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A globally stable algorithm for the integration of
high-index differential-algebraic systems

Pierluigi Di Franco, Giordano Scarciotti, Member, IEEE , and Alessandro Astolfi, Fellow, IEEE

Abstract— The problem of constraint stabilization and
numerical integration for differential-algebraic systems is
addressed using Lyapunov theory. It is observed that the
application of stabilization methods which rely on a linear
feedback mechanism to nonlinear systems may result in tra-
jectories with finite escape time. To overcome this problem
we propose a method based on a nonlinear stabilization
mechanism which guarantees the global existence and con-
vergence of the solutions. Discretization schemes, which
preserve the properties of the method, are also presented.
The results are illustrated by means of the numerical inte-
gration of a slider-crank mechanism.

Index Terms— Differential-algebraic systems, nonlinear
systems, numerical integration, constraint stabilization.

I. INTRODUCTION

Differential-algebraic systems (also known as DAE systems,
descriptor systems or singular systems) are composite systems
of differential and algebraic equations. The mathematical
modelling of a multitude of engineering systems, such as
mechanical systems [1], chemical processes [2] and electrical
networks [3], is straightforward in the differential-algebraic
formulation: differential equations can be used to describe
each dynamical subsystem independently whereas algebraic
equations allow describing phenomena such as environmental
and topological constraints, mass and flow conservation, and
thermodynamic relations.

Due to the large field of application in which DAE systems
are involved, the stability analysis and control of such systems
have gained great attention from the research community. In
the linear case, DAE systems have been studied in [4], in which
several concepts from the theory of dynamical systems have
been extended to this class of systems. Then [5] and [6] have
provided a Lyapunov-based analysis for linear DAE systems. In
[7] the stability analysis of DAE systems has been performed
by means of linear matrix inequalities, yielding necessary
and sufficient conditions for the linear case and sufficient
conditions for the nonlinear case. One of the first studies in
the control of nonlinear DAE systems has been presented in
[8], in which global stabilization and tracking problems for
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constrained mechanical systems have been solved by means
of force feedback, while local results have been obtained by
means of a linear controller. Many existing control results for
DAE systems rely on the derivation of appropriate state-space
realizations of the constrained system. For example [9] has
studied the feedback stabilization problem for nonlinear DAE
systems by means of a change of coordinates which transforms
the DAE system in the so-called normal form and local results
have been obtained by linearization of the transformed system.
Recently, the zero dynamics form for DAE systems has been
introduced in [10], see also [11].

Although the modelling process is simplified by the use
of differential-algebraic equations, numerous complications
arise in their numerical integration1. An important concept
which provides a measure of these difficulties is the concept
of index. Loosely speaking, the index indicates the number
of time differentiations required to reduce a DAE system to a
system of ordinary differential equations (ODEs), see [12] for a
precise definition. While numerical methods for the integration
of index-1 DAE systems are well-established, see e.g. [13], [14]
and [15], for high-index systems direct integration methods are
yet to be developed. Good reviews on some of the approaches
to the integration of high-index DAE systems are given in [16]
and [17].

Coordinates reduction techniques are used to reduce DAE
systems to a minimum set of ODEs, which can then be directly
integrated by means of classical methods. Such techniques
include Maggi’s formulation, see [18], [19] and [20], the
Index-1 formulation, see [21], [22], [23] and [24], the null-
space formulation [22], and Udwadia and Kalaba’s formulation,
see [25] and [26]. However, when numerically integrating the
resulting ODEs, the initial conditions must be consistent with
the original set of algebraic equations and with a finite number
of their time derivatives. In addition, round-off errors introduced
by the numerical solver may yield a constraint violation. Since
for DAE systems the solution manifold2 is invariant but not
attractive, see [27], any constraint violation due to inconsistent
initial conditions or numerical approximations may make the
solution drift away from the manifold: this is called drift
phenomenon or constraint drift. Hence, several methods have
been proposed to guarantee that the solution remains in (or
close to) the solution manifold. The paper [28] has proposed an

1Depending on the context, we use the term integration to mean either the
evaluation of solutions of differential-algebraic equations or the construction
of numerical algorithms for such an evaluation.

2See Remark 1 for a precise definition.
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index reduction technique in combination with the Pantelides’s
algorithm [29] to find consistent initial values. The result of
the reduction process is an augmented, but consistent, index-1
DAE system, which can be directly integrated by means of
index-1 methods. Since the required differentiations are carried
out analytically rather than numerically, the technique has an
accuracy comparable to that of solving a state-space formulation
of the problem. However, the reduction comes at the cost of
a higher analytical computation due to the higher number of
equations and variables involved. Projection methods aim to
project the solution onto the solution manifold by means of an
iterative process, see [30] and [31]. As a drawback, the adaptive
and iterative character of these methods make them unsuited
for real-time simulations. To guarantee that the projection step
is successfully completed in a priori fixed sampling interval,
[32] has proposed and discussed a non-iterative projection
strategy yielding a bound for the constraint error which is
independent of time. Other approaches, known as stabilization
methods, are based on ideas and tools borrowed from control
theory. They aim to avoid drift by adding extra terms that,
although vanishing on the solution manifold, have the effect
of making this manifold asymptotically attractive. The most
widely used method of this kind is the Baumgarte’s method
[33], which is based upon the principle of feeding back a
linear combination of all the constraint errors. The choice of
the feedback parameters depends on several factors, such as
the model and the numerical solver used. A direct comparison
of the aforementioned methods, with a list of advantages and
disadvantages and a case study, can be found in [34] and [35].

Some attempts to improve Baumgarte’s method have been
presented in [36], in which an adaptive computation of the
feedback parameters has been proposed, or in [37], in which
the integral of the constraint violation has been added to the
feedback law. A generalization of the Baumgarte’s method
for nonlinear systems is presented in [38], in which stability
properties of the solution manifold along with discretization
schemes which preserve such properties have been derived
using classical Lyapunov theory. An interpretation of the
Baumgarte’s method as an output nullifying feedback control
has been provided, in the framework of Lie algebraic control
theory, in [39]. Recently, [40] has proposed a nonlinear
stabilization method for dynamical systems on manifolds
which preserves first integrals of the system, such as the
kinetic energy or the module of the angular momentum for
mechanical systems, for any ordinary numerical integrator.
However, stabilization methods which rely on a linear feedback
mechanism may lead to “closed-loop systems” with solutions
having finite escape time. To the best of our knowledge none
of the existing methods addresses this issue.

It is important to observe that stabilization methods add extra
terms to the equations which affect the solution’s trajectory
off the solution manifold. Depending on the stabilization
method and on the constraint error, stability properties of the
equilibrium points of the DAE system may be changed, result-
ing in possibly unexpected non-physical behaviour. Moreover,
additional instabilities may arise whenever a time discretization
of the system is performed, i.e. whenever the integration method
is replaced by a numerical algorithm. With Baumgarte’s method,

for instance, the trajectory of the discretized system may drift
away from the solution manifold even though the manifold
is asymptotically stable for the underlying ODE system in
the continuous-time domain. Thus, it is of interest to ensure
that stability properties of the solution manifold and of the
equilibrium points are preserved when discretization schemes
are applied. It is worth stressing, therefore, that Baumgarte’s
method, and all its variations, rely on notions (and tools) from
control theory, hence improvements can be obtained using
ideas and tools borrowed from control theory.

In this paper the problems of constraint stabilization and
numerical integration for DAE systems with high-index are
addressed by means of concepts borrowed from classical
geometric control theory, such as the notions of relative degree
and zero dynamics (see [41] for an introduction to these
topics), and by means of classical Lyapunov theory. Popular
stabilization methods such as Baumgarte’s method, or the
one in [38], are recast in the proposed framework and are
shown to potentially lead to systems exhibiting solutions with
finite escape time. On this basis, we propose a nonlinear
stabilization method which ensures the existence of the solution
for all times. In addition, in the case in which the underlying
DAE system has an equilibrium point which is asymptotically
stable, we show that the proposed method preserves this
property in a neighborhood of the solution manifold. To
avoid instabilities due to time discretization we present two
discrete-time schemes and conditions to select the sampling
time such that the properties of the method are preserved.
The results are illustrated via a step-by-step algorithm for the
simulation of DAE systems and validated with an example.
Preliminary results have been published in [42], [43] and
[44]. The additional contributions of the present paper are
as follows: the results are presented in a more organized way
with formal proofs; two popular stabilization methods have
been showed to potentially lead to solutions which may exhibit
finite escape time; the simulation algorithm is revisited and
complemented by discretization schemes; a new worked-out
example with complete calculations and comparisons with two
popular stabilization methods is provided.

The rest of the paper is organized as follows. In Section II we
recall some general concepts of the theory of DAE systems and
we give some preliminary results. In Section III we study the
problem of constraint stabilization and main results are derived
in the continuous-time domain. In Section IV we present
two discretization schemes which preserve the properties
highlighted in Section III. Moreover, we summarize the
proposed results in an algorithm for the simulation of nonlinear
DAE systems. In Section V, the method is validated with an
example (a slider-crank mechanism) and simulation results are
discussed. Finally Section VI reports our conclusions.

Notation. We use standard notation. The symbols R≥0 and
N≥0 indicate the sets of non-negative real and integer numbers,
respectively. The superscript > represents the transposition
operator. Given a vector x, the symbol ‖x‖ denotes its L2

norm. Given a map f : Rn → R, we use equivalently the
symbols ∇xf and ∂f

∂x to denote the row vector of partial
derivatives of f with respect to the vector x ∈ Rn. The symbol
Lfh denotes the Lie derivative of the function h along the
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vector field f , while Lkfh = Lf

(
Lk−1
f h

)
, provided all partial

derivatives exist. The symbol y(k)(t) indicates the k-th time
derivative of the function y at time t, provided it exists. Given
a manifold Z , the symbol f |Z indicates the restriction of f to
Z . All functions and mappings are assumed differentiable as
many times as needed.

II. PRELIMINARIES

The objective of this section is to introduce some prelimi-
naries on DAE systems and define a formalism to study the
stability properties of such systems. The framework presented
is useful to highlight some limitations of a class of stabilization
methods for the integration of DAE systems based on linear
control theory and represents the basis to develop nonlinear
discretization schemes which remove the aforementioned
limitations.

Consider the DAE system in semi-explicit3 form

ẋ = f(x) + g(x)λ, 0 = h(x), (1)

where x(t)∈Rn is the state vector, λ(t)∈Rm is the algebraic
variable, and f :Rn→Rn, g :Rn→Rn×m and h :Rn→Rm are
smooth vector fields and mappings. For simplicity of notation
we assume, in the remainder of the paper, that m = 1, if not
stated otherwise. We also assume that the DAE system (1) is
solvable in the sense of Definition 2.2.1 in [46]. Note that the
form in (1) contains a general class of DAE systems which
includes, for example, mechanical systems with holonomic and
nonholonomic constraints [47], and chemical systems described
by lumped parameters models or via spatial discretization of the
underlying partial differential equations [2]. A concept which
plays an important role in the classification and behaviour of
DAE systems is the one of differentiation index.

Definition 1. [46] The differentiation index ν of the DAE
system (1) at a point (x◦, λ◦) is equal to the minimum number
of times it is necessary to differentiate all or part of the
equations in (1) with respect to t to determine ẋ and λ̇ as
continuous functions of x and λ in a neighborhood of (x◦, λ◦).

Several notions of index have been defined for DAE systems,
see e.g. [12] for a detailed explanation. Here we recall the fact
that for the DAE system in semi-explicit form (1) the perturba-
tion index, the tractability index and the geometric index are
numerically equal to the differentiation index, although these
are defined under different technical (smoothness) assumptions.
Finally, the strangeness index, when defined, is equal to ν − 1.
In the remaining of the paper, the term index refers to the
differentiation index. Observe that the description (1) represents
a class of DAE systems with index ν > 1. This is without
loss of generality since index-1 DAE systems are structurally
similar to ordinary differential systems and numerical methods
for their integration are well-established (see [13], [14] and
[15]), thus they are not considered in the present study.

To study the problem of stabilization of manifolds it is
helpful to consider the DAE system (1) as an input-affine
nonlinear system in which the “input” λ(t) and the initial

3See [45] for the transformation of fully-implicit DAE systems to the
semi-explicit form in (1) and vice versa.

conditions x(t0) = x0 are consistent with the conditions that
the “output” h(x) and its time derivative up to the order ν− 1,
i.e, y(i)(t) = h(i)(x(t)), i = 0, . . . , ν − 1, are identically zero
for all times. Stabilization of manifolds is a well-established
area of research in the framework of differential geometry,
see e.g. [41]. In particular, attempts to study DAE systems in
this framework have been made in [9], which has studied the
feedback stabilization problem for nonlinear DAE systems by
means of a change of coordinates which transforms the DAE
system in the so-called normal form. With reference to [41],
it is convenient to introduce the concept of relative degree,
which is here adapted in the context in which the algebraic
equation in (1) is considered as an output.

Definition 2. The DAE system (1) is said to have relative
degree r at a point x◦ if

(i) LgLkfh(x) = 0 for all x in a neighborhood of x◦ and all
k < r − 1;

(ii) LgLr−1
f h(x◦) 6= 0.

The following preliminary result shows that there exists a
relation between the concepts of index and relative degree.

Lemma 1. Let ν and r be the index and the relative degree
of the DAE system (1), respectively, and assume these are
well-defined at (x◦, λ◦) and x◦, respectively. Then ν = r + 1.

Proof. Assume that system (1) has relative degree r at x◦.
Differentiating with respect to time the output y = h(x) yields
y(k)(t) = Lkfh(x(t)) for all k < r and for all t for which x(t)
is defined and close to x◦, and

y(r)(0) = Lrfh(x◦) + LgL
r−1
f h(x◦)λ(0). (2)

Hence, the relative degree r is equal to the number of times the
output y has to be differentiated to have the input λ explicitly
appearing in equation (2). Since y(i)(t)=0, for i≥0 and for all
t for which x(t) is defined and close to x◦, then, from (2), we
obtain 0=Lrfh(x)+LgL

r−1
f h(x)λ and, since LgLr−1

f h(x) 6=0
in a neighborhood of x◦, we can compute λ as a function of
x, i.e.

λ = −
(
LgL

r−1
f h(x)

)−1

Lrfh(x) (3)

and λ◦ = −
(
LgL

r−1
f h(x◦)

)−1

Lrfh(x◦). Differentiating once

more equation (3) we obtain the expression of λ̇ as function
of x and λ, proving the claim.

The existence of a well-defined relative degree for the DAE
system (1) implies the existence of a local diffeomorphism
which induces on system (1) a special structure, the so-called
normal form [41], as described in the following statement. Note
also that we remove, for simplicity, reference to the points
(x◦, λ◦) or x◦. All statements are however locally defined
around a point (x◦, λ◦) or x◦.

Proposition 1. Consider the system (1) and assume it has
index ν = r + 1, r ∈ N>0. Consider the mapping z = Φ(x),
defined as

Φ(x) =
(
h(x), Lfh(x), . . . , Lr−1

f h(x), φr+1, . . . , φn

)>
,

(4)
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in which the mappings φi : Rn → R, for i=r+1, . . . , n are
such that the Jacobian of Φ is invertible and Lgφi=0. Then
system (1) can be written in the coordinates z=(ξ>, η>)>=
Φ(x), as

ξ1 = 0, ξ̇1 = ξ2, . . . , ξ̇r−1 = ξr, ξ̇r = b(ξ, η) + a(ξ, η)λ,

η̇ = q(ξ, η),
(5)

where ξi(t) ∈ R, for i = 1, . . . , r, ξ = (ξ1, . . . , ξr)
>, η(t) ∈

Rn−r and a, b and q are smooth mappings such that a(0, 0) 6=0.

Proof. Observe that, by definition, the algebraic subsystem
of (1) can be written in the coordinates z = Φ(x) as z1 =
ξ1 = 0. On the other hand, the differential subsystem of (1)
can be written as the one in (5), see Proposition 4.1.3 in
[41]. Therefore, the claim follows by appending the algebraic
equation to the differential subsystem.

Remark 1. The solution manifold of system (5) is

M =
{

(ξ>, η>)> : ξ = 0
}
, (6)

and there exists a unique smooth mapping

λ(ξ, η) = − b(ξ, η)

a(ξ, η)
, (7)

such that ξ̇r(t) = 0 for all t, which coincides with equation
(3) expressed in the coordinates z = (ξ>, η>)> defined in
Proposition 1. Note also that the η subsystem of (5) restricted
to the solution manifold, i.e.

η̇ = q(0, η), (8)

coincides with the zero dynamics of the auxiliary system ẋ =
f(x) + g(x)λ with input λ and output y = h(x). We therefore
refer to (8) as the zero dynamics of the DAE system (1).

A direct consequence of the reformulation in Proposition 1 is
that the stability properties of the equilibrium points of (1) can
be studied in the special form (5), as shown in the following
theorem.

Theorem 1. Suppose that the DAE system (1) has index
1 < ν ≤ n. Stability properties, see [48, Definition 2.3], of
the equilibrium points of system (1) are equivalent to stability
properties of the zero equilibrium of the zero dynamics (8).

Proof. From Proposition 1 there exists a change of coordinates
which transforms system (1) in the normal form (5). In partic-
ular, it is always possible to choose the coordinates Φ(x) =

(ξ1, . . . , ξr, η) such that Φ(x◦) =
(
ξ◦1 . . . ξ◦r (η◦)

>
)>

= 0.

Note now that for any (ξ(0)>, η(0)>)> ∈M, where M is
given in (6), ξi(t) = 0 for all t ≥ 0, for i = 1, . . . , r, while
the subsystem of (5) in the variable η reduces to the zero
dynamics (8). As a consequence, the stability properties of the
equilibrium point x◦ are equivalent to the stability properties
of the equilibrium point η◦, proving the claim.

Remark 2. System (8) has dimension equal to (from Lemma 1)

n − r = n − ν + 1, where ν − 1 is the actual4 number
of constraints acting on the system. Thus (8) is a local
representation of system (1) with the minimum number of
independent coordinates.

Remark 3. The case ν > n implies the existence of at least
n constraints acting on the system. This means that the state
belongs (generically) to a zero dimensional manifold, or the
equations have no solution.

Remark 4. In the general case in which m > 1, the existence
of a well-defined (vector) relative degree cannot be inferred
from the well-definiteness of the differential index. However,
if x◦ is a regular point of the zero dynamics algorithm [41],
the application of such algorithm leads to the calculation of a
maximal zeroing submanifold onto which a zero dynamics can
be defined. Moreover, the steps of the zero dynamics algorithm
are helpful in defining a local diffeomorphism which transforms
the DAE system (1) in the so-called global normal form, which
reduces to the form (5) in the case m = 1. Although, in general,
the algebraic variable appears explicitly in the η subsystem of
(5), there always exists a smooth5 λ = λ∗(ξ, η), solution of
the system of equations ξ̇ = 0, which renders the η subsystem
function of ξ and η only, namely η̇ = q(ξ, η). If, in addition,
the (vector) relative degree is well defined, then the mapping
λ∗(ξ, η) is unique.

III. CONSTRAINT STABILIZATION

The objective of this section is to address the problem of
integration of DAE systems. Typical problems arising when
DAE systems are numerically integrated include inconsistent
initial conditions, round-off errors and constraint drift. Popular
methods to avoid these issues, such as Baumgarte’s method
[33], rely on ideas borrowed from linear feedback theory. We
show that the application of such methods may lead to systems
with solutions having finite escape time. Nonlinear “stabilizer”
are then designed to cope with this problem. Moreover, in
the case in which an equilibrium point of the DAE system
is asymptotically stable, the proposed method preserves this
property in a neighborhood of the solution manifold. All the
aforementioned problems and objectives are recast within the
formalism presented in Section II and are studied, initially, in
the continuous-time domain.

Consider the DAE system (5) with index ν = r+1, r ∈ R>0.
Usual index reduction techniques (see [21], [22] or [25]) would
normally impose ξ̇r = 0 and directly integrate the differential
subsystem in (5). However, the solution of (5), when ξ̇r = 0
and the equation ξ1 = 0 is disregarded, is such that ξ1(t) =∑r
i=1

ti−1

(i−1)!ξi(t̄) for all t ≥ t̄: it is clear that the violation of the
constraints would grow unbounded if r > 1. This describes the
drift phenomenon or constraint drift and reflects the property of
the manifold M of being invariant but not attractive, see [27].

4This includes the “hidden” constraints which can be revealed by repeated
time-differentiations of the original set of algebraic equations.

5In the general case in which m > 1, we use the symbol ξ to indicate the
column vector col

(
ξ1, . . . , ξm

)
, in which ξj = col(ξj1, . . . , ξ

j
rj ), ξ

j
i ∈ R

for i = 1, . . . , rj and j = 1, . . . ,m, rj = νj − 1 and νj is the index of the
j-th component of the vector h(x). However, with the aim of maintaining the
notation simple, we drop the superscript j for the case m = 1.
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Stabilization methods aim to cope with the constraint drift by
feeding back the constraint violation. In general, stabilization
methods based on linear feedback directly integrate differential
systems described by equations of the form

ξ̇ = Aξ, η̇ = q(ξ, η), (9)

in place of system (5), where A ∈ Rr×r is Hurwitz. A popular
stabilization technique which is consistent with the above
structure is Baumgarte’s [33], which replaces the equation
ξ̇r = 0 with the equation

ξ̇r = −
r−1∑
j=1

αjξj , (10)

in which the coefficients αj , for j = 1, . . . , r, are such that
the roots of the polynomial σ(τ) = τ r +

∑r−1
j=1 αjτ

j , in
the indeterminate τ have all negative real part. Despite the
conceptual simplicity of such a method, this may be inadequate
for nonlinear DAE systems. To see this point, consider the
following example.

Example 1. Consider the DAE system with a linear stabilizer
a-la Baumgarte described by the equations

ξ1 = 0, ξ̇1 = −βξ1, η̇ = −η + ξ1η
2, (11)

with β > 0. Note that if ξ1(0) 6= 0 then the η subsystem
becomes η̇ = −η + ξ1(0)e−βtη2, from which it is clear that
for any β > 0 there exists a scalar M > 0 such that, for all
η(0) > M , the state η(t) escapes to infinity in finite time.
This implies that the use of linear stabilization methods for
nonlinear DAE systems may be inadequate.

Remark 5. The finite escape time of solutions may arise even
with stabilization methods specifically designed for nonlinear
DAE systems. For instance, a generalization of Baumgarte’s
method for nonlinear systems is presented in [38]6. This method
can be described, in some cases, by equations of the form (9).
To see this, consider the reduced index-1 DAE system

ẋ = f̂(x), 0 = ĥ(x), (12)

where the mapping f̂ has been obtained from the differential
subsystem in (1) with the algebraic variable eliminated, i.e.

f̂(x) = f(x) + g(x)λ∗(x), (13)

with λ∗(x) given in (3) and

ĥ(x) =
[
h(x) . . . Lr−1

f̂
h(x)

]>
. (14)

The reference [38] considers the family of stabilization methods
given by

ẋ = f̂(x)− γF (x)ĥ(x), (15)

where γ > 0,

F (x) = D(x)(C(x)D(x))−1, C(x) =
∂ĥ(x)

∂x
, (16)

and D(x) chosen such that C(x)D(x) is nonsingular, e.g.

6Note that this is employed in the popular software MathWorks MultibodyTM

(formerly SimMechanicsTM) for real-time simulations, see [49].

D(x)=C>(x) (observe that C(x) is full-rank). Note that system
(15) can be expressed in the coordinates z=(ξ, η)=Φ(x) as

ż = [∇xΦ(x)ẋ]|x=Φ−1(z) =
[
∇xΦ(x)(f(x)+

+g(x)λ∗(x))− γ∇xΦ(x)F (x)ĥ(x)
]∣∣∣
x=Φ−1(z)

.
(17)

Let ∇xΦ(x) =
[
J̄>(x) Ĵ>(x)

]>
, where J̄ : Rn → Rr×n

is the submatrix composed of the first r rows of ∇xΦ(x) while
Ĵ : Rn → Rn−r×n is the submatrix composed of the last n−r
rows of ∇xΦ(x). Since ĥ(Φ−1(ξ, η)) = ξ, and λ∗(Φ−1(ξ, η))
is such that (7) holds, then system (17) in the coordinates
z = (ξ, η) becomes

ξ̇ = Rξ − γJ̄(Φ−1(ξ, η))F (Φ−1(ξ, η))ξ,

η̇ = q̃(ξ, η)− γĴ(Φ−1(ξ, η))F (Φ−1(ξ, η))ξ.
(18)

where q̃ : Rn → Rn−r and

R =


0 1 0 . . . 0

0 0 1
. . .

......
...

. . . . . . 0
1

0 0 . . . 0

 . (19)

Note now that in the special case in which the mapping ĥ(x) is
linear, which is typical for instance in mechanical systems with
linear holonomic constraints (see the example in Section VI),
it follows from equations (16) that the matrix F (x) is constant.
Moreover, the matrix J̄(ξ, η) is constant by definition thus,
as a consequence, system (18) can be described by equations
of the form (9), with A = R − γJ̄F and q(ξ, η) = q̃(ξ, η) +
−γĴ(Φ−1(ξ, η))Fξ, proving that the solutions arising from
the method proposed in [38] may result in trajectories which
may have finite escape time.

Remark 6. If ξ(t) 6= 0 for some t the trajectory of system (9)
is different from the trajectory of the DAE system (5). Indeed,
under the stated smoothness assumptions, the η subsystem of
(9) can be rewritten as7

η̇ = q(ξ, η) = q0(η) +

r∑
i=1

qi(ξ, η)ξi, (20)

where q0(η) = q(0, η) is the mapping in (8) and qi : Rr ×
Rn−r → Rn−r, for i = 1, . . . , r are smooth mappings. From
equation (20) it is clear that if ξ(t̄) 6= 0 for some t̄ ≥ 0 the
solution η(t), for t ≥ t̄, is affected by an external disturbance
which depends on the mappings qi for i = 1, . . . , r and on
the matrix A in (9). Observe that not only such disturbances
may lead to the finite escape time phenomenon in the worst
case scenario, but they may also “destabilize” trajectories
which are supposed to converge to an equilibrium. Based
on this observation, for the special case in which the DAE
system (1) has an asymptotically stable equilibrium point, an
additional objective of the stabilization method is to preserve
the convergence of the trajectories initialized in a neighborhood
of the solution manifold.

7See Hadamard’s Lemma [50].
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A. Nonlinear stabilization

Motivated by the previous considerations we present a
nonlinear version of the method captured by system (9)
overcoming the indicated limitations. Consider the system

ξ̇i = ki(ξ, η)ξi, η̇ = q0(η) +

r∑
i=1

qi(ξ, η)ξi, (21)

where ξi(t) ∈ R, for i = 1, . . . , r, η(t) ∈ Rn−r, ξ =
(ξ1, . . . , ξr)

>, q0 and qi, for i=1, . . . , r, defined in (20) and

ki(ξ, η) = −δ
2

2
‖qi(ξ, η)‖2 − ε, (22)

for i = 1, . . . , r, with ε > 0 and δ > 0. For such a system the
following result holds.

Lemma 2. Consider systems (5) and (21). Assume system
(5) has index ν = r + 1, with r ∈ N>0. Suppose (ξ(0), η(0))
belongs to the solution manifold M defined in (6). Then any
solution of (5) is a solution of (21) and vice versa.

Proof. On the solution manifoldM of system (5) the equalities

ξ = 0, λ = − b(0, η)

a(0, η)
, (23)

hold, see equation (7). Note now that

q(ξ, η) = q0(η) +

r∑
i=1

qi(ξ, η)ξi, (24)

with q0(η) = q(0, η). Then, by replacing (23) and (24) in (5)
and (23) in (21) yields the claim.

Since the modified system (21) produces the same trajectory
as (5) on the manifold M, we can legitimately modify the
dynamics outside M to render M attractive. To this end we
state the main result of this section.

Theorem 2. Consider system (21). Assume there exists a pos-
itive definite and radially unbounded function W : Rn−r→ R
such that

∂W (η)

∂η
q0(η) ≤ γW (η) + γ0, (25)

for some γ ∈ R and γ0 ∈ R, and

sup
η∈Rn−r

∥∥∥∂W (η)
∂η

∥∥∥2

W (η)
≤W < +∞, (26)

for some W > 0. Then there exist δ̄ > 0 and ε̄ > 0 such that
for all δ ≥ δ̄ and ε ≥ ε̄ the following statements hold.

1) η(t)and ξ(t) exist for all η(0)∈Rn−r, ξ(0)∈Rr and t≥0;
2) lim

t→∞
ξ(t) = 0, for all ξ(0) ∈ Rr.

Proof. To prove claim 1) consider the positive definite function

V (ξ, η) = W (η) +

r∑
i=1

ξ2
i

2
. (27)

Its time derivative along the trajectories of the system is

V̇ (ξ, η) ≤ ∂W (η)

∂η
q0(η) +

1

2δ2

∥∥∥∥∂W (η)

∂η

∥∥∥∥2

+

+
δ2

2

r∑
i=1

‖qi(ξ, η)‖2 ξ2
i +

r∑
i=1

ki(ξ, η)ξ2
i ,

for any δ > 0 and, by replacing the expression of ki(ξ, η)
given in (22),

V̇ (ξ, η) ≤ ∂W (η)

∂η
q0(η) +

1

2δ2

∥∥∥∥∂W (η)

∂η

∥∥∥∥2

− ε
r∑
i=1

ξ2
i . (28)

Note now that under assumption (26) it is always possible to
choose δ̄ such that

δ̄2 =
1

2β
W, (29)

where β > 0. Without loss of generality, assume that γ > 0 in
equation (25). Hence, using assumption (25) in equation (28),
for any δ ≥ δ̄ and ε ≥ 0, yields

V̇ (ξ, η)≤ ∂W(η)

∂η
q0(η)+βW (η)−ε

r∑
i=1

ξ2
i ≤W (η)(β+γ)+γ0+

−ε
r∑
i=1

ξ2
i <

(
W (η)+

r∑
i=0

ξ2
i

2

)
(β+γ)+γ0 =(β+γ)V (ξ, η)+γ0.

(30)

From the last inequality it follows that V (ξ, η) ≤
V (ξ(0), η(0)) e(β+γ)t+γ0t, from which it is clear that V (ξ, η)
exists for all t ≥ 0. As a consequence also ξ(t) and η(t) exist
for all t ≥ 0, proving claim 1). To prove claim 2) consider the
Lyapunov function candidate

Ṽ (ξ) =

r∑
i=1

ξ2
i

2
(31)

and the ξ subsystem of (21). The time derivative of the
Lyapunov function along the trajectories of the ξ subsystem is

˙̃
V (ξ, η)=

r∑
i=1

ki(ξ, η)ξ2
i =−δ

2

2

r∑
i=1

‖qi(ξ, η)‖2ξ2
i − εξ2

i < 0,

for all ξi 6= 0, thus proving claim 2). Note that the ξ subsystem
is well-defined by claim 1).

The global results of Theorem 2 are indeed conceptually
appealing but require the explicit knowledge of a function
W which satisfies assumptions (25) and (26) globally. This
difficulty can be partially overcome if instead of achieving
global results one is interested in local results. For the case in
which γ < 0 and γ0 = 0 in equation (25), the following result
shows that the statements of Theorem 2 may be recast in a
local fashion. Moreover, an additional insight on the stability
properties of the η subsystem is given.

Theorem 3. Consider system (21). Let B ⊆ Rn−r be a closed
set which contains the origin. Assume there exists a positive
definite function W such that equation (25) holds for all η ∈ B
and for some γ < 0 and γ0 = 0, and

max
η∈B

∥∥∥∂W (η)
∂η

∥∥∥2

W (η)
≤W < +∞, (32)

for some W > 0. Then there exists a neighborhood of the
origin U ⊆ Rn and δ̄ > 0, ε̄ > 0 such that for all δ ≥ δ̄ and
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ε ≥ ε̄ the following statements hold.
1) η(t) and ξ(t) exist for all (η(0), ξ(0)) ∈ U and t ≥ 0;
2) lim

t→∞
ξ(t) = 0, for all (η(0), ξ(0)) ∈ U ;

3) lim
t→∞

η(t) = 0, for all (η(0), ξ(0)) ∈ U .

Proof. The proof of claim 1) follows the same steps of the proof
of Theorem 2. Let β < −γ in equation (29) and ε̄ ≥ −γ − β,
then equation (30) yields, locally,

V̇ (ξ, η) < (β + γ)V (ξ, η), (33)

and V (ξ, η) < V (ξ(0), η(0)) e(β+γ)t, from which it is clear
that, since (η(t), ξ(t)) ∈ U for all t ≥ 0, then V (ξ, η) exists
for all t ≥ 0. As a consequence also ξ(t) and η(t) exist for all
t ≥ 0, proving claim 1). Since β + γ < 0, the proof of claims
2) and 3) directly follow from equation (33).

Remark 7. If B = Rn−r and W (η) is radially unbounded
then statements 1), 2) and 3) in Theorem 3 hold globally.

Remark 8. For the general case in which m > 1 and provided
that the DAE system (1) has a well-defined (vector) relative
degree, we consider the system

ξ̇ji = kji (ξ, η)ξji , j = 1, . . . ,m, i = 1, . . . , rj ,

η̇ = q0(η) +

m∑
j=1

rj∑
i=1

qji (ξ, η)ξji ,

in place of (21), where qji , for i = 1, . . . , rj and j = 1, . . . ,m,
are smooth mappings and

kji (ξ, η) = −δ
2

2
‖qji (ξ, η)‖2 − ε. (34)

Observe also that the claims of Theorems 2 and 3 remain valid.
The proof follows the same steps as the case m = 1, in which
the functions (27) and (31) are replaced by

V (ξ, η)=W (η) +

m∑
j=1

rj∑
i=1

(
ξji

)2

2
and Ṽ (ξ)=

m∑
j=1

rj∑
i=1

(
ξji

)2

2
.

Note that if stability properties of the DAE system (1) are
known in advance, these can be exploited to verify condition
(25), as stated in the following corollary.

Corollary 1. If the equilibrium point x◦ is a globally asymp-
totically stable equilibrium point for system (1) then condition
(25) of Theorem 2 is satisfied with strict inequality for γ0 = 0
and any γ ≥ 0.

Proof. If the equilibrium point x◦ of system (1) is globally
asymptotically stable then the equilibrium point η◦ of the
subsystem η̇ = q(0, η) is globally asymptotically stable, see
Theorem 1. Hence, there exists a Lyapunov function W (η)

such that Ẇ (η) = ∂W (η)
∂η q(0, η) < 0 for all η ∈ Rn−r, proving

the claim.

Remark 9. The algebraic variable λ can be recovered by
observing that the ξr equation in (21) is equal to the ξr
equation in (5) with λ(ξ, η) = kr(ξ,η)ξr−b(ξ,η)

a(ξ,η) . Observe also
that the previous expression coincides with (7) on the solution
manifold M.

The assumptions of Theorems 2 and 3 and the stabilizer
(22) require the explicit knowledge of the mappings q0(η) and
qi(ξ, η), for i = 1, . . . , r, which in turn require the calculation
of the inverse mapping x = Φ−1(z). These steps can be avoided
as indicated in the following statements.

Lemma 3. The claims of Theorems 2 and 3 remain valid if
the condition (25) is replaced by

∂W (η)

∂η

(
q(ξ, η)−

r∑
i=1

pi(ξ, η)ξi

)
≤ γW (η) + γ0, (35)

for some pi : Rr × Rn−r → Rn−r, and the gains (22) are
replaced by

ki(ξ, η) = −δ
2

2
‖pi(ξ, η)‖2 − ε. (36)

Proof. Consider the positive definite function (27). Its time
derivative along the trajectory of system (21) can be written as

V̇ (ξ, η)=
∂W (η)

∂η
q̂(ξ, η)+

∂W (η)

∂η

r∑
i=1

pi(ξ, η)ξi+

r∑
i=1

ki(ξ, η)ξ2
i ,

where q̂(ξ, η) = q(ξ, η) −
∑r
i=1 pi(ξ, η)ξi. The rest of the

proof follows the same steps of the proof of Theorems 2 and
3, in which q0(η) and qi(ξ, η), for i = 1, . . . , r, are replaced
by q̂(ξ, η) and pi(ξ, η), respectively.

Remark 10. The condition (35) does not require the calcu-
lation of the zero dynamics q0(η). However, observe that if
the mappings pi(ξ, η) are equal to qi(ξ, η) then equations (35)
and (36) reduce to (25) and (22), respectively.

The formulation in (21) still requires the inversion x =
Φ−1(ξ, η). In the next result, we show that the results in
Theorems 2 and 3 can be derived without inverting any
coordinate transformation. To this end, let

Φ(x) =
(
χ(x)> ψ(x)>

)>
, (37)

where χ(x) =
(
h(x), Lfh(x), . . . , Lr−1

f h(x)
)>

and

ψ(x) = (φr+1, . . . , φn)
>, in which the mappings φi : Rn →

R, for i = r + 1, . . . , n are such that the Jacobian of Φ is
invertible and Lgφi = 0. Consider the nonlinear system

ẋ = f̂(x) + c(x), (38)

with f̂(x) given in (13) and

c(x) =

(
∂Φ(x)

∂x

)−1(
(S(x)−R)χ(x)

0

)
, (39)

in which

S(x) = diag

− δ22 ‖∇xψ(x)s1(x)‖2 − ε
. . .

− δ
2

2 ‖∇xψ(x)sr(x)‖2 − ε

 , (40)

δ > 0, ε > 0 and si : Rn → Rn, for i = 1, . . . , r to be defined
and R given in (19). Then the following result holds.

Theorem 4. Consider the nonlinear system (38). Assume there
exist mappings ψ and si, for i = 1, . . . , r, and a positive
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definite and radially unbounded function W (ψ(x)) such that
the Jacobian of Φ given in (37) is invertible and

∂W (ψ(x))

∂x

(
f̂(x)−

r∑
i=1

si(x)Li−1
f h(x)

)
≤

≤ γW (ψ(x)) + γ0,

(41)

for some γ ∈ R and γ0 ∈ R, and

sup
x∈Rn

∥∥∥∂W (ψ(x))
∂ψ(x)

∥∥∥2

W (ψ(x))
≤W < +∞, (42)

for some W > 0. Then there exist δ̄ > 0 and ε̄ > 0 such that,
for all δ ≥ δ̄ and ε ≥ ε̄, the following statements hold.

1) x(t) exists for all x(0) ∈ Rn and for all t ≥ 0;
2) lim

t→∞
h(i)(x(t)) = 0, for i = 0, 1, . . . , r − 1.

In addition, if γ < 0 and γ0 = 0 then there exist δ̄ > 0 and
ε̄ > 0 such that for all δ ≥ δ̄ and ε ≥ ε̄ in (40) the following
statement holds.

3) lim
t→∞

x(t) = x◦, for all x(0) ∈ Rn.

Proof. The proof of the claims is based on the fact that system
(38) is described in the coordinates z = Φ(x) by equations
(21)-(36), for which all the statements hold. Differentiating
z = Φ(x) with respect to time we obtain ż = ∇xΦ(x)ẋ and,
by replacing (38) in the previous equation, yields

ż = ∇xΦ(x)f̂(x) +∇xΦ(x)c(x). (43)

Note now that by applying the coordinate transforma-
tion x = Φ−1(z) to the first term of (43) yields
the differential subsystem in (5), in which ξ̇r =
0, i.e. (∇xΦ(x)f(x) +∇xΦ(x)g(x)λ∗(x))|x=Φ−1(z) =(

Rξ
q(ξ, η)

)
= B(ξ, η). Replacing (39) in the second term

of (43) and by applying the inverse coordinate trans-
formation x = Φ−1(z) yields ∇xΦ(x)c(x)|x=Φ−1(z) =(

(S(Φ−1(ξ, η))−R)ξ
0

)
= H(ξ, η). Therefore

ż =

(
ξ̇
η̇

)
= B(ξ, η) +H(ξ, η) =

(
S(Φ−1(ξ, η))ξ

q(ξ, η)

)
. (44)

Defining pi(ξ, η) = ∇Φ−1(ξ,η)ψ(Φ−1(ξ, η))si(Φ
−1(ξ, η)),

then the system (44) is equal to the system (21) with ki(ξ, η)
given in (36). By assumption, the positive definite function
W (ψ(x))|x=Φ−1(ξ,η) = W (η) satisfies

∂W(ψ(x))

∂ψ(x)

∂ψ(x)

∂x

(̂
f(x)−

r∑
i=1

si(x)Li−1
f h(x)

)
≤γW (ψ(x))+γ0,

which can be rewritten in the coordinates (ξ, η) as in (35)
while (42) can be rewritten as (32). Therefore, by Lemma 3,
the claims follow.

Remark 11. With arguments similar to those in Theorem 3,
the claims of Theorem 4 can be restated in a local fashion.

IV. DISCRETIZATION SCHEMES

Since for a numerical implementation of any integration
method a discretization scheme is required, in this section the

problem of discretization of system (21) is addressed. In fact,
note that the solution trajectory of the difference equations
resulting from the discretization of (21) may diverge even
though the trajectories of the underlying ODEs converge to
the solution manifold. Hence we now propose two integration
schemes for system (21) which preserve the properties dis-
cussed in Section III. The advantage of the underlying schemes
is that the stabilization term need not to be discretized by
the same method applied to the constrained system. In the
remainder of the paper we use the notation x := x(t) and
x+ := x(t+ T ), where t = k̃T , ∀k̃ ∈ N and T ∈ R>0 is the
sampling period.

Consider the discrete-time system

ξ+ − ξ
T

=K(ξ, η)ξ,
η+ − η
T

= ϕT (q0) +Q(ξ, η)ξ, (45)

with η(t) ∈ Rn−r, ξ(t) ∈ Rr, Q : Rr×Rn−r → Rn−r×r, Q =
[q1, . . . , qr], ϕT : Rn−r → Rn−r, q0 and qi, for i = 1, . . . , r
defined in (20), and K : Rr × Rn−r → Rr×r. Recalling the
definition of ki given in (22), let K(ξ, η) be such that

K(ξ, η) = −δ
2

2
diag(q2

1(ξ, η), . . . , q2
r(ξ, η))− εI =

= diag(k1, . . . , kr).
(46)

Observe that, for T → 0, system (45) is equal to system (21),
provided the map ϕT (q0) is such that

lim
T→0

ϕT (q0) = q0. (47)

For instance, if
ϕT (q0) = q0, (48)

then system (45)-(48) represents the forward Euler discretiza-
tion of system (21). Similarly to Theorem 2 for the continuous-
time system (21), for the discrete-time system (45) the
following result holds.

Theorem 5. Consider system (45) and let Ũ ⊆ Rn be a
compact set which contains the origin. For all T such that

0 < T <
2

max
i=1,...,r

(
max

(ξ,η)∈Ũ
(−ki(ξ, η))

) (49)

there exists a neighborhood of the origin U ⊆ Ũ such that the
following claims hold.

1) ξ(t) and η(t) exist for all ξ(0) ∈ Rr and η(0) ∈ Rn−r;
2) lim

t→+∞
ξ(t) = 0, for all (ξ(0), η(0)) ∈ U .

Proof. The proof of claim 1) trivially follows from the fact that
the right hand side of equation (45) is continuous. To prove
claim 2) consider the positive definite and radially unbounded
function V (ξ) = ξ>ξ. It follows that

∆V

T
=
V(ξ+)−V(ξ)

T
=ξ>

(
(I+TK(ξ, η))>(I+TK(ξ, η))−I

)
T

ξ=

=ξ>(TK(ξ, η)>K(ξ, η)+2K(ξ, η))ξ=ξ>DT (ξ, η)ξ,

where

DT (ξ, η)=TK(ξ, η)>K(ξ, η)+2K(ξ, η)=diag(d1, . . . , dr),
(50)
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with

di=Tki(ξ, η)2+2ki(ξ, η)=(Tki(ξ, η) + 2)ki(ξ, η), (51)

for i = 1, . . . , r. Note now that the selection of T as in (49)
implies that −2 < Tki(ξ, η) < 0 and, since ki(ξ, η) < 0, also
di < 0 for i = 1, . . . , r. Hence, ∆V = T

∑r
i=1 diξ

2
i < 0, for

all ξ 6= 0, proving claim 2).

Note that different discretization schemes yield different
properties. For instance, consider the modified discrete-time
system

ξ+ − ξ
T

=K(ξ, η)ξ+,
η+ − η
T

= ϕT (q0) +Q(ξ, η)ξ. (52)

Observe that, since limT→0 ξ
+ = limT→0 ξ(t+T ) = ξ(t) and

(47) holds, system (52) is equal to system (21) when T → 0.
Hence, the following result holds.

Theorem 6. Consider system (52). Then the following claims
hold for any T > 0.

1) ξ(t) and η(t) exist for all ξ(0) ∈ Rr and η(0) ∈ Rn−r;
2) lim

t→+∞
ξ(t) = 0 for all ξ(0) ∈ Rr and η(0) ∈ Rn−r.

Proof. To prove claim 1) consider the explicit representation
of system (52), namely

ξ+−ξ
T

= (I−TK(ξ, η))
−1
K(ξ, η)ξ,

η+−η
T

=ϕT (q0)+Q(ξ, η)ξ,

(53)

and note that the right hand side of (53) is continuous, proving
the claim. The proof of claim 2) follows the same steps of the
proof of Theorem 5 with the difference that DT now has the
expression

DT (ξ, η) =
(I − TK(ξ, η))−>(I − TK(ξ, η))−1 − I

T
=

= diag(d1, . . . , dr),
(54)

with

di=
1

T (1−Tki(ξ, η))2
− 1

T
=

2− Tki(ξ, η)

(1− Tki(ξ, η))2
ki(ξ, η), (55)

for i = 1, . . . , r. Note now that since ki(ξ, η) < 0 also di < 0,
for i = 1, . . . , r. Hence DT (ξ, η) < 0, proving claim 2).

Theorem 6 ensures that the manifold (6) is globally attractive
and that the solutions of the system exist for any T > 0. We
consider now the stability properties of the zero equilibrium
of systems (45) and (52). The following result provides a
discrete-time equivalent of Theorem 3.

Theorem 7. Let the assumptions of Theorem 3 hold. Let
Ũ ⊆ Rn̄ ×B be a closed set which contains the origin. Let T
be such that

1

n− r

n−r∑
i=1

W (η+)−W (η)

η+
i − ηi

ϕTi(η) ≤ γW (η), (56)

in which ϕTi represents the i-th entries of the vector ϕT , and

max
(ξ,η)∈Ũ

(
1

n−r

n−r∑
i=1

W (η+)−W (η)

η+
i − ηi

)2

W (η)
≤W, (57)

for all 0 < T ≤ T . Let T ≤ min
(
T
2 , T

)
if the discretization

(45) is used and T ≤ min
(√

5−1
4 T , T

)
if the discretization

(52) is used, where T is such that (49) holds. Then for this
selection of T and for δ and ε selected as in Theorem 3, there
exists a neighborhood of the origin U ⊆ Ũ such that the
following claims hold.

1) ξ(t) and η(t) exist, for all (ξ(0), η(0)) ∈ U ;
2) lim

t→+∞
ξ(t) = 0, for all (ξ(0), η(0)) ∈ U ;

3) lim
t→+∞

η(t) = 0, for all (ξ(0), η(0)) ∈ U .

Proof. Consider first the discretization scheme (45). The proof
of claims 1) and 2) trivially follow from Theorem 5. To prove
claim 3), consider the positive definite function V (ξ, η) =
W (η) + ξ>ξ. The variation of V (ξ, η) along the trajectories
of the system in a time interval T is

∆V

T
=
W (η+)−W (η)

T
+
ξ+>ξ+−ξ>ξ

T
=

1

n−r
×

×
n−r∑
i=1

W (η+)−W (η)

η+
i −ηi

η+
i − ηi
T

+ ξ>DT (ξ, η)ξ =
1

n− r
×

×
n−r∑
i=1

W (η+)−W (η)

η+
i −ηi

(ϕTi(η) +Qi(ξ, η)ξ) + ξ>DT (ξ, η)ξ,

(58)

where DT (ξ, η) is defined in (50) and Qi(ξ, η) is the i-th row
of the matrix Q(ξ, η). Note now that

n−r∑
i=1

W (η+)−W (η)

η+
i − ηi

Qi(ξ, η)ξ =

=

[
W (η+)−W (η)

η+
1 − η1

. . .
W (η+)−W (η)

η+
n−r − ηn−r

]
r∑
i=1

qiξi.

By replacing the previous equation in (58) and by applying
Young inequality yields

∆V

T
≤ 1

n−r

n−r∑
i=1

W (η+)−W (η)

η+
i − ηi

ϕTi(η)+
1

(n−r)2

n−r∑
i=1

1

2δ2
×

×
(
W (η+)−W (η)

η+
i − ηi

)2
+

r∑
i=1

δ2

2
‖qi(ξ, η)‖2ξ>ξ + ξ>DT (ξ, η)ξ,

hence

∆V

T
≤ 1

n−r

n−r∑
i=1

W (η+)−W (η)

η+
i − ηi

ϕTi(η)+
1

(n−r)2

n−r∑
i=1

1

2δ2
×

×
(
W (η+)−W (η)

η+
i − ηi

)2
+

n−r∑
i=1

(Tki(ξ,η)2+2ki(ξ,η)−ki(ξ,η)−ε)ξ2
i,

(59)

where the last inequality is obtained by replacing the expression
of (51) in DT (ξ, η). Since T ≤ T

2 , with T satisfying (49), then



10 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

−1 < Tki(ξ, η) < 0 and, as a consequence

∆V

T
≤ 1

n− r

n−r∑
i=1

W (η+)−W (η)

η+
i − ηi

ϕTi(η)+

+
1

(n− r)2

n−r∑
i=1

1

2δ2

(
W (η+)−W (η)

η+
i − ηi

)2

− ε
n−r∑
i=1

ξ2
i .

(60)

Note that, under assumption (57), and by selecting δ ≥ δ̄ where
δ̄ is given in (29), for some 0 < β < −γ, yields

∆V

T
≤ 1

n−r

n−r∑
i=1

W (η+)−W (η)

η+
i −ηi

ϕTi(η)+βW (η)− ε
n−r∑
i=1

ξ2
i ,

(61)

and, under assumption (56) and by selecting ε ≥ ε̄ where
ε̄ = −γ − β yields ∆V

T ≤ (γ + β)W (η) − ε
∑n−r
i=1 ξ

2
i ≤

(γ + β)(W (η) + ξ>ξ) = (γ + β)V (ξ, η). Hence ∆V ≤
T (γ + β)V (ξ, η) < 0, for all (ξ, η) 6= (0, 0), proving claim 3).
Consider now the discretization (52). Claims 1) and 2) follow
from Theorem 6. The proof of claim 3) follows the same
steps of the previous proof with the difference that DT has
the expression in (54)-(55). Hence the inequality (59) becomes

∆V

T
≤ 1

n−r

n−r∑
i=1

W(η+)−W(η)

η+
i − ηi

ϕTi(η)+
1

(n−r)2

n−r∑
i=1

1

2δ2
×

×
(
W (η+)−W (η)

η+
i − ηi

)2
+

n−r∑
i=1

((
2−Tki(ξ,η)

(1−Tki(ξ,η))2
−1

)
ki(ξ,η)−ε

)
ξ2
i.

By means of simple calculations it is easy to show that the
inequality

n−r∑
i=1

(
2− Tki(ξ, η)

(1− Tki(ξ, η))2
− 1

)
ki(ξ, η) < 0

holds for
(

1−
√

5
2

)
< Tki(ξ, η) < 0, which is clearly satisfied

for T ≤
√

5−1
4 T . Therefore the claim follows by applying the

same steps in equations (60) and (61).

Remark 12. For T → 0 equation (56) becomes

lim
T→0

1

n−r

n−r∑
i=1

W (η(t+T ))−W(η(t))

ηi(t+ T )− ηi(t)
ϕTi(η)= lim

T→0

∆W

T
≤γW.

Hence condition (56) is the discrete-time counterpart of (25)
with γ < 0 and γ0 = 0. Similarly, condition (57) is the discrete-
time counterpart of (32). This observation implies that for T
sufficiently small, (25) and (32) imply (56) and (57).

Remark 13. While the discretization scheme in (52) ensures
global attractivity of the solution manifold, for the discretization
scheme (45) attractivity holds only locally unless qi, for i =
1, . . . , r are bounded, see Theorems 5 and 6. However, this
comes at the cost of a smaller sampling time required to
preserve the stability properties of the equilibrium points, see
the assumptions of Theorem 7.

Remark 14. For the general case in which m > 1, the
mappings K(ξ, η) and Q(ξ, η) in (45)-(52) can be written
as K(ξ, η) = diag

(
k1

1(ξ, η), . . . , kmrm(ξ, η)
)

and Q(ξ, η) =

[
q1
1 , . . . , q

m
rm

]
, respectively, where kji (ξ, η) is given in equa-

tion (34). Observe also that the claims of Theorems 5, 6 and 7
remain valid whenever ki(ξ, η) in (49) is replaced by kji (ξ, η),
for j = 1, . . . ,m. The proof follows the same steps as the case
m = 1, in which di, qi and r are replaced by dji , q

j
i and rj ,

respectively.

Remark 15. By using the concepts of relative degree and
zero dynamics for sampled nonlinear systems (see [51] and
[52]), and with similar arguments as those in Lemma 3 and in
Theorem 4, the claims of Theorems 5, 6 and 7 can be restated
in the original coordinates system.

The results presented in Sections II, III and IV outline
a procedure to simulate DAE systems, as described in the
following algorithm.

Algorithm
Data:

• f , g and h as given in (1) and such that the index ν is
well-defined;

• x0 = x(0) ∈ Rn and a function W such that
assumptions of Theorem 3 holds.

Output: x+ such that
• Claims 1) and 2) of Theorem 5 hold if the discretization

scheme (45) is used;
• Claims 1) and 2) of Theorem 6 hold if the discretization

scheme (52) is used;
• Claims 1), 2) and 3) of Theorem 7 hold if x◦ is locally

asymptotically stable.
Step 1. Set φi(x) = Li−1

f h(x) for i = 1, . . . , r and complete
the set of φi(x) for i = r+1, . . . , n such that the Jacobian
of Φ(x) is nonsingular.

Step 2. Write the system in the coordinates (ξ, η) = Φ(x)
and compute the mappings qi, for i = 1, . . . , r, such that
η̇ = q(ξ, η) = q0(η) +

∑r
i=1 qi(ξ, η)ξi.

Step 3. Compute the parameters γ, γ0 and W which satisfy
(25) and (26).

Step 4. IF γ0 = 0 and γ < 0 in Step 3 THEN Select
ε ≥ −γ − β and δ < δ̄ = 1

2βW, with β ∈ [−γ, 0].
ELSE select ε > 0 and δ such that the inequality δ < δ̄ =
1

2βW holds for some β > 0.

Step 5. Compute T such that (49) holds and T such that (56)
and (57) hold.

Step 6. IF γ0 = 0 and γ < 0 in Step 3 THEN Select a sam-
pling time T ≤ min

(
T
2 , T

)
OR T ≤ min

(√
5−1
4 T , T

)
ELSE select T ≤ T OR T > 0.

Step 7. Accordingly to the choices in Step 6, advance
the solution from the approximate state (ξ, η) to the
approximate state (ξ+, η+) according to scheme (45) OR
according to scheme (52), in which ϕT (q) is any one-step
scheme such that (47) holds.

Step 8. Set x+ = Φ(ξ+, η+)−1.

END Algorithm
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Fig. 1: A slider-crank mechanism.

V. EXAMPLE: A SLIDER-CRANK MECHANISM

Consider the slider-crank mechanism in Fig. 1. Let θ =
(θ1, θ2)> denotes the angular positions of the two masses m1

and m2, respectively, with respect to the vertical axis and let
the rods have equal length l. In addition, viscous friction with
coefficient c acts on the mass m1 and gravity force, where
gv is the gravitational acceleration, acts on both m1 and m2.
The motion of the system is subject to a holonomic constraint
which constrains the mass m2 to slide horizontally. The kinetic
and potential energy in terms of θ, θ̇ are

T (θ, θ̇)=
1

2
(m1+m2)l2θ̇2

1+
1

2
m2l

2(θ̇2
2 +2θ̇1θ̇2)cos(θ2−θ1),

U(θ)= (m1 +m2)gvl(1− cos(θ1))−m2gvl cos(θ2).

The application of the Euler equations yields the equations
of motion

0 = h(q), q̇ = v,

v̇ = M−1(q)f̄(q, v)−M−1(q)G>(q)λ,
(62)

where q = θ, v = θ̇ and

M(θ) =

[
(m1 +m2)l2 m2l

2cos(θ2 − θ1)
m2l

2cos(θ2 − θ1) m2l
2

]
,

f̄(θ, θ̇) =

[
m2l

2sin(θ2−θ1)θ̇2
2−cθ̇1−(m1+m2)lgv sin(θ1)

−m2l
2 sin(θ2 − θ1)θ̇2

1 −m2lgv sin(θ2)

]
,

h(θ) =cos(θ1) + cos(θ2),

G(θ) =
∂h(θ)

∂θ
=
[
− sin(θ1) − sin(θ2)

]>
.

(63)

Assume, for simplicity of notation, that the parameters m1,
m2 and l have unit value. Equations (62)-(63) can be rewritten
in the state space form (1), with state x = [x1 x2 x3 x4]> =
[θ1 θ2 θ̇1 θ̇2]>, f = [f1 f2 f3 f4]>, g = [g1 g2 g3 g4]>,

f1(x) = x3, f2(x) = x4,

f3(x) =
sin (x1−x2)x4

2 + 2gv sin (x1) + cx3

(cos (x1−x2))
2 − 2

+

−
cos (x1−x2)

(
− sin (x1−x2)x3

2 + gv sin (x2)
)

(cos (x1−x2))
2 − 2

,

f4(x) =
−2 sin (x1−x2)x3

2 + 2gv sin (x2)

(cos (x1−x2))
2 − 2

+

−
cos(x1−x2)

(
sin (x1−x2)x4

2+2gvsin (x1)+cx3

)
(cos (x1−x2))

2 − 2
,

(64)

g1(x) = 0, g2(x) = 0,

g3(x) =
sin (x1)

(cos (x1−x2))
2 − 2

− cos (x1−x2) sin (x2)

(cos (x1−x2))
2 − 2

,

g4(x) = −cos (x1−x2) sin (x1)

(cos (x1−x2))
2 − 2

+ 2
sin (x2)

(cos (x1−x2))
2 − 2

,

(65)

and
h(x) = cos(x1) + cos(x2). (66)

Note that for x1 ∈ (−π, π] and x2 ∈ (−π, π] this system has
two equilibrium points, namely x◦1 = (π, 0, 0, 0) and x◦2 =
(0, π, 0, 0), respectively.

Remark 16. The relative degree of system (1)-(64)-(65) is not
well-defined at x◦2 as LgLfh(x◦2) = 0. Observe that this issue
is due to the existence of multiple solutions for the constraint
equation h(x◦2) = 0, namely the ones in which the two rods
move in the same or opposite directions respectively. Note
however that the constraint (66) can be rewritten as

h(x) = 2 cos

(
x1 + x2

2

)
cos

(
x1 − x2

2

)
= 0, (67)

the solutions of which satisfy

±((1 + 2j)π − x1)− x2 = 0, (68)

for j ∈ N. The singularity in the definition of the relative
degree can be avoided, for instance, by replacing equation (67)
with

h(x) = x1 + x2 − π = 0, (69)

i.e. equation (68) with j = 0, which selects the particular
solution in which the rods move in opposite directions.

Although the following analysis can be carried out for any
solution of (68) we focus on the constraint (69). Note that, in
this case, the matrix G(θ) in equations (63) becomes G(θ) =[
1 1

]>
, while g in (65) simplifies to

g1(x) = 0, g2(x) = 0,

g3(x)=− 1

(cos (x1−x2))
2−2

+
cos (x1−x2)

(cos (x1−x2))
2−2

,

g4(x)=
cos (x1−x2)

(cos (x1−x2))
2−2

− 2

(cos (x1−x2))
2−2

.

(70)

Since the relative degree of system (1)-(64)-(70) at x◦2 is r = 2,
there exists a coordinate transformation which transforms the
system in the normal form (5). For instance, the mapping[
ξ1 ξ2 η1 η2

]>
=
[
x1 + x2 − π x3 + x4 x1 x3

]>
,

calculated according to Proposition 1, is such that

q(ξ, η) =

 η2

(−2 η2
2+2 η2ξ2−ξ22) sin(−2 η1+ξ1)−cη2

2 cos(−2 η1+ξ1)+3 +

+−2 gv sin(η1)−gv sin(ξ1−η1)
2 cos(−2 η1+ξ1)+3

 , (71)

in equations (5) or, equivalently q(ξ, η) = q0(η) + q1(ξ, η)ξ1 +
q2(ξ, η)ξ2, where

q0(η)=

[
η2

2 η2
2 sin(2 η1)−cη2−gv sin(η1)

2 cos(2 η1)+3

]
,
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Fig. 2: Comparison of three stabilization methods (method 1 in dashed-red line, method 2 in dotted-green line and method 3 in
solid-blue line) for the same initial condition (black circle): (a) time histories of θ1; (b) time histories of θ2; (c) time histories
of ξ1; (d) time histories of ξ2.

q1(ξ, η)=


0

1
ξ1

(
−2 sin(ξ1−2 η1)η2

2−2 gv sin(η1)−gv sin(ξ1−η1)−cη2
2 cos(−2 η1+ξ1)+3 +

− 2 η2
2 sin(2 η1)−cη2−gv sin(η1)

2 cos(2 η1)+3

)


and

q2(ξ, η)=

[
0

− sin(−2 η1+ξ1)ξ2
2 cos(−2 η1+ξ1)+3 + 2 η2 sin(−2 η1+ξ1)

2 cos(−2 η1+ξ1)+3

]
.

Accordingly, the zero dynamic of the system (1)-(64)-(70) is

η̇1 =η2, η̇2 =
4 η2

2 sin (η1) cos (η1)− g sin (η1)− cη2

2 cos (2 η1) + 3
. (72)

It is easy to show that the equilibrium (η◦1 , η
◦
2) = (0, 0) is

stable for c ≥ 0 and locally asymptotically stable for any
c > 0. For instance, let M be as in (6), then the function

E∗ = T (Φ(ξ, η)−1)|M + U(Φ(ξ, η)−1)|M − gv =

= 2η2
2 (cos (η1))

2 − gv cos (η1) +
1

2
η2

2 + gv
(73)

is positive definite in a neighborhood B ⊆ R2 of the origin
and such that E∗(0) = 0. Moreover, the time derivative of
E∗ along the trajectories of the zero dynamics (72) is Ė∗ =
−cη2

2 ≤ 0, which proves that the equilibrium (η◦1 , η
◦
2) is stable

for c ≥ 0. In the case c > 0, note that Ė∗ = 0 implies η2 = 0
which replaced in equations (72) yields η1 = jπ for j ∈
N≥. Hence the set

{
(η1, η2) : Ė∗(η1, η2) = 0

}
∩ B does not

contain any trajectory besides the trivial one (η1, η2) = (0, 0),
thus asymptotic stability of (η◦1 , η

◦
2) follows from LaSalle’s

invariance principle [53], which proves the claim. In addition,
since the equilibrium (η◦1 , η

◦
2) is the restriction of x◦2 on the

solution manifold M then, by Theorem 1, these have the

same stability properties. Note that by studying the stability
properties of the equilibrium point (η◦1 , η

◦
2) = (π, 0) of the

zero dynamics (72), it is possible to show that the equilibrium
point x◦1 of the DAE system (1)-(64)-(70) is unstable. However
the proof of this claim is omitted.

Consider now the positive definite and radially unbounded
function

W̃ (η) = ln (1 +W (η)), (74)

where
W (η) = σ

(
E∗ +

1

2
η2

1

)
, (75)

is such that (25) holds for any c ≥ 0 and some σ > 0. Note
first that ∥∥∥∥∥∂W̃∂η

∥∥∥∥∥ =

∥∥∥∥∥
∂W
∂η

1 +W

∥∥∥∥∥ ≤M,

for some M > 0. The time derivative of (74) is such that
˙̃
W =

∂W
∂η q0

1+W ≤ γW+γ0
1+W ≤ γ W

1+W + γ0 = γ
(

1− 1

eW̃

)
+ γ0 ≤

γW̃+(γ+γ0). Hence the function W̃ satisfies both assumptions
(25) and (26) of Theorem 2.

Different simulations have been carried out to evaluate the
performances of the proposed stabilization methods. Consider,
for instance, the case c = 0 and the initial conditions θ1(0) =
0.9999

4 π, θ2(0) = 3
4π, ξ1 = −0.0001 and ξ2 = 10. System

(1)-(64)-(70) has been integrated in MATLAB by means of
the solver ODE45 and default absolute and relative tolerances,
using the following three stabilization methods:

1) Baumgarte’s method [33] with parameters α1 = 5 and
α2 = 25 (equations (9)-(10));

2) the method in [38] with parameter γ = 10 (equation (18));
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Fig. 3: Comparison of three stabilization methods (method 1 in dashed-red line, method 2 in dotted-green line and method 3 in
solid-blue line) for the same initial condition (black circle): (a) trajectories of m1 in the Cartesian plane; (b) trajectories of m2

in the Cartesian plane; (c) zoomed in view of (a); (d) zoomed in view of (b).

3) the proposed method with parameters δ = 1 and ε = 0.1
(equations (21)-(22)).

Simulation results are plotted in Figures 2 and 3. In particular,
in the subplots (a) and (b) of Figure 2 it is shown that, for
this choice of parameters, the trajectories diverge in finite time
for both methods 1) and 2) (dashed-red and dotted-green lines,
respectively), while method 3) (solid-blue line) guarantees
the existence of the solution for the entire time interval. The
time histories of ξ1 and ξ2 are shown in the subplots (c)
and (d), respectively, of the same figure. We observe that the
trajectory obtained with method 3) (solid-blue line) has a faster
transient response than the trajectories obtained with methods
1) and 2) (dashed-red and dotted-green lines, respectively).
Note that a faster transient response could be achieved using
methods 1) and 2) with a different choice of the parameters.
However, for any fixed choice of these parameters there exists
a sufficiently large inconsistent initial condition such that the
corresponding trajectory diverges in finite time. The trajectories
in the Cartesian plane of the masses m1 and m2 are shown
in the subplots (a) and (b) of Figure 3, along with their
zoomed in views in (c) and (d) respectively, which reveal
a greater numerical accuracy for method 3). System (45)-
(64)-(70) has been discretized with the schemes (45) and (52)
proposed in Section IV in combination with the forward Euler
scheme for the zero dynamics (equation (48)). Simulations have
been carried out with the same set of parameters and initial
conditions as the previous one. In this setting, it is observed that
condition (49) of Theorem 5 is satisfied for all T ≤ T = 0.0001.
A comparison of the trajectories obtained with the two proposed
discretization schemes, for different values of the sampling
time T , is shown in Figure 4. Time histories of ξ1 and ξ2

obtained with scheme (45) are shown in the subplots (a) and (b),
while the same variables obtained with scheme (52) are in the
subplots (c) and (d) of the same figure. As expected, constraints
stabilization is ensured for T ≤ 0.0001 when scheme (45) is
used. For 0.0001 < T ≤ 0.002 stabilization of ξ2 is still
achieved with good accuracy (see (b)) while ξ1 diverges for
T = 0.002 (see (a)). On the other hand, when scheme (52) is
used, constraint stabilization in ensured for any T > 0, see (c)
and (d). Consider now the case c = 3, i.e. the equilibrium x◦2
is locally asymptotically stable. Let

U = {(ξ, η) : ξ1 ∈ [−π, π], ξ2 ∈ [−20, 20],

η1 ∈ [−π, π], η2 ∈ [−4, 4]} ,
(76)

and consider again the function (75). In this setting, condition
(25) of Theorem 2 is satisfied, for instance, for the parameters
γ0 = 0, and for any γ ≥ −0.001. Moreover, for any selection
of the parameter −γ > β > 0 there exists some σ > 0 in (75)
such that M in equation (32) is arbitrarily small. It is observed
that condition (49) of Theorem 5 is satisfied for any T < T
where T = 0.0033. In addition, condition (56) of Theorem
7 is satisfied for any T < T where T = 0.0045 while for
any T > 0 there exists some σ > 0 such that condition (57)
holds for M arbitrarily small. Simulations have been carried
out by integrating system (45)-(64)-(70) with the discretization
scheme (52) in combination with the forward Euler scheme
for the zero dynamics (equation (48)), for the following sets
of initial conditions:

1) θ1(0) = 1
4π, θ2(0) = 3π

4 , ξ1(0) = 0, ξ2(0) = 0, which
are consistent with the constraint equations;

2) θ1(0) = 1
4π, θ2(0) = 3

4π, ξ1(0) = 1
2π, ξ2(0) = −4,

which are inconsistent with the constraint equations but
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Fig. 4: Comparison of discretization schemes for different sampling times: (a) time histories of ξ1 with the scheme (45); (b)
time histories of ξ2 with the scheme (45); (c) time histories of ξ1 with the scheme (52); (d) time histories of ξ2 with the scheme
(52).

belong to the set U in (76);
3) θ1(0) = π

4 , θ2(0) = 3
4π, ξ1(0) = π

2 , ξ2(0) = −9, which
are inconsistent and do not belong to the set U in (76).

Simulation results are shown in Figure 5. Note first that for the
initial condition in 1) the trajectories of θ1 and θ2 converge to
the equilibrium x◦2 as expected, see the solid line in the subplots
(a) and (b). When an error in the initial condition is introduced
the behaviour of the trajectories might be unpredictable. In
particular, the convergence to the equilibrium x◦2 for the initial
condition in 2) is ensured by Theorem 7 (see the dashed line
in the subplots (a) and (b)), while for the initial condition in 3)
the trajectory converges to another equilibrium point (see the
dotted line in the subplots (a) and (b)). The trajectories of the
masses m1 and m2 in the Cartesian plane are shown in the
subplots (c) and (d) of the same figure for all the considered
initial conditions. Finally, time histories of ξ1 and ξ2 are shown
in the subplots (e) and (f).

VI. CONCLUSIONS

In this paper we have studied the problem of integration
of a general class of nonlinear DAE systems with high-index.
We have shown that popular stabilization methods based on a
linear feedback mechanism, such as Baumgarte’s method, have
some limitations resulting in the occurrence of the finite escape
time phenomenon when initial conditions are inconsistent. To
overcome these limitations we have proposed a method based
on a nonlinear stabilization of the solution manifold which
guarantees the existence of the solutions for all times. In
addition, the behaviour of the trajectories outside the solution
manifold has been studied and some results on their stability
properties have been presented. Discretization schemes have
been discussed and conditions on the sampling time to preserve

the stabilizing properties of the method have also been derived.
The results of the paper have been summarized into a step-by-
step algorithm for the simulation of nonlinear DAE systems.
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Fig. 5: Simulation results in presence of friction for different sets of initial conditions (consistent initial conditions in solid
line, inconsistent initial conditions which satisfy Theorem 7 in dashed line, inconsistent initial conditions which do not satisfy
Theorem 7 in dotted line): (a) time history of θ1; (b) time history of θ2; (c) trajectory of m1 in a Cartesian plane; (d) trajectory
of m2 in a Cartesian plane; (e) time history of ξ1; (f) time history of ξ2.
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