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Time has emerged as a new degree of freedom for metamaterials, promising new pathways in wave
control. However, electromagnetism suffers from limitations in the modulation speed of material
parameters. Here we argue that these limitations can be circumvented by introducing a traveling-
wave refractive index modulation, with the same phase velocity of the waves. We show how the
concept of ”luminal grating” can yield giant nonreciprocity, achieve efficient one-way amplification,
pulse compression and frequency up-conversion, proposing a realistic implementation in double-layer
graphene.

Temporal control of light is a long-standing dream,
which has recently demonstrated its potential to revolu-
tionize optical and microwave technology, as well as our
understanding of electromagnetic theory, overcoming the
stringent constraint of energy conservation [1]. Along
with the ability of time-dependent systems to violate
electromagnetic reciprocity [2–4], realising photonic iso-
lators and circulators [5–8], amplify signals [9], perform
harmonic generation [10, 11] and phase modulation [12],
new concepts from topological [13–15] and non-Hermitian
physics [16, 17] are steadily permeating this field.

However, current limitations to the possibility of sig-
nificantly fast modulation in optics has constrained the
concept of time-dependent electromagnetics to the ra-
dio frequency domain, where varactors can be used to
modulate capacitance [18], and traveling-wave tubes are
commonly used as (bulky) microwave amplifiers [19]. In
the visible and near IR, optical nonlinearities have often
been exploited to generate harmonics, and realize cer-
tain nonreciprocal effects [20]. However, nonlinearity is
an inherently weak effect, and high field intensities are
typically required.

In this Letter, we challenge the need for high modula-
tion frequencies, demonstrating that strong and broad-
band nonreciprocal response can be obtained by comple-
menting the temporal periodic modulation of an electro-
magnetic medium with a spatial one, in such a way that
the resulting traveling-wave modulation profile appears
to drift uniformly at the speed of the wave. Exploiting
acoustic plasmons in double-layer graphene (DLG), we
show that unidirectional amplification and compression
can be realistically accomplished in such luminal grat-
ings, despite the intrinsic limitations in the modulation
speed of graphene. Our results hold potential for efficient
THz generation, loss-compensation and amplification of
plasmons, overcoming the typical trade-off between plas-
mon confinement and loss.

Bloch (Floquet) theory dictates that the wavevector
(frequency) of a monochromatic wave propagating in a
spatially (temporally) periodic medium can only Bragg-
scatter onto a discrete set of harmonics, determined by
the reciprocal lattice vectors. This still holds true when
the modulation is of a travelling-wave type, whereby
Bragg scattering couples Fourier modes which differ by

a discrete value of both energy and momentum com-
bined [2, 7, 21–24]. As shown in Fig. 1 for a 1D sys-
tem, these space-time reciprocal lattice vectors can be
defined to take any angle in phase space, depending on
whether a generic traveling-wave modulation of the ma-
terial parameters of the form δε(gx−Ωt) is spatial (panel
a: Ω = 0 ), temporal (d: g = 0), or spatiotemporal (b,c:
g 6= 0, Ω 6= 0). Given the slope c of the bands in a Bril-
louin diagram, which denotes the velocity of waves in a
dispersionless medium, the speed of the traveling-wave
modulation defines a subluminal regime Ω

g < c (a,b),

whereby conventional vertical band gaps open [21], and
a superluminal one Ω

g < c (c,d), characterized by hori-

zontal, unstable k-gaps [22, 25]. A common example of
the latter for g = 0 (Fig. 1d), is the parametric amplifier:
when the parameters governing an oscillatory system are
periodically driven at twice its natural frequency, expo-
nential amplification occurs, as a result of the unstable
k-gap at frequency ω = Ω/2.

The transition between the regimes in Figs. 1b and
1c is an exotic degenerate state, whereby all forward-
propagating modes are uniformly coupled to each other,
whereas the system is transparent to backward-traveling
waves. Due to its broadband spectral degeneracy in the
absence of dispersion, this system is highly unstable, thus
preventing a meaningful definition of its band structure.
Nevertheless, if we consider transmission through a spa-
tially (temporally) finite system with well-defined bound-
ary conditions, causality can be imposed in the unmod-
ulated regions of space (time), and an expansion can be
carried out in terms of eigenfunctions, as detailed in [26].

In luminal gratings, the photonic transitions induced
by the modulation of the refractive index are no longer in-
terband [27], but intraband, and can therefore be driven
by means of any refractive index modulation, regardless
of how adiabatic, whose reciprocal lattice vector (g,Ω)
satisfies the speed matching condition Ω/g = c. Hence,
any limitation in modulation frequency Ω can be compen-
sated, in principle, by a longer spatial period L = 2π/g.
Notably, these can be locally induced by modulating the
properties of the medium, and can thus synthetically
move at any speed, including and exceeding the speed of
light, in analogy with the touching point of a water wave
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FIG. 1. (a) The band structure of a conventional spatial
crystal is repeated in phase space at k = ng, n ∈ Z, forming
vertical band gaps (ω-gaps). (b) Similarly, the band struc-
ture of a traveling-wave-modulated crystal is symmetric un-
der discrete translations by an oblique reciprocal lattice vector
(g,Ω). When Ω

g
< c, ω-gaps open, whereas (c) Ω

g
> c leads to

unstable k-gaps. (d) Finally, if the wavelength of the modula-
tion L→∞, then g → 0, so that the system is effectively only
modulated in time In this case, the modulation speed Ω

g
→∞

and the system becomes a conventional, reciprocal, paramet-
ric oscillator. The transition between (b) and (c), whereby
the light-line and the reciprocal lattice vector are aligned, is
a luminal grating.

front propagating almost perpendicularly to a beach, or
the junction between the blades of a pair of scissors.

Due to their ease of manipulation, metasurfaces, the
two-dimensional analogues of metamaterials, offer the
most promising playground to realize dynamical ef-
fects [1, 28, 29], also due to the rise of tunable two-
dimensional materials [30, 31]. Recently, graphene has
emerged as a platform to enhance light-matter interac-
tions [32–35], realizing atomically thin metasurfaces [12,
36–39]. Its doping level, which can be as high as ≈ 2
eV [40, 41], can be dynamically modulated, with reported
response times of ≈ 2.2 ps, and relative modulations of
38% [42]. In addition, modern-quality graphene features
extremely high electron mobility, with measured experi-
mental values of ∼ 350′000 cm2/(V·s) [43]. Alternative
schemes for the amplification of graphene plasmons have
been proposed, such as the use of drift currents [44, 45],
periodic doping modulation [46], adiabatic doping sup-
pression [47], and plasmonic Čerenkov emission by hot
carriers [48].

The typical dispersion relation of graphene plasmons

follows a square root behaviour ω ∼
√
k, where ω is the

angular frequency and k is the in-plane wavevector. How-
ever, in a double-layer configuration, a second ”acoustic”
plasmon branch arises, whose dispersion:

ω ∝
√
εF

√
k(1− e−δ0k) '

√
δ0εF k(1− δ0k

4
) (1)

is linear in the limit of small interlayer gap δ0 � k−1 [49].
An equivalent system has recently been realized with

graphene near gold, which acts as a mirror, demonstrat-
ing nanoscale confinement of THz acoustic plasmons with
surprisingly long lifetimes [50, 51]. Here we exploit the
linearity of this acoustic plasmon band to realize a lumi-
nal metasurface.

We assume a semiclassical (Drude) conductivity
model, which is accurate as long as ~ω � εF and k � kF ,
where εF = 1.5 eV ≈ 2π~×362 THz is the Fermi energy,
kF = εF

~vF ≈ 2.3 rad/nm, is the Fermi wavevector and

vF ≈ 9.7 × 105ms−1 is the Fermi velocity. Our setup
consists of two graphene layers, whose Fermi levels are
modulated as εF (x, t) = εF,0[1+2α cos(gx−Ωt)] (Fig. 2b,
inset). Dispersion is accounted for, by expressing the con-
stitutive relation for the current:

J(x, t) = ei(kx−ωt)
∑
n

Jne
in(gx−Ωt) (2)

in Fourier space, where the conductivity modulation cou-
ples neighbouring frequency harmonics:

Jn =
e2εF,0
π~2

En + α(En+1 + En−1)

γ − i(ω + nΩ)
, (3)

where En is the nth Fourier amplitude of the in-plane
electric field, which is continuous at the layer positions
z = 0 and z = δ0 [26]. The magnetic field of the p-
polarized wave:

Hy(x, z, t) = ei(kx−ωt)
∑
n

Hne
in(gx−Ωt)+κnz z < 0 (4)

is discontinuous at the layers by the surface current [49].
This system can be accurately described within an adi-

abatic regime, since the modulation frequency Ω � ω.
Furthermore, since acoustic plasmons carry much larger
momentum than photons, the modes are strongly qua-
sistatic, so that the out of plane decay constant κn '
k+ng, and coupling to radiation is negligible, given that
both the spatial and temporal frequencies of the grat-
ing are much smaller than the plasmon wavevector and
frequency.

Plugging our ansatz into Maxwell’s equations, and ap-
plying boundary conditions, we arrive at an eigenvalue
equation for the plasmon frequencies ω. Taking advan-
tage of the adiabatic assumption, we can solve the scat-
tering problem in the time domain (Fig. 2c), as detailed
in [26]. At times t < 0 the plasmon is propagating with
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FIG. 2. (a) The plasmon instensity in modulated DLG (inset) is locally amplified and compressed, as a luminal modulation is
applied over a time-window Tf . Continuous lines correspond to our Floquet-Bloch theory, whereas dotted lines and circles are
obtained from our analytic model to zeroth and first order respectively. In (a) and (d) we use low loss to demonstrate the effect,

corresponding to an electron scattering rate γ =
v2F e

mεF,0
, with a mobility m = 106 cm2/(V·s). (b) The plasmon compresses

at the gain-point gx = π/2, which acts as an attractor, towards which waves occupying the region −π/2 < gx < π/2
(π/2 < gx < 3π/2) advance (lag), due to the higher (lower) local phase velocity vp. Conversely, the loss-point 3π/2 is depleted
of energy. (c) The scattering problem is most conveniently solved in the time domain: an incident wave is scattered into a
transmitted and a time-reversed wave after the modulation has been applied over a time-window Tf . (d) The field intensity
at the gain-point grows exponentially with both modulation time Tf and amplitude α, matching exactly our analytical model
(dots). (e) The total power of the plasmon reduces initially, due to dissipation. Once the pulse is localised near the gain-point,
loss compensation starts, and even amplification is possible by increasing the modulation strength α. In (e) we assume higher
loss, m = 105 cm2/(V·s), to show the realistic potential for loss-compensation and amplification.

frequency ω and wavevector k. As the doping modulation
is switched on at t = 0, the system is periodic in space,
so that its original quasi-momentum k is conserved. We
can thus obtain the associated frequency eigenvalues, and
propagate the solution up to time t = Tf , when it is
switched off, and the pulse will consist of a forward-
traveling wave, and a time-reversed one. The latter,
however, is negligibly small, due to the strongly unidi-
rectional character of the coupling, as confirmed by our
calculations.

Fig. 2a demonstrates plasmon amplification and com-
pression for different modulation times Tf . Here, we
use a modulation amplitude α = 0.05, interlayer gap
δ0 = 1 nm and a modulation frequency Ω/2π = 1.2
GHz, which corresponds to a modulation period τ =
Ω/2π ≈ 8 ps and length 2π/g ≈ 26 µm, and an in-
put frequency ω/2π = 1 THz. Parametrizing the mod-
ulation profile as gX = gx − Ωt, there are two points
where the long-wavelength phase velocity of the plasmon
vp(X) = limk→0

ω
k ∝

√
εF,0 + 2α cos(gX) is matched by

the modulation speed cp = Ω
g , namely gX = π/2 and

gX = 3π/2. As illustrated in Fig. 2b, those components
of the plasmon which sit at −π/2 < gX < π/2 experience
a higher Fermi level, and hence a higher phase velocity,

whereas those sitting at π/2 < gX < 3π/2 lag, so that
the point gX = π/2 acts as an attractor, or gain-point,
where the modulation imparts energy into the plasmon.
Conversely, gx = 3π/2 is a repellor, or loss-point, where
energy is absorbed by the modulation drive.

This effect can be modelled as follows: consider a non-
dispersive medium where ε(x, t) = 1 + 2α cos(gx − Ωt),
with Ω/g = c0. Following the derivation of Poynting’s
theorem, we can write:

∇ · (E×H) = −µ0

2

∂H2

∂t
− ε0ε

2

∂E2

∂t
− ε0

∂ε

∂t
E2, (5)

so that the total time-derivative of the local energy den-
sity is:

dU

dt
= −1

ε

∂ε

∂t
U − ∂P

∂x
+ c0

∂U

∂x
= −1

ε

∂ε

∂t
U − ∂P ′

∂x
, (6)

where the compensated Poynting vector P ′ consists
of a local and an advective part (due to the moving
frame) [26]. The first term in Eq. 6 is responsible for
gain, whereas the second drives the compression of the
pulse.
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Ignoring the Poynting vector leads to the zero-order
solution:

U(X, t) = e−2αΩt sin(gX), (7)

where X = x− Ω
g t. Feeding this into the resulting com-

pensated Poynting vector P ′ = c0(ε(X, t)−
1
2 − 1)U in

Eq. 6, we can obtain a corrected expression for the en-
ergy density:

U(X, t) = exp [−2αΩt sin(gX)− α2Ω2t2 cos2(gX)]. (8)

Since the DLG plasmon bands are approximately lin-
ear, we can set c0 = cp in this closed-form solution, and
compare it to our Floquet-Bloch theory for the acoustic
plasmons. At the gain point, where the wave grows expo-
nentially with modulation time Tf , frequency Ω, and am-
plitude α, the two calculations match exactly, as shown
in Fig. 2d. As evident from the absence of any frequency
dependence in our analytic model, parametric amplifica-
tion in a luminal medium is completely broadband and
its bandwidth is only limited by the extent of the linear
dispersion of waves in the medium, which, in the case of
DLG, can be made as wide as tens of THz, by reducing
the interlayer gap δ0. This includes the amplification of
a DC electric field, which can be compressed and trans-
formed into a narrow pulse via this mechanism.

Fig. 2e demonstrates the total power amplification
achieved by our luminal graphene metasurface: initially
the unit input power of the wave is predominantly dis-
sipated by the uniform losses, except at the gain-point,
so that this first propagation moment is dominated by
damping. Once sufficient power is accumulated at the
gain-point, the energy fed by the modulation into the
plasmon ensures that its propagation is effectively loss-
compensated, as in the case of α = 0.08, extending its
lifetime by orders of magnitude, or even amplified, as in
the α = 0.1 case.

As the luminal modulation couples the frequency con-
tent of the pulse to very high frequency-wavevector har-
monics, these will experience the nonlinearity of the
bands. In Fig. 3 we use a wider inter-layer gap δ0 = 15
nm to highlight the effects of dispersion on the pulse pro-
file (a) and its spectral content (b) for different modula-
tion times Tf . At a first stage, since higher frequency
components experience a lower phase velocity, the gain-
point must shift back to gX < π

2 , where the increase in
local phase velocity determined by the modulated Fermi
energy compensates for the curvature of the band (Fig. 3,
inset). In addition, Fourier components propagating with
phase velocity cp are amplified near the conventional
gain-point, resulting in the the pulse becoming skewed
(Tf = 5τ). Secondly, for even longer propagation times,
the wave will cease to compress, and break into a train
of pulses. This is due to the existence of a finite regime
of phase velocities:

FIG. 3. (a) The onset of dispersion causes a shift of the
gain-point due to the slower phase velocity of higher frequency
components. In addition, the pulse becomes skewed, due to
the superposition of lower frequency components, which are
amplified near gX = π/2, and higher frequency components,
which lag behind. For longer modulation times still, the wave
breaks into a train of narrow pulses. (b) The spectral con-
tent of the pulse is amplified and projected from an input
frequency of ≈ 4 THz, to ≈ 30 THz, demonstrating efficient
terahertz frequency generation using a modulation frequency
of only Ω/2π = 120 GHz. High frequency components whose
phase velocity is below the instability threshold are not cou-
pled to, hence dispersion stabilizes the system. Here we as-
sumed a wider gap δ0 = 15 nm to highlight the effect of
dispersion, α = 0.05, m = 106 cm2/(V·s).

(1 + 2α)−1/2 < vp/cp < (1− 2α)−1/2, (9)

within which the interaction between the co-propagating
bands is strong enough to make the system unstable [22].
In our setup, the relative phase velocity:

vp(k)

cp
=
(ω(k)

k

)/(Ω

g

)
' (

1− e−kδ0
δ0k

)1/2 (10)

decreases approximately linearly with increasing
wavevector [26]. Equating the latter to the lower thresh-
old velocity ratio vp(kc)/cp = 1√

1+2α
, where α = 0.05

and expanding the exponential to second order, we get
an analytical estimate for the critical wavevector kc ≈ 13
rad·µm, beyond which the pulse is no longer strongly
coupled to higher harmonics, and its power spectrum is
effectively reflected, resulting in beating. Subsequently,
the power spectrum oscillates within the extended lumi-
nal region, although beating between different space-time
harmonics induces fast oscillations which are reminiscent
of comb formation in nonlinear optics [52].

In this Letter, we have introduced the concept of lu-
minal metamaterials, realized by inducing a traveling-
wave modulation in the refractive index of a material,
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whose phase velocity matches that of the waves propa-
gating in it in absence of modulation. We have shown
that these dynamical structures act as broadband ampli-
fiers, capable of reinforcing and compressing waves of any
frequency, including DC. In addition, we demonstrated
the robustness of luminal gratings against significant de-
tuning of the modulation speed, and how the effect can
survive even moderate dispersion. We have proposed a
realistic setup where this concept could be implemented,
consisting of modulated double-layer graphene.

Thanks to its ability to efficiently couple incident elec-
tromagnetic waves to frequency harmonics orders of mag-
nitude higher than the input wave, the luminal meta-
material concept suggests a new path towards efficient
terahertz generation. Moreover, this scheme constitutes
a route towards the compression of graphene plasmons
without the need for low doping, thus combining longer
plasmon lifetimes with nano-scale confinement. Finally,
our setup can achieve loss compensation, and potentially
even amplification of plasmons in sufficiently high-quality

graphene, holding promises for experimental realizations
in the near future.

This concept, which is in principle applicable to any
wave phenomenon, could be further generalized by intro-
ducing chirping, in analogy with the tuning of the driving
field with the energy of the electrons being accelerated in
a synchrocyclotron, or it could exploited within narrower
frequency bands of strongly dispersive systems.
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