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Abstract. We prove character ratio bounds for finite exceptional groups G(q) of Lie

type. These take the form
|χ(g)|
χ(1)

≤ c

qk
for all nontrivial irreducible characters χ and

non-identity elements g, where c is an absolute constant, and k is a positive integer.
Applications are given to bounding mixing times for random walks on these groups, and
also diameters of their McKay graphs.

1. Introduction

For a finite group G, a character ratio is a complex number of the form
χ(g)

χ(1)
, where

g ∈ G and χ is an irreducible character of G. Upper bounds for absolute values of
character values and character ratios have long been of interest, for various reasons; these
include applications to random generation, covering numbers, mixing times of random
walks, the study of word maps, representation varieties and other areas. For a survey of
such applications focussing particularly on simple groups, see [24].

The first significant bound on character ratios for groups of Lie type was obtained in 1993

by Gluck [13], who showed that
|χ(g)|
χ(1)

≤ Cq−1/2 for any non-central element g ∈ G(q),

a group of Lie type over Fq, and any non-linear irreducible character χ of G(q), where
C is an absolute constant. This has been improved in a number of subsequent papers,
culminating in [2, 36] in which the following result is proved. Let G be a simple algebraic
group of simply connected type over an algebraically closed field of good characteristic
p > 0, and let G = GF where F is a Frobenius endomorphism of G. Let L be an F -stable
(proper) Levi subgroup of G. If L is not a torus, write Lunip for the set of non-identity
unipotent elements of L, and define

α(L) = maxu∈Lunip
dimuL

dimuG
.

If L is a torus, define α(L) = 0. Now [2, Thm. 1.1] together with [36, Cor. 1.11] show
that if x ∈ G is an element, semisimple if Z(G) is disconnected, such that CG(x) ≤ L,
then for any irreducible character χ of G,

|χ(x)| ≤ f(r) · χ(1)α(L), (1.1)

where f(r) depends only on the rank r of G.

The second author was partially supported by the NSF grant DMS-1840702 and the Joshua Barlaz
Chair in Mathematics.

The paper is partially based upon work supported by the NSF under grant DMS-1440140 while the
authors were in residence at the Mathematical Sciences Research Institute in Berkeley, California, during
the Spring 2018 semester. It is a pleasure to thank the Institute for support, hospitality, and stimulating
environments.

The authors are grateful to Bob Guralnick for helpful discussions, Frank Lübeck for kindly computing
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For example when G = E8(q), Theorem 1.7 of [2] shows that α(L) ≤ 17
29 for all proper

Levi subgroups L, while χ(1) ≥ cq29 (where c is a positive constant – see Lemma 2.1);
hence (1.1) gives

|χ(x)|
χ(1)

< Cq−12

for all nontrivial irreducible characters χ of G, and x ∈ G such that CG(x) ≤ L for some
F -stable proper Levi subgroup L.

It is highly desirable to obtain such bounds on character ratios
|χ(x)|
χ(1)

for arbitrary

elements x (i.e. without the hypothesis on CG(x)). For classical groups G(q), such bounds
will be obtained in forthcoming work [30]. In this paper we obtain such bounds for
exceptional groups of Lie type. Here is our main result.

Theorem 1. Let G = G(q) be a quasisimple group of exceptional Lie type E8, E7, E
ε
6

or F4 over Fq, of simply connected type in good characteristic. Then for any nontrivial
irreducible character χ of G, and any g ∈ Gr Z(G), we have

|χ(g)|
χ(1)

≤


c

qa1
, if g is a long root element,

c

qa2
, otherwise

where a1, a2 are as in Table 1.1, and c is an absolute constant.

Remarks

(i) For the smaller exceptional groups of Lie type, the generic character tables are known
and available in CHEVIE [12]. From this we see that the corresponding values of ai
such that the conclusion of Theorem 1 holds in all characteristics for these groups are
as in Table 1.2, with the only exception marked by (]) in the case G = G2(q), where
q ≡ ε(mod 3), χ a unique character of degree q3 + ε, g a unique (up to conjugacy)
element of order 3 with CG(g) = SLε3(q), and χ(g)/χ(1) = εq/(q2 − εq + 1). Also
note that we use the convention q2 = p2a+1 with a ∈ Z≥1 for types 2B2(q

2), 2G2(q
2),

and 2F4(q
2) (with p = 2, 3, 2, respectively).

(ii) The hypothesis in Theorem 1 that the characteristic p is good is necessary for the
proof, since we use [2] which, as mentioned above, requires this assumption.

Table 1.1

G E8(q) E7(q) Eε6(q) F4(q)
a1 6 4 3 2
a2 10 5 3 2

Table 1.2

G G2(q)
2F4(q

2) 2G2(q
2) 2B2(q

2) 3D4(q)
a1 2 4 2 2 2

a2 2(]) 6 3 2 3

We conclude the Introduction with two corollaries of our main result. The first concerns
the theory of mixing times for random walks on finite quasisimple groups of Lie type
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corresponding to conjugacy classes. Let G = G(q) be such a group, let y ∈ G be a non-
central element, and let C = yG, the conjugacy class of y. Consider the random walk on
the corresponding Cayley graph starting at the identity, and at each step moving from a
vertex g to a neighbour gs, where s ∈ yG is chosen uniformly at random. Let P t(g) be
the probability of reaching the vertex g after t steps. The mixing time of this random
walk is defined to be the smallest integer t = T (G, y) such that ||P t − U || < 1

e , where U
is the uniform distribution and ||f || =

∑
g∈G |f(g)| is the l1-norm. There is a substantial

literature on mixing times of such random walks (see for example [24] for a brief survey).

The character ratio bound of Gluck [13] can be used to show that for any y ∈ GrZ(G),
the mixing time T (G, y) is bounded above by a quadratic function of the Lie rank of
G = G(q). Using Theorem 1, we can strengthen this bound for exceptional groups of Lie
type, as follows.

Corollary 2. Let G = G(q) be a quasisimple group of exceptional Lie type over Fq, in
good characteristic, and let G be the corresponding simple algebraic group over F̄q. Then
for any y ∈ Gr Z(G), and for sufficiently large q, the mixing time T (G, y) satisfies

T (G, y) ≤
⌈

dimG + 1

2ai

⌉
,

where ai is as in Tables 1.1 and 1.2, and i = 1 if y is a long root element, i = 2 otherwise.

The values of Mi := ddimG+1
2ai

e are listed in Table 1.3.

The next corollary concerns the diameters of McKay graphs for exceptional groups of
Lie type. For a finite group G, and a (complex) character α of G, the McKay graph
M(G,α) is defined to be the directed graph with vertex set Irr(G), there being an edge
from χ1 to χ2 if and only if χ2 is a constituent of αχ1. By a classical result of Burnside
(see [4]), M(G,α) is connected if and only if α is faithful. A study of McKay graphs for
finite simple groups was initiated in [29], and [29, Thm. 2] shows that the diameter of any
McKay graph M(G,α), where G = G(q) is a simple group of Lie type and α a nontrivial
irreducible character, is bounded above by a quadratic function of the Lie rank of G. The
next result strengthens this bound for exceptional groups of Lie type.

Corollary 3. Let G = G(q) be a simple group of exceptional Lie type over Fq, in good
characteristic, and let G be the corresponding simple algebraic group over F̄q. Let d =
dimG, and N = |Φ+(G)|, the number of positive roots in the root system of G. Then for
any nontrivial irreducible character α of G, and for sufficiently large q,

diamM(G,α) ≤ 2

⌈
d−N + 1

a2

⌉
,

where a2 is as in Tables 1.1 and 1.2.

The values of D := 2dd−N+1
a2
e are listed in Table 1.3.

Table 1.3

G E8(q) E7(q) Eε6(q) F4(q) G2(q)
2F4(q

2) 2G2(q
2) 2B2(q

2) 3D4(q)
M1 21 17 14 14 4 7 4 3 8
M2 13 14 14 14 4 5 3 3 5
D 26 30 30 30 10 10 6 8 12

The layout of the paper is as folows. Section 2 contains preliminary results, and in
Section 3 we study the action of a long root parabolic subgroup of G(q) on its unipotent
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radical, which is an essential ingredient of the proof of Theorem 1. This proof is completed
in Section 4. The final section 5 contains the proofs of Corollaries 2 and 3.

2. Preliminary results

We begin with some well-known information about the irreducible characters of minimal
degree for exceptional groups. For a finite group G, denote the set of irreducible characters
of G by Irr(G).

Lemma 2.1. Let G = G(q) be a quasisimple, simply connected group of exceptional Lie
type E8, E7, E

ε
6 or F4. Define l1 = l1(G), l2 = l2(G) as in the table below. Let 1 6= χ ∈

Irr(G). Then either χ(1) is a polynomial in q of degree l1, or χ(1) > cql2 for c a positive
absolute constant.

G E8(q) E7(q) Eε6(q) F4(q)
l1 29 17 11 8
l2 46 26 16 11

Proof. This follows by inspection of the lists of character degrees for these groups to be
found in [31]. �

We shall also need to to identify the structure of some parabolic subgroups of groups
G = G(q) as in Lemma 2.1. Our notation for parabolics will be standard: Pi (resp. Pij)
is the standard parabolic that corresponds to deleting node i (resp. nodes i, j) from the
Dynkin diagram of G, labelled as in [3]. Also for a parabolic subgroup P , we write P = QL
where Q is the unipotent radical and L a Levi factor.

Lemma 2.2. Let G = G(q) be as in Lemma 2.1, and let P0 = Q0L0 be the maximal para-
bolic subgroup of G indicated in Table 2.1. Then Z(Q0) has the structure of an irreducible
FqL0-module of the dimension indicated in the table; and Q0/Z(Q0) is an irreducible
FqL0-module for the entry in the first row, and is the sum of two irreducible 8-dimensional
modules in the last row.

Proof. This well-known information can be read off using [1], for example. �

Table 2.1

G P0 L′0 dimZ(Q0) dimQ0/Z(Q0)
E8(q) P1 D7(q) 14 64
E7(q) P7 E6(q) 27 0
E6(q) P1 D5(q) 16 0
2E6(q) P15

2D4(q) 8 16

Finally, we need an elementary lemma. For a finite group X and a subgroup Y , denote
by X/Y the set of right cosets of Y in X. And writing Ω = X/Y , for x ∈ X define the
fixed point ratio of x acting on Ω by

fpr(x,Ω) =
fix(x,Ω)

|Ω|
.

Lemma 2.3. Let G be a finite group, and let H < K < G. Write C = coreK(H), the
core of K in H. Let y ∈ H and define

M = max{fpr(x,K/H) : x ∈ (yG ∩K) r C}.
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Then

fpr(y,G/H) ≤ |y
G ∩ C|
|yG|

+M fpr(y,G/K).

Proof. Let K =
⋃
iHki and G =

⋃
jKgj =

⋃
i,j Hkigj , all disjoint unions. Then writing

yj = gjyg
−1
j , we have

fpr(y,G/H) =
1

|G/H|
|{(i, j) : kigjyg

−1
j k−1i ∈ H}|

=
|K/H|
|G/H|

|{j : yj ∈ C}|+
1

|G/H|
|{(i, j) : yj 6∈ C, kiyjk−1i ∈ H}|

= T1 + T2,

(2.1)

where T1, T2 are the two terms on the second line. Observe that

T1 =
1

|G/K|
|{j : yj ∈ C}| =

|yG ∩ C|
|yG|

. (2.2)

As for T2, the number of values of j such that yj 6∈ C and kiyjk
−1
i ∈ H for some i is at

most |{j : yj ∈ K}| = fix(y,G/K). And given such a j-value,

|{i : kiyjk
−1
i ∈ H}| = fix(yj ,K/H) ≤M |K/H|,

where M is as defined in the lemma. It follows that

T2 ≤
fix(y,G/K) ·M |K/H|

|G/H|
= M fpr(y,G/K). (2.3)

Now the conclusion follows using (2.1) together with (2.2) and (2.3). �

3. Long root parabolics

Let G be a simple algebraic group of type E8, E7, E6 or F4 over an algebraically closed
field of odd characteristic p, and let G(q) = GF be a corresponding group of Lie type over
Fq, where F is a Frobenius endomorphism of G. Let Φ be the root system of G relative
to a fixed maximal torus, and for α ∈ Φ denote by Uα the corresponding root subgroup
of G. Let α0 be the highest root in Φ. Then P = NG(Uα0) is a parabolic subgroup of G,
which we shall call a long root parabolic; likewise, taking P to be F -stable, P = PF is a
long root parabolic of G(q).

The proof of Theorem 1 is based on the following results concerning long root parabolics
of exceptional groups. These will be proved in the ensuing subsections.

There is some standard notation used in the statement: for a vector space W , and an
element g ∈ GL(W ), we denote by P1(W ) the set of 1-dimensional subspaces of W , and
by [W, g] the commutator space {w − wg : w ∈W}.

Theorem 3.1. Let G = G(q) be a quasisimple, simply connected group of exceptional Lie
type E8, E7, E

ε
6 or F4 in odd characteristic, and let P = QL = NG(Uα0) be a long root

parabolic of G.

(i) We have Z(Q) = Uα0, and Q/Z(Q) has the structure of an irreducible FqL-module
of dimension as indicated in Table 3.1.

(ii) Let W = Irr(Q/Z(Q)). The orbits and stabilizers for the action of L′ on P1(W )
are as in Table 3.1 (one row for each orbit).

(iii) Let g ∈ Lr Z(L). Then for any L-orbit ∆ on P1(W ), we have

fpr(g,∆) ≤


c1
qa1

, if g is a long root element,

c2
qa2

, otherwise
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where a1, a2, c1, c2 are as in Table 3.2.
(iv) Write W̄ = W ⊗ F̄q. For any g ∈ Lr Z(L) and any scalar λ ∈ F̄∗q, we have

dim[W̄ , λg] ≥
{

2a1, if g is a long root element,
2a2, otherwise.

Table 3.1

G L′ dimW stabilizers containments
E8(q) E7(q) 56 P7

E6(q).2
2E6(q).2
q1+32.B5(q).(q − 1) ≤ P1

q26.F4(q).(q − 1) ≤ P7

E7(q) D6(q) 32 P6

Aε5(q).2 (ε = ±)
q1+16.(A1(q)B3(q)).(q − 1) ≤ P2

q14.C3(q).(q − 1) ≤ P6

Eε6(q) Aε5(q) 20 P3

(SLε3(q) o S2)
(SL3(q

2).2)
q1+8.Sp4(q).(q − 1)(q − ε) ≤ P15

q8.SLε3(q).(q − 1) ≤ P3

F4(q) C3(q) 14 P3

(q odd) q5.SO3(q).(q − 1) ≤ P3

q1+4.(SL2(q)
2.2).(q − 1) ≤ P1

q1+4.(SL2(q
2).2).(q − 1) ≤ P1

SL3(q).2
SU3(q).2

Table 3.2

G a1 a2 c1 c2
E8(q) 6 10 1.04 1.5
E7(q) 4 5 1.32 2
E6(q) 3 3 2 2
2E6(q) 3 3 1.4 1.4
F4(q) 2 2 1.34 1.34

Proposition 3.2. Let G and P = QL be as in the statement of Theorem 3.1.

(i) Suppose G 6= 2E6(q), and let g ∈ G be a non-identity unipotent element that is not
a long root element. Then there is a G-conjugate u of G such that
(a) u ∈ P , and
(b) u ∈ Ql, where l ∈ L is a non-identity unipotent element that is not a long

root element.
(ii) Suppose G = 2E6(q), and let g ∈ G be a non-identity unipotent element. Then

there is a G-conjugate u of G such that u ∈ P rQ.
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Proposition 3.3. Let P = QL be a long root parabolic of G as in Theorem 3.1, and let
χ ∈ Irr(G) be a nontrivial irreducible character, afforded by a CG-module V . Let g ∈ QL
be an element with projection to L not lying in Z(L).

(i) Then

V ↓ QL = V Q ⊕ V1 ⊕ V2,
where V Q denotes the fixed point space of Q, V2 = [V,Z(Q)] and V Q⊕V1 = V Z(Q).
Let χVi denote the character of Vi for i = 1, 2.

(ii) We have V Q = ∗RGL (χ), the Harish-Chandra restriction of χ.
(iii) Let W = Irr(Q/Z(Q)), and let ∆i (1 ≤ i ≤ t) be the orbits of L on P1(W ). Then

|χV1(g)|
dimV1

≤ max{fpr(g,∆i) : 1 ≤ i ≤ t}.

(iv) We have
|χV2(g)|
dimV2

≤ q−
1
2
dim[W,g].

We shall give the proofs of these results in next subsections.

3.1. Proof of Proposition 3.3. Part (i) follows from the fact that V = V Z(Q)⊕[V,Z(Q)],
and (ii) is just the defnition of Harish-Chandra restriction.

Now consider part (iii). Write V1 =
⊕

µ Vµ, a sum of weight spaces for nontrivial

µ ∈ Irr(Q/Z(Q)). These are permuted by g, and (iii) follows. For (iv), write V2 =
⊕

λ Vλ,

a sum of weight spaces for nontrivial λ ∈ Irr(Z(Q)). Then |χVλ(g)| = |CW (g)|1/2, by [17,
2.4]. Part (iv) follows.

3.2. Proof of Theorem 3.1.

3.2.1. Proof of Theorem 3.1(i), (ii). Part (i) is well-known and can be found for example
in [8, Sec. 4].

Part (ii) follows from various references: [25, 4.3] for L′ = E7(q); [19, Prop. 3] for D6(q)
and [19, Prop. 7] for C3(q); [7, Thm. 2.1] for A5(q) (the twisted version follows from this
using Lang’s theorem).

3.2.2. Proof of Theorem 3.1(iii). We consider each possibility for G separately. Recall that
q is odd, by hypothesis. Let W = Irr(Q/Z(Q)) be as in the statement of the theorem, and
note that the group induced by L on P1(W ) is L1 := L/Z(L), an adjoint group.

Case G = E8(q). Here L′ = E7(q), and [21, Theorem 2] gives upper bounds for the fixed
point ratios of elements of L1 in all actions. These imply that for any faithful transitive
action of L1 on a set ∆, and any non-identity g ∈ L1, we have

fpr(g,∆) ≤

{
1

q6−q3+1
, if g is a long root element,

1
q9(q−1) , otherwise.

Part (iii) follows immediately in this case.

Case G = E7(q). Here L′ = D6(q). Let ∆ be one of the orbits listed in Table 3.1, so that
a point-stabilizer is contained in P6, P2 orAε5(q).2. In the last case we use [5, Theorem 1]
(since in this case the point-stabilizer is not a subspace subgroup): this implies that for
any x ∈ L1 r {1}, we have

fpr(x,∆) < |xL′ |−
1
2
+ 1

12
+ 1

10 .

The smallest class in L1 r {1} consists of long root elements and has size less than 2q18.
Hence it follows that fpr(x,∆) < 1

q5
in this case, as required for Theorem 3.1(iii).
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Now consider an orbit ∆ for which the point-stabilizer lies in the parabolic P6. Here
we use information taken from [31], which gives the values of 1L1

P6
(x) for all x ∈ L1. From

these we read off that fpr(uα,∆) < 1.32
q4

, and that fpr(x,∆) < 2
q5

if x ∈ L1 r {1} is not a

root element, as required.

Finally consider the orbit ∆ in Table 3.1 for which the point-stabilizer is H =
q1+16.(A1(q)B3(q)).(q − 1) < P2. Again we can refer to [31] for the values of 1L1

P2
(x)

for all x ∈ L1. From this we see that there are several classes of elements x for which
fpr(x, L1/P2) is of the order of q−4. These classes are:

(1) root elements uα;

(2) unipotent elements in the class labelled (A2
1)

(1) – on the natural D6-module these
have Jordan form (J3, J

9
1 );

(3) semisimple elements with centralizer in L1 of type Dε
5(q).(q − ε) (ε = ±).

The remaining classes satisfy fpr(x, L1/P2) <
5
q8

, as required for Theorem 3.1(iii).

Let x be in one of the classes in (1), (2) or (3). By [31], we have fpr(x, L1/P2) <
1.1
q4

.

Write H = QA1B3T1, so that H < P2 = QA1D4T1. We shall apply Lemma 2.3. Since the
core of P2 in H is QA1T1, this gives

fpr(x, L1/H) ≤ |x
L1 ∩QA1T1|
|xL1 |

+M fpr(x, L1/P2), (3.1)

where

M = max{fpr(y,D4(q)/B3(q)) : y ∈ D4(q) r Z(D4(q))}.

By [26, Thm. 1] we have M ≤ 4
3q . Hence the second term on the right hand side of (3.1)

is less than 1.1
q4
· 4
3q . Now consider the first term. Here the Levi factor A1D4T1 acts on

Q/Z(Q) = q16 as a tensor product V2 ⊗ V8, and x ∈ A1T1 centralizes an 8-dimensional
subspace. Hence any Q-class in xL ∩ QA1T1 has size at most q9, and it follows that
|xL ∩ QA1T1| < q13. Therefore the first term on the right hand side of (3.1) is less than
2
q7

. Part (iii) of Theorem 3.1 follows for the classes in (1),(2),(3) above. This completes

the proof of Theorem 3.1(iii) for G = E7(q).

Case G = Eε6(q). Here L′ = Aε5(q). Let ∆ be one of the orbits listed in Table 3.1, so
that a point-stabilizer is contained in P3, P15, (SLε3(q) o S2).(q − ε) or (SL3(q

2).2).(q − ε).
In the last two cases we use [5, Theorem 1] as above to get the result.

Consider an orbit ∆ for which the point-stabilizer is contained in P3. Here, for any
element x ∈ L1 r {1}, [31] gives fpr(x,∆) < 2

q3
if ε = +, and fpr(x,∆) < 2.35

q4
if ε = −.

Hence the conclusion holds for such orbits.

Finally consider the orbit ∆ in Table 3.1 for which the point-stabilizer is H =
q1+8.Sp4(q).(q − 1)(q − ε) < P15. Here [31] shows that fpr(x, L1/P15) satisfies the bounds
of Table 3.2 for all x ∈ L1 r {1} except for the following classes:

(1) root elements uα,
(2) semisimple elements with centralizer in L1 of type Aε4(q).(q − ε).

For both these classes, [31] gives fpr(x, L1/P15) <
1.04
q2

. We have H = Q.Sp4(q).T2 <

P15 = Q.SLε4(q).T2, where the unipotent radical Q = q1+8. Now we can argue as above
using Lemma 2.3 together with [26], that for the classes in both (1) and (2), we have

fpr(x, L1/H) ≤ |x
L ∩QT2|
|xL|

+
1.04

q2
.

4

3q
.
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The number of root elements in Q is less than 2q5; and an element of type (2) in QT2 has
Q-centralizer of order at least q4. Hence the first term in the above sum is less than 1

q4
.

The conclusion follows.

Case G = F4(q). Here L′ = C3(q) and the orbits listed in Table 3.1 have point-stabilizers
contained in P3, P1 or N(SLε3(q)). In the last case we use [5, Theorem 1] as above to get
the result.

For an orbit ∆ with point-stabilizer contained in P3, [31] gives fpr(x,∆) < 1.3
q2

for all

x ∈ L1 r {1}, giving the conclusion.

Finally, let ∆ be an orbit with point-stabilizer H < P1. We have fpr(x, L1/P1) <
1.1
q2

for all x ∈ L1 r {1} except long root elements uα; and fpr(uα, L1/P1) <
1
q . We have

H = Q.DT1.2 < P1 = Q.C2T1, where Q = q1+4 and D = SL2(q)
2 or SL2(q

2). Now argue
as in the previous case that fpr(x, L1/H) ≤ 1.34

q2
.

This completes the proof of Theorem 3.1(iii).

3.2.3. Proof of Theorem 3.1(iv). Consider first G = E8(q), where L′ = E7(q) and V is
the 56-dimensional L′-module VL′(λ7). Write G = E8, L = E7T1 for the corrsponding
algebraic groups over F̄q, and V̄ = V ⊗ F̄q. We aim to bound from below the dimension of
[V, λg] for any g ∈ L′ r Z(L′) and λ ∈ F̄∗q . In doing this, we may assume that g is either
semisimple or unipotent.

For semisimple elements g, we follow the method of [15, Section 8] (originally in [20]).
Let Ψ be a subsystem of the root system Φ of L′, and define an equivalence relation on
the set of weights of V̄ = V (λ7) by saying that two weights are related if their difference
is a sum of roots in Ψ. Call the equivalence classes Ψ-nets.

Now define Φg = {α ∈ Φ |α(g) = 1}, the root sytem of CL′(g). If Φg ∩Ψ = ∅, then any
two weights in a given Ψ-net that differ by a root in Ψ correspond to different eigenspaces
for g.

The subsystem Φg is contained in a proper subsystem spanned by a subset of the nodes
of the extended Dynkin diagram of L′. Suppose Φg 6= A7. Then it is straightforward to
check that there is a subsystem Ψ = (A1)

2 such that Φg ∩ Ψ = ∅. For this Ψ the Ψ-nets
are of size 42, 216, 116, and so it follows from the observation in the previous paragraph
that dim[V̄ , λg] ≥ 20 for any λ ∈ F̄∗q , as required for Theorem 3.1(iv). And if Φg = A7,

then g ∈ Z(A7) and V̄ ↓ A7 = VA7(λ2) ⊕ VA7(λ6) (see [28, 11.8]), and it follows that
dim[V̄ , λg] ≥ 28 for any λ.

Now suppose g ∈ L′ is a unipotent element. If g is a root element, then g ∈ A1, a
fundamental SL2 in L′ and V ↓ A1 = 112+032 (see [28, 11.8]). Hence dim[V̄ , g] = 12. Now

assume g is not a root element. Then the closure of the class gL
′

contains the class A2
1,

by [34, p.452]. Hence for an element u in the latter class we have dim[V̄ , g] ≥ dim[V̄ , u]
(see [16, 3.4]). Using [28, 11.8] it is routine to check that

V ↓ A2
1 = (1⊗ 1)2 + (1⊗ 0)8 + (0⊗ 1)8 + (0⊗ 0)16.

Hence dim[V̄ , u] = 20. This completes the proof of Theorem 3.1(iv) for the case G = E8(q).

The other cases are as follows:

G L′ V̄
E7 D6 V (λ6)
E6 A5 V (λ3)
F4 C3 V (λ3)

For these, the argument is similar (and more straightforward), and can be found in the
proofs of Lemmas 2.4 and 4.6 of [22].
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Table 3.3

class A6 D4(a1) D4(a1)A1 E6 E6(a1) E6(a3)
reps. in [34] y36−37 y92−94 y87−90 y21−24 y25−27 y54−57

class E7 E7(a1) E7(a2) E7(a3) E7(a4) E7(a5)
reps. in [34] y1−9 y10−12 y13−15 y16−20 y31−35 y44−51

The proof of Theorem 3.1 is now complete.

3.3. Proof of Proposition 3.2. (i) Let G and P = QL be as in the statement of the
proposition, and assume G 6= 2E6(q).

We give the proof for G = E7(q); the method is the same for all the other cases. Recall
that q is odd, by hypothesis.

So let G = E7(q) = GF , where G = E7(F̄p) and F is a Frobenius endomorphism. Here
the long root parabolic is P = P1 = QL, and the Levi subgroup L′ = D6(q). Let g ∈ G be
a non-identity unipotent element that is not a long root element. The unipotent classes
of G are listed in Table 22.1.2 of [28]. The label of each class is the semisimple part of a
Levi subgroup in which a class representative is a regular element, and the corresponding
classes in the finite group G are given in [28, Table 22.2.2] – of course there can be several
G-classes arising from a single G-class. If CG(g) contains a subgroup A = A1(q) generated
by root elements, then g lies in CG(A) = D6(q), a conjugate of L′, and so the conclusion of
Theorem 3.1(i) holds. So assume that CG(g) contains no such subgroup. Then inspection
of the tables shows that g is in one of the following G-classes

A2A
3
1, A

2
2A1, A3A2A1, A4A2, A5A1, D5A1, D5(a1)A1,

A6, D4(a1), D4(a1)A1, E6, E6(a1), E6(a3),
E7, E7(a1), E7(a2), E7(a3), E7(a4), E7(a5).

Now Q = 〈Uα : α =
∑
ciαi, c1 6= 0〉, and L′ is generated by the root groups U±αi for

i 6= 1. In the first row of the above list, each G-class corresponds to just one G-class, which
can therefore be written as a product of root elements Uα(1) for roots α in a fundamental
system of the listed Levi subgroup in G. Visibly, all such expressions belong to Ql, where
l ∈ L is a non-identity unipotent element that is not a root element.

The remaining entries in the above list require a different treatment, as each of these
corresponds to more than one G-class of unipotent elements. The most convenient way to
handle these is to refer to [34], where explicit representatives yi for each unipotent class
are given. In Table 3.3 we indicate which representatives yi correspond to which class in
G. Inspection of these representatives in [34] shows that each is in Ql, where l ∈ L is a
non-identity unipotent element that is not a root element. This completes the proof of
Proposition 3.2(i) for G = E7(q). The method is the same for the other exceptional groups
(using [32, 35] for the unipotent conjugacy class representatives of E6(q) and F4(q)).

(ii) Now assume that G = 2E6(q). (For this group there is no explicit list of unipotent
class representatives (that we are aware of), which is why we are proving this weaker
conclusion than in (i).) Let g ∈ G be a non-identity unipotent element. There is certainly
a conjugate u of G lying in the long root parabolic P . If u 6∈ Q then we are done, so
assume u ∈ Q. Then CG(u) contains one of the stabilizers listed in Table 3.1. Moreover
we can assume that CG(u) does not contain a subgroup A1(q) generated by long root
subgroups, since the centralizer of such a subgroup is L′ = 2A5(q), and if u ∈ L′ the
conclusion obviously holds.
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Thus CG(u) contains one of the stabilizers in Table 3.1, but does not contain a long
root A1(q). Consulting the list of unipotent classes and centralizers in G given in [28,
Table 22.2.3], we see that there is just one class uG for which CG(u) has these properties
– namely the class labelled A2 for which |CG(u)| = 2q20|A2(q

2)|. For u in this class,
CG(u) contains a subgroup A2(q

2) arising from a subsystem A2
2, and CG(A2(q

2)) is a
subsystem subgroup A = A2(q) (see for example [27, Table 5.1]). Hence u ∈ A. If we take
this A2 subsystem to be spanned by the roots α2, α4, we see that u can be taken to be
uα2(1)uα4(1), which is an element of P rQ, as required.

4. Proof of Theorem 1

We begin with a lemma.

Lemma 4.1. Let G = G(q) be as in Theorem 1, and let g ∈ Gr Z(G). Then one of the
following holds:

(i) g is a long root element;
(ii) g ∈ P = QL, a long root parabolic, and g ∈ Ql, where l ∈ Lr Z(L); moreover, if

G 6= 2E6(q), then the projection of l to L/Z(L) is not a long root element;
(iii) |CG(g)| < qm, where m = m(G) is defined as follows:

G E8(q) E7(q) Eε6(q) F4(q)
m 38 24 16 12

(iv) g is semisimple and CG(g) is as in Table 4.1; moreover, g lies in the parabolic
Q0L0 specified in the table.

Proof. If g is unipotent, then (i) or (ii) holds, by Proposition 3.2(i). So we may assume
that g = gsgu, where the semisimple part gs ∈ Gr Z(G).

Suppose that CG(gs) contains a long root subgroup. Then if U is a Sylow p-subgroup
of CG(gs), Z(U) contains a long root subgroup, by [14, Thm. 3.3.1]. Hence gu centralizes
a long root subgroup of CG(gs). It follows that g lies in a long root parabolic P = QL
with gs ∈ L. If gs 6∈ Z(L) then (ii) holds, so suppose gs ∈ Z(L). Then gu ∈ CG(gs), which
is equal to L (or to L′A1 if gs is an involution). If the projection of gu in L′ is either 1 or a
long root element, we can apply an element of the Weyl group of G to obtain a conjugate
of g satifying (ii); and otherwise, g already satisfies (ii).

Now assume that CG(gs) does not contain a long root subgroup, and assume also that
|CG(g)| ≥ qm, where m is defined as in (iii). Inspection of the lists of centralizers of
semisimple elements in [9, 10, 32] then shows that CG(gs) is as in Table 4.1. Moreover,
the lower bound on |CG(g)| implies that gu = 1, so g = gs.

For exceptional groups, Lübeck [31] lists all the maximal tori lying in the centralizer of g
and containing g. From this we can check that CG(g) shares a maximal torus (containing
g) with the Levi subgroup L0 listed in Table 4.1. This completes the proof. �

Table 4.1

G CG(g) L0

E8(q)
2A4(q

2) D7(q).(q − 1)
E7(q) A3(q

2).T1 E6(q).(q − 1)
E6(q) A2(q

2).T2 D5(q).(q − 1)
2E6(q) A2(q

2).T2
2D4(q).(q

2 − 1)

Proof of Theorem 1
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Let G = G(q) be as in Theorem 1, so that G is in one of the families E8(q), E7(q),
Eε6(q), F4(q), with q = pa for a good prime p. Let g ∈ Gr Z(G), and let 1 6= χ ∈ Irr(G).
We consider the various possibilities for g given by Lemma 4.1.

Case 1 First suppose that |CG(g)| < qm, as in Lemma 4.1(iii). Then |χ(g)| < qm/2, so

|χ(g)|
χ(1)

< q
m
2
−l1 ,

where l1 = l1(G) is as in Lemma 2.1. Since l1 − m
2 = a2 (as defined in Table 1.1), the

conclusion of Theorem 1 follows in this case.

Case 2 Now suppose that g is as in (i) or (ii) of Lemma 4.1. Here g ∈ Ql ⊆ QL = P ,
where P is a long root parabolic and l ∈ Lr Z(L). Let V be a CG-module affording the
character χ, and write V ↓ QL = V Q ⊕ V1 ⊕ V2 as in Proposition 3.3. Let χ0, χ1, χ2 be
the characters of V Q, V1, V2, respectively. Then χ0 = ∗RGL (χ) by Proposition 3.3(i). An
upper bound for the degree of χ0 = ∗RGL (χ) is achieved in the proof of [2, Theorem 1.1],
where it is shown that

χ0(1) ≤ cχ(1)α(L),

where α(L) is the maximum ratio dimuL

dimuG
, taken over all non-identity unipotent elements

of the Levi subgroup L of the same type as L in the algebraic group G. The values of α(L)
are computed in [2, Theorem 1.7], and are as follows:

G E8(q) E7(q) Eε6(q) F4(q)

α(L) 17
29

5
9

1
2

7
15

Using Proposition 2.1, it follows that

|χ0(g)| ≤ χ0(1) ≤ cχ(1)

qa2
, (4.1)

where a2 is as defined in Table 1.1. Next, Proposition 3.3(iii), together with Theorem
3.1(iii) gives

|χ1(g)| ≤ ci
qai

χ1(1), (4.2)

where i = 1 if g is a long root element, and i = 2 otherwise. Finally, Proposition 3.3(iv),
together with Theorem 3.1(iv) gives

|χ2(g)| ≤ 1

qai
χ2(1), (4.3)

where i = 1 if g is a long root element, and i = 2 otherwise.

Putting together (4.1), (4.2) and (4.3), we have

|χ(g)| ≤ |χ0(g)|+ |χ1(g)|+ |χ2(g)| ≤ c

qai
χ(1),

where i = 1 if g is a long root element, and i = 2 otherwise.

This completes the proof of Theorem 1, apart from elements g in the classes in Lemma
4.1(iv).

Case 3 It remains to prove Theorem 1 for g in one of the classes in Lemma 4.1(iv).
Lemma 4.1(iv) shows that there is a Levi subgroup L0 of a parabolic P0 = Q0L0 as in
Table 4.1 such that g ∈ L0.

In each case we shall consider the restriction of χ to the parabolic P0. The structure of
Q0 is given in Lemma 2.2. As in Proposition 3.3 we write

V ↓ Q0L0 = V Q0 ⊕ V1 ⊕ V2,
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where V2 = [V,Z(Q0)] and V Q0 +V1 = V Z(Q0) (so that V1 = 0 if Q0 is abelian). Moreover,

V Q0 ∼= ∗RGL0
(χ),

and
|χV2(g)|
dimV2

≤ max{fpr(g,Ψj) : 1 ≤ j ≤ t},

where Ψj (1 ≤ j ≤ t) are the orbits of L0 on P1(IrrZ(Q0)), and if V1 6= 0, the bound in
Proposition 3.3(iii) holds for |χV1(g)|.

First suppose G = E7(q). Here Q0 is abelian, and has the structure of an irreducible
27-dimensional FqL0-module, where L′0 = E6(q). Upper bounds for the fixed point ratios
of elements of E6(q) in all primitive actions are given in [21, Theorem 2], and it follows
that fpr(g) < 1

q6−q3+1
for all such actions. Now the conclusion of Theorem 1 follows for

the element g as in Case 2.

Next consider G = E6(q). Again Q0 is abelian, and is a 16-dimensional half-spin
module for L′0 = D5(q). Here L′0 has two orbits on P1(Irr(Q0)), with point-stabilizers
an A4-parabolic and a subgroup q8.B3(q)T1 < P1 (see [23, Lemma 2.9]). The element
g has centralizer A2(q

2).T2 (see Table 4.1), hence is a regular semisimple element in
CG(A2(q

2)) = 2A2(q). From the embedding of 2A2(q) in D5(q), we see that in its action on
the natural 10-dimensional F̄qD5-module, g has at least 4 distinct nontrivial eigenvalues.
It follows that fpr(g, L′0/P1) <

c
q4

. Also fpr(g, L′0/P5) <
c
q4

by inspection of the values of

1
D5(q)
P5

given in [31]. The conclusion of Theorem 1 for the element g again follows.

Now suppose G = 2E6(q). This is similar to the previous case. The element g is a
regular semisimple element in CG(A2(q

2)) = A2(q). From the embedding of A2(q) in
L′0 = 2D4(q), we see that in its action on the natural 8-dimensional module, g has at least
4 distinct nontrivial eigenvalues. Hence fpr(g, L′0/P1) <

c
q4

. Since each of the composition

factors of Z(Q0) and Q0/Z(Q0) is an 8-dimensional L′0-module, the conclusion of Theorem
1 for the element g again follows.

The final case is G = E8(q), where the element g has centralizer 2A4(q
2) and lies in

the Levi subgroup L0 = D7(q)T1. Here g has order 5 dividing q2 + 1, so in fact g ∈ L′0.
Now work in the algebraic group G = E8 over F̄q, and the corresponding Levi subgroup
L0 = D7. We claim that on the natural 14-dimensional D7-module, the element g has
eigenvalues ω, ω2, ω3, ω4 all with multiplicity 3, and eigenvalue 1 with multiplicity 2, where
ω ∈ F̄∗q is a fifth root of unity. Indeed, there is such an element h ∈ L′0 = D7(q) in the

centre of a subgroup GU3(q
2). To compute the centralizer of h, observe using [28, 11.3]

that
L(E8) ↓ D6 = L(D6) + V (λ1)

4 + V (λ5)
2 + V (λ6)

2 + V (0)6.

A calculation with the weights of V (λ5) + V (λ6) shows that the fixed point space of h
on this sum has dimension 12. And the fixed point space of h on L(D6) has dimension
18. Hence dimCL(E8)(h) = 48 = dimA4A4. Since CG(h) contains GU3(q

2), it follows

by inspection of the list of semisimple element centralizers in [9] that CG(h) = 2A4(q
2).

Hence h is conjugate to g, proving the claim.

Next, observe that |χ(g)| ≤ |CG(g)|1/2 < 2q24, so if the degree χ(1) > q35, then
|χ(g)|
χ(1) < 1

q10
, as required for Theorem 1. Hence we may assume that χ(1) ≤ q35, and

therefore χ(1) < cq29 by Lemma 2.1. It follows from the proof of Proposition 3.3(iii) that

|χV1(g)|
dimV1

≤ max{fpr(g,∆i) : 1 ≤ i ≤ s}.

where ∆1, . . . ,∆s are the orbits if L0 on P1(Q0/Z(Q0)) of size at most cq29. The orbits
of the algebraic group D7 on the half-spin module V (λ7) are determined in [33, Main
Theorem, p.230], and only two of these have dimension less than 30. The point-stabilizers
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for these two orbits are connected groups lying in parabolic subgroups P7 and P3 of D7.
Hence these orbits correspond to unique orbits ∆1,∆2 of L′0 = D7(q) on P1(Q0/Z(Q0),
with stabilizers contained in P7 or P3. Since our element g ∈ L′0 fixes no totally singular
7-space or 3-space in the natural 14-dimensional module, it follows that fpr(g,∆i) = 0 for
i = 1, 2. Finally, fpr(g, P1(Z(Q0))) <

1
q10

. The conclusion of Theorem 1 follows for this

element g.

This completes the proof of Theorem 1.

5. Proofs of Corollaries 2 and 3

Proof of Corollary 2. Let G = G(q) be a quasisimple group of exceptional Lie type
over Fq in good characteristic, and let G be the corresponding simple algebraic group over
F̄q. Let y ∈ G r Z(G), and let P t(g) be the probability of reaching g after t steps of the
random walk described in the preamble to Corollary 2. By the Diaconis-Shashahani upper
bound lemma (see for example [24, Prop. 1.7]),

||P t − U ||2 ≤
∑

1G 6=χ∈Irr(G)

(
|χ(y)|
χ(1)

)2t

χ(1)2.

Hence by Theorem 1, we have

||P t − U ||2 ≤ (cq−ai)2t
∑

1G 6=χ∈Irr(G)

χ(1)2 ≤ (cq−ai)2t · qdimG ,

where i = 1 if y is a long root element, and i = 2 otherwise (note that in view of Remark
(i) after Theorem 1, for G = G2(q) there is an extra term of the order of q−2t · q6 on the
right hand side, but this is negligible for t ≥ 4). Corollary 2 follows.

Proof of Corollary 3. We use the method of [29]. Let G = G(q) be a simple group of
exceptional Lie type over Fq in good characteristic p, and let α be a nontrivial irreducible

character of G. If St denotes the Steinberg character of G, then by [18], St2 contains every
irreducible character of G as a constituent. As in [29, Lemma 2.3],

[αl,St]G =
αl(1)

|G|

|G|p +
∑

16=g∈Gss

εg

(
α(g)

α(1)

)l
|CG(g)|p

 ,

where Gss is the set of semisimple elements of G and εg = ±1. Hence [αl, St]G 6= 0 provided
Σl < |G|p, where

Σl :=
∑

16=g∈Gss

∣∣∣∣α(g)

α(1)

∣∣∣∣l |CG(g)|p.

By Theorem 1, we have

Σl ≤ (cq−a2)l
∑

16=g∈Gss

|CG(g)|p. (5.1)

(Again by Remark (i) after Theorem 1, for G = G2(q) there is an extra term q−l · q3 on
the right hand side, but this is negligible assuming that l ≥ 4.) For 1 6= g ∈ Gss, we
have CG(g)0 = TkD, where Tk is a rank k torus and D a semisimple group of rank r − k
(where r = rank(G)). The number of such conjugacy classes is of the order of qk, and their
contribution to the sum in (5.1) is of the order of |G : D(q)| · |D(q)|p. It follows that

Σl ≤ (cq−a2)l · Cqd,
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where C is an absolute constant and d = dimG. Since |G|p = qN where N = |Φ+(G)|,
it follows that for q sufficiently large, [αl,St]G 6= 0 provided a2l > d − N . As remarked
before, St2 contains every irreducible character of G, and so Corollary 3 follows.
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