A COMPARISON OF RECENT MODELS FOR FATIGUE CRACK TIP DEFORMATION



D. Nowell1* and S.C. Nowell2

1Department of Mechanical Engineering, Imperial College London
South Kensington Campus, London SW7 2AZ, UK.
2 The London School of Geometry and Number Theory, Department of Mathematics, University College London
Gower Street, London, WC1E 6BT
*corresponding author: d.nowell@imperial.ac.uk



ABSTRACT

Fatigue crack propagation occupies much of the life of engineering components, particularly in the short crack regime.  It is important to understand the mechanisms of propagation in order to carry out damage tolerance assessment and to predict component service life.  The paper describes experiments carried out at macro- and micro-scale using digital image correlation to measure near-tip displacements.  From these, various key parameters governing crack growth are extracted, and different models of fatigue crack deformation are validated.  In particular, it is concluded that the Pommier and Hamam and the CJP models for fatigue crack displacement and stress fields have rather similar approaches to capturing the effects of crack tip plasticity.

KEYWORDS: Fatigue, Crack tip shielding	, Digital Image Correlation
1. 
1. 1. INTRODUCTION

There is increasing pressure on designers to reduce the level of conservatism in engineering systems in order to meet targets on cost, weight and emissions.  Most components suffer some form of cyclic stress, either directly from the remote loading (e.g. wind, or waves), or from vibrations originating within the system itself.  It is therefore not surprising that the most common cause of failure in service is fatigue [1].  The ‘safe life’ approach to fatigue has been used for many years, but inherently the scatter in crack nucleation life results in excessive conservatism, together with an acceptance of a small number of service failures.  Hence, for high-value or safety critical components (such as disks in aero-engines or reactor components) the ‘damage tolerant’ approach is frequently used. This relies on a combination of non-destructive inspection and estimation of crack propagation life. Most methods of this type are based on Paris and Erdogan’s classic paper of 1963 [2], which relates crack growth rate to the range of stress intensity experienced by the crack tip:	

			(1)

Of course, the so-called Paris law is simply an empirical curve fit to experimental data, which is generally found to be valid for constant amplitude loading at a single load ratio. Because it has proved so useful, various attempts have been made to extend the approach to more general conditions. Useful physical bases for this have been provided by Elber’s 1970 observation of plasticity-induced fatigue crack closure [3], and by the two parameter approach to crack growth characterisation [4]. However, neither of these have proved completely satisfactory. In any case, it is observed that cracks behave differently in the short crack regime than is the case for microstructure-independent growth, such as takes place in the long crack regime. Hence, the stress intensity approach has significant limitations when applied to practical industrial problems. Recent advances in experimental techniques, coupled with improved numerical modelling approaches, mean that a pathway towards a new paradigm for fatigue crack growth modelling may now be apparent. This paper will summarise some recent experimental work, and will suggest potential avenues for future exploration in order to produce more accurate management of service life in engineering systems.
1. 
1. 2. EXPERIMENTS

Our original experimental approach to investigate fatigue crack closure involved the application of moiré interferometry [5]. This method proved effective and yielded valuable results. However the experiments themselves were difficult and time consuming. More recently, de Matos [6] used in-situ digital image correlation to investigate the deformation field close to the tip of a propagating fatigue crack tip.  Similar work was undertaken by Lopez Crespo et al [7] at around the same time. The technique has been adopted by others, (e.g. [8]), and a range of useful results are now available in the literature. Our own experiments have followed on from those of de Matos [6], and a typical experimental configuration is shown in Figure 1. A long-range microscope is used to collect the images with the aid of a digital camera. This enables data from close to the crack tip to be obtained. A typical image collected in this manner is shown in Figure 2 [9]. At the relatively large magnification employed, the machining marks on the surface of the specimen provided sufficient contrast to be used for feature recognition in the DIC algorithm. Therefore no painting of the surface is required. Whilst a number of commercial DIC codes are available, public domain software proves entirely acceptable for image analysis.
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Figure 1. Schematic of the experimental arrangement
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Figure 2. A typical image of a crack with a grid of points where displacements are measured
using DIC (from [9])

As will be shown below, linear elastic fracture mechanics provides a reasonably good fit to measured surface displacements at this length scale. It is therefore interesting to investigate whether the same can be said for displacements measured much closer to the tip. A similar experimental procedure was therefore carried out using in-situ loading in a scanning electron microscope [9]. Once again, DIC proved effective in determining the near tip displacements. A typical image collected in the microscope is shown in Figure 3.  It may be seen that the field of view is about ten times smaller than that shown in Figure 2. A number of authors have used the entire image to fit to various models for near tip displacement [8; 10], but we should note that, since the crack is loaded in mode 1, the largest displacements are those in the y-direction along the crack flanks.  Therefore, points close to the crack flanks contain the most information about the overall displacement, and as we will see in the next section, high quality results may be obtained using the relative displacement of pairs of points on either side of the crack [5].  In discussing the application of different models, we will refer to experiments reported by O’Connor [9]. The material was an Al4%Cu alloy, and the specimens were loaded at R-ratios of 0.0 and 0.1 to a maximum loads corresponding to a nominal elastic stress intensity factor of approximately 20 MPam.


3. CRACK TIP DISPLACEMENT FIELDS

The simplest crack tip field that can be envisaged is that for a sharp crack in a purely elastic material [11], but it is clear that a fatigue crack in a real material differs from this in a number of respects.  Ahead of the crack tip, there is a forward plastic zone, which may lead to significant crack tip blunting.  There is also a cyclic plastic zone, which is approximately ¼ the size of the forward zone and where material undergoes cyclic plasticity as the crack is loaded.  As the crack propagates through these zones, a plastic wake develops, and arguments of self-similarity suggest that the strength of this will increase linearly with crack length.  Finally, some closure may be present, which causes the crack tip to be unloaded during part of the remote loading cycle.  Various models have been suggested to account for some or all of these effects, but here we intend to concentrate on two: (i) The Pommier and Hamam Model [12], which takes some account of crack tip plasticity in a simplified form, and (ii) the more complex Christopher, James and Patterson model [13].  Before looking at these, however, we will compare our experimental results with the predictions of the simple elastic model.
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Figure 3. A typical image of a crack with obtained with a scanning electron microscope (from [6])


3.1. The elastic crack tip field

The Westergaard stress function approach [11] leads to a general expression for the displacement in Mode 1 loading, perpendicular to the crack path, Uy, as

	 	(2)
	
where r is the radial distance from the crack tip, and  is the polar angle measured from the extension of the crack path ahead of the tip.  From this, by taking  = ±  one obtains an expression for the relative displacement, uy, between pairs of points on either side of the crack:
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													(3)

From equation (3) it is clear that the elastic model predicts that this displacement component should vary with distance from the crack as r. Hence, a plot of the experimentally displacement against r gives a value for the stress intensity factor, K, from the slope of the best fit straight line, provided that the Young’s Modulus, E is known. The straightness of the line provides an indication of the appropriateness of the model.  Alternatively, plotting uy/r against r produces lines which are horizontal, and the stress intensity factor may be obtained from the intercept. This second normalisation is sometimes helpful, as the deviation from a horizontal line may be taken as a guide to how well the data and model agree. Before plotting the data, however, we should note that as the points at which the displacement is being measured (shown as the light blue grid in Figure 2) approach the crack tip, the approximation that  = ±   is no longer valid, particularly when using a high magnification image, and the full expression in equation (2) should be used, rather than that in equation (3).  Figure 4 shows some typical data [9] from a crack growing under constant amplitude cyclic loading.  In Figure 4a, the approximation in equation (3) is used to fit the model to the experimental data, whereas in Figure 4b, the full expression is used.  It may be seen that a better fit is obtained using equation (2), which accommodates the non-zero experimental results corresponding to the crack tip position.

Figure 5 shows the results plotted according to the normalisation suggested above.  It may be seen that the intercept with the vertical axis increases as the load is increased.  From this data one can obtain a plot of stress intensity factor, K, against applied load. The corresponding graph is shown in Figure 6.  When compared with the theoretical elastic stress intensity factor for the compact tension specimen geometry used, it can be seen that the slope of the line is similar, but there is an offset caused by some form of crack tip shielding. Hence, the stress intensity factor does not start to increase until a certain threshold load is reached. The most likely explanation for this is the crack closure phenomenon reported by Elber [3] and caused by crack wake plasticity, although other types of crack closure and or crack tip shielding may play a role[footnoteRef:1].  The change of slope in the K vs load graph has also been noted by Lopez Crespo et al [7].  [1:  We shall not attempt to draw a distinction between these two phenomena in the current paper, since they are extremely closely related in practice.] 
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Figure 4. Typical results from constant amplitude loading: (a) fitted with equation (3); (b) fitted with the full equation (2) [6]
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Figure 5. Results from Figure 4, replotted as normalised displacement against distance from the crack tip at different values of P/Pmax

3.2. Pommier and Hamam Model

Pommier and Hamam [12] noted that crack tip plasticity causes additional displacement, which may not be well modelled by the Westergaard elastic solution [11].  They therefore proposed that the full solution for the crack tip displacement field may be thought of as the superposition of elastic and plastic terms.  The full approach requires comparison between an elastic-plastic finite element model and the elastic crack solution.  By subtracting the latter, one obtains the contribution of the plasticity alone.  However, close to the crack tip, one can simplify the relative displacements along the crack flanks as

					             (4)

where  is a ‘plastic intensity factor’ with units of length.  Of course, there is no singularity involved with this term, so the term can be somewhat misleading.  Further, we will note that when r = 0 then equation (4) gives simply

      						(5)

which shows that, with the approximate elastic and plastic fields used here, that  is simply equal to the crack tip opening displacement.  Pommier and Hamam argue that a significant cyclic variation in  is required for fatigue crack propagation and that this may explain the fatigue crack growth threshold.




[image: ]
Figure 6. Variation of stress intensity factor with load: results extracted from Figure 4.

By plotting the relative displacement against r, one can use equation (4) to obtain K from the slope and  from the intercept.  The results may be plotted in K -  space, as shown in Figure 7.  It may readily be seen that this gives a hysteresis loop, which is broadly of the same shape as predicted in [12].

[image: ]
Figure 7. Variation of normalised K and  during one cycle of loading, plotted in K -  space as suggested in [12]. Data from [9], P/Pmax < 0.4 excluded due to crack closure.


3.2.  The CJP model

The third model that we shall explore is that proposed by Christopher, James, and Patterson [13].  The authors’ idea is to capture the effects of the plastic zone ahead of the crack and the plastic wake by means of suitable modifications to the elastic stress field.  This is achieved by considering the interaction forces between a plastic enclave and the surrounding elastic material.  Figure 8 shows a schematic of the model, where FAx and FAy are the two components of the force exerted on the plastic enclave by the surrounding elastic material.  Similarly the two forces, FS are the shear forces exerted on the plastic wake by the adjacent elastic material.  In the original CJP paper, the approach is shown to lead to four parameters: the Forward Stress Intensity Factor, KF ; the contribution due to shielding, KR ; a shear stress intensity factor Ks ; and the bounded T-stress.  Of these, the first two would seem to be the dominant terms, with the first representing the applied crack tip driving force and the second the contribution due to material response (i.e. closure and/or crack tip shielding by residual stress). Vasco-Olmo [14] has carried out experiments on specimens manufactured from an Al 4%Cu alloy, a material very similar to that used in [6] and [9].  He has evaluated the forward and shielding contributions separately using a digital image correlation procedure. However, his results are based on a full-field fit to the model, rather than just along the crack flanks. A typical set of his results is shown in Figure 9.

It can be seen from Figure 9 that the KR term is negative for most of the cycle.  Of course, there is no singularity if the crack tip is loaded in compression, and a net negative stress intensity factor makes no physical sense.  Hence, Nowell et al. [15] have argued that the appropriate parameter to consider is the net stress intensity (KF + KR). When this is considered, the data shown in Figure 9 may be re-plotted and compared with O’Connor’s data [9], obtained with essentially the same material, but in an entirely independent experiment.  This comparison is shown in Figure 10, after adjusting for the different reference image used in each experiment[footnoteRef:2].  The comparison between the two sets of data is striking, and it will be seen that the shielding effect is very significant.  The stress intensity factor remains at its minimum value until about 20% of the way through the load cycle.  It then increases at approximately the same rate as predicted by the nominal elastic solution, eventually reaching half the nominal value at maximum load. [2:  Our practice is to use the minimum load as the reference image for each load cycle, since images may change significantly from cycle to cycle, particularly when overloads are applied.  Vasco Olmo uses a zero-load image as the reference.] 
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Figure 8: Diagram showing the interaction forces between the plastic enclave and the surrounding elastic material (after [13]). 
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Figure 9: Results obtained by Vasco Olmo, [14], showing the variation of KF and KR through a load/unload cycle for an Al 4%Cu Compact Tension specimen.
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Figure 10: Vasco Olmo’s data [14] plotted as delta K against loading cycle and compared with O’Connor’s results [9]

The results above are encouraging, and it therefore seems appropriate to examine in more detail whether the individual parameters of the CJP model may be extracted from the crack flanks displacements, rather than from the more complex full field analysis undertaken by Vasco Olmo.  We start with the expression for the (x,y) displacements, U,V [13], obtained from the Muskhelishvili complex stress function, which is:

			(6)

Where z = x +iy and A, B, C, D, and E are constants to be determined for any particular load case. We wish to evaluate this expression along the crack flanks, i.e. for z = re±i where r is the distance from the crack tip. The first simplification that can be made is to eliminate the last term in each of the brackets, since these terms will be continuous across the crack, and will not enter into the expression for crack opening.  Secondly, if we take the case of plane stress, then

							(7)

so that for = 1/3, which is a reasonable approximation for the Aluminium alloy considered here, then  = 2.  With these approximations, equation (6) leads to 

			(8)

along the upper flank of the crack, and -1 times this expression along the lower flank. For completeness, we also give

				(9)

although for Mode 1 loading, this will be the same on the upper and lower flanks. According to the CJP model [13], the retardation stress intensity factor (associated with crack tip shielding), KR is given by

		 	               (10)	
which is clearly associated with the  term in (8).  Hence, it should be possible to obtain KR from experimental measurements, by finding the strength of this term.  Hence

			(11)

Where v is the displacement between the flanks for any given load as a function of distance from the crack tip, r, and as measured experimentally by DIC.  If v/r is plotted against ln(r), we should be able to obtain KR from the slope.  Figure 11 shows some results from de Matos et al [6] re-plotted in this way for seven different loads during the loading part of the cycle.  It will be seen that the experimental points do indeed lie on straight lines as suggested by (11).  Figure 12 gives the variation of KR with load, which is qualitatively similar to that obtained by Vasco-Olmo [14] and depicted in Fig. 9, although the sign is different.  The coefficient of the r term in (8) is given by the intercept of the lines in Fig. 13. It will be seen that this also varies approximately linearly with load.  Examining the two coefficients of the terms in (8) we note that ther coefficient contains terms in A, B, D, and E, whereas the CJP expression for KF is given by:

				             (12)

Hence, it would appear that the r term in (8) contains information about KR as well as KF. Eliminating D from the two coefficients gives the magnitude of the r coefficient as:

				            (13)

The term in brackets is similar to that in (12) but has a different coefficient of the B term.  Thus, it would not seem possible to obtain the expression (12) purely from crack flank displacements.  Rather, a full-field fit, such as that employed by Vasco-Olmo may be required.  This aspect requires some further investigation, nevertheless, for completeness, the variation of the term (A – 5B – 8E) (equation 13) with load is plotted in Fig. 13. 
[image: ]

Figure 11: Data from de Matos’ experiments (specimen CTT4 [6]). Crack opening (v/(r/a)) plotted against ln(r/a) for different loads during the loading half of the cycle.




Figure 12: Variation of KR with load step during a load/unload cycle (data from Fig.11). Normalisation: Knorm = (2a/)K/G (m). Load step is the proportion of the way through the complete loading cycle.


Figure 13: Variation of first term in (11) with load step during a load/unload cycle (data from Fig.11). Normalisation as in Fig. 12. Load step is the proportion of the way through the complete loading cycle.
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Figure 14: Various different crack profiles – arbitrary scaling

What is clear from the two models is that they each seek to modify the Westergaard solution to account for crack tip plasticity.  Further, as far as the crack opening is concerned in pure mode 1, these modifications are rather simple.  The Pommier and Hamam model adds an additional constant  to the r variation.  More recent work by Pommier’s group (see, for example [16]) has, however, suggested that the displacement field associated with  may be expressed as

				                           (13)	
i.e. that the plastic displacement field may be separated into radial and angular variations.  Further, it is argued that the correct form of the radial field is

		     		                           (14)					          
where A and  are constants. In contrast, the CJP model adds an rln(r) term, which is associated with the shielding effect of the plastic zone. Figure 14 shows examples of these different distributions as a function of r.  One can quickly see that, away from the immediate vicinity of the crack tip, the effect of the two additional terms is not dissimilar: a gradual decay away from the crack tip.  Also plotted in Fig. 14 are the elastic r term, and the output from a strip yield model [17], following an elasto-plastic load/unload cycle.  Again, this shows a decay in displacement away from the crack tip, though this is more gradual than with the other distributions shown.  Nevertheless, suitable choice of parameters can make the three plastic distributions have very similar effects for 0.1 < r/a < 0.5.

The discussion in the previous paragraph would suggest that the additional parameters in the Pommier and Hamam and CJP models capture a rather similar effect, namely that of crack tip plasticity.  It is interesting therefore to plot the variations of the two terms in the CJP model against each other, in a rather similar way to the K vs  plot of Fig. 7.  This is done in Fig. 15.  Here it can be seen that the two terms are very closely correlated, as might be expected from Figs 12 and 13.  Thus, the effect of plasticity in this case may be rather limited, and one might expect the elastic stress intensity factor to be a good predictor of crack growth rate.

4. CONCLUSIONS

The results shown above show that crack face deformations are quite close to those predicted elastically, but with a small modification due to crack tip plasticity.  The following distinct conclusions may be drawn:

(i) That crack opening profiles, measured by DIC or some other technique appear to be sufficient to capture both the elastic and plastic components of the crack tip field.
(ii) That the Pommier and Hamam and the CJP model introduce a rather similar modification for crack tip plasticity: displacements which are large near the tip and reduce further towards the crack mouth.
(iii) That similar crack tip field behaviour has been captured by a number of authors, including Vasco Olmo [13], de Matos [6], and O’Connor [9].
(iv) That the capability of measurement techniques such as DIC, together with elastic-plastic modelling, captured in a two-term expression for near-tip deformation and stress has been demonstrated and may offer a promising approach for characterising fatigue crack growth under more complex loading histories.


Figure 15: Variation of first term in (11) with KR during a load/unload cycle (data from Fig.11).
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