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SUMMARY

In this paper we introduce a new stage cost and show that the use of this cost allows one to formulate a robustly
stable feedback min-max model predictive control problem that can be solved using a single linear program.
Furthermore, this is a multi-parametric linear program, which implies that the optimal control law is piecewise
affine, and can be explicitly pre-computed so that the linear program does not have to be solved on-line. We assume
that the plant model is known, is discrete-time and linear time-invariant, is subject to unknown but bounded state
disturbances and that the states of the system are measured. Two numerical examples are presented; one of these
is taken from the literature, so that a direct comparison of solutions and computational complexity with earlier
proposals is possible. This is a preprint of an article publishédtérnational Journal of Robust and Nonlinear
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1. INTRODUCTION

The problem of steering a constrained system subject to persistent disturbances to a target set, while
also minimising some worst case cost, was considered as early as the 1960s and [12, 13, 16, 19, 39]
contain some of the first, and perhaps also some of the most insightful, results. In [12, 19] set-based
solutions to the robust time-optimal problem were presented, but the unsolved problem was how to
keep the state evolution inside the target set once it had been reached. The latter problem was solved
in [9, 34] by requiring that the target set be robustly invariant; once inside the target set the control
input is determined by a pre-computed control law that ensures that the state trajectory never leaves the
target set. Furthermore, [34] continues by decomposing the state space into simplices and computing an
explicit affine expression for the control law in each simplex. All that is required on-line is to determine

in which simplex the current state lies and the control input is then given by the pre-computed affine
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control law. More recent attempts at the control of constrained systems are based on set invariance
theory and the reader is referred to [11, 20] for an introduction into this field.

In general, solving a min-max problem subject to constraints and disturbances is computationally
too demanding for practical implementation. However, various attempts have been made at presenting
approximate solutions to this problem and most of these solutions appear to have come from the field of
robust model predictive control (MPC) [30, 33]. Usually, MPC schemes obtain on-line the solution to a
finite-horizon approximation of the infinite-horizon problem. For a given state only the initial segment
of the optimal sequence is implemented; at the next time instant a new measurement is taken and a new
finite-horizon min-max problem is solved.

Due to the various assumptions and approximations made, it is difficult to compare different robust
MPC schemes with one another. However, most robust MPC schemes can be classified into two
categories [33]: (ippen-loopmin-max MPC [1, 2, 14, 40], where a single control input sequence (or
sequence of perturbations to a given stabilising control law [25, 29]) is used to minimise the worst case
cost, and (ii)feedbackmin-max MPC [4, 5, 21, 24, 28, 36], where the worst case cost is minimised
over a sequence of feedback control laws. In general, the open-loop formulation is too conservative
and often severely under-estimates the set of feasible trajectories. The feedback MPC formulation was
proposed in [31] as an improvement over open-loop MPC.

It is by now well-established that with polytopic disturbance bounds, a linear model and a convex
cost, in order to solve feedback min-max MPC problems it is sufficient to consider only the disturbance
realisations that take on values at the vertices of the disturbance polytope [36]. However, the number of
extreme disturbance realisations typically grows exponentially with the length of the prediction horizon
used in MPC.

As an alternative, in [4, 5, 21] it is proposed that a dynamic- and parametric programming approach
be used to obtain an explicit expression for the control law. Provided the stage cost is piecewise affine
(e.g.ifa1-norm opo-normis used), a piecewise affine expression for the control law can be computed
off-line. However, stability is not proven for the stage and terminal costs proposed in [4, 5] nor do the
costs satisfy the stability conditions given in [32, §3.3] and [33, §4.4].

In Section 2 we define the feedback min-max problem that will be considered and present the
main contribution of this paper, which is the introduction of a new type of stage cost (see (10))
such that robust asymptotic stability of a given target set is guaranteed. In Section 3 we review
known requirements for a receding horizon controller to be robustly stable, and show how the newly-
introduced stage cost satisfies these requirements. We also point out some advantages of this cost, over
the cost proposed in [21]. In Section 4 we show how the finite-horizon feedback min-max problem
can be solved as a single linear program (LP), using the results presented in [36], and point out its
multi-parametric nature. Two numerical examples are presented in Section 5 and the conclusions are
given in Section 6.

2. PROBLEM FORMULATION

We consider a discrete-time, linear, time-invariant plant
Xkt1 = AXc + Buk + wx, (1)

wherexx € R" is the system state € R™ is the controlinput anabx € W is a persistent disturbance
that only takes on values in a polytopé¢ c R" (a polytopeis defined to be a bounded, closed and
convex polyhedron — in other words, the séfs X, U andT, to be defined below, are compact and
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convex sets that can be described by a finite number of affine inequalities). It is assumed that the
disturbancewy can jump between arbitrary values withid and that no stochastic description for

it is postulated. Therefore, a worst-case approach is taken in this paper. It is assumed Biais
stabilisable and that polytopic constraints on the state and input, that are either due to physical, safety
or performance considerations, are also given:

Xk e X, ugeU, VkeNlN.

We assume thatV contains the origin and tha¢ ¢ R" andU c R™ contain the origin in their
interiors.

Since a persistent, unknown disturbance is present, it is impossible to drive the state to the origin.
Instead, it is only possible to drive the system to a bounded target set containedin3ide goal is
to obtain a (time-invariant) nonlinear feedback control law « (x) such that the system is robustly
steered to the target set, while also satisfying the state and input constraints, and minimising some
worst case cost.

In order to determine a suitable control law an optimal control probiRgm(defined below) with
horizonN is solved. Letw := {wp, w1, ..., wn—1} denote a disturbance sequence over the interval
0to N — 1. Effective control in the presence of the disturbance requires state feedback [33, §4.6], so
that the decision variable in the optimal control problem (for a given initial state) is a control policy
defined by

T = {U(O), I‘Ll(')’ ""/“LNfl(')}’ (2)

whereu(0) e Uanduk : X - U,k € {1, ..., N — 1}; u(0) is a controlaction(since the current state
is known) and each(-) is a state feedback contdalw. Let ¢ (k; X, 7, w) denote the solution to (1) at
time k when the state ig at time 0, the control is determined by poligy(u = uk(X) atevent(x, k),
i.e. statex, timek) and the disturbance sequencwis

Given a target set (often also called terminal constrdint} X, for each initial statx € R", let
[N (X) denote the set aidmissiblepolicies, i.e.

IMNX) :={r |u©) e U, uk(@k; x,7,w)) e U, ¢(k; x,7,w) € X, ¢(N; X, 7r,W) €T,
Vke{l ... N—l},VWeWN} )

and let
Xn = {xeR" [TIN(X) # 0} 4)

N times

denote the set of states that can be robustly steered (steeredvioealVN := W x - .- x W) to the
target sefl in N steps, while satisfying all input and state constraints.

In order to define an optimal control problem, a cUgt(-) that is dependent on the poliey and
current statex, but not dependent om, is defined; the conventional choice is

N—1
VN(X, ) := ma>’§ |:Z L (Xk, Uk) + F(XN)1| , (5)

weW k=0

wherexy = ¢(k; X, ,w) if kK € {0,..., N}, ux := uk(p@;x,7,w))if k € {1,...,N — 1} and
Up := u(0).
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The target seT, stage cost (-) and terminal cosE (-) have to satisfy certain conditions in order
to ensure that the solution of the feedback min-max optimal control problem, when implemented in a
receding horizon fashion, is robustly stabilising. These conditions will be set out in Section 3.

The feedback min-max optimal control problé?y can now be defined as

PnOO s VOO = min{Un(X, ) |7 € TINGO ) . (6)
Letz{, (x) denote the solution t& (x), i.e.
R () = {Ug 00, 11 (5 %), -, g (50} = argmin{Un(x, ) | € TINGO) ) (7

where the notatiom"(-; x) shows the dependence of the optimal policy on the current ztdtes
assumed thaXy is non-empty and that a minimiseg (x) to problemPy (x) exists for allx € Xy (it
will become clear in Section 4 that this assumption is justified).

It should be noted that the solution to problé?y is frequently not unique — that is, there can
be a whole set of minimisers, from which one must be selected. Thus the time-invaeaunalued
receding horizon control (RHC) lawwy : Xn — 2Y (2Y is the set of all subsets &f) is defined by
the first element ofr § (x):

KN (X) == Uj(X), VX € XN. (8)

Typically, but not alwaysuyg(x) is a singleton.

The feedback min-max problenfPy defined in (6) is an infinite dimensional optimisation
problem and impossible to solve directly. However, methods for solgaising finite dimensional
optimisation techniques have been proposed in [4, 5, 21, 36] and this paper can be seen as an immediate
extension of [36].

Before proceeding, some comments regarding the choice of stage cost are in order. Robust stability
can be guaranteed if the stage cost

1QX|lp + IRullp if (x,u) € X\ T) xU
if(x,uyeTxU

proposedin [21, 32], is used. Though this choice of cost solves the stability problem, it should be noted
that (9) is not continuous (on the boundarylgf The use of such a discontinuous stage cost is a major
obstacle to implementation using standard solvers for linear, quadratic, semi-definite or other smooth,
convex nonlinear programming problems. A new cost (defined below) is proposed as an alternative that
solves the problem of obtaining a continuous stage cost that can be implemented using smooth, convex
programming solvers, while still guaranteeing robust stability of the closed-loop system.

We introduce here a new type of stage cost:

L(X,u) = r}peipllQ(X = Ylip+ IIRMU = KX)[lp, (10)

L(x,u) := , 9)

whereQ € R™" andR € R™™ are weightsK € R™" is a linear feedback gain affidc R" is the

target set and is a polytope containing the origin in its interior (recall that a polytope was defined to be
a compact polyhedron, hence the minimum in (10) exists); the choice and role of the feedbagk gain
and target set will be discussed in more detail in Section 3. We will show in Section 4 that4f 1

or p = oo, then the use of this stage cost allows the robustly stable feedback min-max MPC problem
to be solved using aingleLP. Furthermore, we will show that this LP is in fachaulti-parametric

LP (mp-LP), that allows the RHC lawy (-) to be pre-computed off-line along the lines developed

in [3, 6, 8], and from which it follows that this law is in fact piecewise affine. These facts make robust
MPC/RHC, using the stage cost (10), a viable proposition for some realistic problems.

This is a preprint of an article published international Journal of Robust and Nonlinear Cont@bpyright © 2004 John
Wiley & Sons, Ltd. Int. J. Robust Nonlinear Contr@004;14:395-413
Prepared usingncauth.cls
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Remark 1. A similar stage cost t¢10) was independently proposed in [27] and briefly discussed
within the context of guaranteeing robust stability of a new type of MPC scheme. The stage cost
proposed in [27] is X, u) = (1/2)||x — Pro}r(x)||§ + (1/2)|u — Kx||%, whereProj; (x) denotes

the orthogonal projection of x onfb. The difference between this stage cost €r@@) is minor, but the
formulation in(10) is perhaps more natural. More importantly, the MPC scheme proposed in [27] is
fundamentally different from the feedback min-max MPC scheme considered here and [27] only briefly
discusses the properties of their proposed stage cost. This paper makes a contribution by analysing
and discussing the properties (f0)in detail with regards to its use in feedback min-max MPC.

Remark 2. This paper investigates the use @) in solving R, using the method proposed in [36].
Though not discussed here, itis possible to(@€9in order to guarantee stability if § is solved using
the methods described in [4, 5, 21].

3. REQUIREMENTS FOR ROBUST STABILITY

Itis well-known that, foran MPC/RHC law that assumes a finite horizon, an arbitrary choice of terminal
constraint, stage cost and terminal cost does not guarantee stability of the closed-loop system. In the
absence of state disturbances, conventional MPC/RHC schemes employ a termiRégost | Px||,

that is a control Lyapunov function inside, in order to guarantee robust stability of the origin for

the closed-loop system [32, 33]. However, if the interioNMdfis non-empty and the disturbance is
persistent, then one can easily show that there does not exist a so+ohllet control Lyapunov
function [32, 33] in a neighbourhood of the origin. Since it is no longer possible to drive the system
to the origin, but only to some set containing the origin, the conventional choice of stage and terminal
cost cannot guarantee stability or convergence [32, 83.3.2] and a new type of stage and terminal cost is
needed.

3.1. Sufficient conditions for stability

Before proceeding to set up conditions for robust stability some definitions, taken from [21], are in
order. Ifd(z, Z) := infycz ||z — y| for any setZ c R" and| - || denotes any norm, then the Jets
robustly stabléff, for all ¢ > 0, there exists & > 0 such thatl(xg, T) < § impliesd(x;, T) < ¢, for
alli > 0 and all admissible disturbance sequences. Th& setobustly asymptotically (finite-time)
attractivewith domain of attractiorX iff for all xg € X, d(xj, T) — 0 asi — oo (there exists a time
M such thatx; € T foralli > M) for all admissible disturbance sequences. TheTsit robustly
asymptotically (finite-time) stabl@ith domain of attractionX iff it is robustly stable and robustly
asymptotically (finite-time) attractive with domain of attracti¥n

Consider now the following assumptions, adapted from [21, 36, 37]:

Al: The terminal constraint st C X is a polytope containing the origin in its interior. A linear,
time-invariant control lawk : R" — R™ is given such that the terminal constraint es disturbance
invariant [23] for the closed-loop system, i@ + BK)x +w e T forall x € T and allw € W. In
addition,Kx e Uforall x € T.

A2: The terminal cosE (x) := 0 for all x ¢ R".

A3: The stage codt(x, u) :=0if x € T andu = Kx.

Ada: L(-) is continuous oveK x U and there exists @ > 0 such that.(x, u) > c(d (x, T)) for all
x,u) e X\T) x U.

A4b: L(-) is continuous ove(X \ T) x U and there exists @ > 0 such that(x, u) > c||x|| for all
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400 E. C. KERRIGAN AND J. M. MACIEJOWSKI

x,u) e X\T) xU.

Al, A2, A3, Ada and A4db satisfy the assumptions on the stage cost, terminal cost and terminal
constraint given in [32, 83.3] and [33, 8§4.4]. Hence, one can follow a standard procedure of using the
optimal value function as a candidate Lyapunov function [32, 33] and show that:

Theorem 1. If A1, A2, A3 and Ada (and A4b) hold, thé@nis robustly asymptotically (finite-time)
stable for the closed-loop systefx = Axq + Bin(Xk) + wg with a region of attraction X.

Remark 3. Consider also the “dual-mode” control law

if XN\T
reo = NG X XN (11)
K x ifxeT
wherexy (+) is defined in(8). If T, K, F(-) and L(-) are chosen such that assumptions A1, A2, A3 and
A4 are satisfied, theR(-) is clearly also a robustly stabilising control law, by Theorem 1.

Remark 4. If A1 and A2 are satisfied and0) is used for the stage cost with R being non-singular,
thenkn (X) = Kx forall x € T. This is not guaranteed if R is singular.

In [33, 84.6.3] and [36] it is argued that one need only consider the set of extreme disturbance
realisations if the following assumption holds in addition to those given above:

A5: L(.) is convex oveX x U.

It is shown in [36] how, provided Al, A2, A3, Ada (and A4b) and A5 hold, one can associate
a different control input sequence with each extreme disturbance realisation and, wsingadity
constraintthat prevents the optimiser from assuming knowledge of future disturbances, one can
compute a control inpull € «N(X) on-line using standard finite-dimensional convex programming
solvers. However, in [33, 84.6.3] and [36], an exact expression for the stage cost that allows one to
implement the proposed method is not given; only general conditiohg 9ras in A3, Ada and Adb
are given.

Our main concern here is to point out thatQf is non-singular, then the stage cost (10) satisfies
assumptions A3 and Ada (but not Adb). Using this stage cost in computitgy thus assures that
is robustly asymptotically stable (but not necessarily finite-time stable) for the closed-loop system.

Furthermore, the stage cost (10) satisfies assumption ASi& a polytope (for proof, see the
Appendix). Its use thus allows the robustly stable MPC problem to be solved as a finite-dimensional
problem, as will be shown in more detail in the next section.

Remark 5. Itisinteresting to observe that, provided Q is non-singular, A3 and Ada are satisfied by the
new stage cogtl0) even if R is singular. The use of the second term is not necessary in guaranteeing
robust asymptotic stability; the second term only affects the performance of the closed-loop system.
The second term in the stage c{Hd) follows the idea of pre-stabilising predictions in MPC, which
was introduced in [26] and developed further by those authors for use in robust MPC [25];4 Q
and R:= I, then the stage cogil0) is similar to the one used in [25]. However, it is important to
note that Ad4a and A4b are not satisfied if Q is singular. It is not yet clear how the assumptions in this
paper need to be modified in order to use the method proposed in [25] for proving robust stability (in
addition to robust attractiveness) @fwhen Q is singular and R is non-singular.

Remark 6. Note that the stage cof) satisfies A1—A4 but that it does not satisfy A5. Howevey,ds
defined in(9) is quasi-convex K, U andT are convex. In order to compukg (X) using the approach
in [36], one can show that A5 can be relaxed to the condition Eﬁ'gol L (X, ux) + F (xn) be quasi-

convex. Since the sum of quasi-convex functions cannot be guaranteed to be quasi-convex, one cannot
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FEEDBACK MIN-MAX MODEL PREDICTIVE CONTROL 401

guarantee tha[j{(\‘:_ol L (xk, ux) + F(xn) is quasi-convex if ) and F(-) are quasi-convex. Therefore,
it is not yet known whether A5 can be relaxed in order to allow the stage(@pki be used with the
approach proposed in [36].

3.2. Choice of target set

For methods of computing a terminal constrdinthat satisfies Al, see [20, 22, 23, 34, 36]. However,
some further observations regardikgandT are in order.

The choice oK in (10) is arbitrary, but typically it is chosen such thfet+ BK has all its eigenvalues
inside the unit disk and the control law is optimal via some performance measure. A factor that needs to
be taken into consideration is how the choicéoéffects the size of that one can use. This problem
is not yet fully understood, but some proposals have been put forward for computing a sequence of
linear control laws and an associated sequence of disturbance invariant sets of increasing size [15].

The exact choice of disturbance invaridnis perhaps also arbitrary. However, as discussed in detalil
in [27, 34, 36], a sensible choice fdris theminimal disturbance invariant sef., [22, 23] for the
systemxkt+1 = (A+ BK)xk + wy, i.e.

o]

Foo = DA+ BK)'W, (12)
i=0

Where@?:p S = {Zﬁzps s €S,i=p,...,q}denotes thiMinkowski (vector) surf0] of the
sets{Sp, ..., §}. The problem, however, with settifg:= F, is that the region of attractioy can
be quite small.

One way of enlargingKy is to setT equal to thenaximaldisturbance invariant s€l, [22, 23] for
the systenxxt+1 = (A + BK)xx + wk that is contained inside the constraint-admissible set:

Xk :={xeX |KxeU}. (13)
In this case,
Oo := {X0 € Xk | Xks1 = (A4 BK)xx + wk € Xk, Vwkx € W,k e N}. (14)

This choice of target set has the benefit tifathe state enter3 in finite time, then one can
guarantee that the state of the system; = Axx + BI'(xk) + wxk will robustly converge to the
minimal disturbance invariant séi,, (this is a consequence of the properties of state trajectories of
Xk+1 = (A4 BK)xk + wk that start insid&, [22, §3]). Recall, however, that with the stage cost (10)
one cannot guarantee that the state of the system will &ritefinite time.

A compromise that results in a smalléy, but still guarantees convergence to the minimal
disturbance invariant sef, is to setT equal to any subset in the interior 61, that is also a
disturbance invariant set for the system 1 = (A + BK)xx + wk. SinceT is robustly asymptotically
stable, this guarantees that the state of the system= Axx + Brn (Xk) + wk Will enter O in finite
time. As soon as the state entéls,, one can switch to the control law= KX, thereby guaranteeing
robust convergence of the state of the syskgm = (A + BK)xk 4+ wk to Foo. More precisely, if the
“dual-mode” control law
kn(X) if X € XN\Oso

. (15)
K x if X € Ox

V(X) = {
then the following result follows:
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Theorem 2. If A1, A2, A3 and Ada hold, the eigenvalues of-B K are strictly inside the unit disk
andT C intO, then the minimal disturbance invariant s&t, is robustly asymptotically stable for
the closed-loop systemwx = Axx + By (Xk) + wg with a region of attraction X. If, in addition,
Foo C intT, thenT is robustly finite-time stable for the closed-loop syste@m x= Axx+ By (Xk) + wk
with a region of attraction X.

Proof: Robust attraction is a consequence of the above discussion and the f&ét Hh&K)Xx - 0

ask — oo. Hence, for large, the state trajectories of the system are determined almost entirely by
the disturbance sequence afg, is a limit set for the trajectories of+1 = (A+ BK)xx + wk [22,

83]. See also [23] for further details regarding the properties of the maximal and minimal disturbance
invariant sets for linear discrete-time systems. Robust stabilify,ofindT follows immediately from

the fact thaiuF- anduT are disturbance invariant for gil > 1 [10, Prop. 2.1]. O

Remark 7. Note that Theorem 2 does not require that A4b hold.

The new stage cost (10) can be compared to the conventional staggxos) := || Qx| p+ | Rull p,
which is typically used in conventional MPC schemes without disturbances. In the new stage cost (10),
deviations of the state trajectory fromas well as deviations from some “ideal” control lam= K x
are penalised, instead of penalising deviations of the state and input from the origin. The minimal
disturbance invariant séf,, can be thought of as the “origin” of the systemTlf= F,, then one can
interpret (10) as penalising deviations from the “origin”. SimilarlyT i F, then one can think of
the terminal constraint as containing the “origin” (though the stage cost does not penalise deviations
from the “origin” anymore).

It is interesting to observe that ¥ is far from the target set so that Mt |Q(X — Y)llp ~
IQx|lp and |[R(u — KX)[lp ~ |[RKX||p for all u € U, then the new stage cost (10) is such that
L(x,u) =~ |Qx|lp + [[RKX]||p for all u € U. This is in contrast to having used the conventional cost
L(x,u) := [|QX|lp + [IRull, where, for largex, L(x, u) & || Qx||p for all u € U. For largex, one can
interpret the new stage cost as if an extra penalty on the state has been added to the conventional stage
cost and it is therefore possible that this additional cost could swamp the original cost on the state,
independently of the choice of the input. However, for large states it is quite often the case that the
input constraints are active at the optimum, regardless of whether the conventional or new stage cost is
used — the use of the new stage cost therefore often does not change the optimal input if the state is
far away from the target set. Furthermore, in prackiceill not get to be very large becauXeis often
chosen to constrain the system relatively close to the origin.

It is therefore perhaps more important to consider what happens when the state is close to (but
outside) the target set and a subset of the input constraints are inactive at the optimum. In this case, in
addition to giving ara priori robust stability and convergence guarantee, the new stage cost (10) has
another potential advantage compared to adopting the conventional stage cost. When using a 1-norm
or co-norm stage cost, the problem is often that the optimal receding horizon controller is dead-beat or
idle [3, 35]. This can usually be avoided by using the new stage cost (10), designing an appkopriate
and choosing suitable non-singu@randR. The result is that the response of the constrained system
Xk+1 = AXk + BI'(Xk) + wk can be made to be qualitatively close to the response of the unconstrained
systemxy+1 = (A + BK)xx + wg if the initial state is close to the target setwith only a gradual
change in the behaviour of the constrained system as the size of the initial state increases.
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4. SOLUTION VIA LINEAR PROGRAMMING

Following the same approach as in [36], ¥t := {wg, cee w,{,_l} denote an admissible disturbance
sequence over the finite horizén= 0,..., N — 1 and let¢ € L index these realisations (this is
a slight abuse of notation, because the set of possible realisations is uncountable). AfsoZet

{uf,...,u}_,} denote a control sequence associated with¢ttte disturbance realisation and let

xt = {xg, . x,{,} represent the sequence of solutions of the model equation
X1 = AX +Bug +wi, el (16)
with xg = X, wherex denotes the current state.

4.1. Converting R to a finite-dimensional problem

As a first step towards an implementable solution we follow [36] in replacing protignmby
the following equivalent problem, in which the optimisation over feedback policies is achieved by
optimising over control sequences, but with taisality constrain{17e) enforced:

Problem 1 (Infinite Dimensional Feedback Min-Max) Given the current state X, if
Uno i= {uﬁ|k=o,...,N—1, ZEL}

find a solution to the problem

N—1
* — ; ¢ [
Uz, (x) := (arg Lnolrin rgneaﬁx |:F (XN> + g L (xk, uk)i| , (17a)
where the optimisation is subject {b6), x(‘; =xforall ¢ € £ and
xeX, k=1,...,N-1,  WeLl (17b)
uielU, k=0,....,N-1 Vel (17c)
Xy eT, VeeLl (17d)
xﬁlzxﬁziuﬁlzuﬁz k=0,...,N—1 Ve1,82 € L. (17e)

As explained in more detail in [30, 33, 36], this problem is equivalent to the feedback min-max problem
Pn due to two facts: (i) differentcontrol input sequence is associated with each disturbance sequence,
thereby overcoming the problem of open-loop MPC that associaiegkecontrol input sequence with
all disturbance sequences; (ii) thausality constrain{17e) associates with eaoxﬁ a single control
input, thereby reducing the degrees of freedom and making the control law independent of the control
and disturbance sequence taken to reach that state.

Let thefinite subsetl, := {1,2,...,V} C L, whereV is the cardinality ofCy, index those
disturbance sequenceg that take on values at the vertices of the polytdg& and consider the
following finite dimensional optimisation problem:

Problem 2 (Finite Dimensional Feedback Min-Max) Given the current state x, if
u:= {ul, u2,...,uV}
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404 E. C. KERRIGAN AND J. M. MACIEJOWSKI
and
ut = {ué, uf, ..., uﬁ,fl} , VleL,,
then find a solution to the problem
N-1
u*(x) := (argmin max | F (xﬁ,) +> L (xﬁ uﬁ) , (18a)
u vtel, o

where the optimisation is subject {b6), xg =xforall ¢ € £, and

xteX, k=1,...,N-1, Vel (18b)
upeU, k=0,...,N—-1,  WeLl, (18c)
xg eT, Ve e L, (18d)
l=x2=>ul=u2 k=0,...,N—1 Vi eL, (18e)
At first glance, it might not be obvious how the the causality constraint (18e) can be implemented

as a finite set of linear constraints. However, note that fokadl {0,..., N — 2} and {1, £> € Ly,
if Xg! = X%, wi* = wi? anduj* = uf forall j e {0,....k}, thenx;* = x/2 for all

j € {1,...,k+ 1}. Hence one needs to aﬂﬁﬁrl = uﬁil in order to satisfy the causality constraint.

Therefore, as discussed in [30, 36], the causality constraint (18e) can be replaced by associating the
same control input with each node of the resulting extreme disturbance/state trajectory tree. This
observation reduces the original number of control inputs that need to be computed ffdnto
14+v+...+ VN1 = @N —1)/(v — 1), wherev is the number of vertices oV. A similar
observation holds for the number of constraints and slack variables that will be introduced below when
translating (18) into a finite-dimensional LP.

As a small example, consider the case whes 2 andN = 2. There areV = vN = 4 extreme
disturbance sequences and’if has been defined such thaé = wS andwg = wé, then (18e) can be
substituted withu} = u2 = u3 = ug, u} = u? andu$ = uf.

Clearly, the number of decision variables and constraints grows exponentially with the length of the
control horizon. Implementing robust MPC formulated along these lines with large control horizons
is therefore questionable. However, for some problems the computational complexity might still be
acceptable.

If one now lets

u*(x) =: {ul*(x), uZ(x), ..., uV*(x)}

and
ut (x) = {ug*<x>, ub* (x). ..., uf\,*fl(x)} . Ylel,

then one can establish conditions under which the first componarit‘¢f), denoted byu(l)*(x), is
equal to the first element af (x) and hence also equal ig (x) (note that (18e) ensure that all the
ué*(x), ¢ € L,,are equal). As noted in [33, §4.6.3], if the system is lin¥at), W andT are polytopes
andF (-) andL(-) are convex functions, then using similar convexity arguments as in [36, Thm. 2], it
can be shown that the first elementdf (x) is equal tacy (X).

The next result now follows:
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Theorem 3 (Robustly Stable Feedback Min-Max MPC/RHC) Suppose Al and A2 are satisfied. If
the stage cost is given bl0) and Q is non-singular, thern(X) = ué*(x) and T is robustly
asymptotically stable for the closed-loop systemx= Axx+ Bxn (Xk)+wk With a region of attraction
XN-

4.2. Setting up as an LP problem

In [36] it was proposed that the solution to (18) be computed on-line using standard convex, nonlinear
programming solvers. We will now describe how this problem can be solved using linear programming
if stage cost (10) is used. This will involve setting up an LP that is equivalent to (18).

Recalling thatF (x) := 0, let the total costl(x, u¢, wt) for the current state and a sequence of
control inputsu’ associated with a given disturbance realisatidrbe defined as:

N-1

Jix, uf, wh) = Z L (x,‘f uﬁ)

k=0
As in [36], the optimisation (18) can be written as

min maxJ(x, u®, wb), (19)
ueC(x) LeL,

whereC (x) is a polytope implicitly defined by the constraints in (18). Clearly, (19) is equivalent to the
following convex program:

ryin{y ‘ueC(x),J(x,uE,we)§y,V£e£U}. (20)
sV

Before proceeding, note that if one uses the stage cost (10) pvith 1 then the value of
minycu L(X, u) can be computed by solving the LP

minL(x,u) = min y
ueu u,y,o, B,y

subject to
—a<QxX—y)<a, —B<RU—-Kx)<B, ueU, yeT, Ta+1B<y,

wherea € R", 8 € R™ and the vectot := [1, 1, ..., 1] has appropriate length.

The above procedure is fairly standard and has been used in converting standard and open-loop min-
max MPC problems with 1-norm arb-norm costs to linear programs [1, 2, 3, 4, 14, 30, 35, 40]. We
now use it to set up an LP that is equivalent to (20). Let

N-1
J0x, uf,wh = min Y 1Q04 — Vil + IR — Kx) 1,
' k=0

andy‘, ut, n® andy, u, n be defined similarly tai* andu. It now follows that (20) (and hence (18)) is
equivalentto

min y (21a)
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subject to
X1 = AX. + Buj + wy, x¢=%, k=0,...,N-1, Ve e L, (21b)
xteX, k=1,...,N—-1, Ve e L, (21c)
xgeT, Ve e L, (21d)
X' =x2 = Ul =u? k=0,....N—-1 Vi, leLl, (2le)
— k< QO — Yo < uf, yeeT, k=0,...,N—-1, Ve e L, (21f)
— 1 < R(uy — Kx9) < ng, upeU, k=0,...,N-1, Ve e Ly (21g)
N—-1
Z 1/,u£ + l/nﬁ <v, Ve e L,. (21h)
k=0

Remark 8. Note that a minimiser to the LIP21) exists if Xy is non-empty and the current state

x € Xn. This is because the sditsand T are compact and the variables, n and y are bounded

below by zero. This justifies the assumption made in Section 2 regarding the existence of a minimiser
to problem R (x).

Remark 9. Note that it is also possible to convert the feedback min-max MPC problem to an LP if
p = oo is chosen in the stage cddt0). This is achieved in a similar fashion as above by noting that if
L(x, u) :=minyeT [Q(X = Y)lloo + IRU — KX)o, then

minL(xX,u) = min y
ueu uy,o, B,y

subject to
—lo<QX—-Yy)<le, —-18<RU—-—Kx)<18, uelU, yeT, a+B=<y,

wherea € R, 8 € R and the vectol := [1, 1, ..., 1]’ has appropriate length.

It is interesting to observe that the use of tkenorm results in less variables and constraints than
in the case of th&-norm. The former choice of norm is therefore probably preferred if computational
speed is an issue. However, the latter norm might be preferred if a control action is sought that is closer
to having used the quadratic norm, as in conventional MPC.

4.3. Explicit solution of the RHC law via parametric programming

The development in the previous section allows the on-line solution of the robust MPC problem,
providing that the available computing resources and the required update interval are such that the
LP can be solved quickly enough. If this is not possible, an alternative is to pre-compute the solution,
to store this solution in a database, and to read out the appropriate part of the solution (which can be
done relatively quickly) as required.

By substituting (21b) into the rest of the constraints it is possible to show, as in [3, 6], that (21) can
be written in the form

mgin{c’@ | FO < g+ Gx}, (22)

where6 is the decision variable and consists of the non-redundant componetisyofu, n, y);
the vectorsc, g and matriced, G are of appropriate dimensions and do not depend.ofhe key
observation here is that the constraints are dependent on the currertiattiie affine manner shown.

This is a preprint of an article published international Journal of Robust and Nonlinear Cont@bpyright © 2004 John
Wiley & Sons, Ltd. Int. J. Robust Nonlinear Contr@004;14:395-413
Prepared usingncauth.cls



FEEDBACK MIN-MAX MODEL PREDICTIVE CONTROL 407

This means that the feedback min-max problem falls into the classitif parametridinear programs
(mp-LPs) [8, 18], where each componenkafepresents a parameter that will affect the solution. This
class of problems can be solvefi-line for all allowable values ok and results in piecewise affine
expression for the solution in terms {8, 18].

The polyhedrorXy = {x € R" | 39 : F < g+ Gx]} is clearly the set of states for which a solution
to (22) (and problenfPy) exists. Given a polytope of statdsC Xy and using the algorithm described
in [8], one can compute the explicit solution of the feedback min-max control law far allt’. The
resulting feedback min-max RHC law is then of the following piecewise affine form:

kn(X) = Kjx + hj, Vx € R,

where eactK; ¢ R™" andh; € R™ are associated with a polytof ; eachR; is equal to the
intersection ofX and the closure of a so-calletditical region (a critical region is the set of all
parameterg such that a given set of constraints are active at the optimum of (22); see [8] for a rigorous
definition). The set of polytopeRi} have mutually disjoint interiors an@ = |J; Ri. All that is
required on-line is to determine which polytofle contains the current state (see [7, 38] for efficient
methods) and then compute the control action using only matrix multiplication and addition.

Remark 10. The solution to the control law presented in this paper is of the same piecewise affine
structure as the one given in [4, 5]. However, the derivation in [4] is based on dynamic programming
and requires the solution dN multi-parametricmixed-integerinear programs (mp-MILPS). By
exploiting the convex, piecewise affine nature of the optimal cost, this has since been improved to
solving N mp-LPs [5]. In contrast, the results presented in this paper requires the solution of a single
mp-LP, though this is perhaps of more significance for the on-line computation of the MPC solution
than for off-line pre-computation of the RHC law.

5. EXAMPLES

The following two examples were implemented in Matlab 6.5. The mp-LP solver was implemented
using the algorithm described in [8] and the LP solver provided wditiycdd+[17]. All computations
were performed on an AMD Athlon 1.9GHz processor.

5.1. Casen=1
The first example is taken from [4, 36]. The system is given by
Xk+1 = Xk + Uk + w,
with U := R and
X=xeR|-12<x<2}, T={xeR ||x|<1}, W:={weR ||w| <1}.
For an initial comparison, the same stage and terminal costs as in [4] were used, i.e.
L(x,u) ;= |Qx|+ |Ru, F(x):=0, ¥xe R",ue R™

with Q = 1 andR = 10. WithN =2 andX := {x € R | —1.2 < x < 2}, by solving a single mp-LP
as described in this paper, the robust RHC kaw-) was found to be

KN(X) = —Xif —12<x<2, (23)
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which is the same as [4, Eqgn. 24].

The computation ofy (-) took 55ms. This is a considerable improvement to the 55s it took in [4] to
solve 4 mp-MILPs on a similarly-specified computer and is comparable with the 1.3s it took in [5] to
solve the same problem using 2 mp-LPs.

When the new stage cost (10) was used, i.e.

L(x,u) :=min|Q(X — y)| + |R(u — Kx)|
yeT

with K := —1 (as proposed in [36, §F]), the robust control lay(-) was computed in 68ms and found
to be the same as in (23).

5.2. Casen=2

For the second example, the system is given by

1 08 0
X+1=19 07 Xk + 1 Uk + wg,
with
X::{xeRz|||x||oo§10},W:={weR2|||w||oo§O.l},U:={ueR|—3§u53}.

GivenK := —[1 1], the target set was chosen to be the maximal disturbance invarigh.setntained
inside Xk := {x € X | Kx € U} for the closed-loop systemx;+1 = (A + BK)xk + wy, i.e.
3 1 1 3
T:=0p=4{xcR?>|—-|28|<| 0 05|x<]|28
2.75 0.5 015 2.75

The stage cost was chosen to be
Lx,u) = ryneip QX = Ylloo + IRWU = KX) lloc,

with Q = | andR = 0.1. The control horizon was set 8§ = 2 andX’ := Xy N X was computed
using the software developed in [20].

The LP that solves the feedback min-max MPC problem has 220 inequalities (of which only 105
are non-redundant) and 42 decision variables. The computation of the explicit expression for the RHC
law kN () was completed in under 23s (since by far most of the computational effort actually goes into
removing redundant inequalities from the newly computed polytopes that partition the state space, it is
expected that this time can be reduced by a few orders of magnitude using a state-of-the-art LP solver).
The polytopes that define the explicit solution of the associated mp-LP are shown in Figure 1 (in order
to save space, the expressions for the associated polytopes are not listed). Though 71 separate regions
were computed, it was found that only 7 distinct affine control laws were defined over different parts
of X (polytopes with the same affine control law are plotted with the same shade in Figure 1). Post-
processing might therefore reduce the number of regions that need to be stored on-line. The 7 affine
control laws that, together with the polytopes shown in Figure 1, defie are:

k200 =[0 0] x+3,

kst =[0 —0.7]x+55,
knf) =[-1 —15]x+28,
k) =[-1 —1]x.
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-10 -8 -6 -4 -2 0 2 4 6 8 10
Figure 1. The polytopes that define the explicit expressior fgr) for the second example

Finally, Figure 2 shows part of the response of the closed-loop sygtem= Axx + BI'(Xk) + wk
to a random, persistent disturbance satisfying € W for all k € N, starting from initial state
X0 = [10 —10]/. As can be seen, the presence of the persistent disturbance prevents the state of
the system from converging to the origin. Note that in this example the state &nterfinite time,
despite the fact that only robust asymptotic convergence to the targetset guaranteed. Recall also
thatI'(-) andT have been defined such that if the state enfeis finite time, then the state of the
system is guaranteed to remain insidéor all future admissible disturbance sequences. Furthermore,
using the arguments presented in Section 3, it follows that if the state dnierfinite time, then the
control lawTI'(-) is such that the state of the closed-loop system will robustly converge to the minimal
disturbance invariant seft,. Finally, if the state enter&, in finite time, then the trajectory of the
closed-loop systemk1 = Axx + BI'(Xk) + wg is guaranteed to remain insidgé,.

6. CONCLUSIONS

Robust MPC requires optimisation over feedback policies, rather than the more traditional optimisation
over open-loop sequences, if excessive conservativeness, and hence infeasibility and/or instability, is
to be avoided. But this is difficult to implement with reasonable computational effort, and hence its
practicality is questionable, particularly if on-line optimisation in real-time is envisaged.

In this paper we have introduced a new stage cost, that allows one to compute the solution of the full

This is a preprint of an article published international Journal of Robust and Nonlinear Cont@bpyright © 2004 John
Wiley & Sons, Ltd. Int. J. Robust Nonlinear Contr@004;14:395-413
Prepared usingncauth.cls



410

MACIEJOWSKI

E. C. KERRIGAN AND J. M.

I
30

. 15 20 25
Time instant

-10
0 10

Figure 2. Closed-loop response of the second example to a random, persistent disturbance

robust MPC problem — that is, optimisation over feedback policies with guaranteed robust asymptotic
stability of the target set in the face of persistent disturbances — using only one LP. A detailed
computational comparison of the competing proposals is not straightforward, however, because the
dimensions of the optimisations involved vary in complicated ways. It is therefore not yet possible to
say conclusively which scheme will be more efficient for on-line implementation, or which one would
be preferred for off-line pre-computation. The answers may well depend on problem-specific details.
Finally, it still remains to be determined, via extensive analysis, simulations and practical
applications, exactly when and why it makes sense to use the the new stage cost proposed in this

paper, rather than using the conventional type of stage cost or the one proposed in [21].

APPENDIX: PROOF THAT (10) IS CONVEX

We need to prove that

L(Ax1 + [1— AlX2, Auz + [1 — AJuz) < AL(X1,u1) + [1 = A]L(x2, u2) (24)
forall » € [0, 1]. Note that the proof relies on the convexityoaind that it is easy to demonstrate that

L (-) is not convex ifT is not convex.
Proof:

L(AX1+ [1— AlX2, AUp + [1— Alup) =
f‘yneip [QMAXy + [1—AlX2 — Yp + IR(AUL + [1 = AJuz — K{Axa + [1 = A]x2Dlp  (25)
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Let
Yi :=argmin| QX — Y)llp
yeT

and consider the first term on the right hand-side of (25), notingityma#- [1 — A]y2 € T sinceT is
convex:

f)peiQ 1QGXL +[1—Alx2 — YIp = [Q(AX1L + [1 = Alx2 — Ayr — [1 = Aly2)llp

<AMQMX1 —yDllp +[1—AlIQMX2 — Y2)llp  (26)

(Minkowski’s inequality). Now consider the second term on the right hand-side of (25):

[R(AUL + [1 = AJuz — K{Axp 4+ [1 = A]x2Dllp = [[AR(U1 — KX1) + [1 — A]R(u2 — KX2)llp
< MIRU1 — Kxp)llp + [1 = AllIR(U2 = Kx2)[lp  (27)

Adding together (26) and (27) proves (24).
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