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Abstract

We develop a formal model of placebo effects. If subjects in seemingly-ideal single-stage RCTs

update beliefs about breakthroughs based upon personal physiological responses, mental effects

differ across medications received, treatment versus control. Consequently, the average cross-

arm health difference becomes a biased estimator. Constructively, we show: bias can be altered

through choice of control; higher-effi cacy controls mitigate upward bias; and effi cacy states can

be revealed through controls of intermediate effi cacy or controls that mimic a subset of effi cacy

states. Consistent with experimental evidence, our theory implies outcomes within-arm and

cross-arm differences can be non-monotone in treatment probability. Finally, we develop novel

differences-in-differences and triangle equality tests to detect RCT bias.
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1 Introduction

A critical stated objective in medical trials is to produce an unbiased estimate of the non-placebo

physiological effect of a treatment, also known in the medical literature as characteristic effect or

specific effect. Since Fisher (1935), the double-blind randomized controlled trial (RCT below) has

been viewed as the gold standard in eliminating placebo effects and isolating non-placebo physiolog-

ical effects. In describing the rise of RCTs in medicine in The Lancet, Kaptchuk (1998) notes, “The

greater the placebo’s power, the more necessity there was for the masked RCT itself.”In the U.S.,

E.U. and Japan, the gold standard status of RCTs is codified under the International Conference

on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use

(ICH, 2000). The ICH writes, “Control groups have one major purpose: to allow discrimination of

patient outcomes [...] caused by the test treatment from outcomes caused by other factors, such

as the natural progression of the disease, observer or patient expectations, or other treatment.”

In fact, the perceived reliability of the RCT has caused the methodology to be emulated in other

disciplines. For example, in their influential textbook, Mostly Harmless Econometrics, Angrist and

Pischke (2009) hold up the RCT as the ideal for achieving unbiased estimates of causal effects.

Given its practical importance, as well as its contemporary methodological influence, it is worth-

while to revisit the logical foundations of the double-blind medical RCT. In the traditional statistical

argument for the RCT, health quality is assumed to be the sum of a direct non-placebo physiologi-

cal effect plus a brain-modulated physiological (“mental”or “placebo”) effect.1 Since subjects are

randomly assigned to treatment and control groups, with blind assignment, the mental effects are

assumed to be identically distributed random variables, having probability distributions indepen-

dent of the assigned group. Under these assumptions, the difference between the average treatment

and control group health quality yields an unbiased estimate of the expectation of the non-placebo

physiological effect.

The medical literature’s informal theoretical account of mental effects is known as expectancy

1Following the literature, we use these three terms interchangeably.



theory. Stewart-Williams and Podd (2004) state, “On the expectancy account, the effects of such

factors come through their influence on the placebo recipient’s expectancies.” In this spirit, in

perhaps the first known controlled medical trial, Haygarth (1801) wrote that his study, “clearly

prove[d] what wonderful effects the passions of hope and faith, excited by mere imagination, can

produce on disease.”

Departing from purely statistical treatments, as well as informal articulations of expectancy

theory found in the medical and psychiatry literatures, we posit that agents manifest better present-

day health quality in response to expectations of better health quality in future periods arising from

a higher probability of a medical breakthrough. For example, expectation of better future health can

reduce anxiety, improving outcomes today for subjects suffering from ulcers or hypercholesterolemia.

Similarly, expectation of higher future survival rates can alleviate the severe anxiety associated

with life-threatening diseases, with relaxation, rest and sleep improving measured health quality

today. Similarly, expectation of better future mental health can mitigate feelings of hopelessness

and anxiety, thus reducing depression today.

Indeed, the psychiatry literature, with its anxiety theory, has informally articulated the mecha-

nism central in our model, without apparently understanding the implications for RCTs. MacLeod,

Williams and Bekerian (1991) argue that: “Worry is a cognitive phenomenon, it is concerned with

future events where there is uncertainty about the outcome, the future being thought about is a

negative one, and this is accompanied by feelings of anxiety.” In turn, anxiety reduction may rep-

resent one source of mental effects. For example, in the context of pain treatment, Turner, Deyo,

Loeser, von Korff, and Fordyce (1994) conjecture that “A patient’s expectation that treatment will

relieve symptoms may reduce anxiety and thus ameliorate symptoms.”

In a stylized way, our model mimics a seemingly-ideal medical RCT. Specifically, we consider

the testing of a new medication with an unobservable effi cacy state that is either high or low. Test

subjects enter the trial holding subjective prior probability assessments which may or may not be

equivalent to objective probabilities.2 Subjects are randomly assigned to take the new medication

2See Anscombe and Aumann (1963) for a definition of subjective probability.
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or a control. After taking their assigned medication, but before health quality is measured, subjects

privately observe their respective direct physiological state and then revise their beliefs regarding

the effi cacy state using either Bayesian or subjective non-Bayesian updating as in Epstein (2006)

and Epstein, Noor and Sandroni (2008). Measured health quality at the end of the RCT is the sum

of the direct physiological state plus a brain-modulated physiological effect which is a monotone

increasing function of expected future health quality. In turn, expected future health quality is

monotone increasing in the subject’s posterior probability assessment of the high effi cacy state.

As shown, in such environments, mental effects cannot be presumed to be equal across treatment

and control groups even in ideal double-blind single-stage medical RCTs. In particular, beliefs about

the effi cacy state of a novel medical treatment will vary systematically with the objective probability

distributions governing the direct physiological responses induced by the treatment and control

medications. Unless the objective probability distributions of direct physiological responses are equal

across the treatment and control medications, beliefs regarding effi cacy will generally differ across

groups leading to differences in hope-based mental effects (expectancy). Therefore, the difference in

average health outcomes across treatment and control groups generally delivers a biased estimate

of the conditional expectation of the non-placebo physiological effect.3

We first characterize how bias varies with choice of control. We initially assume priors have the

monotone likelihood-ratio property (MLRP) while objective probabilities satisfy first-order stochas-

tic dominance (FOSD) conditions. It is shown that an unscrupulous drug manufacturer can create

upward bias by using a stochastically dominated control. Conversely, a conservative regulator can

ensure that bias is downward by using a stochastically dominating control. Controls of intermediate

effi cacy create upward (downward) bias in the high (low) effi cacy state. Finally, despite existence of

bias, a positive result obtained under these technical conditions is that the treatment-control differ-

ence is positive (negative) if the treatment generates higher (lower) mean health than the control.

That is, here the treatment-control difference correctly ranks medications in terms of mean health

outcomes.
3Conditioning here is on the effi cacy state.
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We then relax the MLRP and FOSD assumptions. It is shown that here the treatment-control

difference need not rank medications correctly: a positive (negative) treatment-control difference

can occur even though the treatment is no better (no worse) than the control in terms of mean

health effects. Nevertheless, other constructive results emerge here. For example, the unconditional

expectation of bias is zero if the objective probability density for the control mimics the objective

unconditional density of health outcomes under the treatment. Further, bias can be eliminated in

one of the two effi cacy states by using a control mimicking that state’s objective probability density.

Finally, with such a mimicking control, a non-zero treatment-control difference identifies the true

effi cacy state as being the non-mimicked state.

We next develop a novel differences-in-differences test for RCT bias and for our posited control

medication effect. In particular, if RCTs are unbiased, then the treatment-control difference should

fall one-for-one with each increase in the mean health outcome associated with different controls.

In contrast, we predict that when more effective controls are used in RCTs, the treatment-control

difference will fall more than one-for-one with the control’s mean outcome. That is, the difference

between RCT differences should exceed the difference between control medication effects. If the

objective effects of the two control medications are not known, a third RCT comparing the two

controls must be conducted. In the absence of RCT bias, the following triangle equality will hold:

The difference in RCT outcomes between the novel treatment and control 1 is equal to the difference

between the novel treatment and control 2 plus the difference between control 2 and control 1.4

We also analyze the role played by treatment probability in altering the bias. To begin, we show

bias approaches zero as treatment probability approaches zero.5 Of course, concern over standard

errors and eliciting participation would rule out infinitesimal treatment probabilities in practice.

We therefore derive technical conditions under which bias is increasing in treatment probability.

These monotonicity results can be seen as supporting the notion that smaller treatment groups are

bias-reducing. However, the conditions for bias-monotonicity are restrictive, and we show that bias

4We thank an anonymous referee for suggesting this extension of our DiD test.
5Chassang, Padro i Miguel, and Snowberg (2012) present a similar limit result.
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magnitude can locally decrease with treatment probability.

Finally, we derive testable implications regarding the effect of varying treatment probability.

Here our model has the potential to explain experimental evidence at odds with the “canonical

theory”of placebo effects. The canonical theory predicts better mental effects arise from beliefs that

one is receiving the treatment rather than the control. Stewart-Williams and Podd (2004) describe

the “archetypal placebo event”as follows: “A physician gives a patient a pill that, unbeknownst to

the patient, is merely a sugar pill... Presently, the patient’s health improves, apparently because of

the belief that the pill was a pharmacological agent, effective for the condition.”Consistent with

the canonical theory, Malani (2006) writes, “patients in the higher-probability [of treatment] trial

will expect better health outcomes from their clinical trial, all other things being equal.”

We contrast testable implications. First, both theories predict outcomes within each trial arm

should vary with treatment probability. Second, in the canonical placebo theory, health outcomes

within each trial arm are predicted to increase with treatment probability. In this spirit, Chas-

sang, Snowberg, Seymour and Bowles (2015) offer antidepressants as a motivating example, writing

“participants treated with probability p = 50% (1/1 odds) will expect more social anxiety than par-

ticipants treated with probability p = 75% (3/1 odds).”6 In contrast, our model formally predicts

negative responses to higher treatment probabilities if low-effi cacy medications are administered,

since subjects then assess a lower probability of a breakthrough. Finally, the canonical theory

predicts health outcomes across arms should increase at equal rates, with cross-arm mental effects

canceling, implying zero bias. In contrast, our proposed theory predicts unequal response rates,

implying RCT bias.

In a pioneering paper, Malani (2006) tests these three hypotheses in a sample of medical RCTs

with varying treatment probabilities for subjects suffering from ulcers or hypercholesterolemia. He

finds that health outcomes do indeed vary with treatment probabilities. However, he finds some

evidence of negative treatment-arm responses to increases in treatment probability, an observation

inconsistent with the canonical theory. Further, Malani documents that treatment and control arms

6The authors also discuss potential negative (nocebo) effects.
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exhibit unequal rates of response to changes in treatment probability, contradicting the canonical

theory but supporting our central prediction of bias in medical RCTs.

Chassang, Padro i Miguel, and Snowberg (2012) analyse RCTs in settings with hidden types or

actions. They consider the normal form of an abstract signal structure. In contrast, we consider

the extensive form of a specific signal technology and provide a detailed analytical treatment of

how bias is affected by changes in control medication (and treatment probabilities). Relatedly, they

show how mechanism-like extensions can improve on RCTs. In contrast, we attempt to improve on

RCTs through bias-reducing or state-revealing control medications.

Philipson and Desimone (1997) also stress limitations on RCTs. In their model, bias arises via

differential attrition in multi-stage trials, there is a single effi cacy state for the novel drug, and the

health signal is binary.7 Our framework shows the problem of RCT bias is much more severe than

their analysis suggests. First, as we show, with placebo effects, bias can even occur in single-stage

trials where attrition is impossible. Second, if there is more than one effi cacy state for the novel

drug, as is the case in our model, and as must be the case in practice if an RCT is actually resolving

uncertainty, the RCT must be biased in at least one effi cacy state. That is, at best, bias elimination

is state-contingent. Finally, with binary health signals, the suffi cient condition for no bias is that

treatment and control have equal means. In a more realistic environment in which health varies

along a continuum, the analog suffi cient condition for no-bias is much more-demanding: equality

of treatment and control probability density functions. In addition, with continuous health signals,

differences in density functions can change ordinal rankings of medications in a way that depends

upon the shape of mental effect functions, in the same way that changes in security payoff functions

change preferences over payoff densities.

The mental effect in our model operates through subject beliefs regarding the promise of future

health, which is positively correlated with the true effi cacy state of the novel therapy being tested.

We posit that less anxiety about future health leads to better health quality during the experiment.

In this sense, the underlying causal channel in our model is related to the anticipatory expected

7See Chan and Hamilton (2006) for a structural estimation and Deaton (2010) for a discussion of attrition.
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utility framework formalized by Caplin and Leahy (2001). Specifically, the two models share the

notion that “anxiety is anticipatory,”with our model going on to consider concomitant health quality

feedback effects.

Our paper contributes to the medical literature on RCTs. Existing critical examinations of

medical RCTs have emphasized practical diffi culties in their implementation. Bothwell and Podolsky

(2016) provide an historical account of RCTs. Rothwell (2005, 2006) provides excellent critical

surveys. There is also a large medical literature examining the role of expectations in influencing

health outcomes. Regarding the potentially beneficial effects of greater hope, Blasi, Harkness,

Ernst, Georgiou, and Kleijnen (2001) perform a meta-analysis of context effects in The Lancet.

They note, “Three of these studies showed that enhancing patients’expectations through positive

information about the treatment or the illness, while providing support or reassurance, significantly

influenced health outcomes.” Consistent with the notion that anxiety reduction leads to better

health outcomes, Thomas (1987) offers empirical evidence that physicians offering to patients a

more positive prognosis, holding fixed the nature of treatment, leads to reductions in reported

symptoms. In addition, Shapiro and Shapiro (1984) offer evidence that placebo effects are more

powerful in more anxious patients.

2 The Model

Unless stated otherwise, the details of the experimental setting are common knowledge. This is

in the spirit of informed consent laws. There are two dates d ∈ {1, 2}. At d = 1, a double-blind

randomized, parallel group, controlled trial (RCT) is conducted. The objective of the RCT is to

assess the effi cacy of a novel drug.8 The assessed effi cacy influences the probability of the tested

drug being distributed at d = 2, as well as the probability of next-generation improvements to the

drug. Depending on the setting, one can think of the control group as being given either an inert

drug (placebo-controlled trial) or some traditionally-used drug (controlled trial).

8We consider drugs to fix ideas, but the analysis applies to medical treatments generally.
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In the model, the RCT is ideal, with the test panel being representative of those currently affl icted

with the disease, as well as future generations that will be affl icted with the disease, eliminating

selection concerns.9 In addition, the test panel I is a measure one continuum of agents, eliminating

potential concern over small sample bias.10 Current and future agents suffering from the disease

live for two dates, with the dates d ∈ {1, 2} corresponding to the lifetime of agents in the test panel.

Let T (C) denote the set of agents randomly assigned to the treatment (control) group. The

measure of the treatment group is t ∈ (0, 1). Throughout, t is assumed to be common knowledge,

consistent with treatment probability being an important element of informed consent.

We begin first with a description of objective probabilities. Just after taking her assigned drug

at d = 1, agent i ∈ I observes her respective direct physiological state p1i , a random variable with

support P ≡
[
p, p
]
, with P being common knowledge. The direct physiological state represents

the health quality that would be experienced by the agent in the absence of any mental effect. If

i ∈ C, p1i is an independent draw from an atomless twice continuously differentiable cumulative

distribution FC , with probability density fC . If i ∈ T , p1i is an independent draw from an atomless

twice continuously differentiable cumulative distribution FS , with probability density fS . Let S

denote the effi cacy state of the new drug. This effi cacy state is unknown at the start of the RCT.

The effi cacy state S ∈ {L,H}, with L (H) denoting low (high) effi cacy. The objective probability

that S = H is λ ∈ (0, 1).

In the interest of generality, we do not assume the experimenter knows any element of {fC , fH , fL, λ}.

Common knowledge is subsumed as a special case of the model in which the experimenter and all

i ∈ I know {fC , fH , fL, λ}. As specified in the respective propositions below, the experimenter may

only know that certain relationships hold. For example, the experimenter may know the control

mimics the distribution of direct physiological states induced by the new drug in the low effi cacy

state, with fC = fL. Alternatively, the experimenter may know certain stochastic dominance re-

lationships hold. For example, the control may be an inert pill and the experimenter may know

9See Malani (2008) for a detailed analysis of self-selection in RCTs.
10Deaton (2010) expresses concern over small sample biases in RCTs.
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that, regardless of the effi cacy state, the distribution of direct physiological states induced by the

novel drug first-order stochastically dominates that of the control. One of our objectives will be

to describe whether and how the experimenter can draw correct inferences about either the true

effi cacy state S or the expectation of the direct physiological state induced by the novel drug.

We also admit departures from common knowledge by allowing for the possibility that test sub-

jects do not know any element of {fC , fH , fL, λ}. Rather, test subjects are assumed to enter the

RCT holding subjective probability assessments. Test subject i enters the trial holding the subjec-

tive probability assessment that the direct physiological state induced by the control medication is

described by a twice continuously differentiable cumulative distribution FCi , with probability den-

sity fCi . Further, test subject i enters the trial holding the subjective probability assessment that,

conditional upon the effi cacy state being S, the direct physiological state induced by the novel med-

ication is described by an atomless twice continuously differentiable cumulative distribution FSi ,

with probability density fSi . Finally, test subject i holds the subjective prior that S = H with

probability λi ∈ (0, 1).

Anticipating, some propositions below assume subjective probabilities exhibit a degree of concor-

dance with objective probabilities, with subsequent analysis relaxing the concordance assumption.

Intuitively, one can understand informed consent forms and other information sources as providing

test subjects with a rough understanding of their environment even though they fail to know any

element of {fC , fH , fL, λ}. For example, the control might be an inert pill that mimics the low

effi cacy state (fC = fL), and the test subject may be informed that this the case, so that fCi = fLi .

Notice, here there is a degree of concordance between subjective beliefs and objective reality but

this in no way rules out extremely large Kullback-Liebler divergence (relative entropy) between

subjective and objective densities.

Let

µJ(i) ≡
∫
P

pfJ(i)(p)dp.

9



State H is superior to L in that

µH > µL.

The following technical assumption is adopted.

Assumption 1: For all i ∈ I and p ∈ P there exists some J ∈ {C,L,H} such that fJi (p) > 0 and

for all p ∈ (p, p), fJi (p) > 0 for all J ∈ {C,L,H}.

The first part of Assumption 1 ensures each test subject’s Bayesian posterior probability as-

sessment over S is well-defined on P. The second part ensures the first derivative of the Bayesian

posterior is well-defined on (p, p).

Health quality is measured without error. During the RCT (d = 1), agent i ∈ I experiences

total health quality Q1i , where

Q1i ≡ p1i +mi. (1)

In the preceding equation, the first term, the direct physiological state, is assumed to be privately

observed by the agent. The second term captures the mental effect. Since additivity of the mental

effect plays an important role in the traditional proof for the unbiasedness of RCTs, we stress the

adoption of this assumption.

Assumption 2: The brain-modulated physiological effect (mental effect) enters health quality addi-

tively.

Events at d = 2 are modeled in reduced-form with, say, the government mandating which

medication must be taken by all agents suffering from the disease, including all i ∈ I. Test subject

i holds the subjective probability assessment that if the effi cacy state is S, then at d = 2 the novel

drug will be mandated with probability πSi .
11 Test subject i believes improvements to the novel

drug will be made to it, conditional upon it becoming the mandated drug at d = 2, increasing the

health quality of those who take it by a further incremental amount δSi , with δ
H
i ≥ δLi ≥ 0.

For simplicity, the effect of all medications is assumed to be non-cumulative. In particular, the

terminal period health quality of agent i ∈ I at date d = 2, denoted p2i , is an independent draw of

11This subjective probability assessment may well reflect test subjects anticipating incorrect experimenter inferences.
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the direct physiological state from the relevant distribution, specifically FS if the novel drug is the

mandated drug. If the novel drug is not mandated at d = 2, a default medication will be mandated,

with the default medication being viewed by test subject i as generating mean health quality at

d = 2 equal to µDi .

After taking the assigned pill, but before the experimenter measures total health quality Q1i , test

subjects observe their respective direct physiological state p1i and then update their beliefs regarding

the effi cacy state. For example, a test subject may take a pill at the start of the RCT, feel better

(worse) some hours (days) later, and then feel more (less) optimistic regarding the prospects that

the novel drug constitutes a true medical breakthrough. Since this timing convention underpins the

central causal mechanism in our model, we stress this assumption below.

Assumption 3: Each test subject observes their respective draw of direct physiological state p1i

before the experimenter measures Q1i .

Let β̂i denote the posterior probability assessment of agent i that S = H given p1i . We allow

test subjects to depart from Bayes’Rule, with posterior beliefs falling into a broader class consistent

with subjective updating of subjective priors as in the axiomatic formulation of Epstein (2006) and

Epstein, Noor and Sandroni (2008). We are agnostic as to whether the departures from Bayes’Rule

constitute mistakes or whether, as argued by Epstein (2006), departures from Bayes’Rule can be

understood as rational provided that priors are subjective objects rather than objective objects.12

Assumption 4: For each test subject i ∈ I there exist weights (κ≤i , κ
>
i ) ∈ (0,∞)× (0,∞) such that

posterior beliefs take the form

β̂i(p) = κ≤i βi(p) + (1− κ≤i )λi, ∀ p s.t. βi(p) ≤ λi

β̂i(p) = κ>i βi(p) + (1− κ>i )λi, ∀ p s.t. βi(p) > λi

where βi is the subject’s probability assessment that S = H derived from Bayes’Rule.

Assumption 4 ensures our model subsumes a broad class of behavioral assumptions as one

considers possible combinations of weights on the pure Bayesian posterior. A Bayesian agent places
12 In particular, see the discussion on page 415 in Epstein (2006).
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weight 1 on β. Underreaction (overreaction) entails placing a weight less (greater) than 1 on β.

Finally, one can think of an optimistic (pessimistic) agent as overreacting to positive (negative)

signals and underreacting to negative (positive) signals. Summarizing, such subjective updating

rules are subsumed within our model by setting parameters as follows.

Bayesian: κ≤i = κ>i = 1 (2)

Underreaction: (κ≤i , κ
>
i ) ∈ (0, 1)× (0, 1)

Overreaction: (κ≤i , κ
>
i ) ∈ (1,∞)× (1,∞)

Optimism: κ≤i ∈ (0, 1], κ>i > 1

Pessimism: κ≤i > 1, κ>i ∈ (0, 1].

Let Xi denote the expectation held by agent i regarding their terminal period (d = 2) health

quality conditional upon the direct physiological state they experienced during the RCT:

Xi(p) ≡ Ei[Q2i |p1i = p].

It follows:

Xi(p) = Q
2L
i + β̂i(p)

(
∆Q

2
i

)
(3)

∆Q
2
i ≡ Q

2H −Q2L

Q
2H
i ≡ Ei[Q2i |S = H] = πHi (µHi + δHi ) + (1− πHi )µDi

Q
2L
i ≡ Ei[Q2i |S = L] = πLi (µLi + δLi ) + (1− πLi )µDi .

Three points are worth noting in the preceding equation. First, expected future health quality (Xi)

varies with the state-contingent continuation probabilities (πLi , π
H
i ), which can be viewed as being

influenced by test subject beliefs regarding company or country-specific factors, e.g. financial and

legal constraints, rather than representing the sort of biological constants of interest to physicians.

Second, expected future health capitalizes not only the effects of the novel drug being tested but also

anticipated improvements to this new drug, as captured by the improvement parameters (δLi , δ
H
i ).
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Thus, the model reveals that the mental effect enjoyed by the current drug capitalizes the anticipated

effi cacy of next-generation drugs. Third, expected future health quality capitalizes effi cacy states

that may well be disproved by the RCT. It is apparent then that mental effects will generally be

time-varying since information sets generally vary over time. All three factors show that, as a general

matter, it is invalid to extrapolate across time and space the placebo effects from a given RCT.

Test subjects expect higher future health quality if S = H. In particular, we make the following

assumption.

Assumption 5: For all test subjects i ∈ I

πHi (µHi + δHi ) + (1− πHi )µDi > πLi (µLi + δLi ) + (1− πLi )µDi .

Although we are agnostic regarding the exact parameter configuration underpinning Assumption

5, perhaps the most natural interpretation is that test subjects assign relatively high values to πHi and

µHi . That is, subjects may believe that if the novel drug is of high effi cacy, there is a high probability

of its being distributed and, in this state, the drug generates high mean health outcomes.

Expectancy theory posits that better expected future health quality maps to better present-day

health quality. We capture such a mapping with the following functional form assumption.

Assumption 6: Brain-modulated physiological effects (mental effects) are equal to Ψi(Xi), where

Ψi is continuously differentiable and strictly increasing for all i ∈ I.

With Assumption 6 in-hand, the mental component of measured health quality at d = 1 (equation

(1)) can be expressed as follows:

mi = Mi(p
1
i ) (4)

Mi(·) ≡ Ψi [Xi(·)] = Ψi

[
Q
2L
i + β̂i(·)

(
∆Q

2
i

)]
.

As reflected in the preceding equation, in this formalization of expectancy theory, beneficial brain-

modulated physiological effects are driven by optimism about the effi cacy of future medication, i.e.
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hope, not by beliefs regarding whether one is in the treatment group or the control group. The key

probability assessment is β̂i, the subjective posterior probability assessment that the effi cacy state

is H.

The objective of the RCT is to estimate the expectation of the direct non-placebo effect of the

drug on health quality. Let:

Direct Effect ≡ E[p1i |i ∈ T , S]− E[p1i |i ∈ C, S] = µS − µC . (5)

The expected treatment-control health quality difference is:

E[Q1i |i ∈ T , S]− E[Q1i |i ∈ C, S] = µS − µC + {E[mi|i ∈ T , S]− E[mi|i ∈ C, S]}. (6)

From equation (4) it follows:

E[Q1i |i ∈ T , S]− E[Q1i |i ∈ C, S] = µS − µC︸ ︷︷ ︸
Direct Effect

+

∫
I


∫
P

Ψi

[
β̂i(p)Q

2H
i + (1− β̂i(p))Q

2L
i

]
[fS(p)− fC(p)]dp

 di
︸ ︷︷ ︸

Bias

. (7)

Notice, bias depends upon the objective probability densities {fC , fH , fL}, as well as the subjective

posteriors (β̂i) which, in turn, depend upon the subjective priors {fCi , fHi , fLi }

Under the traditional interpretation, the bias term in equation (6) is equal to zero, implying

the mean treatment-control health quality difference yields an unbiased estimate of the mean of the

direct non-placebo physiological effect of the treatment relative to the control. Thus, the absence

of bias in RCTs can be understood as being predicated upon two assumptions: additivity and i.i.d.

mental effects.

3 Analysis of Posterior Beliefs

This section characterizes how test subjects update beliefs in reaction to the interim signal they

receive, their respective direct physiological state (p1i ).

In order to illustrate the central role played by updating, we begin by presenting a suffi cient

condition for absence of bias.

14



Proposition 1 A suffi cient condition for absence of bias, regardless of the true effi cacy state S, is

that for all i ∈ I posterior beliefs are equal to prior beliefs (β̂i = λi), a condition satisfied if subjects

do not observe any interim signal, in violation of Assumption 3, or subjects place zero weight on

the Bayesian posterior, in violation of Assumption 4.

Proof. If β̂i(p) = λi ∀ p ∈ P, the bias term in equation (7) is 0.�

The intuition for the preceding proposition is as follows. Under the stated conditions, test

subjects cling to their prior beliefs regardless of the direct physiological state they experience during

the RCT. In this case, the fact that the treatment and control groups are drawing from different

objective probability distributions is inconsequential in terms of hope-based mental effects.

3.1 Bayesian Posteriors

Since the Bayesian posterior always enters a test subject’s subjective posterior with positive weight

(Assumption 4), it is useful to consider some of its properties. From Bayes’Rule it follows:

βi(p) =
λi
[
tfHi (p) + (1− t)fCi (p)

]
t
[
λifHi (p) + (1− λi)fLi (p)

]
+ (1− t)fCi (p)

. (8)

Notice, the Bayesian posterior βi regarding the effi cacy state is distinct from the Bayesian posterior

regarding assignment to the treatment group. To see this, let bi denote the posterior probability

assessment of having been in the treatment group. From Bayes’Rule it follows:

bi(p) =
t
[
λif

H
i (p) + (1− λi)fLi (p)

]
t
[
λifHi (p) + (1− λi)fLi (p)

]
+ (1− t)fCi (p)

. (9)

From the preceding equation it follows that a Bayesian agent will view her direct physiological state

as being uninformative regarding her assignment category if the control medication is viewed as

satisfying the following ex post blinding condition:

fCi = λif
H
i + (1− λi)fLi ⇒ bi(p) = t ∀ p ∈ P. (10)

The preceding two equations imply Bayesian posteriors regarding the effi cacy state can expressed

15



in terms of Bayesian posteriors regarding the assignment category as follows:

βi(p) = bi(p)

[
λif

H
i (p)

λifHi (p) + (1− λi)fLi (p)

]
+ [1− bi(p)]λi (11)

= λi

[
1 + bi(p)

(
fHi (p)

λifHi (p) + (1− λi)fLi (p)
− 1

)]
.

From the second line in the preceding equation it follows that

fHi (p) ≥ fLi (p)⇔ βi(p) ≥ λi. (12)

That is, Bayesian posteriors will exceed priors if the direct physiological state (p) experienced during

the RCT is viewed as being more likely in state H than in state L.

3.2 Subjective Posteriors

Intuition suggests a higher realization of the direct physiological state p1i will tend to be associated

with a higher posterior probability assessment that the novel medication has high effi cacy. This

subsection derives a set of technical conditions on subjective priors {fCi , fHi , fLi } under which β̂i is

indeed strictly monotone increasing.

To begin, it is useful to note some basic properties of subjective posteriors. We have the following

lemma.

Lemma 1 If κ≤i = κ>i , then β̂i is continuously differentiable on (p, p). If κ≤i 6= κ>i , then β̂i is

continuously differentiable at p ∈ (p, p) if and only if fLi (p) 6= fHi (p).

Proof. Continuous differentiability of βi follows from twice continuous differentiability of the cu-

mulative distributions. If κ≤i = κ>i ≡ κi continuous differentiability follows from β̂i = κiβi. If

κ≤i 6= κ>i , β̂i is continuously differentiable if βi(p) 6= λi. From equation (11) this holds if and only

if fLi (p) 6= fHi (p).�

At points where β̂i is indeed differentiable

β′i(p) > 0⇔ β̂
′
(p) > 0. (13)
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With this in mind, define the following state-contingent likelihood ratio function:

RSi (p) ≡ fSi (p)

fCi (p)
∀ S ∈ {L,H} and p ∈ (p, p).

Differentiating βi and rearranging terms one finds:

[tRHi (p) + (1− t)]′

tRHi (p) + (1− t)
>

[tRLi (p) + (1− t)]′

tRLi (p) + (1− t)
⇒ β′i(p) > 0. (14)

The preceding equation will be used repeatedly below to establish suffi cient conditions for monotone

posteriors.

4 Bias: Role of Control Medication

As stated in the introduction, existing work (e.g. Malani (2006)) has focused on the role played by

the treatment probability parameter (t) in determining the magnitude of placebo effects. This issue

is analyzed in the next section. In this section, we consider the distinct issue of the role played by the

statistical characteristics of the control. The first subsection signs bias arising from mental effects.

The second subsection relaxes some of the technical assumptions relied upon in the first subsection.

The final subsection formulates an empirical test for the control medication effect implied by our

model.

4.1 Signing Bias

Consider first a conservative regulator whose objective is to avoid upward bias. We have the following

result.

Proposition 2 Suppose objective probabilities are such that FC = FH , with FH first-order stochas-

tically dominating FL. Suppose further subjective probabilities for all i ∈ I are such that FCi = FHi ,

with fHi /f
L
i strictly increasing. Then the expected treatment-control health quality difference is equal

to (less than) the expectation of the direct physiological effect in effi cacy state H (L).
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Proof. Zero bias in state H follows from equation (7). From equation (14) it follows each β′i > 0

implying each β̂i is strictly increasing. Strictly increasing posteriors imply each Ψi [Xi(·)] ≡ Mi(·)

is strictly increasing. Integrating by parts, we have∫
P

Mi(p)[f
S(p)− fC(p)]dp =

∫
P

M ′i(p)[F
C(p)− FS(p)]dp. (15)

Negative bias in state L follows from FC first-order stochastically dominating FL.�

It is worth stressing the preceding proposition does not assume common knowledge. In par-

ticular, the proposition places no direct limit on the statistical distance between subjective and

objective probability densities. Rather, the proposition assumes a degree of concordance between

subjective and objective probabilities. Conversely, if fH/fL were to have the monotone likelihood

ratio property (MLRP below), then the stated conclusions would hold under common knowledge of

the objective probabilities.

The preceding result has the potential to provide useful guidance in settings where an existing

drug is known to be highly effective, but features, say, extremely high costs of production, so that one

is forced to evaluate lower cost alternatives, say generic drugs. From the proposition it follows that

using the existing expensive medication as the control has an attractive feature from the perspective

of a conservative regulator: the use of a control mimicking FH precludes upward bias.

It is also worth stressing the elimination of bias in state H is predicated upon the objective

probabilities having a particular property, FC = FH , rather than being predicated upon properties

of the subjective priors. Intuitively, equating hope-based mental effects across treatment and control

groups in a given state is achieved by having the two groups make draws of direct health effects

from identical distributions in that state.

Another point worthy of note is that the preceding proposition could be utilized by a regulator

with limited information. For example, suppose the regulator knows the stated conditions are

satisfied but does not know {fC , fH , fL}. Here, the observation of a zero treatment-control difference

would reveal that the novel treatment has the same direct health effect as the high-effi cacy control,

and a negative difference would reveal the novel treatment to be inferior to the control. Phrased
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differently, here a zero difference would reveal state H and a negative difference would reveal state

L.

In many settings, no existing medication achieves the high effi cacy standard, so that the preced-

ing proposition cannot be relied upon. The following proposition illustrates that, nevertheless, the

use of a relatively effective control, say an active pill rather than an inert pill, can serve the dual

purpose of reducing the probability of upward bias, as well as helping to reveal the effi cacy state.

Proposition 3 Suppose objective probabilities are such that FH first-order stochastically dominates

FC which first-order stochastically dominates FL. Suppose further subjective probabilities for all

i ∈ I are such that fHi /fCi and fCi /f
L
i are strictly increasing. Then the expected treatment-control

health quality difference is greater (less) than the expectation of the direct physiological effect in

effi cacy state H (L).

Proof. From equation (14) it follows that each β′i > 0 implying each β̂i is strictly increasing.

Strictly increasing posteriors imply each Ψi [Xi(·)] ≡ Mi(·) is strictly increasing. The bias signs

follow from equation (15) and the assumed FOSD properties of objective probabilities.�

The preceding proposition does not assume common knowledge and does not place a direct limit

on the statistical distance between subjective and objective probability densities. However, the

proposition does assume a degree of concordance between subjective and objective probabilities.

Conversely, if fH/fC and fC/fL were to have the MLRP property, the stated conclusions would

hold under common knowledge of the objective probabilities.

The preceding proposition could also be utilized by a regulator with limited information. For

example, suppose the regulator knows the stated assumptions are satisfied but is otherwise igno-

rant regarding {fC , fH , fL}. Under the stated conditions, the observation of a positive (negative)

treatment-control difference would be suffi cient to conclude S = H (S = L) implying µS > µC

(µS < µC). That is, the sign of the treatment-control difference would here serve as a reliable

indicator in ranking medications according to their mean health outcomes. However, a couple of

caveats are in order. First, as we show in the next subsection, if the FOSD assumption is violated,
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the reliability of the treatment-control difference as a ranking criterion breaks down. Second, even

when the preceding proposition’s assumptions are satisfied, the magnitude of the incremental health

impact would still remain unknown. After all, here a positive (negative) treatment-control difference

overstates the direct health benefit (loss).

The preceding proposition allows us to demonstrate a useful result en passant. Consider that the

traditional story for placebo effects is that test subjects manifest better outcomes if they think they

are receiving the real treatment. In such case, mental effects would be equated across treatment

and control groups if the control could be fine-tuned so that the ex post blinding condition (10) is

satisfied. The following result shows ex post blinding is no cure-all.

Remark 1 Ex post blinding of test subjects regarding their treatment status is not suffi cient to

eliminate mental effect biases.

Proof. Assume Bayesian subjects holding common knowledge that P = [0, 1], fH = 2p, fL =

2(1− p), fC = 1 and λ = 1/2. Then β(p) = t for all p ∈ P. The assumptions of Proposition 3 are

satisfied implying bias in both states.�

Consider next an unscrupulous pharmaceutical manufacturer hoping to achieve upward bias.

Symmetry suggests the manufacturer will want to choose an ineffective control. Indeed, consistent

with this intuition, the next proposition presents technical conditions under which there will be

upward bias in both states.

Proposition 4 Suppose objective probabilities are such that both FH and FL first-order stochas-

tically dominate FC . Suppose further that subjective probabilities are such that fHi /f
C
i is strictly

increasing and (
fHi
fCi

)′
(p) >

(
fLi
fCi

)′
(p) > 0 for all p ∈ (p, p).

Then the expected treatment-control health quality difference is greater than the expectation of the

direct physiological effect in effi cacy state L and effi cacy state H.
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Proof. Given equation (15) and the FOSD assumptions, to establish the claim it is suffi cient to

establish each β′i > 0 implying each β̂i is strictly increasing implying each Ψi [Xi(·)] ≡ Mi(·) is

strictly increasing. To this end, we suppress the identifier i and rewrite equation (14) as follows:

0 < R′H(p) [tRL(p) + (1− t)]−R′L(p) [tRH(p) + (1− t)]

⇔ 0 < t
[
RL(p)R′H(p)−R′L(p)RH(p)

]
+ (1− t)

[
R′H(p)−R′L(p)

]
⇔ 0 < t[RL(p)]2

[
fH(p)

fL(p)

]′
+ (1− t)

[
R′H(p)−R′L(p)

]
.�

In addition to the problem of upward bias, comparison of the two preceding propositions reveals

another weakness associated with utilizing low effi cacy control medications rather than control

medications of intermediate effi cacy, potential inability to infer the true effi cacy state. We have the

following remark.

Remark 2 If the conditions of Proposition 3 are satisfied, the expected treatment-control health

quality difference is positive in effi cacy state H and negative in effi cacy state L. If instead the

conditions of Proposition 4 are satisfied, the expected treatment-control health quality difference is

positive in both effi cacy states.

Notice, if the conditions of Proposition 4 are satisfied, the experimenter cannot rely upon the

sign of the treatment-control difference to distinguish between the two effi cacy states. In this situ-

ation, the experimenter would need to rely upon magnitudes of the treatment-control difference to

determine the state. However, interpreting treatment-control magnitudes is more diffi cult since mag-

nitudes depend upon unobservables such as the respective mental effect functions (Ψi) as illustrated

by equation (7).

To better illustrate the role of the control, consider running two separate RCTs where the same

novel drug is given to the respective RCT treatment groups, but with the two control groups receiving

different medications C1 and C2. Assume the two controls are described using identical wording in

informed consent forms and that subjective priors are thus equalized across the two RCTs, implying
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identical posterior belief functions.13 Next, calculate for each of the RCTs the difference between

the conditional expectation of the treatment-control difference in state H and the corresponding

conditional expectation in state L. Applying equation (7), and noting that equality of prior beliefs

implies equality of the posterior belief functions (β̂i), it is readily verified that:

{[E(Q1i |i ∈ T , S = H)− E(Q1i |i ∈ C1, S = H)]− [E(Q1i |i ∈ T , S = L)− E(Q1i |i ∈ C1, S = L)]} =

{[E(Q1i |i ∈ T , S = H)− E(Q1i |i ∈ C2, S = H)]− [E(Q1i |i ∈ T , S = L)− E(Q1i |i ∈ C2, S = L)]}.

The preceding equation states that if the control is varied across two RCTs, with subjective

priors being held constant, the cross-state spread in the treatment-control difference will be equal

across the two RCTs. For example, suppose both FL and FH first-order stochastically dominate

FC1 whereas FC2 dominates FL but is dominated by FH . Then in the RCT using C1 as a control

one might observe a treatment-control difference of 10 in state H and a difference of 4 in state L.

Under the more effective control C2 one might see a treatment-control difference of 4 in state H and

−2 in state L. Notice, the cross-state difference between treatment-control differences is identical

under the two controls (10 − 4 = 4 − (−2)). However, with the more effective control C2, the

treatment-control difference is shifted downward so that the sign of the difference suffi ces to infer

the state.

4.2 Relaxing Technical Assumptions

This subsection relaxes some of the technical assumptions utilized in the preceding subsection. To

begin, recall Propositions 2, 3, and 4 placed no direct limit on the statistical distance between subjec-

tive and objective probability densities. However, each proposition assumes a degree of concordance

between subjective and objective probabilities. Although concordance is arguably a reasonable

working assumption in some settings, the following remark shows that concordance is not essential.

Remark 3 The respective conclusions of Propositions 2, 3, and 4 hold if the respective assumptions
13 Informed consent laws are suffi ciently broad so that controls need only be described in broad terms. See Hernandez

et al (2014) and Golomb et al (2014).
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imposed on subjective probability assessments instead satisfy the assumptions imposed in one of the

two remaining propositions.

Proof. The respective restrictions on subjective probability assessments are suffi cient to establish

each β′i > 0 implying each β̂i is strictly increasing implying each Ψi [Xi(·)] ≡ Mi(·) is strictly

increasing. With monotonicity established, the final step in the proof of each proposition remains

the same.�

In summary, the preceding remark shows that in order to prove Propositions 2, 3, and 4, one

could combine the respective assumptions for objective probabilities with either of the remaining two

proposition’s assumptions regarding subjective probability assessments. In this sense, the results

of the propositions remain valid absent concordance. For example, the conclusion of Proposition

4, which assumed the control was first-order stochastically dominated in both states, would remain

valid even if the control was instead perceived by all subjects as first-order stochastically dominating,

with FCi = FHi and fHi /f
L
i strictly increasing as assumed in Proposition 2.

The preceding remark illustrates how the restrictions imposed on subjective priors can be relaxed

with the conclusions of Propositions 2, 3, and 4 still remaining valid. However, in some instances a

regulator will want to avoid assuming that prior beliefs satisfy the type of MLRP conditions that

were utilized in establishing monotonicity of subjective posteriors. The next remark shows that,

even without imposing MLRP, the regulator can determine the true effi cacy state if there exists a

control that mimics either S ∈ {L,H}.

Remark 4 If objective probabilities are such that FC = FS
′
for S′ ∈ {L,H}, the observation of a

treatment-control difference different from zero reveals S′ is not the true state.

Proof. From equation (7) it follows that if FC = FS
′
the treatment-control difference is zero if

S = S′ and thus a non-zero difference reveals the other state.�

The more general implication of the preceding remark is that, even if one prefers to remain

agnostic regarding the subjective priors held by test subjects, valuable information can be gathered
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nevertheless by relying upon a battery of controls mimicking potential effi cacy states. After all,

a non-zero treatment-control difference in an RCT utilizing a control mimicking effi cacy state S′

reveals the true state is not S′. Moreover, the proposition shows that it is not necessary to find

controls mimicking every effi cacy state. Rather, controls mimicking a proper subset of effi cacy

states can be suffi cient.

Consider next a regulator who, as immediately above, prefers to remain agnostic about the

subjective probability assessments held by test subjects, but whose objective is to eliminate bias on

average. The unconditional expectation of the state-contingent bias in equation (7) is

E[mi|i ∈ T ]− E[mi|i ∈ C] =

∫
I


∫
P

Ψi

[
β̂i(p)Q

2H
i + (1− β̂i(p))Q

2L
i

]
[λfH(p) + (1− λ)fL(p)− fC(p)]dp

 di. (16)

We then have the following remark.

Remark 5 The unconditional expectation of bias is zero if the objective probability densities satisfy

the ex post blinding condition

fC = λfH + (1− λ)fL.

It is worth stressing that the condition for achieving zero bias in expectation only concerns

properties of the objective probability densities. Intuitively, if the objective probabilities satisfy the

stated condition, the treatment and control groups have an equal unconditional probability of each

possible realization of p1i . This implies treatment and control groups have equal distributions of

posteriors, equal distributions of mental effects, and a fortiori, equal expected mental effects. It is

also worth stressing that the preceding remark only speaks to the unconditional expectation of bias.

That is, while a control achieving satisfying the preceding ex post blinding condition achieves zero

bias on average across states, there may well be large bias in both states (see Proposition 3).

Having discussed potential relaxation of the prior subsection’s assumptions regarding the sub-

jective probability assessments held by agents, we turn our attention next to relaxing the FOSD

assumptions imposed on objective probabilities. In particular, we are interested in determining
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whether bias can still emerge in state S′ even if FS
′
does not first-order stochastically dominate

FC , and vice-versa. In fact, it is readily verified that FOSD relationships are not necessary to gen-

erate bias. For example, consider homogeneous Bayesian subjects having common knowledge that:

µD = 0; δL = δH = 0; P = [0, 1], fH = 2p; fL = 1; fC = 4p for p ≤ 1/2; and fC = 4(1 − p) for

p > 1/2, implying µL = µC . Suppose also

Ψ(X) ≡ max{X −X∗, 0} (17)

X∗ ≡ πL

2
+

[
λ+ λt

2

1 + λt
2

][
2πH

3
− πL

2

]
.

In the preceding equation, X∗ is expected future health quality conditional upon p1i = 3/4. Since

Ψ(p) = 0 for p ≤ 3/4 and fL(p) > fC(p) for p > 3/4 it follows that, if β is indeed strictly increasing,

as shown below, then

E[Q1i |i ∈ T , S = L]− E[Q1i |i ∈ C, S = L] (18)

=

∫
P

Ψ
[
β(p)Q

2H
+ (1− β(p))Q

2L
i

]
[fL(p)− fC(p)]dp > 0.

That is, despite the fact that FL does not stochastically dominate FC , here there is positive bias

in state L. Intuitively, the likelihood of very good direct physiological effects is, by construction,

higher for the treatment medication than the control. Under the type of convex brain-modulated

physiological effect assumed in equation (17), the treatment medication has a stronger mental effect

than the control in state L.

The preceding example illustrates a result of greater practical importance. Recall, despite the

existence of bias under the stated assumptions in Propositions 3 and 4, the observation of a positive

(negative) treatment-control difference would nevertheless be suffi cient to conclude that the novel

treatment generates a higher (lower) expected direct health outcome than the control. These results

appear to lend support to the view of the International Conference on Harmonization of Technical

Requirements for Registration of Pharmaceuticals for Human Use (ICH, 2000) that the sign of

the treatment-control difference offers a valid metric for rank-ordering medications. However, the

following proposition shows that such a rule-of-thumb is not valid in general.
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Proposition 5 The observation of a positive treatment-control difference does not imply µS > µC

and the observation of a negative treatment-control difference does not imply µS < µC .

Proof. Given the discussion preceding equation (18), the first claim follows if β is strictly increasing.

Let

γ(p) ≡ tRH(p) + (1− t)
tRL(p) + (1− t) ∀ p ∈ (p, p)

⇒ ln[γ(p)] = ln[tRH(p) + (1− t)]− ln[tRL(p) + (1− t)]

⇒ γ′(p)

γ(p)
=

[tRH(p) + (1− t)]′
[tRH(p) + (1− t)] −

[tRL(p) + (1− t)]′
[tRL(p) + (1− t)] .

From equation (14) it follows that β is strictly increasing if γ is strictly increasing. Note

p ∈
[
0,

1

2

]
⇒ γ(p) =

1− t
2

t
4p + (1− t)

p ∈
[
0,

1

2

]
⇒ γ(p) =

2tp+ 4(1− t)(1− p)
t+ 4 (1− t) (1− p) .

Differentiating, it follows γ is increasing on both intervals.

For the second claim, consider the same density functions but assume Ψ has a convex kink and

a concave kink benefiting the control, which has thinner tails. In particular, assume

Ψ[X(p)] ≡ min

{√
1

2
,

√
max

{
p− 1

4
, 0

}}
. (19)

It follows ∫ 1

0
Ψ[X(p)][fC(p)− fL(p)]dp =

29

80

√
2− 1

15
− 7

24

√
2 > 0.�

Recall, the preceding subsection established that, although RCTs might well be biased, under

the assumptions in Propositions 3 and 4, the observation of a positive (negative) treatment-control

difference is suffi cient to conclude µS > µC (µS < µC). The two key ingredients in proving those

propositions were FOSD assumptions on objective probabilities and technical restrictions on priors

causing posteriors to be monotone. The examples in the preceding proposition maintained monotone

posteriors but failed to impose FOSD between FC and FL. In the absence of a FOSD relationship,
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the relative magnitude of mental effects becomes sensitive to the functional form of Ψ. For example,

in the proof of the proposition, µS = µC , but the treatment-control difference was positive under a

convex Ψ (equation (17)) that advantaged the treatment given its fatter right tail. Conversely, the

treatment-control difference was negative given a convex-concave Ψ (equation (19)) that advantaged

the control given its thin tails.

Phrased differently, even the “gold standard”treatment-control difference implicitly relies upon

technical assumptions about probability distributions or functional forms. In particular, stronger

distributional assumptions, e.g. FOSD, allow a greater degree of agnosticism regarding functional

forms of mental effects.

4.3 Tests for RCT Bias

It would be useful to formulate statistical tests that would allow researchers to assess whether

RCTs correctly measure incremental health improvements relative to the chosen control, µS − µC ,

or whether, as we have argued, RCTs generate biased measures of incremental health improvements

with the bias itself being systematically related to the objective properties of the control medication.

For our first bias test, we propose adopting the differences-in-differences (DiD below) test sta-

tistic, commonly employed in applied microeconometric work, but tailoring it to medical RCTs in

order to isolate the role played by the control medication.14 To motivate this test, consider two

different RCTs where the same novel drug is given to the treatment groups, but with the two con-

trol groups receiving distinct medications C1 and C2 generating mean health outcomes µC1 and µ
C
2 ,

with C2 first-order stochastically dominating C1. Suppose C1 and C2 are described using identical

wording in informed consent forms and thus subjects in the two RCTs form the same subjective

priors. This implies identical posterior belief functions. Finally, to conserve notation, assume test

subjects are homogeneous.15

Consider then computing the expectation of the difference between the treatment-control differ-

14See Angrist and Pischke (2009) for a general discussion of DiD.
15This is without loss of generality.
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ences across the two RCTs. Applying equation (7), we have:

{
E[Q1i |i ∈ T , S]− E[Q1i |i ∈ C1, S]

}
−
{
E[Q1i |i ∈ T , S]− E[Q1i |i ∈ C2, S]

}
(20)

= µC2 − µC1

+∆Q
2
∫
P

Ψ′
[
β̂(p)Q

2H
+ (1− β̂(p))Q

2L
]
β̂
′
(p)[FC1 (p)− FC2 (p)]dp.

Notice, if the two RCTs were delivering unbiased estimates of the novel treatment’s incremental

health benefit, the integral in the preceding equation would be zero and the DiD would simply

reflect the difference between mean health outcomes under the different control medications. In

contrast, our theory predicts that, provided posterior beliefs are monotone, the integral term here

will be positive and the DiD will exceed µ2−µ1. Intuitively, we predict greater systematic pessimism

of the control group receiving C1 rather than C2, which increases the treatment-control difference

in the C1 controlled trial and increases the DiD.

The assumption of common prior beliefs across the RCTs is not necessary. To see this, consider

the same thought-experiment, but now admit the possibility that prior beliefs differ across the two

RCTs, implying that the posterior belief functions will differ across the two RCTs. Here we have

DiD = µ2 − µ1 (21)

+∆Q
2
∫
P

Ψ′
[
β̂1(p)Q

2H
+ (1− β̂1(p))Q

2L
]
β̂
′
1(p)[F

C
1 (p)− FS(p)]dp

−∆Q
2
∫
P

Ψ′
[
β̂2(p)Q

2H
+ (1− β̂2(p))Q

2L
]
β̂
′
2(p)[F

C
2 (p)− FS(p)]dp.

Suppose FC1 is first-order stochastically dominated by F
S , whereas FS is first-order stochastically

dominated by (or equal to) FC2 . Here too the DiD exceeds the difference between mean health

outcomes under the respective controls.

Phrased differently, according to conventional theories of placebo effects, pharmaceutical manu-

facturers should be indifferent between the choice of control, with the treatment-control difference

being reduced one-for-one with changes in µC , which implies that the experimenter must simply

add the treatment-control difference back to µC in order to deduce the mean health outcome under
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the novel medication. In sharp contrast, our analysis implies that the treatment-control difference

changes more than one-for-one with changes in µC . This implies that a pharmaceutical manufac-

turer hoping to generate upward bias in estimated health outcomes would prefer to use a low effi cacy

control since this generates systematically more pessimistic control group beliefs and hence greater

upward bias in the assessed treatment-control difference.

A limitation of the proposed DiD test, as a device for detecting RCT bias, is that it presumes

the researcher knows the true difference between mean health outcomes induced by the two control

medications. If this is not the case, the following triangle equality test can be applied instead.

The proposed triangle equality test requires the researcher to conduct three different RCTs.

The first two RCTs are as described above for the DiD test: the novel drug will be given to the

respective RCT treatment groups, with the respective RCT control groups receiving different control

medications C1 and C2 generating (unknown) mean health outcomes µC1 and µ
C
2 . Again, C1 and

C2 are to be described using identical wording in informed consent forms so that subjects in these

two RCTs form the same subjective priors implying identical posterior belief functions. In the third

RCT, subjects are randomly assigned to trial arms given either C1 or C2, and are informed of this.

Next consider that

µS − µC1 = (µS − µC2 ) + (µC2 − µC1 ). (22)

From the preceding equation it follows that, if RCTs are in fact delivering unbiased estimates of

pure physical effect differences, the following triangle equality must hold:

E[Q1i |i ∈ T , S]− E[Q1i |i ∈ C1, S] (23)

= {E[Q1i |i ∈ T , S]− E[Q1i |i ∈ C2, S]}+ {E[Q1i |i ∈ C2, S]− E[Q1i |i ∈ C1, S]}

That is, if RCTs are unbiased, the difference between the novel treatment and control 1 should be

equal to the difference between the novel treatment and control 2 plus the difference between control

2 and control 1.
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In contrast, according to our proposed theory of placebo effects, only the third RCT, which

compares the two controls, can be presumed to yield an unbiased estimate of health effect differences,

since subject experiences in that RCT are uninformative about the effi cacy state of the novel drug.

Applying integration by parts in equation (7), our theory implies the triangle equality will be satisfied

only if

µS − µC1 + ∆Q
2


∫
P

Ψ′
[
β̂(p)Q

2H
+ (1− β̂(p))Q

2L
]
β̂
′
(p)

[FC1 (p)− FS(p)]dp

 (24)

= µS − µC2 + ∆Q
2


∫
P

Ψ′
[
β̂(p)Q

2H
+ (1− β̂(p))Q

2L
]
β̂
′
(p)

[FC2 (p)− FS(p)]dp


+µC2 − µC1 .

In turn, satisfaction of the preceding condition demands that, in violation of our theory, mental

effects are invariant to the objective properties of the control medications, so that∫
P

Ψ′
[
β̂(p)Q

2H
+ (1− β̂(p))Q

2L
]
β̂
′
(p)FC1 (p)dp (25)

=

∫
P

Ψ′
[
β̂(p)Q

2H
+ (1− β̂(p))Q

2L
]
β̂
′
(p)FC2 (p)dp.

5 Treatment Group Measure

This section examines the role played by the treatment group measure. We begin first with an

analysis of how bias varies with t.We then move on to deriving testable implications regarding how

health outcomes within treatment and control arms respectively will vary with t.

To begin we have the following result.

Proposition 6 As the measure of the treatment group goes to zero, bias goes to zero, regardless of

the true effi cacy state S.
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Proof. As t tends to 0, β̂i tends to λi, and β̂
′
i tends to 0. This implies the bias term in equation

(7) tends to 0.�

Intuitively, bias arises from systematic differences in posterior beliefs across treatment and con-

trol groups. In turn, such systematic differences arise naturally if treatment and control groups draw

their direct physiological states from different distributions. However, if t is close to zero, subjects

rationally place little weight on their own draw of p1i in forming posterior beliefs.

Importantly, the proposition shows that RCTs featuring very small treatment probabilities have

the attractive property of virtually eliminating bias in both effi cacy states. By way of contrast, we

recall from the preceding sections that clever changes in the control medication cannot achieve this.

For example, mimicking controls (fC = fS) only eliminate bias in one of the two effi cacy states,

and controls mimicking the unconditional treatment density, fC = λfH + (1 − λ)fL, only reduce

the unconditional expectation of bias to zero.

However, as a practical matter there are a number of reasons one may want to avoid test

designs featuring small treatment groups. First, there is the concern over standard errors. Second,

there may be ethical concerns in withholding treatment for large numbers. Finally, such designs

may fail to attract voluntary participation, even if monetary incentives were provided to encourage

participation.

With this in mind, a natural question to ask is whether bias is monotonically increasing in t. To

address this question, we now express the bias in state S ∈ {L,H} as a function of the trial design

parameter t:

BS(t) ≡
∫
I


∫
P

Mi(p, t)f
S(p)dp

︸ ︷︷ ︸
Treatment Arm Mental

−
∫
P

Mi(p, t)f
C(p)dp

︸ ︷︷ ︸
Control Arm Mental

 di. (26)

Differentiating the preceding equation we obtain:

dBS(t)

dt
=

∫
I

∫
P

 Ψ′i [Xi(p, t)]
(

∆Q
2
i

)(
∂β̂i
∂βi

)
(

λi(1−λi)fCi (p)
[t(λifHi (p)+(1−λi)fLi (p))+(1−t)fCi (p)]2

)
[fHi (p)− fLi (p)][fS(p)− fC(p]

 dp

 di.
(27)
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Consistent with the empirical evidence provided by Malani (2006), the preceding equation sug-

gests that in general bias will vary with the treatment probability parameter t. In fact, from the

preceding expression, we have the following proposition presenting suffi cient conditions for the ab-

solute value of bias to be increasing in t.

Proposition 7 Suppose objective probabilities are such that fH/fC and fC/fL are strictly increas-

ing. Suppose further subjective probabilities for all i ∈ I are such that fHi /fCi and fCi /fLi are strictly

increasing. Then if the objective and subjective probability densities all cross at a single point, the

absolute value of bias in both states is strictly increasing in t.

Proof. We apply equation (27) focusing on the final product term in the integrand. Let p∗ denote

the single crossing point. The result claimed for state H follows from:

p 6= p∗ ⇒ [fHi (p)− fLi (p)][fH(p)− fC(p)] > 0.

The result claimed for state L follows from:

p 6= p∗ ⇒ [fHi (p)− fLi (p)][fL(p)− fC(p)] < 0.�

The following proposition presents suffi cient conditions for bias to be increasing in t.

Proposition 8 Suppose objective probabilities are such that both fH/fC and fL/fC are strictly

increasing. Suppose further subjective probabilities satisfy the conditions stated in Proposition 4.

Then if the objective and subjective probability densities all cross at a single point, bias in both

states is strictly increasing in t.

Proof. We apply equation (27) focusing on the final product term in the integrand. Let p∗ denote

the single crossing point. The result claimed follows from:

p 6= p∗ ⇒ [fHi (p)− fLi (p)][fS(p)− fC(p)] > 0.�
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The preceding two propositions notwithstanding, bias is not necessarily increasing in the trial

design parameter t. For example, suppose there is positive bias in state H. But suppose the prob-

ability densities do not have a single crossing point. In this case, the term (fHi − fLi )(fH − fC) in

the integrand in equation (27) is potentially negative on some intervals. By letting the slope of Ψ

go to zero for p outside all such intervals one obtains dBH/dt < 0.

Finally, as detailed in the introduction, Malani (2006) presents empirical evidence regarding the

arm-by-arm responsiveness of subjects to changes in the treatment probability. We consider now

the testable implications of our model in this context. Returning to equation (26), consider now the

derivative of the treatment arm mental effect with respect to the treatment probability parameter

t: ∫
I

∫
P

 Ψ′i [Xi(p, t)]
(

∆Q
2
i

)(
∂β̂i
∂βi

)
(

λi(1−λi)fCi (p)
[t(λifHi (p)+(1−λi)fLi (p))+(1−t)fCi (p)]2

)
[fHi (p)− fLi (p)]fS(p)

 dp

 di. (28)

It is apparent from the preceding equation that the sign of the slope is ambiguous, since the sign

depends upon the underlying probability densities. In particular, under, say, the MLRP, the term

fHi (p) − fLi (p) in the integrand will be negative for low values of p. It follows that the preceding

integral will be negative if the novel treatment has suffi ciently low effi cacy, with fS attaching

suffi ciently high probability to low realizations of p. Conversely, the term fHi (p) − fLi (p) in the

integrand will be positive for high values of p. Thus, the integral will be positive if the novel

treatment has high effi cacy, with fS attaching high probability to high realizations of p. Thus, our

theory predicts measured health quality in the treatment arm will generally increase (decrease) in

t if the treatment medication has suffi ciently high (low) effi cacy.

Returning to equation (26), consider next the derivative of the control arm mental effect with

respect to the treatment probability parameter t:

∫
I

∫
P

 Ψ′i [Xi(p, t)]
(

∆Q
2
i

)(
∂β̂i
∂βi

)
(

λi(1−λi)fCi (p)
[t(λifHi (p)+(1−λi)fLi (p))+(1−t)fCi (p)]2

)
[fHi (p)− fLi (p)]fC(p)

 dp

 di. (29)

It is apparent from the preceding equation that the sign of this slope is also ambiguous, since

the sign depends upon the underlying probability densities. In particular, under, say, the MLRP,
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the term fHi (p)− fLi (p) in the integrand will be negative for low values of p. Thus, the integral will

be negative if the control has low effi cacy, with fC attaching high probability to low realizations

of p. Conversely, the term fHi (p) − fLi (p) in the integrand will be positive for high values of p.

Thus, the integral will be positive if the control has suffi ciently high effi cacy, with fC attaching

high probability to high realizations of p. Thus, our theory predicts measured health quality in the

control arm will generally increase (decrease) in t if the control medication has suffi ciently high (low)

effi cacy.

6 Concluding Remarks

This paper illustrates a fragility associated with double-blind RCTs, often viewed as the gold stan-

dard in medicine for estimating pure non-placebo physiological effects. As we show, when subjects

receive interim signals, and when positive expectancy about future health quality leads to better

present-day health quality, the expectation of mental effects cannot be presumed equal across treat-

ment and control groups in RCTs, since beliefs regarding effi cacy will vary systematically with the

objective probability distributions governing direct physiological states. It follows that the differ-

ence between mean health outcomes across treatment and control groups is a biased estimator of

the mean of the direct (non-placebo) physiological effect.

We do not argue that all RCTs are vulnerable to the problems highlighted within the model, but

rather we argue that RCTs will tend to become biased if subjects observe signals and update beliefs

prior to measurement of health outcomes. Conversely, if subjects do not receive interim signals, or

if uncertainty regarding the data generating process weakens the updating process, then the biases

we posit are less of a concern. This latter argument suggests a potential benefit to greater opacity in

informed consent forms, since greater opacity is likely to diminish the propensity for belief updating.

Constructively, we used the model as a framework for analyzing the details of RCT implementa-

tion beginning first with an analysis of the role played by the control medication. It was shown that

choice of control can be used to alter bias. For example, high-effi cacy controls dominate low-effi cacy
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controls if the goal is to be conservative in the sense of eliminating or reducing the probability

of upward bias. Controls of intermediate effi cacy serve the purpose of reducing the probability of

upward bias, and can also reveal the latent effi cacy state as the sign of the treatment-control differ-

ence varies across states. Controls mimicking the distribution of health outcomes of the treatment

medication in a given state eliminate bias in that state, while controls mimicking the average un-

conditional density of treatment medication health outcomes cause the expectation of bias to go

to zero. Finally, we proposed a novel difference in differences test to detect RCT bias and to test

whether our posited control medication effect is indeed operative.

We turned next to analysis of the choice of treatment probability. Here a set of technical

conditions were offered such that bias increases in the treatment probability. However, it was also

shown that bias magnitude can be non-monotone in treatment probabilities. Finally, in terms of

normative implications it was shown that the adoption of balanced panels may not be optimal. This

is because bias arising from hope-based placebo effects approaches zero as the treatment probability

approaches zero. Thus, in large samples, one may prefer unbalanced panels featuring very small

treatment groups.

Continuing with our analysis of the role of treatment probability, we assessed the model’s ability

to explain some stylized facts that are at odds with the canonical theory of placebo effects. Consistent

with the stylized facts, our model predicts that within-arm health outcomes will vary with treatment

probability, although the predicted effects can be non-monotone. Further, the responsiveness of

treatment and control arms to changes in treatment probability are expected to differ, consistent

with the notion that RCTs are biased.

Before closing, it is worth discussing why it would be, as a general matter, inappropriate to

credit a studied drug with the mental effects measured during an RCT. First and foremost, as

quoted in the introduction, regulators have stated that their goal is to strip out mental effects.

Second, as our analysis shows, the expectancy of medical subjects is related to their assessment of

the probability of approval and production of a drug, captured by the model parameters (πL, πH).
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In reality, these parameters are likely to vary over time and cross-sectionally with the financial

constraints of companies, regulatory stringency, and governmental funding capacity. They do not

represent the type of physiological constants of interest to physicians. Third, as shown, expectancy

in a current RCT reflects in part the value of the treatment in counter-factual states. Thus, again,

expectancy in a current experimental round is not generally representative of long-term expectancy

since information sets change over time, implying changes in beliefs and changes in mental effects.

Fourth, it was shown that positive mental effects during a current RCT reflect the anticipated value

of next-generation drugs, not just the value of the drug being studied. The failure to account for

this effect would lead to downward bias in the estimated marginal benefit of the next-generation

drug.

Finally, it is likely that the RCT methodology will gain popularity in the context of social

experiments. With social experiments, the distinction between direct effects and indirect mental

effects is of less obvious importance than in medicine where regulatory approval of new drugs and

procedures is often predicated upon demonstrating positive direct effects. Nevertheless, if the goal

of social experiments is to guide policy interventions, understanding and empirically measuring the

distinct causal roles played by direct and indirect effects would appear to be important.

36



References

[1] Angrist, Joshua D. and Jorn-Steffen Pischke, 2009, Mostly Harmless Econometrics: An Em-

piricist’s Companion, Princeton University Press.

[2] F. J. Anscombe; R. J. Aumann, 1963, A Definition of Subjective Probability, Annals of Math-

ematical Statistics 34.

[3] Bothwell, Laura E., and Scott H. Podolsky, 2016, The Emergence of the Randomized Controlled

Trial, New England Journal of Medicine 375 (6), 501-503.

[4] Caplin, Andrew and John Leahy, 2001, Psychological Expected Utility Theory and Anticipatory

Feelings, Quarterly Journal of Economics, 55-79.

[5] Chan, Tat Y. and Barton H. Hamilton, 2006, Learning, Private Information, and the Economic

Evaluation of Randomized Experiments, Journal of Political Economy 114 (6), 997-1040.

[6] Chassang, Sylvain, Gerard Padro i Miguel, and Erik Snowberg, 2012, Selective trials: A

principal-agent approach to randomized controlled experiments, American Economic Review

(102), 1279-1309.

[7] Chassang, Sylvain, Erik Snowberg, Ben Seymour, and Cayley Bowles, 2015, Accounting for

Behavior in Treatment Effects: New Applications for Blind Trials, PLOS One, 10(6), e0127227.

doi: 10:1371/journal.pone.0127227..

[8] Deaton, Angus, 2010, Instruments, Randomization, and Learning about Development, Journal

of Economic Literature 48 (2), 424-455.

[9] Di Blasi, Zelda, Elaine Harkness, Edzard Ernst, Amanda Georgiou, and Jos Kleijnen, 2001,

Influence of Context Effects on Health Outcomes: A Systematic Review, The Lancet (357),

757-762.

37



[10] Epstein, Larry G., 2006, An Axiomatic Model of Non-Bayesian Updating, Review of Economic

Studies 73, 413-436.

[11] Epstein, Larry G., Jawwad Noor and Alvaro Sandroni, 2008, Non-Bayesian Updating: A The-

oretical Framework, Theoretical Economics 3, 193-229.

[12] Fisher, Ronald A., 1935, The Design of Experiments. London: Oliver and Boyd.

[13] Golomb, Beatrice, Sabrina Koperski, Murray Enkin, and Jeremy Howick, 2010, What’s in

Placebos?, Annals of Medicine, October.

[14] Haygarth, John, 1801, Of the Imagination as a Cause and as a Cure of Disorders of the Body:

Exemplified by Fictitious Tractors and Epidemical Convulsions. Bath: Crutwell.

[15] Hernandez, Astrid, Josep Banos, Cristina Llop and Magi Farre, 2014, The Definition of Placebo

in the Informed Consent Forms of Clinical Trials, PLOS ONE.

[16] International Conference of Harmonization, 2000, Choice of Control Group and Related Is-

sues in Clinical Trials E10, Department of Health and Human Services: Center for Biological

Evaluation and Research.

[17] Kaptchuk, Ted J., 1998, Powerful Placebo: The Dark Side of the Randomised Controlled Trial,

The Lancet 351, 1722-1725.

[18] MacLeod, A.K., J.M. Williams, and D.A. Bekerian, 1991, Worry is Reasonable: The Role of

Explanations in Pessimism about Future Personal Events, Journal of Abnormal Psychology,

478-486.

[19] Malani, Anup, 2006, Identifying Placebo Effects with Data from Clinical Trials, Journal of

Political Economy 114 (2), 236-256.

[20] Malani, Anup, 2008, Patient Enrollment in Medical Trials: Selection Bias in a Randomized

Experiment, Journal of Econometrics, 341-351.

38



[21] Philipson, Tomas, and Jeffrey Desimone, 1997, Experiments and Subject Sampling, Biometrika,

619-630.

[22] Rothwell P.M., 2005, External Validity of Randomised Controlled Trials: To Whom do the

Results of this Trial Apply?, The Lancet 365, 82-95.

[23] Rothwell P.M., 2006, Factors That Can Affect the External Validity of Randomised Controlled

Trials, PLOS Clinical Trials, 1-5.

[24] Shapiro, A.K. and E. Shapiro, 1984, Patient-Provider Relationships and the Placebo Effect,

in Matarazzo, Weiss, Herd, Miller and Weiss eds.: Behavioral Health: A Handbook of Health

Enhancement and Disease Prevention, New York, N.Y. Wiley Interscience, 371-383.

[25] Stewart-Williams, Steve, and John Podd, 2004, The Placebo Effect: Dissolving the Expectancy

versus Conditioning Debate, Psychological Bulletin 130 (2), 324-340.

[26] Thomas, K.B., 1987, General Practice Consultations: Is There Any Point in Being Positive?,

British Medical Journal (294), 1200-1202.

[27] Turner, Judith A., Richard A. Deyo, John D. Loeser, Michael von Korff, and Wilbert E.

Fordyce, 1994, The Importance of Placebo Effects in Pain Treatment and Research, Journal of

the American Medical Association 271 (20), 1609-1614.

39


