let αj denote
the rate of jumps from jh to jh+ h and let βj denote the rate of jumps from jh to jh− h.

The master equation for the corresponding process on the lattice is

∂tuj = αj−1uj−1 + βj+1uj+i − (αj + βj)uj , j = 1, 2, . . . . (6.21)

We exclude the origin by setting α0 = 0 = β1 and will ignore the boundary henceforth. We can rewrite
equation (6.21) as

∂tuj = −Fj+1/2 + Fj−1/2 , (6.22)

where
Fj+1/2 := αjuj − βj+1uj+1

is the flux from j to j + 1, and, hence,

Fj−1/2 = αj−1uj−1 − βjuj

is the flux from j − 1 to j.
Let us consider how to choose αj and βj to approximate a given SDE

dXt = a(Xt) dt+
√

2b(Xt) dWt , X0 > 0 , (6.23)

on (0,∞). Recall that in the case of (6.17) we have

a(x) = rx− r

k
x2, b(x) = σx. (6.24)

The Fokker-Planck equation associated with the SDE (6.23) is

∂tu = −∂x(a(x)u) + ∂2
x(b(x)u) = ∂x((2bb′ − a)u+ b2∂xu). (6.25)

Deploying a key idea from numerical analysis, we write the modified drift as the difference of positive
quantities

a− 2bb′ = f+ − f− .

For our example (6.24) we can take

f+(x) = rx, f−(x) =
r

k
x2 + 2σ2x .

Now we discretize the Fokker-Planck equation (6.25), using upwinding for the drift:

∂tuj = − 1

h
(f+
j uj − f

+
j−1uj−1) +

1

h
(f−j+1uj+1 − f−j uj)

+
1

h2
(b2j+1/2(uj+1 − uj)− b2j−1/2(uj − uj−1)) .
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This equation takes the conservative form in (6.22) with jumping rates

αj =
1

h
f+
j +

1

h2
b2j+1/2, βj =

1

h
f−j +

1

h2
b2j−1/2.

In the case of the stochastic logistic equation (6.17), with drift and diffusion coefficients given by (6.24), we
take xj = jh and bj+1/2 = b(xj), f

+
j = f+(xj), f

−
j = f−(xj). Hence, we have

αj = rj + σ2j2, βj =
rh

k
j2 + 2σ2j + σ2(j − 1)2 =

rh

k
j2 + σ2(j2 + 1) . (6.26)

The jump rates αj and βj both consist of a term with factor r, corresponding with the drift in (6.17), and a
term with factor σ2, corresponding with the diffusion in (6.17). The terms with factor σ2 are all quadratic
in the discrete size j, as one would expect. The r-term in aj is linear in j and has a stronger relative impact
on jumps to the right the smaller j is, as in (6.17). In the rate βj the r-term is quadratic in j, as in (6.17),
implying that both terms contribute to the increasing rate of jumps to the left in the same way. This gives
a particular lattice random walk which approximates model (6.17) for small h.

Note that a probability density ueq satisfying for all j ∈ N the ratio

αj
βj+1

=
ueq
j+1

ueq
j

(6.27)

is an equilibrium for (6.22). We check this condition for u∗j := ρ(jh) where ρ is the gamma distribution
from (6.19). First, we observe with a first order Taylor expansion at h = 0 that

u∗j+1

u∗j
= e−βh

(
j + 1

j

)α−1

=

(
j + 1

j

)α−1

(1− βh) +O
(
h2
)
.

On the other hand, we expand
αj
βj+1

at h = 0 to obtain

αj
βj+1

=
j2 + (α+ 1)j(

β
σ4h+ 1

)
(j + 1)2 + 1

=
j2 + (α+ 1)j

(j + 1)2 + 1
− βh

σ4

j2 + (α+ 1)j

(j + 1)2 + 1

(j + 1)2

(j + 1)2 + 1
+O

(
h2
)
.

Recall that choosing σ = 1, r = 2 and k = 2 in (6.17) gives the exponential population distribution (6.16).
In this case we obtain α = 1 and

u∗j+1

u∗j
= 1− βh+O

(
h2
)
,

αj
βj+1

=
j2 + 2j

j2 + 2j + 2
− βh

(
j2 + 2j

j2 + 2j + 2

(j + 1)2

(j + 1)2 + 1

)
+O

(
h2
)
. (6.28)

Observe that for any given x = jh ∈ (0,∞) the discrete size j = x
h grows proportionally as h is taken smaller.

Therefore, the equilibrium ratio relation (6.27) is satisfied at x in the continuum limit for (6.28), i.e. when
h→ 0 and j = x

h →∞.
This formal derivation indicates that, in terms of the equilibrium density ρ, the SDE model (6.17) with

suitable parameters approximates the nearest neighbour model with jump rates (6.26). Hence, modelling
the coagulation-fragmentation dynamics by the stochastic logistic equation (6.17) appears coherent with an
underlying locally restricted jump process. This scenario avoids the main problem of the SDE modelling
discussed in Sections 6.1 and 6.2 where the global aspect of the jump dynamics associated with (2.12) cannot
be captured by the continuous solution of a stochastic differential equation.

7 Conclusion

For coagulation-fragmentation models of the form (2.1), we have derived the evolution equation (2.7) for
the population distribution and a formalization of the underlying jump process. The associated algorithm
has been validated by showing its accordance with the equilibrium for (2.6) and its versatility has been
demonstrated by also working with different coagulation and fragmentation rates and a numerical study of
the respective statistical properties.
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Compared to the numerical methods for simulating Niwa-like coagulation and fragmentation models
developed and summarised in [8], the jump process algorithm has been shown to be the most versatile and
dynamically insightful scheme, by tracking the behaviour of individual trajectories. We have seen that, in
particular, the rates can be chosen to be random or polynomial. This opens new, potentially more realistic,
modelling possibilities that can be further investigated in future work.

Although Niwa’s SDE is neither rigorously justified nor particularly well-suited for numerical investiga-
tions, it has proven to be an insightful approach to the problem at hand. In Section 6.2 we have mathemati-
cally derived an alternative drift-diffusion approximation to the jump process whose equilibrium distribution
shows similar behavior as the equilibrium for the jump process but does not coincide. To overcome the in-
herent discrepancy between continuous solutions of SDEs and processes with large jumps, we have indicated
an additional possibility using an SDE with degenerate noise (stochastic logistic model) whose equilibria
exactly take the form of gamma distributions and which can be related to a nearest-neighbour jump model.
A more thorough investigation of that matter is left for future work.

Another future line of investigation could lead to spatialized models where coagulation and fragmentation
rates depend on the location of the groups in space. One could imagine several types of spatial inhomo-
geneties, for example caused by attracting regions with high coagulation activity or volatile regions with high
fragmentation probabilities. Such models would have a more direct correspondence with population dynam-
ics and would give rise to new challenges that could be tackled by a jump process approach as discussed in
this paper.
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[7] M. Deaconu, N. Fournier, and E. Tanré. A pure jump Markov process associated with Smoluchowski’s
coagulation equation. Ann. Probab., 30(4):1763–1796, 2002.

[8] P. Degond and M. Engel. Numerical approximation of a coagulation-fragmentation model for animal
group size statistics. Netw. Heterog. Media, 12(2):217–243, 2017.

[9] P. Degond, J.-G. Liu, and R. L. Pego. Coagulation-fragmentation model for animal group-size statistics.
J. Nonlinear Sci., 27(2):379–424, 2017.

[10] A. Eibeck and W. Wagner. An efficient stochastic algorithm for studying coagulation dynamics and
gelation phenomena. SIAM J. Sci. Comput., 22(3):802–821, 2000.

[11] A. Eibeck and W. Wagner. Stochastic particle approximations for Smoluchoski’s coagulation equation.
Ann. Appl. Probab., 11(4):1137–1165, 2001.

[12] A. Eibeck and W. Wagner. Stochastic interacting particle systems and nonlinear kinetic equations.
Ann. Appl. Probab., 13(3):845–889, 2003.

[13] S. N. Ethier and T. G. Kurtz. Markov processes. Wiley Series in Probability and Mathematical Statistics:
Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1986. Characterization
and convergence.

[14] E. A. Feinberg, M. Mandava, and A. N. Shiryaev. On solutions of Kolmogorov’s equations for nonho-
mogeneous jump Markov processes. J. Math. Anal. Appl., 411(1):261–270, 2014.

[15] W. Feller. On the integro-differential equations of purely discontinuous Markoff processes. Trans. Amer.
Math. Soc., 48:488–515, 1940.

[16] W. Feller. The parabolic differential equations and the associated semi-groups of transformations. Ann.
of Math. (2), 55:468–519, 1952.

[17] W. Feller. Diffusion processes in one dimension. Trans. Amer. Math. Soc., 77:1–31, 1954.

[18] W. Feller. An introduction to probability theory and its applications. Vol. II. Second edition. John Wiley
& Sons, Inc., New York-London-Sydney, 1971.
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