Erratum: "On the role of separatrix instabilities in heating the reconnection outflow region" [Phys. Plasmas 25, 122902 (2018)]

Cite as: Phys. Plasmas **26**, 049901 (2019); https://doi.org/10.1063/1.5094132 Submitted: 27 February 2019 . Accepted: 28 February 2019 . Published Online: 03 April 2019

M. Hesse ២, C. Norgren, P. Tenfjord, J. L. Burch, Y.-H. Liu, L.-J. Chen, N. Bessho ២, S. Wang, R. Nakamura ⓑ, J. P. Eastwood ⓑ, M. Hoshino ⓑ, R. B. Torbert, and R. E. Ergun

ARTICLES YOU MAY BE INTERESTED IN

Erratum: "Mechanisms of the energy transfer across the magnetic field by Alfvén waves in toroidal plasmas" [Phys. Plasmas 25, 122508 (2018)] Physics of Plasmas **26**, 049902 (2019); https://doi.org/10.1063/1.5094403

Fast magnetic reconnection and the ideal evolution of a magnetic field Physics of Plasmas **26**, 042104 (2019); https://doi.org/10.1063/1.5081828

On the role of separatrix instabilities in heating the reconnection outflow region Physics of Plasmas **25**, 122902 (2018); https://doi.org/10.1063/1.5054100

ULVAC

Leading the World with Vacuum Technology

Vacuum Pumps
Arc Plasma Deposition
RGAs

- · Leak Detectors
- ·Thermal Analysis
- · Ellipsometers

Phys. Plasmas **26**, 049901 (2019); https://doi.org/10.1063/1.5094132 © 2019 Author(s).

Export Citatio

Erratum: "On the role of separatrix instabilities in heating the reconnection outflow region" [Phys. Plasmas **25**, 122902 (2018)]

Cite as: Phys. Plasmas **26**, 049901 (2019); doi: 10.1063/1.5094132 Submitted: 27 February 2019 · Accepted: 28 February 2019 · Published Online: 3 April 2019

M. Hesse,^{1,2} (D C. Norgren,¹ P. Tenfjord,¹ J. L. Burch,² Y.-H. Liu,³ L.-J. Chen,⁴ N. Bessho,⁴ (D S. Wang,⁴ R. Nakamura,⁵ (D J. P. Eastwood,⁶ (D M. Hoshino,⁷ (D R. B. Torbert,⁸ and R. E. Ergun⁹

AFFILIATIONS

- ¹Birkeland Centre for Space Science, Department of Physics and Technology, University of Bergen, 5020 Bergen, Norway
- ²Southwest Research Institute, San Antonio, Texas 78228-0510, USA
- ³Dartmouth College, Hanover, New Hampshire 03755, USA
- ⁴NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
- ⁵Space Research Institute, Austrian Academy of Sciences, 8042 Graz, Austria
- ⁶Imperial College, London SW7 2AZ, United Kingdom
- ⁷University of Tokyo, Tokyo 113-8654, Japan
- ⁸University of New Hampshire, Durham, New Hampshire 03824, USA
- ⁹University of Colorado, Boulder, Colorado 80309, USA

https://doi.org/10.1063/1.5094132

In a recent paper¹ about electron heating at the reconnection separatrix, two figures depicting the contributions to the electron energy balance and the contribution to the total, quasi-viscous heating are incorrectly displayed. The correct figures are as follows:

FIG. 11. Integration of the various terms of the energy equation over a volume bounded by flux tubes at $\Omega_t = 29.94$. The figure shows that the quasi-viscous contribution is the main energy source. It becomes important as soon as the integration volume extends past the separatrix field line.

FIG. 12. Integration of the components of the quasi-viscous heating term $\Omega_t t = 29.94$. The dominance of the term $\sim P_{xz} \frac{\partial}{\partial z} v_x$ shows that heating is indeed related to velocity shear effects. The negative contributions of the term $\sim P_{yz} \frac{\partial}{\partial z} v_y$ at the separatrix dominate, by far, over the small positive contribution, which is in the electron diffusion region.⁷ In the absence of instabilities, the contribution $\sim P_{xz} \frac{\partial}{\partial z} v_x$ would likely be reduced and balanced by that $\sim P_{yz} \frac{\partial}{\partial z} v_y$.

¹M. Hesse *et al.*, "On the role of separatrix instabilities in heating the reconnection outflow region," Phys. Plasmas 25, 122902 (2018).