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Adiabatic freezing of entanglement with insertion of defects in a one-dimensional Hubbard model
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We report on ground state phases of a doped one-dimensional Hubbard model, which for large onsite
interactions is governed by the t-J Hamiltonian, where the extant entanglement is immutable under perturbative
or sudden changes of system parameters, a phenomenon termed as adiabatic freezing. We observe that in the
metallic Luttinger liquid phase of the model bipartite entanglement decays polynomially and is adiabatically
frozen, in contrast to the variable, exponential decay in the phase-separation and superconducting spin-gap
phases. Significantly, at low fixed electron densities, the spin-gap phase shows remarkable affinity to doped
resonating valence bond gas, with multipartite entanglement frozen across all parameter space. We note that
entanglement, in general, is sensitive to external perturbation, as observed in several systems, and hitherto, no
such invariance or freezing behavior has been reported.
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I. INTRODUCTION

Over the years, a challenging task has been to explore how
entanglement [1] is distributed among the constituents of a
many-body system and understand its effects on cooperative
phenomena [2–4]. For instance, it was observed that the
constituents of the noncritical phases of many-body systems
are, in general, less entangled with particles beyond their
nearest neighbors (NN) and obey the area law of scaling of en-
tanglement entropy [5,6], which provides useful information
about their ground state properties [2–5] and is closely related
to its numerical simulability [7,8]. Hence, study of quan-
tum correlation may actually provide deeper insight about
the underlying cooperative and critical phenomena in these
systems [9–11]. In return, quantum many-body systems are
also important substrates for quantum communication [12,13]
and computation protocols [14,15] and are thus key enablers
for quantum technology.

In this paper, we report on the entanglement behavior in
the ground state phases of a doped one-dimensional (1D)
Hubbard model with large onsite interactions. The quantum
spin-1/2 particles on the lattice doped with holes interact
via the t-J Hamiltonian [16], with t representing a typical
tunneling strength between two neighboring sites and J serv-
ing as the spin-spin interaction strength between particles
in filled neighboring sites. The t-J Hamiltonian is widely
used to study the physical properties of doped quantum spin
systems, in particular for high-Tc superconducting phases
of strongly-correlated matter [17,18]. The minimum energy
configuration of the t-J Hamiltonian exhibits a rich phase
diagram in the J/t-nel plane, with nel being the electron
concentration or density, and has already been extensively
studied using physical quantities such as ground state energy,
spin correlation functions, and spin gap [19–23]. In this
regard, one of our primary motivations is to investigate how
quantum correlations, especially bipartite entanglement (BE)

and multipartite entanglement (ME), behave in these different
phases, and whether insertion of defects play a significant role
in altering the entanglement properties.

The key finding of this paper is the existence of entangle-
ment in the ground state of the doped 1D t-J Hamiltonian,
in particular at low electron densities, which remains invari-
ant under sudden or perturbative changes to the J/t ratio,
implying potential application in robust quantum technolo-
gies [24]. In other words, the entanglement remains constant
under perturbations of the system parameter, a phenomena
reminiscent of the adiabatic freezing of quantum correla-
tions [25] (cf. [26–28]), where the aforementioned quantities
are completely insensitive or frozen with respect to changes in
system parameters [25] or decoherence [26]. We observe that
this adiabatic freezing behavior of entanglement is different
for bipartite and multipartite cases and is closely related to
the relevant ground state phases of this model [19–23]. To
elaborate, we observe that at low J/t ratio (J/t < 2), for
low nel , when the system is known to lie in the metallic
Luttinger liquid phase [20], two-site BE, as quantified by the
logarithmic negativity [29,30], decays polynomially with the
increase in lattice distance, r = |i − j |, between the lattice
sites i and j , which essentially signals the dominating long-
range order in the phase. Interestingly, within the metallic
phase, the BE is invariant to changes in the J/t ratio and
is therefore adiabatically frozen. In contrast, at higher J/t

ratio, superconducting spin-gap phase [21,22] and electron-
hole phase separation (PS) occurs [19], accompanied by an
exponential decay of BE. Subsequently, the adiabatic freezing
of BE is lost during the quantum phase transition. Of greater
significance is the behavior of multipartite entanglement,
which for low fixed values of nel remains adiabatically frozen
for all values of the J/t parameter space. Using generalized
geometric measure (GGM) [31] (cf. Ref. [32]) as the mea-
sure of genuine multipartite entanglement, we show that the
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variation of GGM across the J/t-nel phase space, for low nel ,
remains invariant under adiabatic changes of the J/t ratio. It
is important to note that no such adiabatic freezing of ME is
observed in the undoped anisotropic 1D model [33]. Rather
counterintuitively, it appears that the presence of impurities
or defects (as modeled by the holes) in the spin chain acts as
a vehicle for phases with frozen ME. The importance of the
results lie in the fact that many-body systems with robust ME,
which is not sensitive to perturbations in system parameters or
environmental processes, are necessary for realizing quantum
information-theoretic protocols such as measurement based
quantum computation [14] and quantum communication pro-
tocols [12,13]. The paper is arranged as follows. In Sec. II we
introduce the 1D t-J Hamiltonian. We study the decay and
adiabatic freezing of bipartite entanglement in Sec. III. We
discuss the low electron density ground states of the model in
Sec. IV and demonstrate the freezing of genuine multipartite
entanglement in Sec. V. We conclude in Sec. VI.

II. MODEL

In our study, we consider the t-J Hamiltonian as the
structure that governs the interaction between the quantum
particles in the doped 1D spin lattice, with N sites populated
with Nel (< N ) quantum spin-1/2 particles. The rest of the
sites are vacant or contain holes. The “electron density” of
the lattice is given by nel (= Nel/N). The t-J Hamiltonian
can be obtained perturbatively from the prominent Hubbard
model in the limit of large on-site interaction [16] and has
been expressed in literature in the form,

H = −t
∑

〈i,j〉,σ
PG (c†iσ cjσ + H.c.) PG + J

∑

〈i,j〉
�Si · �Sj , (1)

where ciσ (c†iσ ) is the fermionic annihilation (creation) opera-
tor of spin σ (= {↑,↓}), acting on site i. PG is the Gutzwiller
projector �i (1 − ni↑ni↓) which enforces at most single oc-
cupancy at each lattice site. Si = 1

2σi’s are the triad of spin
operators {Sx, Sy, Sz}, while t and J correspond to the trans-
fer energy and the spin-exchange interaction energy terms,
respectively, and each is limited to nearest-neighbor sites,
with periodic boundary condition. The ground state phase
diagram for the above 1D model has received widespread
attention in the past years [19–23]. In particular, the presence
of three primary phases, namely the repulsive Luttinger liquid
or metallic, attractive Luttinger liquid or superconducting,
and the phase separation, have been predicted using exact
diagonalization [20]. However, recent results, using density
matrix renormalization group techniques, have also reported
the presence of a superconducting spin-gap phase at low nel

[22,23]. These phases play a significant role in the entangle-
ment properties of the doped quantum spin model.

III. DECAY OF BIPARTITE ENTANGLEMENT AND
ADIABATIC FREEZING IN METALLIC PHASE

We now focus on the behavior of bipartite entanglement
in the ground state of the t-J Hamiltonian. In particular, we
look at the logarithmic negativity (E) in the state, ρij , shared
between two sites i and j , and its decay with increase in lattice
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FIG. 1. Decay and adiabatic freezing of bipartite entanglement
in phases of the t-J Hamiltonian. The plot shows the variation
of two-site entanglement (E) with increase in lattice distance r =
|i − j |, for the 1D t-J Hamiltonian, with N = 30 and nel = 2

N
.

For J/t � 2, the ground state remains in the metallic phase and E
decays polynomially as 1/(A + Br ), with r exhibiting the presence
of a dominating long-range order in the ground state. The values
of A = 162.6 and B = 18.9, obtained from the average best-fitted
curve, remain almost unchanged for all the curves in this phase,
and BE is adiabatically frozen. This freezing behavior of bipartite
entanglement is shown more clearly in Fig. 2. In contrast, for J/t �
3, the superconducting and PS phases leads to exponential decay of
BE, given by E ∼ C exp (− r

ξ
), where ξ is the characteristic length

and the constant C can be obtained from the best-fitted curve. ξ and
C are dependent on J/t and the adiabatic freezing of BE is lost
in this phase. The vertical axis are in ebits and the horizontal axes
are dimensionless. J/t is also dimensionless. In the inset, we set the
vertical axis in the logarithmic scale and plot E for J/t � 3.

distance, r = |i − j |, for different phases of the model in the
J/t-nel plane. For a bipartite state ρij , shared between two
sites i and j , its logarithmic negativity is defined as

E (ρij ) = log2(2N (ρij ) + 1), (2)

where N is the negativity [29,30], defined as the absolute
value of the sum of the negative eigenvalues of ρ

Ti

ij , so that

N (ρij ) = ||ρTi
ij ||1−1

2 , where ρ
Ti

ij denotes the partial transpose of
ρij with respect to the subsystem i.

The decay of spin correlation functions with intersite dis-
tance r often signals the nature of correlation present in the
system [9,10,34]. In general, for noncritical states of strongly-
correlated 1D spin systems, quantum correlations are short
ranged and decay exponentially with the increase of lattice
distance [35], giving rise to features such as the area law [5,6].
As discussed earlier, for all nel in the J/t-nel phase space, at
low values of J/t (≈ 2), the ground state remains in a metallic
phase or a repulsive Luttinger liquidlike phase [20]. In Fig. 1,
we plot the decay of bipartite entanglement, E (ρij ), with the
lattice distance r , for different values of the J/t ratio, using
exact diagonalization to obtain the ground state for N = 30
and nel = 2/N [36]. In the metallic phase (J/t � 2.0), the
decay with respect to r can be encapsulated as E ∼ 1/(Ar +
B ), where the numerically obtained values of A and B, from
the best-fit curve, are given by A = 162.6 and B = 18.9,
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FIG. 2. Adiabatic freezing of bipartite entanglement. Variation
of two-site entanglement (E) with J/t for different lattice distances,
r = |i − j | = 1 (black circle), r = 3 (blue diamond), r = 5 (red
triangle), for the 1D t-J Hamiltonian, with N = 30 and nel = 2

N
.

From the figure, one can see that for J/t � 2, the ground state BE
remains adiabatically frozen. The vertical axis is in ebits and the
horizontal axis is dimensionless. Although the region considered in
the figure is 0.5 � J/t � 2, the freezing behavior extends all the way
to J/t = 0.

respectively. Significantly, the curves of E (ρij ) with respect
to r for different values of J/t are almost invariant in the
metallic phase, i.e., the decay is not only polynomial, but it is
the same polynomial for all J/t (see Fig. 2 for a more clear il-
lustration). The entanglement therefore remains adiabatically
frozen under perturbations of J/t . It is known that in the
Luttinger-liquid phase, the NN spin correlation functions are
independent of J/t and the electron density [23]. Therefore,
one can infer that the freezing of bipartite entanglement is
characteristic of the ground state phase diagram of the 1D
t-J model. However, for non-NN spin correlation functions
there is a very slow variation with the system parameters.
Therefore, the behavior of E in Fig. 1 not only expectedly
follows the properties of spin correlation functions but also
provides more insight about the ground state in the metallic
phase. The freezing of bipartite entanglement with respect
to system parameters can be advantageous for implementing
quantum technologies that is robust to fluctuations in the
system parameters, potentially due to errors in the preparation
procedure [24].

In Fig. 1, for higher values of J/t (� 3), when the sys-
tem subsequently enters into the superconducting and phase-
separation region [20,23], the ground state of the system is
likely to be a spin liquid or superposition of the terms where
all the spin-1/2 particles form clusters, leading to a distinc-
tive electron-rich and hole-rich phase separation, respectively.
Consequently, in these regions, spin correlation functions are
likely to be short ranged similar to undoped ground state of
the Heisenberg model. In other words, for high J/t , an expo-
nential decay of spin correlation functions is expected. From
Fig. 1, it is quite prominent that as the J/t ratio increases,
the BE measure E (ρij ) exhibits an exponential decay with
the increase of r , given by E ∼ C exp(−r/ξ ), where ξ is the
characteristic length of the decay. Again from the best-fit data,
one can estimate the value of the constant C. As an example,

for J/t = 3.6, the best-fitted plot yields C = 0.0236 and ξ =
0.5225. Interestingly, in contrast to the polynomial decay of
BE in the metallic phase, the exponential decay rate is not
constant for different values of J/t in the superconducting
and PS phase. It is observed that the decay becomes steeper,
with increase in J/t , such that entanglement vanishes quicker
with r , and the freezing behavior is completely lost in these
regions.

Moreover, if we introduce additional next-nearest-neighbor
interactions in the t-J Hamiltonian, the subsequent spin
model is known to have a rich phase diagram in the J/t-nel

plane [21], which is qualitatively similar to that of the Hamil-
tonian in Eq. (1), apart from the fact that, in this case, the
intermediate spin-gap phase is spread over a larger area in
the phase plane. The boundaries between the metallic, su-
perconducting, and PS phases are altered. Interestingly, the
freezing of BE, or lack thereof, in the different phases remains
unaltered.

IV. GROUND STATE PHASE AT LOW
ELECTRON DENSITIES

To understand the behavior of bipartite entanglement in the
different phases of the 1D t-J Hamiltonian, we now discuss
the ground state properties of the model at low electron
densities. In the superconducting phase of the model, at low
nel , a finite spin gap opens up, which is in contrast to the
behavior at the high density region where the system remains
gapless [23]. Interestingly, we find that in this spin-gap phase,
the ground state of the system is essentially a long-range
resonating valence bond (RVB) state or the RVB gas [37].
Thus, the ground state can be expressed as

|ψ〉RVB =
∑

C
rC

∏

i 	=j

|AiBj 〉 ⊗
∏

k

|0k〉, (3)

where |AiBj 〉 = 1√
2
(|1〉i |2〉j − |2〉i |1〉j ) is the spin singlet

formed between two spin-1/2 particles at spin-occupied sites
‘i’ and ‘j ,’ corresponding to the sublattices A and B, respec-
tively. The product is over all such nonoverlapping dimers
between Nel/2 pairs of spin-occupied sites {i, j}. The state∏

k |0k〉 represents the k holes at N − Nel vacant sites. The
summation corresponds to the superposition of all possi-
ble dimer coverings (C) on the lattice, each with relative
weight rC .

The RVB gas description of the superconducting spin-gap
phase of the 1D t-J Hamiltonian, at low electron density, has
a remarkable significance, since it allows for the study related
to the phase properties of this model and beyond, using the
RVB ansatz [21,38,39] under suitable doping. Hence, even
for moderate-sized systems, where exact diagonalization is
not possible, the doped RVB ansatz opens up the possibil-
ity of investigating different properties of the t-J Hamilto-
nian [40] using tensor network [41] or other approximate
approaches [42]. Figure 3 depicts the behavior of the fidelity,
F = max{rC } |〈φg|ψ〉RV B |, between the ground state |φg〉 as
estimated by exact diagonalization and the RVB state |ψ〉RV B ,
for low electron density, nel = 2/N . One observes that after a
certain J/t (≈ 2.3), pertaining to the transition between the
metallic and superconducting phases, the minimum energy
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FIG. 3. RVB gas as the spin-gap phase of the t-J Hamiltonian at
low electron densities. We plot the fidelity (F) of the ground state
of the 1D t-J Hamiltonian, obtained via exact diagonalization, and
the variational long-range RVB state, at electron density nel = 2/N .
The curves shown in the figure pertain to 1D lattices with N =
12, 16, 20, 24 sites. Note that the curves corresponding to N � 24
coincide with reasonable numerical accuracy. We note that the RVB
gas state considered for different values of J/t and N are not the
same, as the set {rC} that maximizes the fidelity are different. All
quantities used are dimensionless.

configuration of the system is actually long-ranged RVB gas.
Further observation shows that even if we increase the J/t

ratio to a large value, the ground state at low nel still exhibits
RVB behavior but the probability of formation of nearest-
neighbor singlet pairing increases as compared to distant pairs
due to the formation of electron-hole phase separation. In
principle, this may lead to the formation of an RVB liquid state
or NN dimer phase for high J/t , which has a decisive bearing
on the exponential decay pattern of the two-site entanglement
of the system as the quantum correlation of the NN RVB states
are known to be short ranged.

V. FREEZING OF MULTIPARTITE ENTANGLEMENT

A significant outcome of our analysis of the entanglement
properties of ground state phases of the 1D t-J Hamiltonian,
is the existent characteristics of genuine multipartite entangle-
ment. To measure the genuine ME in the different regions of
the J/t-nel plane, we use the generalized geometric measure
(GGM) [31] (cf. Ref. [32]).

For an N -party pure quantum state |φ〉, the GGM is a com-
putable measure of genuine multisite entanglement, which is
formally defined as the optimized fidelity-based distance of
the state from the set of all states that are not genuinely mul-
tiparty entangled. Mathematically, the GGM can be evaluated
as

G(|φ〉) = 1 − λ2
max(|ξN 〉),

where λmax = max |〈ξN |φ〉|, and |ξN 〉 is an N -party nongen-
uinely multisite entangled quantum state and the maximiza-
tion is performed over the set of all such states. The GGM can
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FIG. 4. Adiabatic freezing of genuine multipartite entanglement.
The plot shows the variation of the generalized geometric measure G,
with nel for different values of J/t . The number of lattice sites in the
1D model is fixed at N = 16. At low electron density, viz. nel � 0.5,
G increases linearly, along the same line, with nel , and reaches its
maximum value at nel ≈ 0.6. This feature remains invariant for any
value of the J/t ratio. However at large nel , G becomes a function
of system parameters and the feature—of increasing along the same
line—obtained earlier, disappears. The inset shows that G is frozen
with respect to change in J/t , for low nel . The axes dimensions are
the same as in Fig. 1.

be effectively computed using the relation

G(|φ〉) = 1 − max
{
λ2

A:B

∣∣A ∪ B = A1, . . . , AN,A ∩ B = φ
}
,

where λA:B is the maximum Schmidt coefficient in all possible
bipartite splits A : B of the given state |φ〉. A complexity in
computation of the multiparty entanglement measure G lies
in the fact that the number of possible bipartitions increases
exponentially with an increase of the lattice size. Therefore,
we need to restrict ourselves to moderate-sized systems only,
which in our case restricts us to N = 16. We observe that at
low electron concentrations the GGM is adiabatically frozen
over significant regions of the phase space.

We study the variation of GGM in the ground state of the
1D t-J Hamiltonian, with respect to system parameters J/t

and nel , as depicted in Fig. 4. For convenience in representa-
tion, we look at higher values of J/t (� 2.5), corresponding to
the superconducting and PS phases of the model. We observe
that G increases linearly with nel , at low values of nel , for fixed
J/t . It reaches a maximum at nel ≈ 0.6, thereafter decreasing
with further increase in nel . This behavior is similar to the
ground state properties of spin liquid phases in doped Heisen-
berg ladders [40]. Significantly, in the low electron density
regime, i.e., nel � 0.5, the genuine multisite entanglement (G)
is insensitive to the parameter J/t , and is thus adiabatically
frozen. We have numerically observed that at low nel this
phenomenon extends to lower values of J/t . However, this
freezing of GGM completely vanishes as the electron density
is increased. We note that such adiabatic freezing of ME is
not observed in other models, for instance in the undoped
anisotropic 1D model [33].

This highlights a set of very unique features of the ground
state phases of the 1D t-J Hamiltonian. In particular, in the
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metallic Luttinger liquid phase, at low J/t and nel , bipartite
entanglement is long ranged and adiabatically frozen, in stark
contrast to the exponentially decaying BE in superconducting
and PS phases. However, at low nel but all J/t , including
the latter phases, multipartite entanglement is frozen and
completely invariant to system parameters. This provides an
interesting interplay between the behavior of BE and ME in
different phases of the doped Hubbard model.

VI. CONCLUSION

Entanglement is an important resource in quantum in-
formation protocols [1–3]. However, in general, both bipar-
tite and multipartite entanglement are fragile to decoherence
[43], and this is one of the main obstacles in realization
of these protocols. Moreover, entanglement may also be
highly sensitive to perturbative or sudden changes in sys-
tem parameters and may fluctuate close to critical points,
as observed during collapse and revival [44] and dynamical
transitions of entanglement [45]. It was observed that certain
information-theoretic quantum correlations, such as quantum
discord, could exhibit freezing in the face of decoherence
[28], espousing a strong belief that this could lead to robust
information protocols. However, entanglement, the workhorse
of key quantum information protocols, rarely freezes under

system parameter or temporal changes, including under deco-
herence (cf. Ref. [46]). Our results show that doped quantum
spin chains described by the 1D t-J Hamiltonian contain
ground state phases that exhibit adiabatic freezing of both
bipartite and genuine multisite entanglement. Interestingly,
the same model without the insertion of defects—in the form
of doping—does not exhibit a similar freezing phenomenon
[33]. It is the presence of defects in the quantum spin system
that gives rise to the nascent phenomenon of adiabatic freez-
ing of entanglement. An important observation in this regard
is that no freezing phenomenon of multiparty entanglement
(or other multiparty quantum correlations) has hitherto been
observed in any quantum system. For applications in quantum
information protocols, such as fault-tolerant [15] or one-way
computation [14], robustness of multisite entanglement over
fluctuating system parameters can be a significant resource in
achieving desired levels of stability.
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