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Abstract: Lithium aluminate, LiAlO2, is a material that is presently being considered as a tritium
breeder material in fusion reactors and coating material in Li-conducting electrodes. Here, we employ
atomistic simulation techniques to show that the lowest energy intrinsic defect process is the cation
anti-site defect (1.10 eV per defect). This was followed closely by the lithium Frenkel defect (1.44 eV
per defect), which ensures a high lithium content in the material and inclination for lithium diffusion
from formation of vacancies. Li self-diffusion is three dimensional and exhibits a curved pathway
with a migration barrier of 0.53 eV. We considered a variety of dopants with charges +1 (Na, K
and Rb), +2 (Mg, Ca, Sr and Ba), +3 (Ga, Fe, Co, Ni, Mn, Sc, Y and La) and +4 (Si, Ge, Ti, Zr and
Ce) on the Al site. Dopants Mg2+ and Ge4+ can facilitate the formation of Li interstitials and Li
vacancies, respectively. Trivalent dopants Fe3+, Ni3+ and Mn3+ prefer to occupy the Al site with
exoergic solution energies meaning that they are candidate dopants for the synthesis of Li (Al, M) O2

(M = Fe, Ni and Mn) compounds.

Keywords: LiAlO2; defects; Li diffusion; dopants; atomistic simulation

1. Introduction

The ever-increasing demand for energy generated, initiated further research into alternate methods
of renewable energy production and storage methodologies for the power production. In that respect,
Li-based ceramics are technologically important and considered by the community for applications
ranging from nuclear fusion to batteries [1–8]. LiAlO2, a lithium based ceramic material, has been
considered with the prospect of being used as a tritium breeder material in magnetic confined nuclear
fusion reactors after promising initial research regarding the physical and thermodynamic properties
of the material as well as the potential tritium breeding ratio (TBR) [8,9]. In addition, this material has
great potential as a coating material in Li-conducting electrodes [10].

Previous studies have highlighted the importance of atomic scale calculation to gain insights
on the defect processes (intrinsic defect processes, doping and diffusion) of oxides for energy
applications [11–15]. Previous experimental and theoretical studies determined a wide range of
activation energies for Li self-diffusion in γ-LiAlO2 (0.50–1.26 eV) [16–22]. Additionally, there are
no systematic studies of the intrinsic defect processes and doping in this material. In the present
study, we have employed atomistic simulations to investigate the structure, intrinsic defect processes,
Li self-diffusion and the introduction of dopants.
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2. Computational Methods

The present computational study was based on classical pair-wise potential calculations to
describe LiAlO2 via the General Utility Lattice Program (GULP) code [23,24]. In the present approach,
the total energy (lattice energy) is determined by long range (i.e., Coulombic) and short range
[i.e., electron-electron repulsive and attractive intermolecular forces (van der Waals forces)]. The latter
were modelled using Buckingham potentials (refer to the supplementary information). The van der
Waals forces arising from the spontaneous formation of instantaneous dipoles are very important
as the formation energy results are sensitive to those forces. The present modelling approach
takes into the account of Van der Waals forces as a function of the interatomic distance (r) [23,24].
Two-body Buckingham potential mentioned in the supplementary information consists of two parts.
The first part of the equation represents the Pauli repulsion (electron-electron) and the second part
denotes the van der Waals interaction. Ionic positions and lattice parameters were relaxed using
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [24]. Convergence criteria dictated that in
relaxed configurations, forces on each atom was <0.001 eV/Å. To introduce point defects in the lattice
we used the Mott-Littleton methodology [25] similarly to recent work [26–28]. It is established that
although the present methodology may overestimate the defect formation enthalpies at the dilute limit,
the trends will be unchanged [29]. In a thermodynamic perspective defect parameters can be described
by comparing the real (i.e., defective) crystal to an isobaric or isochoric ideal (i.e., non-defective) crystal.
Defect formation parameters can be interconnected through thermodynamic relations [30,31], with the
present atomistic simulations corresponding to the isobaric parameters for the migration and formation
processes [32–34].

3. Results

3.1. Crystal Structure, Intrinsic Defect Processes and Li Diffusion

The LiAlO2 crystal structure considered in the present study is the tetragonal γ-phase (Figure 1)
with lattice parameters a = b = 5.1687 Å, c = 6.2679 Å, and α = β = γ = 90◦ [35]. This crystal structure
consists of LiO4 and AlO4 tetrahedra. They are inter-connected via edge and corner sharing to form
three dimensional channels. The calculated structural parameters are given in Table 1 and it can be
seen that there is excellent agreement with experiment [35] validating the potentials (refer to Table S1
in the Supplementary Materials) used in this study.
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Table 1. Calculated structural parameters for LiAlO2 (space group P41212) as compared to the
experimental determinations [35].

Parameter Exp Calc |∆|(%)

a = b (Å) 5.1687 5.1403 0.55
c (Å) 6.2679 6.3860 1.88

α = β = γ (◦) 90.00 90.00 0.00

Volume [V = a × b × c (Å3)] 167.4498 168.7370 0.77
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Next, we considered the process of calculating the defect energy required for the key intrinsic
defect processes such as Frenkel, Schottky and anti-site in LiAlO2. Frenkel and Schottky defect
formation energies were calculated by combining individual point defects. Frenkel energy is the sum
of vacancy and interstitial energies. Schottky energy was calculated by adding appropriate vacancy
energies and substracting cohesive energy. Relative energetics of these defect processes are useful
in predicting the electrochemical behaviour of LiAlO2. The reaction energies for the intrinsic defect
processes can be represented by using the established Kröger-Vink notation [36].

Li Frenkel : LiXLi → V′Li + Li•i (1)

Al Frenkel : AlXAl → V′′′Al + Al•••i (2)

O Frenkel : OX
O → V••O + O′′i (3)

Schottky : LiXLi + AlXAl + 2OX
O → V′Li + V′′′Al + 2V••O + LiAlO2 (4)

Li2O Schottky : 2LiXLi + OX
O → 2 V′Li + V••O + Li2O (5)

Li/Al antisite (isolated) : LiXLi + AlXAl → Li′′Al + Al••Li (6)

Li/Al antisite (cluster) : LiXLi + AlXAl →
{
Li′′Li : Al••Li

}X
(7)

The reaction energies are reported in Figure 2. The lowest intrinsic defect energy process
was calculated to be the cation mixing (anti-site) in which Li and Al exchange their atomic
positions. This defect was noted in various oxide materials experimentally and theoretically [37–47].
The primary reasons for this defect include experimental conditions for the preparation of as-prepared
compounds and cycling of as-prepared materials particularly in battery applications. Using the
Pechini sol–gel process, Dominko et al. [48] synthesised a pure orthorhombic phase of Li2MnSiO4.
Later, Politaev et al. [39] observed a small amount of cation exchange (Li-Mn) defect in their experimental
preparation (solid-state reactions in hydrogen at 950–1150 ◦C) of monoclinic phase of Li2MnSiO4.
Nyten et al. [38] observed a shift in the potential plateau between first and second cycles in Li2FeSiO4

and suggested that this is due to the structural rearrangement associated with the interchange of some
of the Li and Fe ions. The second lowest reaction energy is calculated for the Frenkel defect and this
process is higher only by 0.34 eV than the anti-site defect. This would signify the concentration of
lithium vacancies and interstitials, inferring this material is suitable for use as a tritium breeder. Other
defects exhibit high reaction energies meaning that they are not significant in this material.

Ion diffusion is a key issue in many energy related materials, including cathode materials for
batteries. The current simulation approach has the ability to calculate Li-ion diffusion pathways
together with activation energies. As experimental determination of Li-ion diffusion is quite challenging,
simulation results would be useful to assist in the investigation of experimental data. The results
reveal that there is a single Li local hop with the jump distance of 3.09 Å. The activation energy for this
hop is calculated to be 0.53 eV. Long range diffusion pathway was constructed by connecting local Li
hops. Figure 3a shows the three dimensional long range diffusion pathway with a non-linear pattern.
This shows that Li-ion conduction in this material is high. In a previous theoretical study based on the
molecular dynamics by Jacobs et al. [18], it is shown that Li-ion diffusion is three dimensional though the
pathway is not clear enough from their calculated snapshots derived at different temperatures. Density
functional theory simulations were also employed to calculate the Li-ion diffusivity in γ-LiAlO2 [21,22].

In those calculations, Li hopping mechanisms and activation energies for different Li-Li separations
are reported. However, the information regarding the Li migration pathway (linear or non-linear)
is unclear. Our simulation clearly presents the diffusion pathway that can be directly compared
in experiments.
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The activation energy calculated here (0.53 eV) is within the range of previous theoretical studies
(0.5–0.63 eV) [18,21,22] and lower that previous experimental (NMR spectroscopy and conductivity
measurements) work by Idris et al. (0.70 eV) [17]. More direct experimental work (e.g., secondary ion
mass spectrometry, SIMS) would be required to experimentally pinpoint the activation energy of Li
self-diffusion. As was previously demonstrated, simple atomistic models can yield reliable activation
energies of diffusion as compared to experiment with mechanisms compatible with DFT [49].

The calculated activation energy exceeds 0.5 eV and it is therefore anticipated that LiAlO2 will only
be a mediocre ion conductor. In Table 2 we compare the activation energies of migration of recently
investigated Li, Na, Mg ion conducting oxides considered for battery applications. There is a good
agreement between our calculations and experiments for some oxide materials. As mentioned earlier,
experimental investigation of activation energy is often difficult. Current simulations, in addition to
giving activation energy information, have the added bonus of elucidating diffusion pathways that can
be useful in the interpretation of experimental data.
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Table 2. Activation energies (eV) of ion self-diffusion (Li, Na, Mg) in recently investigated oxides
considered for battery applications.

Material Calculation Experiment

LiAlO2 0.53 (this study) 0.70–1.23 [17]
Li3V2(PO4)3 0.46–0.87 [50] 0.73–0.83 [51]

Li2TiO3 0.51–0.72 [52] 0.47–0.80 [53], 0.60–0.90 [54]
Na2MnSiO4 0.81 [55] -
Na3V(PO4)2 0.59 [56] -

Na3Fe2(PO4)3 0.45 [15] -
MgTiO3 0.88 [57] -

3.2. Solution of Dopants

This section details the processes of monovalent, divalent, trivalent and tetravalent doping into
the lithium aluminate lattice. Monovalent dopants (R = Na, K and Rb) and divalent dopants (M = Mg,
Ca, Sr and Ba) were considered on the Al site in order to increase the Li content in the form of Li
interstitials in LiAlO2 according the following reaction equations:

2Li2O + R2O + 2AlXAl → 2R′′Al + 4Li•i +Al2O3 (8)

Li2O + 2MO + 2AlXAl → 2M′Al + 2Li•i +Al2O3 (9)

This efficient engineering strategy can increase the lithium density in lithium-based ceramics and
tune mechanical, electrical and optical properties of materials such as lithium aluminate to further
increase the applicability for use as a tritium breeding material. Solution enthalpies calculated for
monovalent dopants are highly endothermic (>4.5 eV) suggesting that the doping process is quite
difficult (refer to Figure 4a). Solution enthalpy gradually increases with ionic radius. High solution
enthalpies are due to the larger radii of cations than that of Al3+ (0.53 Å). In the case of divalent
cations, Mg2+ is promising as the solution enthalpy of MgO is −5.66 eV (refer to Figure 4b). The highly
exothermic solution enthalpy is due to the ionic radius of Mg2+ (0.57 Å) which is closer to the ionic
radius of Al3+. The other three dopants exhibit endoergic solution enthalpies, as their ionic radii
significantly deviate from the ionic radius of Al3+.
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Next, we considered trivalent dopants (X = Ga, Fe, Co, Ni, Mn, Sc, Y and La) on the Al site
according to the following reaction equation:

X2O3 + 2AlXAl → 2XX
Al + Al2O3 (10)
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Figure 5 shows the solution enthalpies of X2O3. The results present nickel as the favourable
isovalent dopant on the Al site, having the lowest solution enthalpy of −2.03 eV to integrate into the
lattice. Solution enthalpies for both Fe3+ and Mn3+ are also negative implying that these two dopants
are also worth examining experimentally. The favourable nature of potential candidate dopants (Fe3+,
Ni3+ and Mn3+) can be due to their ionic radii which are closer to the ionic radius of Al3+ (0.53 Å).
However, the dopant Co3+ exhibits a positive solution enthalpy though its ion radius is closer to that
of Al3+ indicating other factors should be responsible. The dopants Ga3+ and Sc3+ exhibit almost zero
solution enthalpies. Other dopants are not favourable as their solution enthalpies are endoergic. From
Mn3+ to La3+ solution enthalpy gradually increases with ionic radius.Energies 2019, 12, x 6 of 9 
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ionic radius in LiAlO2.

Finally, tetravalent dopants (Y = Si, Ge, Ti, Zr and Ce) were considered on the Al site. This doping
process will introduce additional Li vacancies in LiAlO2 assisting vacancy mediated self-diffusion
according to the following equation:

2YO2 + 2AlXAl + 2LiXLi → 2Y•Al + 2V′Li + Al2O3 + Li2O (11)

We report the solution energies in Figure 6. The results present germanium as the favourable
tetravalent dopant on the aluminium site, having the lowest solution enthalpy of 1.08 eV to integrate
into the lattice. The second most stable dopant is Zr with the solution enthalpy of 1.54 eV. The ionic radii
of these two dopants are closer to the ionic radius of Al3+. However, the high positive solution enthalpy
of Ti (~14 eV) is unclear though its ionic radius is somewhat closer to that of Al3+. Furthermore,
this dopant cannot be doped under any condition. Both Si and Ce exhibit high solution enthalpies
(~4 eV) due to the mismatching of their ionic radii with that of Al3+.
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4. Conclusions

In this computational modelling investigation, we have employed static atomistic simulation
techniques to study the defect processes (intrinsic disorder mechanisms and doping) and Li self-diffusion
in LiAlO2. The lowest energy intrinsic defect process is the Li-Al anti-site implying that a small
concentration of Li on the Al site and Al on the Li site will be present. The long range Li-ion diffusion
is three-dimensional with an activation energy of migration of 0.53 eV. Numerous dopants were
considered and it is calculated that the solution of GeO2 will increase the concentration of the Li
vacancies that are required to act as vehicles of diffusion. Furthermore, Mg2+ on the Al site would
increase the concentration of Li interstitials that are necessary for the enhancement in the capacity
of NaAlO2. It is anticipated that the present atomistic simulation work will encourage the further
experimental investigation of LiAlO2.
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